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A B S T R A C T   

Accurate monitoring of urban impervious surfaces (UIS) changes is crucial in understanding the anthropogenic 
activities of urbanization and its environmental, economic, and social sustainability. Over the past two decades, 
synthetic aperture radar (SAR) has posed huge potential for urban monitoring with its all-weather and all-day 
imaging capability over rainy and cloudy regions around the world. Unfortunately, some critical challenges 
associated with UIS identification from data have been identified due to the high diversity of UIS and the 
different SAR imaging mechanisms from optical remote sensing. To address the challenges, this study proposed a 
new method of polarimetric scattering mixture analysis (PSMA) by modeling the diverse scattering mechanisms 
of various UIS categories. C- and L-band full-polarization SAR data in four typical urban areas from central, 
eastern, and southern China, were employed to evaluate the performance of the method. Experimental results 
demonstrate that the proposed method achieves an overall accuracy (OA) exceeding 96 % across all study cases. 
Compared with traditional methods, PSMA significantly reduces land cover confusion and enhances the pro
ducer’s (PA) and user’s accuracy (UA) for UIS, particularly for “road”, by up to 13.4 % and 9.5 %, respectively. 
Non-impervious surfaces such as “soil” and “vegetation” witness a notable increase in PA and UA by up to 10 % 
and 20.5 %, respectively. These promising results underscore the effectiveness of the proposed method for ac
curate urban monitoring and understanding land cover scattering confusion over complex urban environments.   

1. Introduction 

Over the past years, global urbanization has rapidly increased, fueled 
by population growth and economic development. This phenomenon 
has been accompanied by significant changes in land cover and has had 
a profound impact on the global climate, ecosystems, and the environ
ment (Mugiraneza et al., 2022). One critical indicator of anthropogenic 
interference is the prevalence of urban impervious surfaces (UIS) 
(Arnold and Gibbons, 1996). As urbanization is characterized by land 
cover changes from non-impervious surfaces (natural land covers) to 
impervious surfaces, monitoring the dynamic of UIS is crucial for un
derstanding urban expansion and its social, economic, and environ
mental impacts and for promoting sustainable development (Shuster 
et al., 2005). 

Satellite remote sensing provides an efficient means of observing 

land surfaces. Optical remote sensing has been a popular choice for a 
long time, as it offers numerous satellite data sources with varying 
spatial and spectral resolutions. However, optical remote sensing is 
highly susceptible to cloud contamination. Studies have shown that 
clouds cover approximately 67 % of the Earth’s surface (King et al., 
2013). Cities located in tropical and subtropical regions, where clouds 
persist throughout the year, are particularly affected by cloud contam
ination. In southern China, for example, only about 7.6 % of multi
spectral images are free from clouds within a year (Ling et al., 2021). 
Synthetic Aperture Radar (SAR) technology, which is capable of pene
trating clouds, has attracted increasing attention as a solution to this 
problem (Dey et al., 2020; Lin et al., 2021; Samat et al., 2015). Full- 
polarization SAR (PolSAR), which transmits and receives fully polar
ized waves, is sensitive to objects’ electrical conductivity and geometric 
structure and can provide discriminative information about the ground 
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surface (Homayouni et al., 2019; Samat et al., 2018). Previous studies 
have reported the effectiveness of PolSAR for UIS extraction, focusing on 
various polarimetric decomposition methods, polarization mode, and 
classification techniques (Attarchi, 2020; Guo et al., 2014). There are 
also various methods for integrating optical and SAR data in land cover 
classification, typically falling into three primary levels: pixel level (Cao 
et al., 2019), feature level (Guo et al., 2014), and decision level fusion 
(Clinton et al., 2015), often involving machine learning and deep 
learning based classifiers (Ling and Zhang, 2023). However, cloud cover 
remains a persistent issue when optical data is involved. 

Although existing SAR systems offer continuous and timely land 
surface observations, land cover confusion remains a significant issue in 
mapping using SAR data. In optical images, confusion between different 
land covers arises from spectral confusion, which has been widely 
explored and solved through various methods (Ridd, 1995; Tompkins 
et al., 1997; Wu and Murray, 2003). However, in PolSAR images, the 
mechanism of urban land cover confusion is entirely different. Scat
tering responses of urban land covers depend not only on the surface 
materials and their dielectric properties, but also on their shape, su
perficial roughness, position and orientation properties. This makes the 
traditional definition of land cover categories may not meet the actual 
situation of scattering behaviours in SAR images. Despite these differ
ences, most PolSAR classification schemes still follow those proposed for 
optical data, with limited analysis on SAR scattering confusion and 
distinct SAR land cover categories exhibiting different scattering char
acteristics (Attarchi, 2020; Guo et al., 2014; Liu et al., 2019; Tan et al., 
2020). Zhang et al. proposed an empirically developed land cover 
classification scheme for SAR data that achieved good performance 
(Zhang et al., 2018). However, a comprehensive understanding and 

quantitative analysis of land cover scattering for UIS identification in 
PolSAR still requires further exploration. This study aims to develop a 
new impervious surface classification method by conducting a 
comprehensive scattering mixture analysis and developing an urban 
land cover polarimetric scattering model accordingly. The main con
tributions of this study are: 

(1) It provides a comprehensively qualitative and quantitative anal
ysis of the polarization mechanisms and the polarimetric scat
tering mixture of complex urban land covers;  

(2) it proposes an urban land cover polarimetric scattering model 
and a new impervious surface identification method based on 
scattering mixture analysis; and  

(3) it provides a quantitative validation of the new model by 
applying it to different urban environments and to both C-band 
and L-band PolSAR imagery. 

2. Study area and dataset 

Over the past few decades, China has experienced rapid urbaniza
tion, leading to significant changes in land cover, particularly with 
respect to impervious surfaces that reflect the country’s development 
and prosperity. However, optical observation of impervious surfaces in 
many areas of China poses significant challenges due to year-round 
cloud cover. Therefore, it is essential to explore effective methods to 
improve impervious surface identification using SAR systems. This study 
focuses on four cities with different urban environments. Hong Kong 
(HK) is one of the busiest and most efficient international coastal cities 
with a high degree of urbanization. Shenzhen (SZ) is one of the largest 

Fig. 1. Location and ALOS-2 images of Shenzhen, Hangzhou, Hong Kong, and Wuhan.  
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cities in Mainland China, which has undergone rapid land cover 
changes. Hangzhou (HZ) is located south of the Yangtze River Delta in 
Eastern China. This city is low-lying and densely covered with crops and 
river networks. Wuhan (WH), located in central China, is the 
geographical center of the Chinese economy. Here various land covers 
are interlaced with dense urban architecture. Fig. 1 presents the SAR 
images of the four test sites, displayed as false-color images, where the 
RGB values correspond to the HV, VV, and HH backscattering coefficient 
intensities. The land cover types in SZ, HZ, and WH mainly comprise 
vegetation, buildings, roads, soil, and water. However, in HK, in addi
tion to these more typical classes, the “port” is a unique and distinctive 
land cover type. 

The study utilized L-band fully polarimetric ALOS-2 images with a 5- 
m resolution and C-band fully polarimetric GF-3 images with an 8-m 
resolution. The ALOS-2 and GF-3 images for SZ and HK were obtained 
in November 2017 and December 2018, respectively. In HZ and WH, 
single ALOS-2 images were used due to data availability limitations, 
with the acquisition time in August 2020 and August 2019, respectively. 
The ALOS-2 image dimensions are 3097 × 2736 for Wuhan, 1872 ×
1652 for Hangzhou, 1671 × 1525 for Shenzhen, and 934 × 1044 for 
Hong Kong. Additionally, GF-3 images have dimensions of 1042 × 883 
for Shenzhen and 584 × 653 for Hong Kong. 

The fully polarimetric SAR images underwent preprocessing with the 
SNAP software, followed by the application of the enhanced Lee filter to 
reduce speckle noise. Finally, the processed ALOS-2 and GF-3 images, 
along with their extracted polarimetric features, were geocoded under 
the WGS84 and UTM georeferenced system. The two images were co- 
registered with over 20 manually selected ground control points, with 
a registration error of less than 1 pixel. Additionally, high-resolution 
optical images from Worldview-2 (1.6 m spatial resolution) obtained 
in April 2018 (for SZ and HK), Sentinel-2 images (10 m spatial resolu
tion) obtained in August 2020 (for HZ) and August 2019 (for WH), and 
Google Earth images acquired close to the PolSAR images were used for 
reference. 

3. Methodology 

3.1. Polarimetric scattering mixture analysis (PSMA) 

Urban land surfaces, generally split into four types - soil, water, 
vegetation, and UIS, are defined by their urban functional properties and 
surface material properties in optical remote sensing. However, in SAR 
images, the situation is completely distinct, as elucidated earlier. Due to 
the dependency on shape, superficial roughness, position and orienta
tion properties, the same urban land cover surface, composed of the 
same surface material, can produce widely different scattering re
sponses. Therefore, elemental scattering compositions, shape, rough
ness, position, and orientation should be adopted to describe the land 
surface scattering response. 

To this aim, it is usual to refer to the polarimetric scattering matrix, 
which characterizes the complex electromagnetic interaction process 
and provides abundant information: 

[S] =
[

SHH SHV
SVH SVV

]

(1) 

where SXY denotes the X-polarization mode of transmission and the 
Y-polarization mode of reception. Based on the symmetric assumption 
between the HV and VH cross-polarized modes, the coherence matrix T, 
which contains full polarization information, can be derived from the 
scattering matrix and expressed as 
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(2)  

where Tij is the element of T in row i and column j. Diagonal elements 
T11, T22, and T33 refer to three fundamental scattering mechanisms: 
surface scattering, double-bounce scattering, and volume scattering, 
respectively. The decomposition of PolSAR can help reveal the scatter’s 
backscattering information in more detail and thus better study the 
components with different scattering mechanisms of various urban land 
covers. Freeman-Durden decomposition (Freeman and Durden, 1998), 
Cloude-Pottier decomposition (Cloude and Pottier, 1996), and Yama
guchi four-component decomposition (Yamaguchi et al., 2005) mainly 
explain the target scattering mechanisms in surface scattering, double- 
bounce scattering, and volume scattering. H/A/α decomposition 
(Pottier and Cloude, 1997) derives H, A, and α as follows to quantita
tively depict the scattering response: 

H = −
∑3

i=1
Pilog3Pi (3)  

A =
λ2 − λ3

λ2 + λ3
(4)  

α = P1α1 +P2α2 +P3α3 (5)  

Pi =
λi

∑3
i=1λi

(6)  

where the parameter αi is associated with the surface angle of incidence 
and dielectric constant, parameter λi is the calculated eigenvalue of the 
coherence matrix T, and Pi is the appearance probability of each λi. The 
entropy H measures the randomness of the scattering process, and the 
scattering angle α measures the type of scattering mechanism. 

Based on the physical principles of polarimetric SAR scattering, the 
aim is to develop a model for polarimetric scattering mixture analysis 
that can represent the scattering response of ground surfaces using three 
fundamental scattering mechanisms (surface scattering, double-bounce 
scattering, and volume scattering) and their respective scattering 
effectiveness: 

S =
∑3

i=1
ωiBMiEi (7)  

where S is the surface scattering response, BMi is the i-th basic scattering 
mechanism, ωi is the intensity of BMi, and Ei is the probability of the 
effectiveness of BMi. This formula serves as a conceptual representation 
to bridge the theoretical understanding from prior research (Pottier and 
Cloude, 1997) with the practical polarimetric scattering mixture anal
ysis in this study, facilitating the following construction of the urban 
land cover scattering model and identification of scattering sub- 
categories with unique scattering characteristics. 

3.2. Urban land cover scattering modeling 

Building upon theoretical foundations that interpret land surface 
scattering responses using three fundamental polarimetric scattering 
mechanisms and their respective scattering randomness, as well as the 
understanding of complex land cover scattering based on polarimetric 
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scattering mixture analysis, this study proposes an urban land cover 
polarimetric scattering conceptual model. Fig. 2 illustrates the proposed 
urban land cover polarimetric scattering model, which shows the dis
tribution of the identified UIS and other land cover scattering sub- 
categories on the H- α scattering space. The H- α plane is independent 
of the probability density distribution and covers all scattering mecha
nisms. As the value of the scattering angle α (vertical axis) increases 
continuously from 0 to 90◦, the corresponding scattering mechanism 
switches from surface scattering to volume scattering and then to 
double-bounce scattering. H represents the entropy and measures the 
scattering randomness, with greater randomness indicating weaker 
scattering efficacy. The increase of entropy H (horizontal axis) from 0 to 
1 describes the rise of scattering randomness. Based on the physical 
characteristics of H and α, as developed in previous research (Pottier and 
Cloude, 1997; Zhang et al., 2018), the entire scattering plane can be 
divided into nine zones according to their split criteria. Each zone of Z1- 
Z8 in Fig. 2 describes a scattering basis (Z9 is nonfeasible). 

Table 1 provides detailed descriptions of the corresponding land 
cover scattering sub-categories. These sub-categories include building 
(BU1, BU2, BU3, BU4), port (PO1, PO2, PO3), roads (RO1, RO2, RO3, 
RO4), soil (SO1, SO2, SO3), vegetation (VE1, VE2, VE3), and water 
(WA1, WA2, WA3). Among the four building subtypes, BU1 is located in 
zones 1 and 4 on the H-α plane, and refers to double-bounce scattering 
buildings with low to medium scattering randomness, mainly sparse 
buildings aligned in the radar system’s viewing direction and forming a 
dihedral angle between the wall and the ground. BU2 denotes aniso
tropic buildings, mainly dense buildings that are not parallel to the radar 
flight direction. BU2 falls within zones 2 and 5, indicating a volume 
scattering mechanism, but with low to medium scattering randomness. 
BU3 is located in zones 3 and 6, and it includes buildings with smooth 
roofs. Finally, BU4 includes buildings with complex structures, such as 
dense and small buildings with irregular alignment, which exhibit high 
randomness scattering and are located in zones 7 and 8. 

Regarding roads, RO1 mainly includes vertical facilities located on 
the road, such as viaducts, overpasses, highway guardrails, and even the 
dihedral angle formed by the road and thick tree trunks along the road 
borders. RO1 falls within zones 1 and 4 and is characterized by double 
bounce scattering with low to medium scattering randomness. RO2 
(located in zones 2/5) mostly includes rough asphalt or concrete road 
surfaces and pavement mixtures, causing volume scattering with low to 

medium scattering randomness. RO3 mainly includes roads with smooth 
surfaces, causing surface scattering. Finally, RO4 falls within zones 7 
and 8 and is characterized by high entropy. It includes complex struc
tural roads, such as various traffic facilities on the road and low vege
tation in the middle of the road. 

As for the port classes, PO1, PO2, and PO3 fall within zones 1 and 4, 
zones 2 and 5, and zones 3 and 6, respectively. PO1 represents con
tainers forming double-bounce scattering with the ground, while PO2 
includes dense containers with anisotropic reflectors. PO3 represents 
containers with a smooth top. 

Vegetation is divided into three sub-categories: VE1 (zones 1/4/7), 
VE2 (zones 3/6), and VE3 (zones 5/8), representing trees with double 
reflectors such as stout tree trunks, vegetation with leaves forming flat 
surfaces, and random anisotropic vegetation such as the crown structure 
of lush foliage, respectively. Due to their different shapes, scattered 
heights, leafy branches, and leaves, vegetation exhibits a very complex 
scattering behavior. When vegetation forms a dihedral angle with the 
ground, it can be mistaken for UIS. 

The soil class is divided into SO1 (zones 1/4/7), SO2 (zones 2/5/8), 
and SO3 (zones 3/6). SO1 refers to double reflections because of sur
rounding tree trunks or buildings. SO2 denotes soil with uneven sur
faces, especially soil in construction areas. SO3 represents soil with flat 
surfaces. 

Finally, water not only shows surface scattering (WA2) as generally 
known, but it can also show double bounce scattering when the water 
surface forms a dihedral angle with the ships and the shore, a case 
denoted as WA1 (zones 1/4). Waves can also cause water to exhibit 
volume scattering with medium entropy, located in zone 5 (WA3). 

According to the land cover scattering model, we propose a classi
fication framework that is divided into three levels, as described in detail 
in Table 1. Level I aims to distinguish between the two fundamental land 
surface categories: impervious and non-impervious surfaces. Traditional 
land cover classification schemes typically divide urban land covers into 
four types: vegetation, soil, water, and UIS. Considering the significant 
scattering and functional difference, the proposed fine-UIS oriented land 
cover classification scheme (level II) divides UIS into three fine-UIS 
types (buildings, port, and roads) to reduce the heterogeneity of the 
UIS label and thus mitigate confusion. Another advantage of this fine- 
UIS scheme is that these subclasses are associated with various urban 
functions, providing more social and economic information than 

Fig. 2. The polarimetric scattering distribution of urban land covers.  
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traditional land cover classification schemes. Finally, compared to the 
optical VIS model, the finest level (level III) identifies land cover scat
tering sub-categories based on polarimetric scattering mixture analysis. 

3.3. Impervious surface mapping based on PSMA 

The impervious surface mapping framework of this study is shown in 
Fig. 3, demonstrating the proposed impervious surface identification 
flowchart. For feature extraction, the Freeman-Durden decomposition 
(Freeman and Durden, 1998), the Cloude-Pottier decomposition (Cloude 
and Pottier, 1996), the Yamaguchi four-component decomposition 
(Yamaguchi et al., 2005), and the H/A/α decomposition (Pottier and 
Cloude, 1997) were considered. The different polarization decomposi
tion parameters, the coherence matrix diagonal elements T11, T22, T33, 
and the backscattering coefficients for HH, HV, VH, and VV were all 
considered as polarimetric features for classification. With the estab
lished urban land cover scattering model, land surface classification was 
first conducted at the level of the sub-classes. Then, adopting a merging 
strategy, land cover scattering sub-classes were combined into six fine- 
UIS oriented land covers, and finally merged into binary UIS and non- 
impervious surfaces (NIS) maps to extract impervious surface extents. 
The Transformer network has garnered considerable attention in both 
natural language processing and computer vision domains due to its 
superior performance (Devlin et al., 2018; Vaswani et al., 2017). In 
particular, the Swin Transformer (Liu et al., 2021), a recent visual 
Transformer backbone network combining the powerful modeling ca
pabilities of the Transformer structure with essential visual signal priors, 
has achieved remarkable breakthroughs in tasks such as object detection 
and semantic segmentation. Motivated by these notable achievements, 
we leverage the Swin Transformer as the classifier in our proposed 
model to effectively utilize scattering properties for identifying distinct 
land cover scattering subcategories. 

Experimental samples were labelled by visual interpretation of high- 
resolution Google Earth images, Worldview-2 optical images, and 
Sentinel-2 optical images near the acquisition date of the corresponding 
PolSAR images. Moroever, three field surveys were conducted, including 
two surveys in HK in March and June 2019 and one in SZ in November 
2020. Photos of different land covers were collected. Then, we per
formed extensive manual labeling, aided by high-resolution satellite 
imagery, expert knowledge and field surveys. For ALOS-2 data in WH 

and HZ, [21761, 17455, 17981, 12974, 6884] and [12854, 9141, 11950, 
7436, 9015] samples were labeled for building, road, vegetation, soil, 
and water classes, respectively. Instead, 35031, 22773, 18636, 7932, 
and 16,765 samples were labeled for building, road, vegetation, soil, and 
water and applied to ALOS-2 data in SZ. Note that the sample locations 
for GF-3 in SZ are the same as those for ALOS-2 data, but since the 
resolution of GF-3 is 8 m, its sample number is lower than the one for 
ALOS-2 (5 m resolution), which is 13365, 9389, 7149, 3185, and 6285. 
In HK, the samples applied to ALOS-2 data are 22642, 18245, 10026, 
19421, 2388, and 20017, for building, port, road, vegetation, soil, and 
water, respectively, corresponding to 9059, 7199, 4310, 4182, 903, and 
7773 samples for GF-3. We meticulously ensured that these samples 
were as evenly distributed as possible across the entire study area and 
that the samples within each class were relatively balanced, mitigating 
potential biases and other confounding factors. Finally, for each exper
iment, a random 80 % of the sample was used for classifier training, and 
the remaining 20 % was exploited for performance evaluation. 

4. Results 

In this section, three different experiments were conducted. Firstly, 
the urban land cover polarimetric scattering mixture and the proposed 
urban land cover scattering model were analyzed quantitatively. Sec
ondly, the established sample set was used to evaluate the classification 
accuracy of the proposed scattering-mixture-analysis-based UIS classi
fication system in HK, WH, HZ, and SZ using ALOS-2 and GF-3 images. A 
set of assessment metrics, including overall accuracy (OA), user’s ac
curacy (UA), producer’s accuracy (PA), and confusion matrix, were 
utilized for comprehensive evaluation. Finally, classification results 
were mapped over the entire study area with ALOS-2 and GF-3 at 
different levels of land cover types for a qualitative analysis. In both 
quantitative and qualitative evaluations, the results of the proposed 
classification system were compared with those of more traditional 
state-of-the-art procedures to validate its effectiveness, with the same 
classifier and experimental settings. 

4.1. Urban land cover polarimetric scattering analysis 

To explore the scattering response of the urban land covers, a color- 
coded scattering space is proposed in Fig. 4. In Fig. 4 (a), class samples 

Table 1 
Descriptions of different land cover scattering categories.  

Land cover types Fine-UIS oriented Land cover 
types 

Land cover scattering sub- 
types 

Description 

Urban impervious surfaces 
(UIS) 

Building BU1 Double bounce scattering buildings with low to medium scattering randomness, 
located in zone 1&4.  

BU2 Anisotropic buildings with volume scattering, located in zone 2&5.  
BU3 Surface scattering buildings with low to medium scattering randomness, located in 

zone 3&6.  
BU4 High randomness scattering buildings, located in zone 7&8.  

Road RO1 Double bounce scattering roads with low to medium scattering randomness, located 
in zone 1&4.   

RO2 Volume scattering roads with low to medium scattering randomness, located in zone 
2&5.   

RO3 Surface scattering roads, located in zone 3&6.   
RO4 High randomness scattering roads, located in zone 7&8.  

Port PO1 Containers forming double bounce scattering with the ground, located in zone 1&4.   
PO2 Volume scattering port, located in zone 2&5.   
PO3 Surface scattering port, located in zone 3&6. 

Non-impervious surfaces 
(NIS) 

Vegetation VE1 Double reflection propagation vegetation, located in zone 1&4&7.  
VE2 Surface scattering vegetation, located in zone 3&6.  
VE3 Random anisotropic vegetation, located in zone 5&8.  

Soil SO1 Double reflector soil, located in zone 1&4&7.   
SO2 Volume scattering soil, located in zone 2&5&8.   
SO3 Surface scattering soil, located in zone 3&6.  

Water WA1 Double bounce scattering water, located in zone 1&4.   
WA2 Surface scattering water, located in zone 3&6.   
WA3 Volume scattering with medium entropy, located in zone 5.  

J. Ling et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103541

6

are identified by their value of entropy and alpha in the H-α Plane. A 
color-coded scattering space was created in which eight basic zones 
were represented with different colors, as seen in Fig. 4 (b). Colors 
indicate various types of basic scattering behavior, and each sample in 
the SAR image is colored accordingly. The color-filled ALOS-2 and GF-3 
images of HK and SZ are presented in Fig. 4 (c-f). 

Fig. 4 (c-f) clearly illustrates that the conventional understanding of 
land cover distribution on the H- α plane, such as water in Z3, does not 
accurately capture the complex reality. Instead, the water area shows 
four distinct colors, indicating four different scattering behaviors. The 
seawater located far away from the urban area is relatively calm and 
characterized by a reflected surface scattering with low entropy 

(yellow). Waters at a medium distance from the metropolitan area are 
affected by wind and show a reflected surface scattering with medium 
entropy (dark blue). Water samples near the urban area are more sus
ceptible to waves caused by passing ships and wind, resulting in volu
metric scattering (light blue). Finally, water areas very close to the port 
exhibit double bounce scattering (purple) due to the dihedral angle 
between the water surface and the port infrastructures. In summary, the 
scattering mixture of the land surfaces is complex. The same land cover 
shows multiple different scattering behaviors according to the urban 
environment, and most traditional knowledge of the land cover scat
tering behavior is not fully and easily applicable. 

Fig. 4 also prominently displays the considerable diversity in SAR 

Fig. 3. Urban impervious surface mapping framework.  

Fig. 4. Color-coded scattering mixture analysis of the study area. (a) H- α Plane. (b) Color-coded scattering space. (c-f) Color-filled SAR images. (g-h) Optical images 
of HK and SZ for reference. 
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data between the L-band ALOS-2 and C-band GF-3. This diversity can be 
attributed to the difference in wavelength between L-band SAR (wave
length ≈ 23 cm) and C-band SAR (wavelength ≈ 5.5 cm). L-band SAR 
can penetrate vegetation and soil to some extent, capturing information 
from beneath the surface, while C-band SAR is more sensitive to surface 
structures. Notably, most vegetation is mapped as light green in ALOS-2 
while in light blue in GF-3. This difference can be explained by the 
distinct scattering characteristics of vegetation at L-band and C-band 
frequencies. In C-band, backscattering primarily occurs due to the 
interaction with the vegetation canopy, while in L-band, it is scattered 
with lower leaves and trunks, resulting in higher scattering randomness. 
As a result, the same type of vegetation can appear differently in the two 
datasets. Similarly, buildings tend to be mapped in red in ALOS-2 while 
in purple in GF-3. This variation may be attributed to the differences in 
how C-band and L-band SAR interact with built structures, as well as the 
impact of surrounding vegetated surfaces. The low penetration of C- 
band SAR is more easily disrupted by vegetated surfaces, such as trees 
near buildings, which can affect the observed scattering responses. 

Fig. 5 shows the scattering plane density distribution of each fine- 
UIS-oriented land cover with both ALOS-2 and GF-3 images in HK and 
SZ. Obviously, each land cover had distribution on multiple H- α zones. 
’Building’ and ’road’ even had distribution in all eight zones, while 
’building’ and ’port’ were more likely to be distributed in the double 
bounce scattering areas. ’Soil’ had multiple scattering behavior. 
’Vegetation’ was concentrated in volume scattering with medium and 
high entropy. And ’water’ was more likely to be distributed in surface 
scattering with medium entropy. 

Fig. 6 presents a land cover class probability distribution on the 
scattering plane, indicating the category of land cover with the highest 
probability of presenting the scattering behavior corresponding to the H- 
α location. Generally, surface scattering tended to be reflected by ’road’ 
and ’water’, although the low entropy zone was more likely to be 
occupied by ’road’ rather than ’water’, which might be due to the sea 
waves of ’water’. Double bounce scattering was observed to be reflected 
by ’port’ and ’building’ because of the dihedral angle between the wall 
and ground. Volume scattering with medium and high entropy was 

typically reflected by ’vegetation’, as well as ’soil’ and ’building.’. 

4.2. Validation of detailed land cover scattering behavior 

To investigate further the distinctive scattering characteristics of the 
land covers and their underlying causes, Fig. 7 (a) (b) demonstrates the 
color-coded scattering distribution of each land cover along with their 
corresponding color-filled real land positions, overlaid on the H-a-alpha 
feature base map. Columns (c-e) show zoomed-in details of the color- 
filled land positions, the H-a-alpha feature map, and the optical refer
ence image. 

Fig. 7 (a) illustrates that most land covers are spread across multiple 
zones, but there are specific differences seen from Fig. 7 (b-e). Regular 
and flat buildings tended to exhibit double bounce scattering, while 
patchy buildings or those surrounded by vegetation demonstrated me
dium to high entropy and volume scattering. A few smooth roofs dis
played surface scattering with medium entropy. The ’Port’ area often 
showed low to medium entropy double bounce scattering. However, low 
to medium entropy volume and surface scattering also occurred in 
staggering containers. The side of roads close to buildings typically 
exhibited low to medium entropy double bounce scattering, while the 
side close to vegetation showed medium entropy volume scattering or 
even high entropy scattering. Smooth roads in a few locations might also 
exhibit surface scattering. Vegetation usually exhibited medium to high 
entropy volume scattering and displayed double bounce scattering near 
buildings or thick trunks along roadsides. Additionally, vegetation 
showed surface scattering in some places due to smooth foliage. The soil 
exhibited medium entropy surface or volume scattering but also showed 
double bounce scattering near buildings or thick branches and high 
entropy scattering near low vegetation. Sea water far from urban areas 
demonstrated surface scattering, but waves could cause medium entropy 
volume scattering, while dihedral angles with the coast might cause 
double bounce scattering. In summary, the comparison of the scattering 
behaviors with the real land ground situation validates the diverse 
scattering patterns of urban land covers and their underlying factors. 
This substantiates the significance of the proposed PSMA method. 

Fig. 5. H- α density distribution of each land cover in HK and SZ with ALOS-2 and GF-3.  
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Fig. 8 shows the 17-dimensional mean polarimetric features of each 
land cover in different H- α zones. It indicates that not only do different 
H- α zones exhibit variations in H- α space, but these zones also display 
differences in other polarimetric features. This observation further 
demonstrates that multiple scattering behaviors are mixed within 
traditionally defined land covers. 

To assess the rationality of the identified land cover scattering sub- 
categories, a quantitative investigation of the separability between the 
H- α zones for each land cover was conducted and presented in Fig. 9. 
The Jeffries–Matusita (JM) distance (Dabboor et al., 2014), a widely 
applied measure of separability, was used in this study to evaluate the 
separability between the H- α zones. The JM distance ranges between 
0 and 2, with higher values indicating greater separability between H- α 
zones. 

The quantitative investigation results in Fig. 9 confirmed that the 
identified H-α scattering sub-categories were rational and meaningful. 
Although slight differences were observed between different study areas 
and polarization SAR data, the overall distribution of separability was 
consistent. The separability between the Z1 and Z4 zones was relatively 
small for all land covers, indicating that the difference between the 
medium and low entropy scattering mechanisms might not be signifi
cant under the double bounce scattering mechanism. The same phe
nomenon could be found in Z3 and Z6. The double bounce (Z7) and 
volume (Z8) scattering with high entropy also showed low separability 
under the two fine-UIS categories’ Building’ and ’Road’. For soil and 
vegetation, the separability between Z4 and Z7 (and Z5 and Z8) was 
relatively low. These results were consistent with the proposed scat
tering sub-categories for each land cover. 

In conclusion, the traditional land cover classification schemes, 
which divide land covers into four categories based on spectral prop
erties, are not sufficient for SAR imagery. The above detailed analysis of 
scattering behavior of land covers has demonstrated the existence of 
purer land cover sub-categories that exhibit unique scattering proper
ties. The proposed method, based on the identification of scattering sub- 
categories, has been validated by the consistency of its results with real 
land surface scattering responses. 

4.3. Classification accuracy evaluation 

In addition to the land cover classification based on the proposed 
land cover scattering sub-category system, other classification schemes 

were also implemented for comparative analysis. The fine-UIS oriented 
land cover system and 2-class UIS-NIS system were utilized for this 
purpose, and the classification was performed using the same classifier 
and samples. 

The proposed scattering-based classification system was employed to 
classify the land surface. The confusion matrices of land cover scattering 
subclasses in Hong Kong (HK), Shenzhen (SZ), Wuhan (WH), and 
Hangzhou (HZ), obtained from ALOS-2 and GF-3 data, are presented in 
Fig. 10 (a-f). Several observations can be made from these matrices. The 
majority of confusion observed among sub-categories sharing the same 
scattering mechanism, such as BU1, PO1, RO1, VEG1, and SO1, as well 
as BU2, PO2, RO2, and VEG3, underscores a key point. This confusion 
primarily arises because urban land covers can manifest multiple scat
tering behaviors, and different land cover types may exhibit similar 
scattering characteristics. While it’s acknowledged that scattering sub- 
categories of different land cover types may overlap within the same 
scattering zone, the identification of these sub-categories with specific 
scattering properties plays a vital role. This identification helps reduce 
intra-class variance within land cover categories and enhances our 
ability to discriminate between land cover types based on their unique 
scattering properties. Additionally, differences were observed in the 
distribution of land cover scattering sub-categories between ALOS-2 and 
GF-3 data. For instance, in ALOS-2, most port samples were classified as 
PO1, while in GF-3, these samples were more evenly distributed among 
PO1, PO2, and PO3. This finding aligns with the H-α density distribution 
depicted in Fig. 5 and can be attributed to variations in polarization 
frequency, polarization band (C and L), and angle of incidence between 
the two radar systems. 

The land cover scattering sub-categories were then aggregated into 
fine-UIS-oriented land cover categories for further analysis, as depicted 
in Fig. 10 (g-l). Misclassifications of buildings and roads as vegetation 
constituted a substantial portion of the confusion between UIS and NIS, 
likely attributable to trees planted alongside roads and buildings in 
complex urban environments. Soil often exhibited confusion with bright 
impervious surfaces in optical images because of its high spectral 
reflectance. Although the confusion mechanisms between spectral and 
scattering characteristics differ, the challenge of distinguishing soil from 
UIS (especially roads) persists in PolSAR images due to the complexity of 
soil scattering, as illustrated in Fig. 7. Dry and flat soil may be mis
classified as roads, while uneven soil surfaces, soil undergoing con
struction or overlaid with manufactured objects, and shallow grass could 

Fig. 6. Probability distribution of land cover classes on scattering plane with ALOS-2 (a) and GF-3 (b).  
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Fig. 7. Color-coded scattering distribution and the corresponding color-filled land positions of each land cover. Column (a) shows the color-coded scattering dis
tribution of each land cover, and column (b) displays the color-filled positions of the land cover superimposed the H-a-alpha feature base map. Columns (c-e) present 
the detailed color-filled positions, the H-a-alpha feature map, and the optical reference image, respectively. 
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be mistaken for UIS or vegetation exhibiting volume scattering, as 
indicated in Fig. 10 (a-f). In optical images, water may be confused with 
dark UIS due to its low spectral reflectance, whereas in PolSAR, confu
sion between water and UIS primarily occurs between water and roads. 
Additionally, a lower level of confusion was observed in ALOS-2 
compared to GF-3, potentially attributed to the lower spatial resolu
tion and higher noise in GF-3. Finally, the land covers were merged into 
UIS and NIS, as demonstrated in Fig. 10 (m-r). The recognition results at 
this level exhibited high accuracy, as confusion within UIS (and NIS) 

sub-categories was effectively minimized. 
To assess the effectiveness of the proposed PSMA-based classification 

system, a comparison was made with the fine-UIS oriented land cover 
classification scheme and the UIS&NIS classification scheme, as illus
trated in Fig. 11. The proposed PSMA scheme in Fig. 11 represents the 
proposed land cover scattering sub-category classification scheme, while 
the traditional scheme (TS) corresponds to the fine-UIS land cover 
classification scheme and UIS&NIS classification scheme. The overall 
land cover classification accuracy achieved satisfactory levels and was 

Fig. 8. The mean value of the polarimetric features on different H- α zones for each land cover. The abscissa axis represents the feature band, and the vertical axis 
represents the feature value. 

Fig. 9. Separability of H- α scattering zones for each land cover in HK and SZ with ALOS-2 and GF-3 data.  
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Fig. 10. Confusion matrix of the proposed scheme at the level of land cover scattering sub-categories (a-f), fine-UIS oriented land covers (g-l), and UIS&NIS (m-r) in 
HK, SZ, HZ, and WH with ALOS-2 and GF-3 images. The horizontal axis is the predicted category, and the vertical axis is the true category. 

J. Ling et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103541

12

found to be comparable to the results reported in previous studies uti
lizing optical data (Li et al., 2020; Zhang et al., 2017). 

In Fig. 11 (a), the proposed PSMA scheme exhibited significant 
improvement compared to the fine-UIS oriented land cover scheme. 
Consistent performance was observed across the four study areas. 
Notably, the proposed scheme yielded improvements in producer’s ac
curacy (PA) for roads of approximately 4.6 % in WH, 8.1 % in SZ, and 
13.4 % in HK. Additionally, the user’s accuracy (UA) for roads saw an 
increase of up to 9.5 % with GF-3 in SZ, indicating a substantial 
reduction in road confusion compared to the traditional scheme. For 
buildings, improvements in UA reached up to 4.8 % with ALOS-2 and 
3.5 % in PA with GF-3 in SZ. The port category also demonstrated higher 

accuracy with the proposed PSMA scheme, although there was a 4 % 
decrease in PA with GF-3 in HK, the UA increased by 7.6 %. Vegetation 
exhibited significant improvements of approximately 8.6 % in UA and 
10 % in PA with GF-3 and ALOS-2 in HK and SZ. Soil showed substantial 
improvements of 20.5 % (15.5 %) in UA and 15.1 % (17 %) in PA in SZ 
(HK), while HZ and WH witnessed an increase of 11.8 % in PA and 6.2 % 
in UA for soil. Water achieved the highest accuracy among all land 
covers, with improvements of up to 3.5 % in HZ. Furthermore, in Fig. 11 
(b), it is evident that the proposed PSMA scheme consistently out
performed the fine-UIS land cover scheme and the UIS&NIS scheme, 
with an overall accuracy (OA) improvement of up to 2.93 % and 2.26 %, 
respectively. These quantitative results demonstrate that the proposed 

Fig. 11. Producer’s Accuracy (PA) and User’s Accuracy (UA) of the proposed PSMA scheme and traditional scheme (TS) at the level of fine-UIS oriented land covers 
(a). (b) shows the overall accuracy at the level of fine-UIS oriented land covers and UIS&NIS level. 
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land cover scattering sub-category scheme effectively enhances land 
cover recognition by considering the scattering mechanisms within 
traditional land cover classes. 

4.4. UIS mapping performance comparison 

To provide a comprehensive assessment, Fig. 12 shows the land 
cover classification results for Hong Kong and Shenzhen using ALOS-2 
and GF-3 (Fig. 12 (1)), and for Hangzhou and Wuhan using ALOS-2 
(Fig. 12 (2)) at different levels of land cover types. Fig. 12 (a) presents 
the classification map at the level of land cover scattering sub- 

categories. It displays various shades of red for the sub-classes of 
buildings, with BU1, representing double bounce scattering, being the 
most prominent. Roads were primarily located in RO1 and RO2, char
acterized by double bounce scattering and volume scattering, respec
tively. Water was also divided into three sub-classes with different 
shades of blue. Among the vegetation sub-classes, VE3, characterized by 
volume scattering, was the most dominant. The subclasses were then 
combined to form land covers with the same definition as in optical 
images for further analysis, as in Fig. 12 (b). In general, it achieved 
relatively accurate recognition results on all cities and SAR data types, 
although there were still places for misrecognition. The recognition 

Fig. 12. Land cover classification results (1) for Hong Kong and Shenzhen with ALOS-2 and GF-3, and (2) for Hangzhou and Wuhan with ALOS-2 at the level of land 
cover scattering sub-categories (a), combined fine-UIS oriented land covers (b), and combined UIS and NIS (c). 
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results for UIS subcategories were also relatively good, especially port, 
which was clearly recognized. Also, road was well-identified, displaying 
a clear shape and outline in both ALOS-2 and GF-3. Finally, the classified 
UIS and NIS in Fig. 12 (c) reflected a large proportion of impervious 
surfaces in all cities, indicating the high degree of urbanization of these 
cities. 

To further evaluate the effectiveness of the new scheme, we 
compared its classification maps with those of the traditional schemes in 
more detail, at the level of land cover classification and impervious 
surface identification. The results are shown in Fig. 13. 

Compared to the traditional scheme, the proposed scheme showed a 
reduction in confusion between UIS subclasses, such as the misclassifi
cation of roads as ports in Fig. 13 (a) and the misclassification of ports as 
buildings in Fig. 13 (c) and Fig. 13 (e). Regarding confusion between UIS 
and NIS, the proposed scheme also achieved better recognition for 
complex roads, such as the thin viaduct with a height difference from 
below roads, which was recognized as a continuous road shown in 
yellow in Fig. 13 (d), whereas the traditional scheme confused it as 
vegetation. The mitigation of underestimation of the road was also re
flected by the considerable improvement of PA in Fig. 11. Additionally, 
the proposed scheme reduced confusion between water and soil in 
nearshore water bodies due to the interference of waves and facilities 
such as jacks, as shown in Fig. 13 (a) and (b). With respect to UIS 
identification, the proposed scheme demonstrated more accurate 
recognition of complex UIS, such as viaducts, roads with vehicles, and 
multi-lane roads compared to the traditional scheme, which tended to 
only identify the middle main road, as seen in Fig. 13 (f) and (h). The 
proposed scheme was also able to accurately identify continuous roads 
surrounded by dense and tall vegetation, even with an isolation belt in 
the middle, as shown in Fig. 13 (j). For NIS, such as soil, the proposed 
scheme better identified the boundary (Fig. 13 (i)) and reduced confu
sion of soil in construction as UIS (Fig. 13 (g)). Overall, the proposed 
scheme not only allowed for a more accurate distinction between UIS 
and NIS but also reduced confusion inside UIS and NIS subtypes, 

especially in complex urban settings. 

5. Discussion 

5.1. The necessity of urban land cover polarimetric scattering analysis 

The phenomenon of spectral confusion in optical images is widely 
recognized. To address this challenge, various methods such as the SMA 
method, spectrum unmixing method, VIS model, and bright & dark UIS 
model have been adopted in optical remote sensing. These methods are 
designed based on the differences in land surface materials’ spectral 
properties. However, in SAR data, land covers are identified based on 
their scattering properties, which may not necessarily align with the 
land surface material characteristics. The scattering behavior of land 
covers and their scattering mixtures in SAR has not been well explored. 
Therefore, this study conducted a comprehensive analysis of land cover 
scattering in PolSAR data in urban areas. We found that the land cover 
scattering behavior was very complex, and the previous understanding 
of the land cover scattering mechanism was inadequate. We discovered 
that objects belonging to the same land cover class could exhibit vastly 
different scattering properties, whereas those belonging to different 
classes may display similar scattering behavior. This highlights the need 
for polarimetric scattering mixture analysis. Drawing inspiration from 
strategies used in optical data, we proposed a novel UIS classification 
method based on comprehensive polarimetric scattering mixture anal
ysis. Our quantitative and qualitative experiments demonstrated the 
effectiveness of this method, showing significant improvements in UIS 
recognition compared to the traditional method, particularly in the case 
of complex scattering land covers. We attribute these results to our 
method’s ability to account for the different scattering properties of the 
same land cover and divide them into different sub-categories, which 
reduces intra-category differences and enables each subtype to focus on 
distinguishing its specific scattering characteristic without interference. 

This study has practical implications for urban management, notably 

Fig. 12. (continued). 
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through improved fine-level urban land cover mapping accuracy and 
granularity. By utilizing SAR data and our PSMA method, urban areas 
can be accurately classified into finer categories, encompassing various 
building types, roads, vegetation, and water bodies. Such detailed in
formation aids urban planners in making informed decisions regarding 
infrastructure development, resource allocation, and disaster manage
ment. Additionally, SAR data enables all-weather, cloud-independent, 
continuous surface observations, supporting real-time and uninter
rupted urban surface status assessments. 

5.2. Limitation of the proposed method 

We utilized both ALOS-2 and GF-3 PolSAR data to ensure the uni
versality of our proposed method for both C and L band fully PolSAR 
data. To avoid possible effects from land cover change, since these two 
data were not obtained at the same time, we carefully selected samples 
without land cover changes, with the help of high-resolution World
view-2 and time-series Google Earth images. Although GF-3 and ALOS-2 
differ in polarization frequency, band, spatial resolution, and angle of 

incidence, they both demonstrated consistent land cover scattering 
mixture phenomena and validated the effectiveness of our proposed 
method. One limitation of our study is that X-band fully polarimetric 
data was not applied due to difficulties in data acquisition. Further 
research with more polarization bands might help provide more infor
mation on urban land cover scattering mixture. Sample imbalance may 
affect the recognition of soil, as the number of soil samples is relatively 
smaller than that of other land covers, which is a real-world problem. 
Urbanization has led to an increase in impervious surfaces in cities, and 
while urban management seeks to preserve vegetation and water, bare 
soil is rare in cities, with most soil found under construction during the 
transition from NIS to UIS. 

The integration of optical data holds significant potential to com
plement SAR data as optical data can provide valuable spectral and 
textural information that SAR data alone may lack. Currently, the fusion 
of optical and SAR data presents challenges, especially for our model, 
which is designed to address scattering confusions in SAR data specif
ically, making it unfeasible to directly apply our method to a straight
forward fusion of optical and SAR data. However, the potential for the 

Fig. 13. Comparison of the land cover (columns 1–3) and UIS (columns 4–6) mapping results between the proposed scheme (PS) and traditional scheme (TS).  
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fusion of optical and SAR data is substantial. The conceptual framework 
of our confusion analysis method is generalizable and can provide 
valuable insights for fusion. Further research will consider consolidating 
the land cover confusions from both optical and SAR data, with the goal 
of developing a comprehensive confusion model suitable for fused data. 

5.3. Potential extensions to large-scale UIS mapping 

To assess our model’s applicability across various urban scenarios, 
we carefully selected four diverse regions in China, each representing 
different geographical and urban environments. While we recognize 
that urban scenarios can exhibit considerable variability beyond the 
specific regions we investigated, we posit that the fundamental princi
ples governing the scattering responses of urban land cover elements 
remain consistent. Consequently, we anticipate that these principles will 
hold true across different urban environments. Just as our model 
demonstrated strong performance in the markedly distinct cities in our 
study, we believe it possesses the potential for broader applicability. 
Nevertheless, we acknowledge the need for careful consideration of 
specific details and nuances when adapting this model to larger-scale 
studies in various urban contexts. We will delve deeper into these is
sues in our forthcoming research endeavors. 

The proposed method is not reliant on any specific classifier, terrain 
distribution, polarized band, or any other prior knowledge. It provides 
an effective and easily implementable UIS classification scheme based 
on the urban land cover scattering mixture. This approach demonstrates 
potential for large-scale UIS mapping, depending on the availability of C 
or L band fully PolSAR data. Considering the high cost of full- 
polarization SAR data, we acknowledge the practicality and accessi
bility of dual-polarization SAR data for large-scale applications, which 
offers advantages in terms of ease of acquisition and scalability. Despite 
differences between full-polarization and dual-polarization data, the 
underlying principles of scattering mixture analysis remain consistent, 
enabling the potential adaptation of our method to dual-polarization 
data. Our upcoming research will emphasize the analysis of urban 
land cover scattering mixtures using dual-polarization data to facilitate 
large-scale UIS mapping. 

6. Conclusions 

This study aimed to tackle the challenge of accurately identifying UIS 
by addressing the issue of land cover confusion in SAR data. A 
comprehensive analysis of urban land cover scattering mixtures was 
conducted, leading to the development of a novel UIS identification 
method based on urban land cover scattering modeling, which takes into 
account the scattering mechanisms. The evaluation of the method was 
carried out using C and L band PolSAR data in four Chinese cities, 
employing three levels of qualitative and quantitative experimental as
sessments to validate its effectiveness. The confusion analysis revealed 
the complex and diverse scattering behaviors within urban land covers, 
emphasizing the need to separate land cover scattering into specific 
scattering sub-categories for accurate classification. Experimental re
sults highlighted the high overall accuracy achieved by the proposed 
PSMA method, reaching up to 98.76 % in HK. Compared to traditional 
methods, the proposed PSMA approach significantly reduced recogni
tion confusion between UIS subclasses, UIS and NIS, and NIS subclasses. 
It achieved notable improvements for UIS, particularly for ’road’, with 
enhancements of up to 13.4 %. Non-impervious surfaces such as soil and 
vegetation demonstrated significant accuracy improvements, with gains 
of up to 10 % and 20.5 % in PA and UA respectively. This study con
tributes to the understanding of land cover scattering mixtures and of
fers a promising approach for enhancing UIS identification accuracy in 
urban areas using PolSAR data. 
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