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A B S T R A C T   

Using event-related potentials (ERPs), this study investigated how the brains of Chinese children of different ages 
extract and encode relational patterns contained in orthographic input. Ninety-nine Chinese children in Grades 1- 
3 performed an artificial orthography statistical learning task that comprised logographic components embedded 
in characters with high (100%), moderate (80%), and low (60%) positional consistency. The behavioral results 
indicated that across grades, participants more accurately recognized characters with high rather than low 
consistency. The neurophysiological results revealed that in each grade, the amplitude of some ERP components 
differed, with a larger P1 effect in the high consistency condition and a larger N170 and left-lateralized P300 
effect in the low consistency condition. A smaller N170 effect occurred in Grade 3 than in Grade 1, and a larger 
P300 effect occurred in Grade 1 than in either Grade 2 or 3. These findings suggest the dynamic nature of 
statistical learning by showing that neural adaptation associated with N170, and attention and working memory 
related to P1 and P300, regulate different types of structural input, and that children’s abilities to prioritize these 
mechanisms vary with context and age.   

Previous behavioral studies have demonstrated that statistical lear
ning—the ability to involuntarily extract and encode relational patterns 
of environmental input—plays a critical role in reading acquisition (for a 
review, see Lee et al., 2022). This is partly because many orthographies 
contain myriad statistical patterns that can be detected and learned by 
young children through mere repeated exposure (e.g., Frost et al., 2013; 
Treiman and Kessler, 2022). Also, individual’s implicit orthographic 
processing, defined as sensitivity to the untaught distribution of print 
patterns (e.g., the co-occurring frequency of letters or letter clusters in 
English, and the position of occurrence of radicals/stroke patterns in 
Chinese), determines initial reading success (e.g., Apel, 2011; Tong 
et al., 2019, 2020a). For example, using sperate measures of statistical 
learning and implicit orthographic processing, a recent study has sug
gested a potential direct link between visual statistical learning and the 
acquisition of orthographic regularities (e.g., Tong et al., 2019). How
ever, due to the constraints of behavioral approach and the lack of a 
unified paradigm for tapping directly into the processes of statistical 
learning of orthographic regularities, what the neural mechanisms un
derpin, and the possible developmental changes affecting statistical 

learning of orthographic regularities remain less well understood. Thus, 
by employing event-related potentials (ERPs) to record continuous 
neural signals evoked by cognitive processes before the behavioral 
response (e.g., Sommer et al., 2022), this study synergized statistical 
learning with orthographic regularity acquisition in an artificial logog
raphy learning paradigm to examine the neural correlates of statistical 
learning of orthographic regularities and the possible developmental 
changes at the neural level of Chinese first-, second-, and third-graders. 

As a logographic script, Chinese compound characters exhibit 
orthographic regularities by the position and function of radicals and 
stroke patterns, which are the constituent components of characters. For 
example, the left-right structured, semantic-phonetic compound char
acter 情/qing2/ (affection) comprises a left-sided phonetic radical 青 
/qing1/ providing a sound cue and a right-sided semantic radical 忄 
(heart-related) indicating a clue to meaning. Positional consistency refers 
to the probability of a radical appearing at a given position within 
characters (Tong et al., 2020a). Since the radical 忄always appears on 
the left, its left positional consistency is 100%, but zero for other loca
tions. However, unlike 忄, the positional regularities of radicals and 
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stroke patterns are not exclusively regular/rule-basedbut more 
quasi-regular. For example, among a corpus of 3,764 characters learned 
by Chinese primary school students, 42 contain the component "目", 
which appears on the left in 29 (e.g., 瞇, 睫, 瞅, 瞞, 瞄, 盯, 瞎, 睜, 瞼, 瞪, 
睡, 眼, 睛. 眨, 睹, 瞧, 盼, 瞭, 眠, 眺, 瞻, 瞰, 睬, 矚, 瞬, 眶, 眈, 瞌, 睦), on the 
right in one (i.e., 相), at the top in one (e.g., 鼎), at the bottom in 10 (e.g., 
看, 督, 眉, 冒, 盲, 省, 盾, 瞥, 眷, 着), and in the middle in one (i.e., 算). 
Thus, the distribution of the occurrence frequency of "目" is 69.05%, 
2.38%, 2.38%, 23.81%, and 2.38% for left, right, top, bottom, and 
middle, respectively. 

In fact, several behavioral studies have demonstrated that Chinese 
children are sensitive to the untaught distributional patterns of posi
tional regularities of radicals and stroke patterns. For example, using an 
implicit orthographic regularity elicitation paradigm, Tong and McBride 
(2014) showed that even 5-year-old Chinese kindergarteners were sen
sitive to the distributional patterns of character components. Similarly, 
Yin and McBride (2015) found that Chinese kindergartners’ accuracy 
was higher when reading pseudocharacters with phonetic cues or with 
radicals in their legal, rather than illegal, position. A recent study 
corroborated these findings by showing that Chinese children with 
dyslexia can statistically extract positional regularities of radicals, but 
were influenced by distributional patterns of left-right and top-bottom 
structured characters (Tong et al., 2020b). Together, these behavioral 
studies indicate that Chinese children can extract statistical regularities 
at a very young age and manifest them in their reading behavior. 
However, none of these studies elucidate the neural processes that 
enable these children to cope with quasi-regularity of the positional 
occurrence of radicals, and establish the representation for further 
learning and reading. 

Recently, Conway (2020) proposed a multicomponent model 
encompassing two primary cortical systems, with the first comprising a 
set of implicit, unconscious learning mechanisms based on the general 
principle of cortical plasticity, while the second is an explicit, conscious 
process mediated by attentional and working memory networks. In the 
implicit system, statistical learning’s plasticity of processing reflects the 
adaptation of neural networks to statistical structures (Reber, 2013), 
which is associated with reduced neural activity (Grill-Spector et al., 
2006). According to the second system, statistical learning also involves 
consciousness, including attention and working memory, to learn com
plex regularities through accumulated experience (e.g., Daltrozzo and 
Conway, 2014; Hendricks et al., 2013). Similarly, Mano (2016) assumed 
sensitivity to orthographic regularities as a two-process framework 
involving statistical learning, task-driven attentional control, and their 
dynamic interplay in sublexical processing, that mainly activated the 
posterior occipitotemporal sulcal region (i.e., visual word form area; 
Cohen and Dehaene, 2004). 

Aligning with the multicomponent views, several ERP studies pro
vided initial evidence for the possible involvement of multiple cognitive 
processes during statistical learning. For example, using a short inter
stimulus interval adaptation paradigm, Cao et al. (2014) compared the 
N170 effects elicited by two adaptor-test pairs and found that test 
characters with the same adaptor (vs. a foil adaptor) produced a smaller 
N170, reflecting an increased efficiency in neural adaptation (Reber, 
2013). Meanwhile, Turk-Browne et al. (2005) found that while statis
tical regularities could be automatically and implicitly learned, this 
process was controlled by selective attention as evidenced by slower 
responses in the attended stream condition but not in the unattended 
condition. 

Indeed, past studies suggested that attentional levels affected all ERP 
components corresponding to statistical learning (Daltrozzo and Con
way, 2014). For example, P300 reflects the extent of attentional resource 
allocation and the depth of input processing (Peisch et al., 2021) and is a 
neural indicator of working memory load during conscious visual pro
cessing (Koivisto et al., 2018). Also, P1, a positive ERP component 
recorded at 90–130 ms after stimulus onset in occipital sites, is related to 
children’s visual processing and spatial location (e.g., Taylor et al., 

2003). Baldwin and Kutas (1997) demonstrated that P300 effects were 
evoked by sequence violations in both explicit and implicit statistical 
learning. Neural imaging studies further revealed that implicit learning 
tasks triggered the caudate nucleus, a brain area that was activated in 
explicit rule learning and working memory (e.g., Lieberman et al., 2004; 
Seger and Cincotta, 2002). Together, these prior neuroscience studies 
reinforce our hypothesis that statistical learning of orthographic regu
larities may be supported by multiple neural mechanisms operating at 
different stages of learning. We tested this hypothesis with developing 
Chinese children. 

Our second aim is to address another unresolved issue concerning a 
developmental change in statistical learning: namely, how age affects 
neural mechanisms of statistical learning (Daltrozzo and Conway, 
2014). The developmental invariance model assumes that implicit sta
tistical learning is an age-independent cognitive process (Reber, 1993). 
An ERP study using a predictor-target task on adults, older children 
(aged 9–12), and younger children (aged 6–8) showed that high pre
dictors evoked a similar P300 effect across all three groups, indicating 
no age difference for visual statistical learning (Jost et al., 2015). 
However, the age-variant model claims that children’s performance 
improves as they age (e.g., Arciuli and Simpson, 2011). Employing the 
visual triplet statistical learning paradigm on 5- to 12-year-olds, Arciuli 
and Simpson (2011) demonstrated that older children outperformed 
younger children. Furthermore, Raviv and Arnon (2018) found that the 
age effect was modality-specific such that visual but not auditory sta
tistical learning improved with age. Subsequently, Shufaniya and Arnon 
(2018) reported that both learning patterns in different perceptual 
modalities improved with age, resulting in age invariance for the input’s 
linguistic feature. 

In sum, our study examined 1) when and to what extent children’s 
brains were activated during statistical learning of orthographic regu
larities, and 2) the developmental differences of this process in first-, 
second-, and third- graders. Specifically, by detecting the temporal 
course of each ERP indicator and comparing the activated ERP differ
ences among three position consistency levels (i.e., high, moderate, and 
low), we clarified the neural mechanism underpinning statistical 
learning of orthographic regularities in children from 7 to 9. As in study 
of Tong et al. (2020a) showing N170 as the ERP indicator of adults’ 
statistical learning of positional consistency, we hypothesize a larger 
N170 effect in low versus high condition. Furthermore, since younger 
children’s processing is less automatic than older children’s, their sta
tistical learning of orthographic regularities demands more explicit 
attention and working memory. We thus hypothesize the attenuated 
N170 response elicited by high condition relative to moderate and low 
conditions (reflecting implicit process), and that the P300 becomes 
smaller as age increases (indicating explicit process). 

1. Method 

1.1. Participants 

One hundred healthy native Chinese first- (17 boys, 15 girls; Mean 
age = 7 years, 2 months, SD = 4.69 months), second- (17 boys, 19 girls; 
Mean age = 8 years, 3 months, SD = 4.12 months), and third-graders (13 
boys, 19 girls; Mean age = 9 years, 6 months, SD = 7.68 months) 
participated in this study. One second-grader whose accuracy rate in the 
learning phase was 2.5 standard deviations below the individual mean 
was removed from the final analysis. Data for two second-graders in the 
recognition test were non-existent since they completed the EEG 
recording in the learning phase only. Therefore, 99 children’s EEG data 
were used for final EEG data analysis and 97 children’s data were used 
for the recognition data analysis. All participants had normal or 
corrected-to-normal vision and were right-handed. Ethical approval for 
this study was obtained from the Research Ethics Committee of the 
corresponding author’s university. 
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1.2. Materials 

Stimuli were adopted and modified from a past study (He and Tong, 
2017). For the learning phase, stimuli consisted of 30 artificial pseu
docharacters combining six target radicals with five control radicals 
adopted from Geba and Dongba characters used by the Naxi minority in 
Western China. Participants in this study were unfamiliar with these two 
scripts. The target radicals appeared in two positions (i.e., half at the top, 
half at the bottom) and were manipulated to carry different levels of 
positional consistency: high (100%), moderate (80%), and low (60%), 
according to orthographic regularity in Chinese radicals. The high 
consistency radicals (e.g., ) were manipulated to appear in the same 
top or bottom position in all five pseudocharacters (e.g., 

, , , , ). The moderate radicals (e.g., ) were manipu
lated to appear at the top or bottom in four pseudocharacters with 20% 
in the opposite position (e.g., , , , , ). The low consistency 

radicals (e.g., ) were manipulated to appear at the top or bottom in 
three pseudocharacters with 40% in the opposite position (e.g., 

, , , , ). The control radical carried no positional preference 
among items. Thirty pseudocharacters (10 for each condition) were ul
timately created in the learning phase. 

The visual complexity of all pseudocharacters was matched through 
cosine similarity to control for visual difference among items in the three 
conditions. Widely used in machine learning to extract critical words 
from a text to show high sensitivity between two characters, cosine 
similarity assesses similarity according to the cosine of the angle be
tween the vectors of two items (Korenius et al., 2007; Xia et al., 2015). 
The similarity between two characters, c1 and c2, is defined as: 

d =

∑d
i=1c1 × c2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

i=1c2
1

√

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑d

i=1c2
2

√ ,

where c1 and c2 are the value of pixels on the binary images of character 
c1 and c2, respectively. The similarity score between two characters 
ranges from zero to one, with higher scores indicating higher levels of 
similarity. Using the cosine similarity measure, three 10 × 10 matrixes 
for every two consistency levels (each contains 10 items) were obtained 
in this study. Results show that the averaged visual similarities for every 
two consistency levels are matched (high vs. moderate: M = 0.911; high 
vs. low: M = 0.912; moderate vs. low: M = 0.912). Fig. 1 displays the 
averaged similarity scores of 100 paired comparisons for every two 
conditions. 

1.3. Procedure 

All participants were involved in the learning and recognition pha
ses. During the learning phase, participants were exposed to a contin
uous sequence of pseudocharacters in a fixed pseudo-randomized order 
at the center of the monitor (e.g., He and Tong, 2017). Stimuli were 
displayed using E-Prime 2.0 software (Psychology Software Tools, 
Pittsburgh, PA). For each trial, a fixation “+ ” was shown at the center of 
the monitor for 500 ms, followed by a blank screen for 500 ms. Then, a 
pseudocharacter appeared for 800 ms, followed by a blank screen for 
1000 ms. Participants were required to press the SPACEBAR key when 
two identical stimuli appeared continuously. Each stimulus was 
repeated 24 times resulting in 720 trials. 

The recognition phase contained 30 stimuli, half of which were 
original stimuli used in the learning phase, and the other half novel 
stimuli created by reversing the positions of target and control radicals. 
Participants were required to press corresponding keys if they recog
nized stimuli from the learning phase. Items remained visible until the 
participants responded. Children’s reaction time and accuracy rate were 
recorded for both the learning and recognition phases. The experiment 
lasted approximately 40 minutes. 

1.4. EEG recording and data analysis 

While children performed the statistical learning task in the learning 
phase, the Brain Product 32-channel Ag/AgCl system (Brain Products 
Inc) recorded EEG at a sample rate of 500 Hz with the FCz electrode as 
the online reference. Electrode impedances were kept below 15 kΩ. EEG 
data were preprocessed with EEGLAB (Delorme and Makeig, 2004) and 
re-referenced to the average reference with ICA employed to correct for 
eye-blink artifacts. The continuous EEG was segmented into epochs from 
− 100–600 ms and time-locked to the target stimuli with a 2–30 Hz 
band-pass filter. The baseline of each epoch was corrected from 
− 100–0 ms, and ERPs were averaged within each condition. 

Using Global Field Power (GFP), ERP components were identified 
based on their peak. Within each grade, peaks were similar for each 
component. Thus, the average GFP in all participants determined the 
time window of each component. As shown in Fig. 2, a large positive 
waveform, i.e., the P1 component, was observed at 146 ms. A large 
negative waveform, i.e., the N170 component, was found at 230 ms. 
Another large positive waveform, the P300 component, was observed at 
344 ms. Therefore, three ERP components, i.e., P1 (120–180 ms), N170 
(210–250 ms), and P300 (320–370 ms), were identified. Past studies 
have suggested that orthographic processing is located in the occipital- 
temporal area (Tong et al., 2020a, 2020b). We thus selected four elec
trodes (i.e., P7, P8, O1, and O2) in the occipital-temporal areas based on 
the topographic maxima over both hemispheres across different condi
tions. We averaged the ERPs within the left (LOT) and right (ROT) 

Fig. 1. The similarity scores of 100 paired comparisons for every two condi
tions. The averaged similarities are in the lower left. 

Fig. 2. GFP for the whole process across the entire group. The vertical gray 
columns indicate three microstates reflecting P1, N170, and P300. Note. GFP is 
defined as the spatial standard deviation quantifying the amount of neural 
activity from all electrodes at each time point (Skrandies, 1990). Therefore, the 
peak of N170 here is positive. 
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occipital-temporal areas in order to increase the signal-to-noise ratio. 
Bonferroni correction was applied to protect from Type-I error in mul
tiple comparisons. Finally, we applied Greenhouse-Geisser correction to 
overcome the effect when the assumption of sphericity in repeated 
measures analysis of variance (ANOVA) was violated. 

2. Results 

2.1. Behavioral results 

Table 1 shows the reaction times and accuracy rates from the 
learning phase and recognition test for three conditions among the three 
grades. Trials with incorrect response and 2.5 standard deviations more 
than the individual mean were removed from the final analysis in the 
recognition test. For the learning phase, children’s mean response ac
curacy was 61.6%, 61.4%, and 58.2% for Grades 1, 2, and 3, 
respectively. 

For the recognition test in Grade 1, the mean recognition accuracy 
was 60.8%, significantly higher than chance (50%; t(31) = 7.35, 
p < 0.001). One-sample t-tests revealed significant differences between 
recognition accuracy and chance for the high-consistency condition 
(Mean = 68.12%; t(31) = 7.71, p < 0.001) and the low-consistency 
condition (Mean = 61.25%; t(31) = 3.42, p = 0.002). However, no sig
nificant difference between recognition accuracy and chance occurred 
for the moderate-consistency condition (Mean = 53.13%; t(31) = 1.47, 
p = 0.152). 

For the recognition test in Grade 2, the mean recognition accuracy 
was 59.6%, significantly higher than chance (50%; t(32) = 5.70, 
p < 0.001). One-sample t-tests revealed significant differences between 
recognition accuracy and chance for the high consistency condition 
(Mean = 68.18%; t(32) = 6.74, p < 0.001) and the low-consistency 
condition (Mean = 56.97%; t(32) = 3.00, p = 0.005). However, no sig
nificant difference between recognition accuracy and chance occurred 
for the moderate-consistency condition (Mean = 53.64%; t(32) = 1.34, 
p = 0.189). 

For the recognition test in Grade 3, the mean recognition accuracy 

was 62.3%, significantly higher than chance (50%; t(31) = 7.71, 
p < 0.001). One-sample t-tests revealed significant differences between 
recognition accuracy and chance for the high-consistency condition 
(Mean = 71.56%; t(31) = 6.92, p < 0.001), the moderate-consistency 
condition (Mean = 58.12%; t(31) = 3.23, p = 0.003), and the low- 
consistency condition (Mean = 57.19%; t(31) = 3.13, p = 0.004). 

Two separate mixed ANOVAs with consistency (high, moderate, and 
low conditions) as a within-factor and grade (1, 2, and 3) as a between- 
factor were performed on accuracy rate and response time for the 
recognition test. For accuracy rate, the main effect of consistency was 
significant (F(2, 188) = 25.41, p < 0.001, η2

p = 0.213). Follow-up com
parisons showed that children were more accurate in the high- 
consistency condition than in the moderate- and low-consistency con
ditions (ps < 0.001). However, no statistically significant difference 
occurred between the moderate and low conditions (p = 0.301). For 
reaction time, the effect of consistency was significant (F(2, 188) = 5.17, 
p = 0.008, η2

p = 0.052). Follow-up comparisons showed that children 
showed faster responses in the moderate-consistency condition than in 
the high-consistency condition (p = 0.010). However, no statistical 
difference occurred between the high and low conditions (p = 0.360), 
nor between the moderate and low conditions (p = 0.219). The effect of 
grade was significant (F(2, 94) = 4.01, p = 0.021, η2

p = 0.079). Follow-up 
comparisons showed that third-graders had a shorter reaction time than 
first-graders (p = 0.024). However, no statistical difference occurred 
between the first- and second-graders (p = 1.0), nor between the second- 
and third-graders (p = 0.119). No other main effects and interactions 
were found to be significant (ps > 0.05). 

2.2. ERP results 

The mean amplitude and comparisons across conditions in both LOT 
and ROT are shown in Table 2 and Fig. 3. Topographical maps of 
different conditions for three grade groups in each time window are 
shown in Figs. 4–6. The results of the statistical analyses in three ERP 
components are summarized in Table 1s (see Supplemental Tables). 

2.2.1. P1 (120–180 ms time window) 
A mixed ANOVA with consistency (high, moderate, and low condi

tions) and ROI (LOT and ROT) as within-subject factors, and grade (1, 2, 
and 3) as a between-subject factor revealed that the main effect of 
consistency was significant (F(2, 192) = 9.04, p < 0.001, η2

p = 0.086). 
Follow-up comparisons showed that the mean amplitude for the high- 
consistency condition was more positive than for the low-consistency 
condition (p < 0.001). However, the difference between high- and 
moderate-consistency conditions (p = 0.110 ) and between moderate- 
and low-consistency conditions (p = 0.074) was not significant. No 

Table 1 
Reaction Time and Accuracy Rate in the Learning Phase and Recognition Test for 
Three Conditions among Three Grades.  

Conditions Learning phase Recognition test  

Reaction time Accuracy 
rate 

Reaction time Accuracy 
rate 

Grade 1     
High 967.813 

(140.122) 
0.624 
(0.205) 

2015.462 
(640.588) 

0.681 
(0.133) 

Moderate 960.874 
(144.827) 

0.608 
(0.193) 

1776.324 
(808.110) 

0.531 
(0.120) 

Low 928.534 
(104.640) 

0.616 
(0.180) 

1760.964 
(607.180) 

0.613 
(0.186) 

Grade 2     
High 889.591 

(142.697) 
0.598 
(0.201) 

1824.167 
(586.519) 

0.682 
(0.155) 

Moderate 881.843 
(134.280) 

0.626 
(0.218) 

1609.469 
(641.614) 

0.536 
(0.156) 

Low 855.420 
(127.432) 

0.619 
(0.178) 

1841.021 
(767.402) 

0.570 
(0.133) 

Grade 3     
High 855.321 

(161.235) 
0.584 
(0.217) 

1484.867 
(601.916) 

0.716 
(0.176) 

Moderate 863.070 
(188.855) 

0.560 
(0.213) 

1426.795 
(556.112) 

0.581 
(0.142) 

Low 826.994 
(179.431) 

0.602 
(0.192) 

1460.593 
(643.145) 

0.572 
(0.130) 

Note: Standard deviations are in parentheses. The reaction time and accuracy 
rate in the learning phase are based on children’s performance of filler trials in 
the cover task. As the cover task is to ensure participants’ pay attention to 
learning stimuli, we did not interpret the behavioral results in the learning 
phase. 

Table 2 
Mean Amplitudes of Three ERP Components (P1, N170, and P300) for Each 
Consistency Condition in the Left Occipital-temporal (LOT) and Right Occipital- 
temporal (ROT) Regions.   

ROI  

LOT ROT 

P1   
High 6.343(3.970) 6.409(3.695) 
Moderate 6.193(3.752) 6.149(3.578) 
Low 5.913(3.675) 5.922(3.598) 
N170   
High -2.631(3.803) -4.003(3.820) 
Moderate -3.190(3.695) -4.745(3.486) 
Low -3.126(3.839) -4.510(3.846) 
P300   
High 7.378(3.699) 7.251(3.452) 
Moderate 7.611(3.626) 7.056(3.451) 
Low 7.721(3.511) 7.302(3.498) 

Note: Standard deviations are in parentheses. 
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other main effects and interactions were found to be significant (ps >
0.1). 

2.2.2. N170 (210–250 ms time window) 
A mixed ANOVA with consistency (high, moderate, and low condi

tions) and ROI (LOT and ROT) as within-subject factors, and grade (1, 2, 
and 3) as a between-subject factor showed that the main effect of con
sistency was significant (F(2, 192) = 18.41, p < 0.001, η2

p = 0.161). 
Follow-up comparisons showed that the mean amplitude for the low- 
consistency condition was more negative than for the high-consistency 
condition (p < 0.001), and the mean amplitude for the moderate- 
consistency condition was more negative than for the high-consistency 
condition (p < 0.001). However, the difference between the moderate- 
consistency condition and the low-consistency condition was not sig
nificant (p = 0.628). The main effect of ROI was significant (F(1, 96) 
= 22.52, p < 0.001, η2

p = 0.190). The following comparison showed that 
the mean amplitude for ROT was more negative than for LOT 
(p < 0.001). Moreover, the main effect of Grade was significant (F(2, 96) 
= 3.18, p = 0.046, η2

p = 0.062). The mean amplitude for Grade 1 was 
marginally more negative than for Grade 3 (p = 0.050); however, the 
difference was not significant between Grade 1 and Grade 2 (p = 1.0), 
nor between Grade 2 and Grade 3 (p = 0.224). No other interaction was 

observed in our analysis (ps > 0.1). 

2.2.3. P300 (320–370 ms time window) 
A mixed ANOVA with consistency (high, moderate, and low condi

tions) and ROI (LOT and ROT) as within-subject factors, and grade (1, 2, 
and 3) as a between-subject factor revealed that the main effect of grade 
was significant (F(2, 96) = 10.57, p < 0.001, η2

p = 0.180). Follow-up 
comparisons showed that the mean amplitude for Grade 1 was more 
positive than for Grade 3 (p < 0.001), and the mean amplitude for Grade 
1 was more positive than for Grade 2 (p = 0.017). However, the dif
ference between Grade 2 and 3 was not significant (p = 0.211). The 
interaction of consistency by ROI was significant (F(2, 192) = 5.36, 
p = 0.005, η2

p = 0.053). Further analysis showed a significant effect of 
consistency at LOT (F(2, 192) = 4.16, p = 0.017, η2

p = 0.042). The mean 
amplitude for the low consistency condition was more positive than for 
the high-consistency condition (p = 0.014). However, no significant 
difference occurred between the moderate- and high-consistency con
ditions (p = 0.199) or between the low- and moderate-consistency 
conditions (p = 1.0). The effect of consistency was not significant at 
ROT (F(2, 192) = 2.45, p = 0.089, η2

p = 0.025). No other main effects and 
interactions were significant (ps > 0.1). 

Fig. 3. Grand averaged ERP waveforms of high-, moderate-, and low-consistency conditions at LOT and ROT for three grade groups.  
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2.2.4. Time-point-wise TANOVA analysis 
To compare the consistent difference of scalp fields among the three 

conditions, a time-point-wise Topographic Analysis of Variance 
(TANOVA) was conducted by computing a nonparametric randomiza
tion test based on the GFP of difference maps. The time-point-wise 
TANOVA analyses for ERP effects of consistency are shown in Fig. 7. 
T-map series across three grade groups are summarized in Table 5s (see 
supplemental analysis). Results revealed a significant difference of 
orthographic statistical learning between the low- and high-consistency 
conditions in four time windows: N170 with a P1/N170 transition 
(164–242 ms), P300 time range (260–356 ms), and two small time 
windows (402–434 ms, and 446–500 ms). Process differed between the 
moderate- and high-consistency conditions during two time ranges: a P1 
and N170 duration (116–250 ms) and a time window of P300 
(268–414 ms). The comparison of the moderate and low conditions 
suggested process differences in a brief time window within the N170 
duration (214–218 ms) and P300 time range (276–342 ms). Each t-map 
for the significant TANOVA time windows is displayed on the right of 
Fig. 7. The t-maps of both the low-high and moderate-high comparisons 
were significant in the P1-N170 segment at the occipital-temporal and 
parietal electrodes. A contrast of low- versus high-consistency condi
tions was observed at the left occipital-temporal electrodes in the time 

window of 402–434 ms, and at the right occipital-temporal electrodes in 
the time window of 446–500 ms. 

Fig. 8 displays the time-point-wise TANOVA analyses of grade ef
fects. Results revealed that grade effects significantly differed during 
statistical learning of orthographic regularities between first- and third- 
graders, and between first- and second-graders in three time windows: 
P1 (116–188 ms), N170 (206–260 ms), and P300 (300–490 ms). How
ever, no statistically significant difference occurred in the three time 
windows between second- and third-graders. 

3. Discussion 

Many studies have demonstrated that the human brain can detect 
orthographic regularities in a language through statistical learning (e.g., 
Gingras and Sénéchal, 2019; He and Tong, 2017; Samara and Caravolas, 
2014). However, the neural mechanisms underlying, and the develop
mental patterns affecting this learning process, remain largely unknown. 
Using the ERP technique with an artifical orthographic statistical 
learning paradigm, this study investigated neurophysiological correlates 
and developmental patterns of statistical learning of orthographic reg
ularities in Chinese first-, second-, and third-graders. In conjunction 
with behavioral results, the ERP data demonstrated that children from 

Fig. 4. Topographical maps of different conditions in the 120–180 ms time windows for three Grade groups. H-L: the voltage difference between high and low 
consistency conditions; H-M: the voltage difference o between high and moderate consistency conditions; M-L: the voltage difference between moderate and low 
consistency conditions. 
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all three grades could extract positional regularities of radicals 
embedded in artificial pseudocharacters using statistical learning. The 
statistical learning process of orthographic regularities is accompanied 
by rapid changes in neural activation, indicated by three ERP compo
nents (i.e., P1, N170, and P300). Specifically, in each grade, the 
amplitude of some ERP components differed, with a larger P1 effect in 
the high consistency condition and a larger N170 and left-lateralized 
P300 effect in the low consistency condition. Also, a smaller N170 
amplitude occurred in Grade 3 than in Grade 1, and a larger P300 
amplitude occurred in Grade 1 than in either Grade 2 or 3. These find
ings suggest statistical learning is subserved by at least two mechanisms: 
a neural adaptation triggered by high consistency inputs, and a cognitive 
control process (i.e., attention or working memory) triggered by low 
consistency inputs. 

Consistent with previous behavioral studies, all first-, second-, and 
third-graders were able to extract and learn the orthographic regular
ities (i.e., the position of radicals) through occurance frequency patterns 
embedded in the artificial pseudocharacters (e.g., He and Tong, 2017; 
Tong et al., 2020a, 2020b; Yin & McBride, 2015). This finding supports 
the experience-dependent mechanism (e.g., Canale, 2022; Saffran et al., 
1996), which might be domain-general (Thiessen and Saffran, 2007) 
since it applies to a broad range of learning processes, including visual 

perception (e.g., Turk-Browne et al., 2010), motor skill learning (e.g., 
Robertson, 2007), speech segmentation (e.g., Saffran et al., 1996), and 
even social intuition (Lieberman, 2000). Our finding extends previous 
studies by demonstrating that this mechanism may be essential for 
learning quasi-regularities of Chinese character orthography. 

Regarding the neural mechanisms related to children’s statistical 
learning, this study demonstrated a larger P1 amplitude in the high- 
consistency condition compared to the low-consistency condition. As 
the P1 effect is sensitive to the violation of radical positions in Chinese 
characters (Lo et al., 2019; Yum et al., 2015), the P1 activation produced 
by high-consistency condition in the current study may indicate that 
children were unaware of the legality of the artificial radicals embedded 
in the pseudocharacters; thus, the P1 effect was entirely attributed to 
visual statistical learning. Additionally, the effect of positional consis
tency can be explained by top-down attentional modulation (Taylor 
et al., 2003) in which the larger P1 effect elicited by stimuli in the 
high-consistency condition reflects stronger attentional control from 
top-down modulatory processing associated with more consistent fea
tures in orthographic regularities. 

However, the peak between low- and high-consistency conditions 
shifted in the N170 component. That is, an attenuated N170 effect was 
found for the high-consistency level compared to the low-consistency 

Fig. 5. Topographical maps of different conditions in the 210–250 ms time windows for three Grade groups. M-H: the voltage difference between moderate and high 
consistency conditions; M-L: the voltage difference between moderate and low consistency conditions; L-H: the voltage difference between low and high consis
tency conditions. 
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level, suggesting a neural adaptation to familiar and consistent statisti
cal input (e.g., Peter et al., 2019; Taylor et al., 2003) in which the 
neurocognitive processes of perceiving, encoding, and acting upon a 
given stimulus change adaptively as the experience of external input 
increases (Conway, 2020). This is exemplified by neuronal activity 
decay during the repetition of identical or similar stimuli (Benda, 2021). 
Of relevance to our study is that the high-, moderate-, and 
low-consistency conditions for radicals embedded in artificial pseu
docharacters were manipulated by varying the frequency of 
same-position target radicals across different pseudocharacters. High 
consistency meant that the same radical appeared in the same position 
across stimuli every time. With the accumulation of repeated exposure 
to the stimuli, participants became more familiar with the position of the 
radicals in the high-consistency condition than in the low- consistency 
condition. This greater familiarity leads to a decreased neuronal 
response to radicals appearing in the same position—hence, the 
observed attenuated N170 effect. 

The orthographic regularity hypothesis offers an alternative expla
nation: namely, that stimuli carrying greater orthographic regularity 
should be associated with less negative N170 responses (McCandliss 
et al., 1997; Tong et al., 2020a, 2020b). In this study, orthographic 
regularity was the positional consistency of target radicals appearing in 

artificial pseudocharacters. The more consistently a target radical 
appeared in more learned materials, the greater the orthographic reg
ularity of that radical. Thus, a less negative N170 effect was found for 
the high-consistency condition than for the low-consistency condition 
(see item analysis in Supplemental Analyses), suggesting that during a 
long-term learning process, children more efficiently extract and encode 
high condition orthographic regularities and more rapidly distinguish 
low positional consistency. However, in the moderate condition, 
detecting regularities was puzzling for the children, leading to larger 
N170 amplitudes, lower accuracy, and shorter reaction times. Our re
sults extend this hypothesis to artificial orthography learning by 
showing that N170 is not specific to a real orthography but applies to 
visual materials encoding regularity information. Future research needs 
to further verify this hypothesis using different sets of artificial 
materials. 

Furthermore, this study detected an enhanced P300 amplitude in the 
low-consistency condition compared to the high-consistency condition. 
P300 in the learning phase suggested that children need to focus their 
attention on encoding the artificial stimuli and allocate attentional re
sources to acquire statistical patterns of artificial orthography. The 
enhanced P300 effect indicates that increased attentional control is 
triggered by the inconsistent inputs with higher uncertainty (Carrión 

Fig. 6. Topographical maps of different conditions in the 320–370 ms time windows for three Grade groups. L-H: the voltage difference between low and high 
consistency conditions; L-M: the voltage difference between low and moderate consistency conditions; M-H: the voltage difference between moderate and high 
consistency conditions. 
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and Bly, 2007; Johnson, 1986), which might be attributed to the limi
tation of young learners’ attentional resources for the more complicated 
regularities extracted from the low-consistency condition (Forest et al., 
2021). This explanation is supported by Mano’s (2016) two-process 
framework in which attention control interacts with statistical 
learning during the orthographic learning process. The two-process 
framework assumed that, in addition to the need for statistical 
learning, the processing of certain types of orthographic regularities 
might require unique amounts of attention and cognitive control. Con
way (2020) further explained that some aspects of statistical learning, 
especially for rule-based information, reflect conscious processes that 
rely on attention and working memory. 

An alternative explanation for the P300 effect is the working memory 
load hypothesis. As suggested by Koivisto et al. (2018), P300 indicates 
that visual consciousness and working memory share resources at the 
relatively late maintenance stage. Consistent with this hypothesis, 
children need to constantly encode while consolidating the extracted 
orthographic regularities. As each positional consistency condition 

occupies different working memory resources, a significant difference in 
P300 amplitudes was observed between the low- and high-consistency 
conditions over the left occipitotemporal scalp. However, working 
memory load was associated more with maintenance than the encoding 
process (Shucard et al., 2009). As the current experimental design 
cannot distinguish the encoding and maintenance processes, future 
research is needed to investigate how and to what extent working 
memory load influences the process of encoding and long-term main
tenance during orthographic statistical learning. The results of all three 
ERP components indicate that young children can acquire complex 
regularities from domain-general statistical learning and language 
recoding mechanisms (Rey et al., 2019). 

Our study observed a developmental progression among children 
from 7 to 9 years old, with first-graders evoking larger N170 and P300 
effects than third-graders. More specifically, the analysis of time-point- 
wise TANOVA indicated a developmental profile of children’s first few 
years of primary school: at the start of learning to read, children required 
more effort to process statistical patterns of orthographic regularity, as 

Fig. 7. Time-point-wise ERP effects of consistency. The TANOVA results of low versus high and moderate versus high contrasts showed differences in the P1-N170 
component and the other two time ranges (dark grey frames are from 164 to 242 ms, 402–434 ms, and 446–500 ms, respectively. T-maps are displayed on the right). 
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indicated by larger P1, N170, and P300 responses. After more reading 
training, children from at least 8 years old improved during the entire 
stage of orthographic processing, as manifested by each ERP indicator. 
These findings were consistent with previous studies (Ho et al., 2003; 
Tong and McBride, 2014) showing a gradual development in children’s 
ability to acquire orthographic regularities. Thus, first-graders acquired 
the orthographic information of radicals (Ho et al., 2003), which pro
duced further improvement after one year of maturation and training 
(Anderson et al., 2013; Pacton et al., 2001). 

Additionally, the absence of interaction between consistency and 
grade at the behavioral and neural levels suggested that developmental 
difference in statistical learning is not apparent enough for children 
during the first three years of primary school. This finding corroborated 
the claim by Reber (1993) and other statistical learning studies (e.g., 
Amso and Davidow, 2012; Jost et al., 2015; Janacsek et al., 2012), 
suggesting that statistical learning of orthographic regularities is age 
invariant from the start of reading development. However, since our 
study manipulated only positional regularities, further reserach is 
needed to determine whether statistical learning of other types of 

orthographic regularities, such as semantic or phonetic consistency of 
radicals, relies on the same sets of mechanism. In fact, past behavioral 
developmental studies have demonstrated that Chinese children acquire 
positional regularities of radicals earlier than the functional regularities 
(e.g., Ho et al., 2003; Tong et al., 2016). Moreover, considering that the 
children’s age range was only 7–9 years old, further studies on primary 
school children, as well as testing the difference of functional connec
tions based on activation of brain regions among three age groups, 
would be of value. 

Notably, a discrepancy exists between the behavioral results and ERP 
results. Specifically, first- and second-graders’ accuracy rates for the 
behavioral recognition test did not exceed the chance level though a 
significant difference between high and moderate conditions was 
observed at N170. One explanation is the nature of the measurement 
with ERPs reflecting the neural activities that occurred during learning 
phase, while the accuracy for the recognition task occurred during the 
retrieval process of learning outcomes. Furthermore, as orthographic 
statistical learning might occur after only a few minutes of exposure 
(Chetail, 2017), the behavioral performance could results from a 

Fig. 8. Time-point-wise ERP effects of grade. The TANOVA results of Grade 1 versus Grade 3 and Grade 1 versus Grade 2 contrasts showed differences in the P1, 
N170, and P300 components (dark grey frames are from 116 to 188 ms, 206–260 ms, and 300–490 ms, respectively. T-maps are displayed on the right). 
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combination of learning and memory consolidation. These results may 
indicate that ERPs are moresensitive than behavioral measures for on
line statistical learning process. 

Additionally, the the first- and second- graders’ chace-level behav
ioral recognition accuracy in moderate, but above chance-level in high- 
and low-consistency conditions, could reflect that the recognition of 
high- and low-consistency items is dominated by a single mechanism 
while the retrieval of moderate consistency items may activate two 
competing mechanisms. Specifically, during the learning phase, two 
types of representation are formed: an abstract statistical structure 
representation of the target radicals’ positional regularities, and an item- 
specific pseudocharacter representation. Although both representations 
are available during the testing phase, abstract statistical structure 
representation dominates the retrieval of high-consistency condition 
items (100%), while item-specific representation is more active in the 
retrieval of low-consistency items due to more violated position items in 
low than moderate conditions. In contrast, two types of representations 
are equally active in the moderate consistency-condition and compete 
for cognitive resources, resulting in a lower recognition accuracy rate 
than high- and low-consistency conditions (see results of item regularity 
analysis in supplementary material). Future research is needed to 
further warrant this explanation. 

Nevertheless, our ERP results of N170, P1 and P300 align well with 
the multicomponent view of statistical learning, suggesting that high 
and low consistency inputs elicit two learning systems (see develop
mental difference analysis in supplemental analyses). Specifically, the 
attenuated N170 could be a neural index of the adaptation of familiar 
and repeated input, and the effects under high consistency condition (i. 
e., the target radical always appears in one position) are qualitatively 
different from moderate and low conditions (i.e., the target radical can 
appear in two positions). In contrast, the P1 and P300 components 
reflect the attentional processing triggered by items with various 
distributional statistics. One possibility is that the difference between 
100% and 80% consistency is not large enough to elicit attentional ef
fects, but between 100% and 60% consistency is. 

Despite the robust results showing the neural activities of statistical 
learning of positional regularities of target radicals, it should be noted 
that the target radicals were not counterbalanced across low, moderate, 
and high conditions. However, becuase our experimental stimuli were 
created from Dongba and Geba characters and not exposed to our par
ticiants before, we were able to more effectively eliminate the influence 
of individuals’ preference and prior knowledge. Thus, it is unlikely that 
the strong effect observed in the present study is related to the repeated 
visual features of the stimuli. 

In sum, this study advances our understanding of the neurophysio
logical markers of statistical learning of orthographic regularities and 
the associated developmental patterns. Specifically, the P1, N170, and 
P300 components of ERPs can be used in conjunction with reaction time 
to identify the cognitive process of statistical learning of orthographic 
regularities in Chinese children. N170 reflects the extraction and 
encoding of orthographic regularities in the occipitotemporal region 
with neural adaptation, while P1 and P300 relate to multiple cognitive 
mechanisms underlying the process of statistical learning. The grade 
effect was significant, i.e., the smaller N170 amplitude in Grade 3 than 
Grade 1 and the larger P300 amplitude in Grade 1 than either Grade 2 or 
3. These findings underscore the multiple mechanisms underlying sta
tistical learning and indicate the developmental invariance of statistical 
learning of orthographic regularities in Chinese children. 
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Corrigendum 

Corrigendum to “Multiple mechanisms regulate statistical learning of 
orthographic regularities in school-age children: Neurophysiological 
evidence” [Dev. Cogn. Neurosci. 59C (2023) 101190] 

Shelley Xiuli Tong a, Rujun Duan b, Wei Shen c, Yilin Yu d, Xiuhong Tong b,* 

a Human Communication, Development, and Information Sciences, Faculty of Education, The University of Hong Kong, Hong Kong, China 
b Department of Psychology, The Education University of Hong Kong, Hong Kong, China 
c Institute of Psychological Sciences, Hangzhou Normal University, China 
d School of Foreign Languages, Anyang Normal University, China 

The authors regret that the following sentence should have read as 
follows:“For example, the left-right structured, semantic-phonetic 
compound character 情/qing2/ (affection) comprises a left-sided 

semantic radical 忄(heart-related) indicating a clue to meaning and a 
right-sided phonetic radical 青 /qing1/ providing a sound cue.” 

The authors would like to apologise for any inconvenience caused. 

DOI of original article: https://doi.org/10.1016/j.dcn.2022.101190. 
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