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Abstract—The evolution of Internet-of-Things (IoT) is fos-
tering the use of intelligent controls for energy conservation.
Yet, the efficacy of these strategies is largely tied to diverse
load forecasting algorithms. Given the significant contribution
of heating, ventilation, and air-conditioning (HVAC) systems
to global energy consumption, accurate forecasting of HVAC
power usage is crucial for improving overall energy efficiency.
However, real-world HVAC load forecasting, bolstered by various
IoT devices, is complicated by multiple factors: data variability,
power load fluctuations, electronic phenomena (e.g., zero drifts),
and the increased time complexity and larger model sizes re-
quired to manage accumulating historical data. To address these
challenges, we first present an in-depth measurement study on the
characteristics of HVAC load at a minute scale based on HVAC
data collected in six locations. We propose HALO, a transformer-
based framework specifically designed for forecasting HVAC
load. HALO incorporates an adaptive data pre-processing stage
and a local-global-scale transformer-based load forecasting stage,
enabling precise forecasting of HVAC load and optimization of
energy utilization. Evaluation based on real-world data traces
from a prototype application demonstrates that the proposed
framework significantly outperforms existing models.

Index Terms—Internet of Things (IoT), Smart Energy, Energy
conservation, Load forecasting, Transformer

I. INTRODUCTION

IN order to adhere to the 1.5°C target set in the Paris
Agreement, emissions must be decreased by 45% by 2030

and achieve carbon neutrality by 2050 [1]. Among various
sectors, building energy consumption holds a substantial share
in overall energy usage, accounting for 30% of global energy
consumption [2]. Within building energy consumption, the op-
eration of Heating, Ventilation, and Air-Conditioning (HVAC)
systems plays a crucial role, representing approximately 40%
- 60% of total energy consumption in buildings [3]. As the
Internet-of-Things (IoT) evolves, it enables intelligent control
of HVAC systems, leading to substantial advancements in
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energy conservation [4]. However, the effectiveness of these
intelligent HVAC control strategies hinges largely on the appli-
cation of accurate and timely load forecasting algorithms [5].

Accurate and timely HVAC load prediction enables building
control systems to operate more efficiently by matching energy
usage with actual air-conditional demand, thereby reducing
power consumption and further lowering carbon emissions [6,
7, 8, 9]. Recently, This has sparked significant interest among
researchers in both industry and academia, focusing on HVAC
load forecasting to optimize energy efficiency by adjusting
HVAC operations. [10]. HVAC load forecasting methods can
be broadly classified into two main categories: physical-based
models and data-driven models. Physical-based models, also
known as white-box models, rely on fundamental physical
principles to describe the heat transfer characteristics of build-
ings [11]. However, these models require extensive and de-
tailed building information, and their prediction accuracy may
vary if the underlying assumptions of the physical principles
are not consistently met [12]. On the other hand, data-driven
models, referred to as black-box models, leverage shallow
machine learning or deep learning techniques, offering distinct
advantages for building energy load forecasting [10].

To understand their effectiveness and investigate the chal-
lenges in real-world HVAC data, we have developed EdgeSpot,
an edge computing-based IoT device specifically designed for
smart energy, as shown in Figure 1. EdgeSpot serves as an
IoT hub for communication and computing, enabling seamless
interaction, minute-level data acquisition, and processing with
diverse IoT devices, including electricity meters, HVAC com-
munication panels, and meteorological instruments. We have
collected measurements and made observations on diverse
HVAC systems across different buildings, user behaviors, and
locations. The preliminary data presented several significant
challenges. First, the data exhibits variability due to geographic
differences, diverse HVAC system brands and types, and
varying numbers of internal units. This complexity poses diffi-
culties in accurate modeling and analysis. Second, power load
fluctuates in response to different features across various time
frames. For example, temperature strongly influences weekly
load patterns but has less impact on shorter time windows
(e.g., 24 hours, 1 hour, or 15 minutes). On the other hand, the
count of active HVAC internal units, reflecting user behaviors,
significantly affects load even within a 15-minute window.
Third, we noticed two electrical phenomena in real-world data:
zero drifts and voltage spikes. These phenomena can be caused
by factors such as temperature and humidity changes, power
surges, or switch-tripping on IoT devices. As a result, existing



2

models often struggle to accurately predict during transient
periods and load fluctuations, leading to practical limitations
in real-world applications.

Our observations underline the need for advanced tech-
niques for managing data variability and capturing tempo-
ral dynamics. Given the rapid growth of model size and
complexity, we advocate the adoption of transformer-based
models, which have shown considerable promise in building
load forecasting tasks [13, 14]. These models, equipped with
a self-attention mechanism [15], offer several advantages such
as reduced complexity, fewer parameters, lower computational
requirements, and the ability to capture intricate temporal
dependencies. These advantages make them well-suited to
address the challenges of larger model sizes and increased time
complexity encountered in existing deep learning approaches.
However, the current transformer-based models [13, 14] pre-
dominantly rely on the vanilla transformer [15], which ex-
hibits limitations, including fixed-length attention and limited
sequential dependency. While the vanilla transformer excels at
capturing short-term dependencies, but encounters difficulties
in handling long-term dependencies and complex patterns. For
example, the attention mechanism tends to prioritize nearby
time steps, potentially overlooking broader temporal relation-
ships that significantly influence peak values. Consequently,
these models may inadequately address the complexities of
real-world HVAC load forecasting, such as data variability,
power load fluctuations, and electronic phenomena.

Therefore, to address the aforementioned challenges, we
propose HALO, a local-global-scale transformer-based frame-
work for HVAC load forecasting. To assess the generalizability
of our framework, we conduct experiments evaluating its
performance on distinct buildings with different geo-locations
and user behaviors. We observe the superiority of the proposed
framework in the accuracy and reliability of load forecast-
ing for HVAC systems. This improved forecasting capability
contributes to optimizing energy efficiency in HVAC systems,
making progress toward achieving net-zero emissions [6, 7, 8].
Our contributions to this work can be summarized as follows:

• We developed EdgeSpot, an edge computing-based IoT
equipment, to establish communication with a diverse
range of IoT devices, including electricity meters, HVAC
communication panels, and meteorological instruments.

• We collects comprehensive data from six buildings
with diverse locations and user behaviors by deploying
EdgeSpots and environment sensors. The dataset includes
information on indoor and outdoor environmental factors,
electricity-related data, and specific operating details of
HVAC systems. This extensive data collection provides
valuable insights into the factors influencing HVAC load,
such as data variability, power load fluctuations, and
electronic phenomena.

• We propose HALO, a comprehensive transformer-based
framework for HVAC load forecasting. HALO consists
of three main stages: an adaptive data pre-processing
stage, a transformer-based load forecasting stage with
multiple encoders, and a scale fusion stage. The adaptive
data pre-processing stage addresses challenges related to
data variability, zero drift, and voltage spikes, which are

brought by IoT devices during the data collection. The
transformer-based HVAC load forecasting stage effec-
tively captures long-range global dependencies and local
information across different temporal windows. The scale
fusion stage captures the information of the original series
while emphasizing the forecasting performance for the
peak load values.

• By integrating information from global and local en-
coders, HALO significantly enhances the modeling capa-
bility and performance of load forecasting models. Em-
pirical evaluations across different locations demonstrate
at least an improvement of 3.13 times in performance on
24-hour load forecasting compared to existing methods.
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Fig. 1: Deployment diagram of EdgeSpot

II. HVAC MEASUREMENTS WITH EDGESPOT

A. Measurement Implementation

HVAC systems encompass various components such as
heating equipment, ventilation equipment, and cooling or air-
conditioning equipment, all of which are essential for main-
taining comfortable indoor environments in diverse settings
like residential, commercial, and industrial buildings. These
systems play a crucial role in regulating temperature, humidity,
and air quality inside buildings and locations [16].

EdgeSpot. The advent of IoT-based smart devices has
led to the development of numerous cost-effective HVAC
load forecasting models [5]. These advancements are further
enhanced by edge computing-based IoT systems, which enable
real-time data processing and the execution of lightweight
AI algorithms [17, 18, 19]. In order to better understand
the dynamics of HVAC systems and identify real-world data
challenges inside, we deployed an edge computing-based IoT
equipment, called EdgeSpot, specifically designed for smart
energy (see Figure 1). A diverse range of IoT devices, such
as electricity meters, HVAC communication panels, and me-
teorological instruments, can be interfaced with EdgeSpot. As
an edge computing-based IoT device, it serves as a crucial
intermediary for transferring information between the smart
power grid dispatch center [20], energy storage systems [21],
and HVAC systems, thereby facilitating better coordination
and management of renewable energy resources.

In our study, we have accomplished the integration of
EdgeSpot into smart energy systems, thereby facilitating seam-
less communication with a wide range of IoT devices via
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TABLE I: Buildings demonstrate variability due to their geographical locations, environmental factors, and user behaviors.

Building Type # of Features Date Range # of Internal Units User Behavior City Climate

A 4S Dealership (Brand A) 45 7/12/2023-9/11/2023 50 Opening hours City A: Humid subtropical
B 4S Dealership (Brand B) 29 8/15/2023-9/13/2023 13 Opening hours climate, four distinct
C 4S Dealership (Brand C) 29 8/18/2023-9/14/2023 33 Opening hours seasons, and moderate
D Airbnb 29 8/18/2023-9/13/2023 35 Occupancy and guest preferences amount of rainfall

E Office Building 29 5/09/2023-6/1/2023 131 Occupancy and working hours City B: Subtropical monsoon climate,

F Office Building 29 5/09/2023-6/2/2023 240 Occupancy and working hours hot, long and humid summers,
and substantial amount of rainfall

(a) One Week (b) One Day (c) One Hour (d) 15 Minutes

(e) One Week (f) One Day (g) One Hour (h) 15 Minutes

Fig. 2: The power load of a VRV system varies in response to changes in temperature and the number of active internal units.

multiple interfaces. EdgeSpot incorporates a CPU of ARM
4 core Cortex-A55 operating at 1.8GHz, complemented by
an independent Neural Processing Unit (NPU). This configu-
ration not only satisfies the stringent security prerequisites of
smart energy but also delivers optimized computational power.
EdgeSpot boasts up to 3GB of available storage and up to
1.5GB of memory. EdgeSpot exhibits the capability to gather
millisecond-level data and exercise control at the same granu-
larity. Yet, to meet the storage and measurement requirements,
we collect data at a 15-minute granularity. These attributes
contribute significantly to regional control by facilitating the
deployment of locally tailored control strategies.

B. Data Variability

To better understand the dynamics of HVAC systems, we
collected data from six buildings as illustrated in Table I1

Data from diverse HVAC systems across multiple buildings
demonstrate variability due to their geographical locations, en-
vironmental factors, and user behaviors. Specifically, Buildings
A to D and E to F are located in two separate cities within
different provinces of China, with an approximate straight-line
distance of 440 kilometers between them. These two provinces
exhibit divergent climate patterns. Buildings A to D, located
in a region with a subtropical monsoon climate, experience
hotter summers and colder winters, while buildings E and F,
located in a tropical monsoon climate, enjoy milder, longer

1According to the data collection agreement with the data providers, we
omit certain details about each building.

Fig. 3: Feature Correlation for Location A.

summers and shorter winters [22]. Moreover, each building is
equipped with a different count of internal units. Each of these
units is governed by an HVAC communication panel, which
captures specific features relevant to its corresponding area
within the building. The presence of such data inconsistencies
across different buildings accentuates the need to address the
increased count of features and serves as a motivation for
applying data pre-processing techniques.
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TABLE II: Collected Features

Electricity Meters

0 The Power Factor Angle (ϕ)
1 The Power Factor Angle of Phase a (ϕa)
2 The Power Factor Angle of Phase b (ϕb)
3 The Power Factor Angle of Phase c (ϕc)
4 Total Current (I)
5 Phase a Current (Ia)
6 Phase b Current (Ib)
7 Phase c Current (Ic)
8 Total Power Load (P )
9 Phase a Active Power (Pa)
10 Phase b Active Power (Pb)
11 Phase c Active Power (Pc)
12 Total Forward Active Energy (Pev)
13 Total Reactive Power (Q)
14 Phase a Reactive Power (Qa)
15 Phase b Reactive Power (Qb)
16 Phase c Reactive Power (Qc)
17 Total Voltage (U )
18 Phase a Voltage (Ua)
19 Phase b Voltage (Ub)
20 Phase c Voltage (Uc)
21 Operating Frequency (f )

Meteorological Instruments Communication Panels

22 Real Time Wind Speed 37 Humidity
23 Real Time Wind Direction 38 Temperature
24 Atmospheric Temperature 39 VRV Error Code
25 Atmospheric Humidity 40 VRV Fan Speed
26 Atmospheric Pressure 41 VRV Mode
27 Illuminance 42 VRV On Off
28 Minute Rainfall 43 Room Temperature
29 Hourly Rainfull 44 VRV Temperature
30 Daily Rainfall
31 Accumulated Rainfall
32 Dew Point Temperature
33 Radiation
34 Wind Force
35 Wave Height
36 Wind Direction Angle

The features collected from our edge computing-based IoT
device, EdgeSpot, are presented in Table II, encompassing a
wide range of information. These include data on electrical
energy consumption, air conditioning system operation, and
user behaviors, as well as real-time meteorological conditions.
Specifically, we collected a total of 45 features from building
A, which was the only building where we successfully imple-
mented meteorological instruments. For buildings B to F, we
collected a total of 29 features. This includes all the features
obtained from the electricity meter and HVAC communication
panel, with the exception of one feature related to operating
frequency.

C. Feature Correlation

To find the feature correlation among the features in our
dataset, we conducted a preliminary correlation analysis [23],
as shown in Figure 3, we observed significant correlations
among the features. Specifically, a strong positive correlation
emerged between reactive power Q (Feature 13-15), current
I (Feature 4-7), and power load P (Feature 8-11). Yet, the
total forward active energy (Feature 12) and reactive power
Q, current I , and power load P , although related, are not
directly correlated due to their different natures and units of
measurement. Additionally, we found a positive correlation

between power load P and various features (Feature 39-42)
obtained from HVAC communication panels, such as the num-
ber of active internal units indicated by the 42nd feature. This
suggests that a higher number of active internal units tends
to coincide with higher levels of power load P . On the other
hand, weather factors (Feature 22-38) demonstrate correlations
with power load P , and they show a relative impact on it.
These findings shed light on the interrelationships between
different features and contribute to a better understanding
of the factors influencing power load P . However, these
findings do not provide comprehensive insights into how these
collected features specifically impact the power load across
different time windows. To gain a deeper understanding of
the relationship between the collected features and the power
load, we next conducted an analysis of the impact of features
on the power load within different time windows.

D. Power Load Fluctuations

The fluctuations observed in power load can be attributed
to a variety of factors, including weather conditions and user
behaviors. These factors influence power load within different
time windows.

We collected one week of data from August 24th to 31st.
Daily data was gathered specifically on August 24th. For a
more granular analysis, we obtained one-hour data from 8-9
a.m. and 15-minute data from 8:40-8:55 a.m. on the same day.
We found that the power load exhibited variations in response
to changes in specific features across various time windows.
Specifically, as shown in Figure 2, we found that temperature
was a significant weather factor that impacted the power load.
The temperature and power load changes exhibit both weekly
and daily patterns.

In the meantime, we found that temperature changes had
much less influence on the power load during shorter time
windows. In contrast, user behaviors may have a more signif-
icant impact on the power load in short time intervals than
weather. For example, as shown in Figure 2c and Figure 2d,
the power load significantly increased when the dealership
opened at approximately 8:30 a.m. In addition, the number of
active internal units, a significant feature obtained from HVAC
communication panels that reflects user behaviors, clearly
impacted the power load within a 15-minute time window.
As the dealership opened, users turned on the HVAC systems,
leading to an increase in the number of active internal units
and a significant increase in the power load. These findings
highlight that weather impacts are noticeable over extended
periods like a day or week, while user behaviors affect power
load within shorter windows, such as an hour or 15 minutes.
Weekly and daily patterns provide a comprehensive view
and understanding of power load fluctuations. This motivates
us to develop a novel model that incorporates suitable time
windows, effectively capturing and adapting to information
from various time intervals.

E. Zero Shift and Voltage Spike

In our collected data, we also observed two common
phenomena that can occur in HVAC systems: zero drift and
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Fig. 4: Left: Zero drifts. Right: Voltage Spikes.

voltage spikes, as illustrated in Figure 4. Zero drift refers
to the gradual deviation of a sensor’s output from its true
value over time, even without any input. This phenomenon
is influenced by factors such as temperature and humidity
changes, or switch tripping in IoT devices, resulting in a shift
in measured values [24]. On the other hand, voltage spikes are
sudden and transient increases in electrical voltage caused by
events like lightning strikes, power surges, or high-powered
device switching on IoT devices [25]. Both zero drift and
voltage spikes have significant implications for the accuracy
and stability of measurements, which can subsequently impact
load forecasting. Consequently, additional data pre-processing
techniques are required to address these issues effectively.

III. TRANSFORMER PRELIMINARY

In the context of time series analysis, the transformer
architecture has been tailored to handle time series data as
sequential data. Specifically, in a time series transformer,
the input sequence comprises historical observations, and the
model is trained to forecast future values. The self-attention
mechanism [15] serves as a pivotal component within the
transformer. This mechanism empowers the model to capture
interdependencies among various time steps in the sequence.
The transformer can effectively model long-term dependencies
and capture complex patterns in the time series data by
attending to relevant time steps and learning their importance.

A. Encoder and Decoder

The transformer architecture follows an encoder-decoder
structure. The encoder is responsible for processing the in-
put time series, performing high-level feature extraction, and
capturing temporal dependencies. It is composed of a stack
of encoder blocks, each comprising a multi-head attention
module and a position-wise feed-forward network (FFN). The
multi-head attention module allows the encoder to attend to
different parts of the input sequence simultaneously, facili-
tating the extraction of relevant information. The position-
wise FFN applies a non-linear transformation to each position
independently, enhancing the model’s ability to capture the
intricate patterns within time series data. On the other hand,
the decoder leverages the learned representations to generate
predictions.

B. Attention Mechanism

Attention is a mechanism that allows the model to focus on
different parts of the input sequence when making predictions
or generating output. It enables the allocation of varying

weights or importance to different elements in the sequence,
enabling the model to attend to relevant information.

The attention mechanism comprises three essential ele-
ments: query q, key k, and value v. The calculation of
attention weights involves two main steps: 1) computing the
similarity scores between the query and each element in the
sequence, and 2) applying a softmax function to normalize the
scores into a probability distribution. The resulting attention
weights indicate how much attention or focus should be given
to each input element. In the transformer architecture, the dot-
product attention formulation is commonly used and can be
expressed as follows:

Att(q,k,v) = Softmax(
qkT

√
dk

)v, (1)

where q, k, and v are typically obtained by transforming the
original input, and dk represents the dimensions of keys. The
attention calculation is performed for each time step within the
input sequence, enabling the model to capture dependencies
and patterns across different time intervals.

C. Limitations

Although the vanilla transformer-based model has been
applied to time series data, there are still several limitations
in our current application scenario.

First, the design of the vanilla transformer primarily em-
phasizes capturing local patterns and short-term dependencies,
which may not adequately address the requirements of HVAC
load forecasting. To achieve accurate HVAC load forecasting,
it is essential to comprehend long-term global dependencies
and intricate relationships between time steps. Second, the
fixed-length attention mechanism limits the model’s capacity
to capture long-term dependencies and complex patterns that
extend beyond the fixed attention window in time series load
forecasting. Third, the normalization of attention mechanism
weights in the input layer can result in the loss of absolute
magnitude. This normalization limitation has implications for
accurately representing individual time steps and can hinder
the model’s capability to effectively capture peak values.

These limitations highlight the need for alternative ap-
proaches that address these issues and improve the perfor-
mance and applicability of HVAC load forecasting.

IV. HALO FRAMEWORK DESIGN

Building upon previous measurements and observations
detailed in Sec. II, as well as the limitations we identified
in the vanilla transformer outlined in Sec. III, we introduce
HALO, which is a comprehensive transformer-based frame-
work designed specifically for HVAC load forecasting. It
systematically addresses not only the challenges posed by
real-world HVAC data but also the limitations of the vanilla
transformer.

HALO, as shown in Figure 5, consists of three main
stages: an adaptive data pre-processing stage, a multi-encoders
transformer-based load forecasting stage, and a scale fusion
stage.
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Fig. 5: HALO: Transformer-based HVAC Load Framework

The first stage is responsible for pre-processing the histor-
ical time series data, which is subsequently inputted into the
second stage for accurate HVAC power load prediction. In
the initial data pre-processing stage, we address data incon-
sistency across six buildings and mitigate high noise levels
by smoothing load fluctuations caused by common electricity
phenomena. The detailed design is illustrated in Section IV-A.

In the subsequent stage, we employ multiple transformer
encoders and a single decoder structure for model training and
load forecasting. Specifically, two types of encoders , called
global encoder and local encoder, simultaneously process the
input data, enhancing the effectiveness of load forecasting. The
global encoder zglobali , which is implemented by SGConv [26],
captures long-term dependencies and broader trends while
maintaining low complexity for long-range historical data.
Let j denote the index of a local encoder, we employ
PatchTST [27] as backbone models for the multiple local
encoders zlocali,j , which could efficiently capture fine-grained
recent information, enabling HALO to analyze localized pat-
terns and variations beyond the fixed attention window of
the vanilla transformer model. We introduce the design in
Section IV-B.

In the scale fusion stage, by employing a scale fusion
strategy and corresponding loss function, HALO can enhance
its generalization capabilities. This methodology effectively
captures comprehensive information from the original series
while emphasizing the accuracy of peak value series forecast-
ing, achieving a better balance between them. This stage will
be investigated in Section IV-C.

In the following, we present the details of the key compo-
nents in the local-global-scale transformer architecture.

A. Adaptive Data Pre-processing

In the first stage illustrated in Figure 5, we conduct prelim-
inary data processing before feeding the data into the subse-
quent stage. Pre-processed datasets, including electricity data,
meteorological data 2, and HVAC operating and behavioral
parameters. The collected data is organized in a time series

2The historical meteorological data was collected from
https://www.visualcrossing.com/

format and serves as the input for training and learning in
subsequent stages.

Feature Variability Handling: As discussed in Sec. II,
inconsistencies due to the variability associated with different
geographic locations, their environmental factors, and distinct
characteristics that influence load forecasting. Specifically,
buildings may have varying numbers of HVAC internal units,
all controlled by an equal number of HVAC communication
panels. Each HVAC communication panel collects the 37th-
44th features, as specified in Table II. To handle this data
variability, we aggregate the values of each feature from
individual internal units.

Smoothing: In Sec. II, we have identified two common
phenomena observed in HVAC systems: zero drift and voltage
spikes. These phenomena introduce transient periods and load
fluctuations that present challenges for accurate load predic-
tions using existing models. To address these fluctuations,
we utilize moving smoothing [28]. This approach involves
replacing erratic data points with a smoother representation
that effectively captures the underlying trend or pattern in the
load data. By mitigating the impact of these fluctuations, we
aim to improve the accuracy of load predictions, particularly
during transient periods and load fluctuations caused by zero
drift and voltage spikes.

B. Transformer-based HVAC Load Forecasting

In the second stage, as shown in Figure 5, we use a
transformer-based encoder to capture the future global and
local trends.

Model inputs and outputs Let X = {d1,d2, ...,dN}
denote our time series dataset with length N , where each
feature input dt at time slot t is an M -dimensional feature
vector, all features are shown in Table II. In our HVAC
load forecasting scenario, let P = {p1, p2, ..., pN} denotes
power load values, where pt ∈ dt. Given an input window
size L, the input xi:i+L−1 = {di,di+1, ...,di+L−1} is fed
into the model, the objective is to predict T future values
p̂i+L:i+L+T−1 = {pi+L, pi+L+1, ..., pi+L+T−1}. With the
input window size L and a specific moving step S, the data
can be split into G = ⌊N−L−T

S ⌋ groups of instance, and we
have i ∈ [1, G].
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Encoder Existing transformer-based solutions in HVAC
load forecasting inadequately address the complexities inher-
ent to real-world scenarios, such as data variability, power load
fluctuations, and electronic phenomena. These solutions rely
on the vanilla transformer, which has limitations like fixed-
length attention, high computational complexity, and limited
sequential dependency. As a result, the vanilla transformer
struggles with long-term dependencies and complex patterns
involving peak values. In response to these challenges, HALO
incorporates a global encoder and multiple local encoders with
different neural network structures and configurations. In this
section, we provide a detailed explanation of these encoders
and their contributions.

1) Global Convolutional Encoder: The accumulation of
historical data poses the challenges in managing larger model
sizes and increasing time complexity, but the vanilla trans-
former struggles to handle effectively. To address this, we
incorporate a convolutional kernel, a specially designed matrix
with sublinear complexity. This kernel extracts the global
feature, enabling efficient and effective processing of extensive
and noisy input signals in a long-term period [26]. A typical
global convolution kernel is defined as:

y = u ∗ k (2)

where * is the convolution operator, u ∈ Rn×d is input se-
quence, k ∈ Rn×d is a learnable global kernel, and y ∈ Rn×d

is the output.
To enable the efficient convolution kernel, we employ

SGConv kernel [29] as the global encoder with multi-scale
sub-kernels to capture long-range dependency from the input
data more effectively and a weighted combination of sub-
kernels where weights decay for larger scales. As shown
in Algorithm.1, we tackle it by feeding the input sequence
xi:i+L−1 into the global encoder, denoted as

zglobali = GCONV(xi:i+L−1) (3)

Algorithm 1 Global Convolutional Encoder GCONV(u)

1: L = |u|
2: B = [log2(

L
d
)] + 1

3: for i = 0 to B-1 do
4: ki = αiUPSAMPLE2max[i−1,0]d(wi)
5: end for
6: k = 1

Z
[k0, k1, ..., kB−1], where Z = NORM(k)

7: kf = FFT(k)
8: uf = FFT(u)
9: yf = CONTRACT(uf , kf )

10: y = FFT(yf )
11: y = NORM(y)
12: return y

In Algorithm.1, let L represent the length of the input
sequence xi, the parameter set of a single channel is defined
as S = {wi|0 ≤ i < [log2(

L
d ]} + 1, where wi ∈ Rd denotes

the parameter for the i-th sub-kernel ki. The number of scales
is denoted as B = [log2(

L
d )] + 1. The upsample operation is

implemented using linear interpolation to create sub-kernels
of different scales. Upsamplel(x) is used to represent the
upsampling of x to a length of l, as shown in lines 3-5.

A normalization constant Z is employed to ensure that the
convolution operation does not alter the scale of the input,
along with a coefficient α to control the decaying speed.
Then, a weighted combination scheme can be achieved by
concatenating a set of weighted sub-kernels ki, as shown
in line 6. For implementation, we compute the depth-wise
convolution kernel and employ Fast Fourier Transform (FFT)
to perform the convolution in O(L logL) time.

2) Local Transformer Encoders: As discussed in Sec. II,
we have identified challenges related to power load fluctua-
tions in response to specific features at different time intervals.
The fixed-length attention of the vanilla transformer restricts
its ability to capture fluctuation trends across varying time
intervals while maintaining low complexity.

To address these challenges, we propose the use of multiple
local encoders designed to capture recent local information
{zlocali,j |1 ≤ j ≤ C} at different time windows, where C
denotes the number of local encoders and j is the index of the
local encoder. In the j-th local encoder, we denote the patch
length as hj and the stride between two consecutive patches
as sj . Thus, let lj denotes the number of patches, which is
given by lj = ⌊L−hj

sj
⌋.

The local encoders focus on capturing different sizes of
patch length to capture dependencies as follows,

zlocali,j = ENCODER(xi:i+L−1, hj , sj) (4)

where PatchTST [27] is utilized as the encoder to capture
recent local information zlocali,j . The dimensions of zglobal and
zlocali,j in Eq.3 and Eq.4 have a size of [Batch×L×M ], where
Batch is the batch size used in the experiments.

Decoder In order to leverage both global and local in-
formation effectively, our approach involves integrating the
global and local information into the decoder module, which is
responsible for generating prediction outcomes. This decoder
module prominently includes a cross-attention module that
focuses on capturing historical information within the time
series. We perform a mapping of global and local features
to a hidden dimension at the token level. Subsequently, we
integrate the following global and local information within the
decoder of a transformer model using a gating mechanism.

This allows for the effective integration of global and local
information through querying the global information with the
local information. The combined output is defined as follows:

β ∗
C∑

j=1

wj ·Attj(z
global
i , zlocali,j , zlocali,j )+

(1− β) ∗
C∑

j=1

wj ·Attj(z
local
i,j , zglobali , zglobali )

(5)

where β is a bias between global and local encoders, wj is the
weights to balance the importance of different local encoders,
1 ≤ j ≤ C.

The transformer decoder can effectively integrate both
global and local information, allowing for a more compre-
hensive representation of the input sequence and potentially
improving the model’s ability to generate accurate predictions.
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C. Scale Fusion

As observed in Section II, capturing the scale of HVAC
power load, i.e., peak values, presents challenges posed by
multiple factors. First, the variations in power load arise from
geographic disparities, diverse HVAC system brands and types,
and varying counts of internal units. Second, HVAC load is
susceptible to noise due to common phenomena like zero drifts
and voltage spikes. Third, power load exhibits fluctuations in
response to different features within distinct time windows.

These factors make it difficult to effectively capture scale
values in HVAC load forecasting, especially when normal-
ization techniques struggle to handle the specific information
embedded in cyclic correlations. This highlights the need for
an innovative method tailored specifically for peak forecasting.

To address these challenges and capture the peak values,
we propose the integration of a scale component. The peak
values extracted from the pre-processing stage are fed into the
scale fusion stage. During the scale fusion stage, the output of
the transformer model, denoted as p, is used as an input for a
shallow neural network. The resulting output, denoted as pk,
is then fed into the loss function. Then we utilize a hybrid
loss function to map the historical series to the original and
peak value series, with a focus on the mapping relationship
in the scale fusion stage. We start with a series of power
load values denoted as pi:i+L−1 = {pi, pi+1, ..., pi+L−1},
where L represents the input window size. During the data
pre-processing stage, we extract peak values denoted as
pki:i+L−1 = {pki1, ..., pki⌊L

T ⌋} from the power load values

pi:i+L−1. The peak value pkir, r ∈ [1, ⌊L
T ⌋], is obtained

by downsampling in the r-th period from the sequence of
pi:i+L−1 with a fixed interval T , resulting in a length of ⌊L

T ⌋,
which is calculated by:

pkir = max{pi+(r−1)T , ..., pi+rT−1} (6)

The objective is to forecast the power load peak value in
the next interval T . Our scale fusion strategy employs a
simple yet highly effective optimization strategy [30], which
simultaneously optimizes the loss function of the original time
series and its corresponding peak value series.

Loss Function
We choose to utilize the Mean Squared Error (MSE) loss to

quantify the difference between the predicted values and the
ground truth. Consequently, we optimize the overall objective
loss through the following hybrid loss function:

L = γ · Ep||p̂i:i+L−1 − pi:i+L−1||22+
(1− γ) · Epk||p̂ki:i+L−1 − pki:i+L−1||22,

(7)

Ep represents the MSE loss between the ground truth
original time series pi:i+L−1 and the output p̂i:i+L−1 of
the transformer forecasting model. On the other hand, Epk
denotes the MSE loss between the ground truth power load
peak values pki:i+L−1 and the final output p̂ki:i+L−1 of the
scale fusion. The weighting factor γ takes values between 0
and 1.

By employing this scale fusion strategy and corresponding
loss function, HALO can enhance its generalization capabili-
ties. This methodology allows for capturing the original series
information while emphasizing the forecasting performance
for the peak load values.

V. PERFORMANCE EVALUATION

In this section, we present the evaluation of our HALO
framework with the following research questions.

RQ1: How do the local-global-scale architecture impact on
the performance of HALO?

RQ2: How does the design of data pre-processing and scale
fusion contribute to the performance of HALO?

RQ3: How does HALO perform when compared with state-
of-the-art transformer based time series forecasting models?

Data Description. In order to evaluate the performance of
the HALO framework, we employ real-world, minute-level
data from EdgeSpot, an edge computing-based IoT equipment.
This data encompasses public historical weather information,
electricity-related metrics, and specific operational details of
HVAC systems across six buildings with diverse locations and
user behaviors, as shown in Table I. Missing data is addressed
through the utilization of mean imputation, while outliers are
handled by the smoothing step during the pre-processing stage.
To meet to storage limitations and measurement requirements,
we collect data at a 15-minute granularity in the experiments.
This sampling interval aligns with the collection settings of
the SCADA system commonly used in the power industry. We
also employ the sliding window with 15 minutes to generate
the data used in our experiments continuously. All data are
partitioned into a training set, validation set, and test set in a
ratio of 7:1:2.

Experiment Setup. In the experiment, we employed a
robust server featuring dual Intel Xeon Gold 6348 CPU,
256 GB memory, and 2 NVIDIA A800 GPU. Our model
training employs the ADAM optimizer [31]. We utilize a
dynamic learning rate that ranges between 1e−4 and 1e−3. For
training, we utilized 100 epochs. Batch size is set to 128. The
hyperparameters are as follows: the weight β of balancing the
importance between global encoder and local encoders is set to
0.5; in the global encoder, the decay coefficient α is chosen
to be 0.5 [29], the remaining hyperparameters are the same
as SGConv [26]; in the local encoder, we use two encoders
to capture the recent power load information in two types of
periods with the weight settings w1 = 0.5 and w2 = 0.5,
the other hyperparameters are same to PatchTST [27]; in
the scale fusion component, the weight γ in the hybrid loss
function is set to 0.2. These hyperparameters were chosen
based on the best performance of the proposed framework in
the experiments.

Evaluation Metrics. In order to evaluate the predictive
performance of the HALO model, we employed two primary
indicators: the mean absolute error (MAE) and the root mean
square error (RMSE) [32]. The selection of these indicators
was based on their ability to accurately evaluate the model’s
accuracy in predicting time series data. The MAE is well-
suited for time series prediction because it provides a clear,
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scale-sensitive measure of prediction error in the original units
of the data. On the other hand, the RMSE metric measures
the deviations between predicted and actual values, providing
a reliable measure of predictive accuracy. The calculation
methods for MAE and RMSE are presented in Eq. 8 and Eq. 9.

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (9)

where ŷi represent the predicted value of the i-th sample in
the testing dataset, yi denote the true value of the i-th sample
in the test set, and n represent the total number of samples.

A. Local-Global-Scale Architecture (RQ1)

We now evaluate the effectiveness of local-global-scale
architecture under various settings. As discussed in Sec. II,
we noted that the power load exhibited distinct variations in
response to changes in specific features across diverse time
windows. This behavior served as our primary motivation to
conduct an analysis of local encoders with varying patching
lengths. Our aim was to ascertain their ability to capture and
adapt to information from diverse time windows. In this sub-
section, we extend our comparison to include an investigation
into the impact of using different input time window sizes of
all encoders within the HALO framework.

Local Encoder Patch Length: In our experiment, we
employ two local encoders with different patch lengths. One
local branch uses a patch length of 60 minutes, while the other
local branch uses a patch length of 720 minutes, as shown in
Table III as (60;720).

Input Window Size: Our observation in Sec. II reveals that
weather impacts have a noticeable effect on power load over
extended periods, such as a day or week, while user behaviors
primarily influence power load within shorter time windows.
To capture a comprehensive range of information, we select a
1-day window (1440 minutes) and a 1-week window (10080
minutes) as input window sizes for all encoders in our exper-
iment.

We also compare the performance of HVAC load forecasting
at different time intervals to fit grid management and energy
utilization in practice. We consider the following three types
of predictions:

1) Short-term Prediction: 15-minute and 1-hour forecasts
are important for balancing supply and demand, aiding in im-
mediate operational decisions, especially in the collaboration
between power load and renewable energy sources (e.g., solar
and wind);

2) Mid-term Prediction: 12-hour and 24-hour load fore-
casts assist in operational planning, including the scheduling
of power plants that require longer start-up times and the
management of daily operations to meet anticipated demand;

3) Long-term Prediction: 1-week prediction enables strate-
gic decision-making regarding energy imports and exports,

long-term carbon emission reduction strategy, and renewable
energy resource management over extended periods.

It is worth noting that the performance for 1-week power
load prediction using a single day’s data is not available, given
the insufficient length of the input time series.
TABLE III: Comparison between different local branch patch
sizes and input time window sizes w.r.t. MAE and RMSE.

Forecasting Metric Local Branch Patch Length (Minutes)
Time Period (60;720) (60;1440)

Input Window Size (Minutes)
1440 10080 1440 10080

15 Minutes MAE 3.9637 2.2739 3.7035 2.0397
RMSE 4.6262 4.2849 4.4324 4.0692

1 Hour MAE 4.4393 3.9746 4.0179 3.4803
RMSE 5.2479 4.5924 4.8933 4.3498

12 Hours MAE 4.5839 4.2087 4.3884 4.1528
RMSE 5.8365 4.6528 5.3838 4.4893

24 Hours MAE 5.7475 4.4739 4.5232 4.2566
RMSE 8.9468 6.0851 5.9321 5.8367

1 Week MAE - 6.3890 - 6.2735
RMSE - 7.8265 - 7.3862

Our findings, as presented in Table III, indicate significant
improvements in MAE and RMSE, with the use of longer
patch lengths in the local encoders. Specifically, using longer
patch lengths resulted in respective MAE and RMSE improve-
ments of 21.30% and 33.70% for the 24-hour forecasting time
period when using a 1440-minute input window size. We also
observed a similar trend in all scenarios that the performance
improved as the input time window sizes increased. Specif-
ically, compared to a 1440-minute window, a 10080-minute
input window improved the MAE and RMSE by 15.44% and
12.49%, respectively for 12-hour forecasts, using a patch size
of (60;1440). These findings suggest that extending the local
encoders’ patch lengths and increasing the input time window
sizes could effectively optimize the performance of the HALO
framework. This further validates our observation in Sec. II, as
certain specific factors, such as temperature fluctuations, show
a greater impact on the power load over longer periods. The
model can capture a more comprehensive range of information
by adopting larger patch lengths and expanded input time
window sizes.

We also noted superior prediction performance on shorter
forecasting periods. This could be attributed to the fact that
longer forecasting periods require more training samples of
extended input time series. Given the limitations of our data,
we have fewer training samples for longer input time series,
which potentially impacts the forecast performance for these
periods.

B. Data-Preprocessing and Scale Fusion (RQ2)

We next evaluate the effectiveness of data pre-processing
and scale fusion using an ablation study.

Data Pre-processing: Smoothing techniques play a crucial
role in mitigating the impact of load fluctuations caused
by zero drift and voltage spikes in real-world HVAC load
forecasting. As shown in Figure 6, we present the evaluation
of predictive performance using unsmoothed and smoothed
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Fig. 6: Comparison of predictive performance using un-
smoothed (Un-Sm) and smoothed (Sm) data for training and
testing.

data during the training and testing phases. We observed
significantly inferior performance when using unsmoothed
data during both the training and testing phases, likely due
to the noise from load fluctuations caused by zero drift and
voltage spikes. The performance significantly improved when
we switched to smoothed data for both phases. Specifically,
we noted improvements of 16 times and 12 times in MAE
and RMSE, respectively, clearly surpassing scenarios where
unsmoothed data was used. Moreover, the scenario where
smoothed data was used for training and unsmoothed data was
used for testing also exhibited superior performance. We ob-
served performance enhancements of 55.86% and 44.72% on
MAE and RMSE, respectively. This highlights the significant
performance improvements of the data pre-processing.

We also noted superior prediction performance on shorter
forecasting periods. This could be attributed to the fact that
longer forecasting periods require more training samples of
extended input time series. Given the limitations of our data,
we have fewer training samples for longer input time series,
which potentially impacts the forecast performance for these
periods.

Scale Fusion: We investigate the impact of scale fusion, as
seen in Figure 7. This highlights the effectiveness of the scale
component to capture maximum power values in HVAC load
forecasting. The MAE and RMSE of HALO with and without
the scale component are 1.9015, 2.4024, and 3.7188, 4.5533,
respectively. This demonstrates that the inclusion of the scale
component in the HALO model leads to notable performance
enhancements, yielding improvements of 95.57% and 89.53%
in terms of MAE and RMSE, respectively.

C. Performance Results of HALO (RQ3)

We evaluate the performance of our proposed framework,
HALO, by comparing it with the following:

Autoformer [33] is designed for time series forecasting
tasks based on the transformer architecture [15]. It integrates
an auto-correlation mechanism to effectively capture both
long-term and short-term dependencies in time series data.

Fedformer [34] is a frequency-enhanced transformer, de-
vised specifically for long-term prediction, leveraging the
propensity of most time series data to acquire a sparse
representation in well-established bases, such as the Fourier

Fig. 7: Comparison of performance with (w/) and without
(w/o) scale component.

transform. It is recognized as one of the most successful
transformer model variants applied to time series data [26, 34].

PatchTST [27], a channel-independent patch time series
transformer, is particularly designed for multivariate time
series forecasting. It borrows from the transformer model’s
architecture by applying patching to split the input time series
into several patches. These patches are then processed by
the transformer, allowing it to handle long sequences more
efficiently and effectively.

Due to the substantial computational resource requirements,
with each epoch taking 3-4 hours, our experiment could not be
conducted using the vanilla transformer, whereas our proposed
framework completes an epoch in 40-50 minutes.

To ensure a comprehensive evaluation, our experiments
were also conducted across six buildings with distinct geo-
graphical locations and user behavior patterns. In this subsec-
tion, we employ the optimal local encoder patch size and input
window size, as determined in subsection V-A, to forecast
the 24-hour HVAC power load for effective daily operational
planning and scheduling.

As shown in Table IV, our proposed framework, HALO, sig-
nificantly outperforms Autoformer, Fedformer, and PatchTST,
yielding average improvements of 12 times, 10 times, and
3 times, respectively across six buildings. This reinforces
the model’s capability to be applied more efficiently and
effectively in real-world HVAC load forecasting scenarios.

TABLE IV: Comparison with state-of-the-art transformer-
based time series forecasting models across six buildings for
predicting 24-hour power load w.r.t. MAE and RMSE.

Buildings Metric HALO Autoformer[33] Fedformer[34] PatchTST[27]

A MAE 4.2566 149.8564 98.7653 7.8915
RMSE 5.8367 197.3883 160.3028 8.5985

B MAE 14.7864 30.9731 27.0892 14.8137
RMSE 13.7547 41.6660 35.0941 16.9635

C MAE 18.1154 48.9063 47.6588 18.2800
RMSE 20.0469 68.0290 64.8167 21.1644

D MAE 6.0812 29.4175 25.5368 13.5549
RMSE 7.7217 38.7094 41.0608 20.8935

E MAE 1.0198 32.1430 28.4530 13.2361
RMSE 1.6618 27.1145 24.4982 10.5728

F MAE 1.9015 21.6516 27.0497 17.2361
RMSE 2.4024 28.3567 25.9818 20.5728
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VI. RELATED WORK

The relationship between reducing grid power load and
carbon emissions has been empirically established, with ev-
idence demonstrating that a decrease in power load results
in a corresponding reduction in carbon emissions [9]. For
optimal control of IoT devices in an HVAC system to achieve
carbon emission reduction, it is important to have reliable and
timely HVAC load forecasting. Existing HVAC load forecast-
ing methods can be broadly classified into two categories:
physical-based models and data-driven models. Physical-based
models rely heavily on physical principles to describe the
heat transfer characteristics of buildings [11]. These models,
often referred to as white-box models, are capable of capturing
the actual thermal response of buildings to various influential
factors, including outdoor and indoor environments. However,
they demand extensive and detailed building information and
the prediction accuracy of these models may vary if the
underlying assumptions of the physical principles are not met
consistently [12]. These physical-based models highly rely
on software tools such as DOE-2 [35], Designer’s Simulation
Toolkit (DeST) [36], etc. to simulate the energy consumption
of buildings. However, acquiring proficiency in these tools typ-
ically demands a significant investment of time and effort [12].
More recently, with the continuous improvement in building
energy management and the rapid advancements in artificial
intelligence, a large number of black-box data-driven models
based on machine learning have emerged, offering distinct
advantages for building energy load forecasting [10].

A. Data-driven HVAC Load Forecasting

Over the past few decades, various shallow machine learn-
ing methods, including support vector machines (SVM) [37],
multilayer perceptron (MLP) [38, 39], gradient boosting
[40, 41], have been extensively investigated for HVAC load
forecasting. More recently, with their advantages of adapt-
ability, non-linearity, and the ability to handle large datasets,
neural networks have gained significant popularity in HVAC
load forecasting [32]. Within the realm of neural networks,
convolutional neural network (CNN) [42], recurrent neural
network (RNN) [43], and long short-term memory (LSTM)
neural network [44] have been demonstrated to be effective in
predicting the load of building HVAC systems.

Compared to individual models, integrating neural networks
into hybrid prediction models has demonstrated enhanced
accuracy and efficiency. Abdou et al. [45] discovered that the
particle swarm optimization-artificial neural network (PSO-
ANN) model exhibited superior performance for both heating
and cooling load forecasting across three distinct climates in
Morocco. Li et al. [46] developed a reliable building energy
consumption prediction model by incorporating a genetic
algorithm-neural network (GA-NN) approach. Liu et al. [32]
proposed a hybrid model, random forest-improved sparrow
search algorithm-long short-term memory (RF-ISSA-LSTM),
which achieved improved accuracy and reduced running time
for forecasting the cooling load of large public buildings. Guo
et al. [41] constructed four hybrid models to enhance the
prediction accuracy of heating and cooling loads.

B. Transformer-based HVAC Load Forecasting
Another type of neural network architecture, transformer,

was introduced by [15] and built upon the core principle of
the self-attention mechanism, utilizes matrix multiplication in
its specific implementation to capture dependencies between
vectors in the input sequence, regardless of their distance. The
self-attention mechanism offers several advantages, including
lower complexity, fewer parameters, and reduced computing
power requirements. Additionally, the results of each step
are independent of the results of previous steps, resulting
in improved effectiveness. Transformer has demonstrated re-
markable success in various Natural Language Processing
(NLP) applications, such as machine translation [47] and
image identification [48]. Given the shared sequential nature
between time series data and NLP, the transformer has been
progressively adopted for time series forecasting tasks [14, 49],
demonstrating its immense potential as a reliable approach for
constructing thermal load forecasting models.

Several studies have leveraged attention mechanisms to
enhance prediction models within the load forecasting domain.
For instance, Li et al. [50] proposed a novel neural network
architecture with an attention mechanism for RNN-based
building energy prediction, resulting in improved accuracy and
interpretability in predicting the cooling load of buildings 24
hours in advance. Lim et al. [49] introduced a novel attention-
based architecture that significantly improved performance
across multiple domains, including power load forecasting.
Moreover, Jurasovic et al. [13] and Long et al. [14] employed
transformer-based models for load forecasting. Jurasovic et
al. [13] presented a transformer-based load forecasting system
that incorporated recent advancements in neural attention
mechanisms, achieving accurate day-ahead load prediction. Li
et al. [14] proposed a building load prediction model based
on a transformer network, aiming to enhance the accuracy
of building load prediction by effectively incorporating tem-
poral dependencies. Similarly, Chen et al. [51] developed a
transformer-based model specifically for forecasting cooling
loads in airport terminals. These transformer-based models,
primarily utilizing basic transformer backbones. Our proposed
framework systematically address the real-world HVAC load
forecasting complexities, such as data variability, power load
fluctuations, and electronic phenomena.

VII. CONCLUSION

This paper is motivated by our initial data measurements and
observations from real-world data gathered from EdgeSpot, an
edge computing-based IoT device that interfaces with various
IoT devices within HVAC systems. We proposed HALO,
a transformer-based framework for HVAC load forecasting,
to address the challenges observed in real-world data and
existing data-driven methods. HALO integrates an adaptive
data pre-processing stage, a transformer-based load forecasting
stage with multiple encoders, and a scale fusion stage. This
integration enables the accurate prediction of HVAC load,
which in turn optimizes energy efficiency in HVAC operations
and leads to a reduction in carbon emissions [9]. Through
extensive evaluation using real-world data traces from a pro-
totype application, we demonstrated that HALO consistently
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performs well across multiple buildings, thereby contributing
to the overarching goal of reducing carbon emissions. In our
future work, our plan is to leverage the outcomes of our HVAC
load forecasting to formulate intelligent control strategies. By
employing EdgeSpot, we aim to regulate a variety of IoT
devices to promote a sustainable and efficient energy future.
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