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Let G be a connected complex semi-simple Lie group and B its flag variety. For every
positive integer n, we introduce a Poisson groupoid over B", called the nth total
configuration Poisson groupoid of flags of G, which contains a family of Poisson sub-
groupoids whose total spaces are generalized double Bruhat cells and bases generalized
Schubert cells in B™. Certain symplectic leaves of these Poisson sub-groupoids are then
shown to be symplectic groupoids over generalized Schubert cells. We also give explicit

descriptions of symplectic leaves in three series of Poisson varieties associated to G.

1 Introduction and Statements of Results
1.1 Introduction

Symplectic groupoids, and more generally Poisson groupoids, were introduced by
Karasev [16] and Weinstein [29, 30] to study singular foliations and quantizations of
Poisson manifolds. See [3, 14] for more concrete implementations of the program. A
Poisson manifold is said to be integrable if it is the base of a symplectic groupoid. While
not every Poisson manifold is integrable (see [5] for the obstructions), “natural” Poisson
manifolds are expected to have natural integrations to symplectic groupoids. When the

Poisson manifold is algebraic, one would also want the symplectic groupoids to be
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algebraic. It is a fundamental problem of Poisson geometry to construct explicit and
systematic examples of symplectic groupoids, especially in the category of algebraic
Poisson manifolds. (All the algebraic Poisson manifolds considered in this paper have
symplectic leaves that are locally closed algebraic subvarieties.)

Lie theory provides a rich class of Poisson manifolds: every connected complex
semi-simple Lie group G carries a standard multiplicative Poisson structure r;, defined
using the choice of a pair (B,B_) of opposite Borel subgroups of G (see §3.1), and many
important manifolds in Lie theory carry Poisson structures closely related to the Poisson
Lie group (G,my). Four series of such Poisson manifolds have been introduced and
studied by the 1st two authors in [19, 20]. Among them are the two series of quotients

of G", denoted respectively as
F’n:GxBx-anG and Fnzl?'n/B:GxBx~-~xBG/B, n>1. (1.1)
Here and for the rest of the paper, we consider the right action of G" on itself by

91/92:---19) - (hy, By, ... hy) = (g Ry, Ry gohy, . byt o k), Ry g; € G (1.2)

Then F’n is the quotient of G" by B"~! x {e} C G", while F, is the quotient of G* by
B"™ C G". By[19, §7.1], the product Poisson structure (74;)" on G" projects to well-defined
Poisson structures on f’n and on F,, respectively, denoted as 7,, and x,,. See §2.2 for a
more general construction.

For Z = F, or F,, denote by lg,,...,g,], the image in Z of (g;,...,g,) € G". Let
T = BN B_, a maximal torus of G. Then T acts on f’n and F,,, respectively, by

t-191/92: -1 Gnlp, =1t91:92: -/ Inls, (1.3)
t-191.92: - Gnlz, = [t91.92, - Gul5, . (1.4)

preserving the Poisson structures 7, and m,. A systematic study of the T-orbits of
symplectic leaves, or T-leaves for short (see Definition 1.3), of both (F,,,7,) and (F,, ;)
are given in [20]. In particular, it is shown in [20, Theorem 1.3 and Theorem 1.1] that
both (f'n, 7,) and (F,, 7,) have finitely many T-leaves. Setting B = G/B, the flag variety

of G, note that for each n one has the isomorphism

F, — B", 191,92/ 9nls, — (91.B, (9192) B, ..., (9192 ). B).
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Configuration Poisson Groupoids of Flags 18037

We thus also regard F,, as a product of flag varieties. Similarly, one has the isomorphism

F, — B" ' xG, 191.92--/9nls, — 91.B, (9192) B, ..., (9192 *Gn_1).B, 9192 - Gn)-

The 1st main result of the paper says that for each n > 1 the Poisson
manifold (F,,, 7,,) is a Poisson groupoid over (F,,x,), and that certain T-leaves of
(1?'2”, T9,) (resp. symplectic leaves therein) are Poisson (resp. symplectic) sub-groupoids.
We also give several isomorphic models for the Poisson groupoids, which shed dif-
ferent lights and put them in different contexts. The isomorphic models are estab-
lished through Poisson isomorphisms between T-leaves in various T-Poisson vari-
eties, the proofs of which, being technical, are presented in the appendices. In
Appendix §D in particular, we determine symplectic leaves in all the T-leaves of
three series of T-Poisson varieties including (F,,7,) for all n. We remark that while
T-leaves of many T-Poisson varieties associated to the Poisson Lie group (G,rng)
have been determined (see, for example, [8, 17, 20]), describing the symplectic leaves
therein is a harder problem and it has been done only for the case of (G, ;)
itself by Kogan and Zelevinsky in [15]. Results in Appendix §D thus constitute a
big step towards a general theory of leaves in T-leaves and is thus of independent
interest.

In the rest of the introduction, we explain our motivation and give more details
of the main results of the paper. See in particular §1.3 on identifications of the total
and base spaces of the Poisson groupoids in this paper with cluster varieties studied
by Shen and Weng [27], and with augmentation varieties of Legendrian links by Gao
et al. [10]. We also point out the recent work [1] by Alvarez, which contains a construction
of a Poisson groupoid over F,, as the moduli space of flat G-bundles over the disk with
decorated boundary. Precise relations between the Poisson groupoids in [1] and the ones
in this paper, and further study on their dual Poisson groupoids and double symplectic

groupoids will be given elsewhere.

1.2 Generalized Schubert cells and configuration Poisson groupoids of flags

Let W be the Weyl group of (G, T), and recall that the flag variety B = G/B has the
decomposition into Schubert cells O% := BuB/B, where u € W. (In the literature, BuB/B,
for u € W, is sometimes called a Bruhat cell in G/B. In this paper, we use the term
Schubert cell, reserving the term Bruhat cell for the sub-manifold BuB in G as suggested

by Berenstein.) Similarly, for n > 1 and u = (uy,...,u,) € W", denote the image of
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18038 J.H.Luetal

Bu;B x --- x Bu,Bin F, as
O% = (BuyB) xp - -- X (Bu,B)/B C F,,. (1.5)

One has the disjoint union decomposition

F,= || o“

uewn

For u € W", O" C F, is called a generalized Bruhat cell in [6, 20]. In this paper, we
will refer to them as generalized Schubert cells to be consistent with the case when
n = 1. By [20, Theorem 1.1], each generalized Schubert cell O" C F,,, being a union of
(finitely many) T-leaves of 7,,, is a Poisson sub-manifold of (F,,, ,,). Following [6, 20], the
restriction of x,, to O, again denoted as x,, is called the standard Poisson structure
on O".

In this paper, we first give in §2 a general construction of a series of Poisson
groupoids associated to any Poisson Lie group and a closed Poisson Lie sub-group. The
natural Poisson groupoid structure on (F,,, 7,,) over (F,,m,) is then a special case of
the general construction (see Theorem 3.2). We introduce the sub-manifold

def
Ton S 1{191/92: -1/ 9anlsy, 1 9192 Gan € B_}

of F,,, which, by Proposition 3.1 and Theorem 3.2, is a union of T-leaves of (F,,, 7,,)

and a Poisson sub-groupoid of the Poisson groupoid (Fy,, T,,) = (F,, 7,,). We call

Q:I: : (FZnIﬁZn)j (Fnrnn)r nZ 11
the nth total configuration Poisson groupoid of flags of G or simply the a total
configuration Poisson groupoid, where 6, and 6_ are the source and target maps. For
each u € W", let

rau) 10w ng-1 o) = ov (1.6)

be the full sub-groupoid of I'y, = F, over O" (see Definition 1.1). We show in
Theorem 4.4 that T™¥ ") is a single T-leaf of (I'y,, 7,,). Consequently,

6,,6_: O 7)) = (0%, (1.7)
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is an (algebraic) Poisson sub-groupoid of (T',,,7,,) = (F,,m,). Furthermore, we show
that the symplectic leaf of (r@wu™, Ty,) through the section of units of the groupoid in
(1.7) is an (algebraic) symplectic groupoid over (O, 7,,). We call (F(“'“fl), o) = (O%, )
a special configuration Poisson groupoid of flags of G.

Our interest in generalized Schubert cells O" with their standard Poisson
structures x,, for u € W", stems from some of their remarkable features in relation to
cluster algebras and to other Poisson manifolds related to the Poisson Lie group (G, 7).

First of all, it is shown in [6] that for any u = (uy,...,u,) € W", one can use
root subgroups of G and reduced decompositions for each u; to parametrize O" by
ClW | thus obtaining the so-called Bott-Samelson coordinates (21,1 21y)) OD O and
a Poisson bracket {, },, on Clz,,z,, ..., zy,)]. Here l(w) = l(u,) +--- + U(u,) and l(u;) is the
length of u;. Explicit formulas for {, }, are given in [6, Theorem 5.15] in terms of root
strings and structure constants of the Lie algebra of G. In particular, it is shown in [6]
that the polynomial Poisson algebra (Clz;, z,, . .. ,zl(u)], {, }u) is a symmetric Poisson CGL
extension in the sense of Goodearl and Yakimov, a special class of Poisson polynomial
algebras introduced and studied in [12, 13] by the same authors in the context of cluster
algebras.

Secondly, generalized Schubert cells with the standard Poisson structures form
basic building blocks for many of the Poisson manifolds associated to the Poisson Lie
group (G, ng,). For example, it is shown in [22] that a number of Poisson homogeneous
spaces (G/Q, 7;,,) of the Poisson Lie group (G, 7g), including (G, 7y) itself and (G/B, ),
admit so-called Bott-Samelson atlases, which are built out of generalized Schubert cells,
and the Poisson structure 7/, is presented as symmetric Poisson CGL extensions in all
of the coordinate charts of the Bott—-Samelson atlas. We refer to [22] for more detail.

The explicit and natural Poisson and symplectic groupoids over the generalized
Schubert cells (O%,x,,) constructed in this paper add another dimension to this dis-
tinguished class of Poisson manifolds. The Poisson groupoids (F(“'ufl),ﬁz,l) = (0% 7,)
are interesting on their own. Indeed, we give three additional isomorphic models of
(F(“'“fl),ﬁz,l) = (OY, m,), each having advantages over the others and putting these
Poisson and symplectic groupoids in different perspectives. We now give more details

on these models.

1.3 Two isomorphic models of (F(“'u_l),ﬁZn) = (OY, 1)

Let B = G/B be the flag variety of G, and let A = G/N be the decorated flag variety

(also known as the basic affine space) of G, where N be the unipotent sub-group of B.
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18040 J.H.Luetal

Let A° = B_N/N, an open subvariety of A. Forn > 1, set C,,, = B2n—1 % A°. Under natural
isomorphisms C?* — T, and F, — B", the Poisson groupoid (I'y,, 7y,) = (F,, 7,)

becomes the Poisson groupoid
(Can ﬁZn) = (Bnl ﬁn)/ (]_8)

see Theorem 3.4 for detail. Correspondingly, for each u € W", the special configuration

Poisson groupoid (rwuw™, TTy,) = (O, 1) is then isomorphic to a Poisson sub-groupoid

(C(u,ufl), ﬁZn) = (Bulfn)

1

of the Poisson groupoid in (1.8), where u™! = (u;!

Looutuh e whifu =
(Uuq,Uy,...,u,) (see Corollary 4.5). The variety C(“'u_l) C Cy, consists of sequences of
flags with relative Tits distances prescribed by u (see Lemma 4.2) and is an example of
a decorated double Bott-Samelson cell introduced by Shen and Weng [27]. We explain
in §A.2 that (B",7,,) is a mixed product of n copies of the Poisson variety (53, ;) in the
sense defined in [19], and a similar statement holds for the Poisson variety (Cy,,, Ty;,).
By [27], each cwu™) i 5 Poisson cluster variety when G is of adjoint type. Relations
between the Poisson groupoid structure defined in this paper and the cluster structure
on these varieties defined in [27] will be a very interesting topic to explore (see [27,
Remark 1.10]).

For the 2nd isomorphic model, consider the open sub-manifold F? of F,, given by

Fp=1{91.92:---19nls, * 9192 --9n € B_B/B}, (1.9
and for w € W", let
OF = O"NFS =1{lg1,92. 19yl € O% : 919, -G, € B_B/B). (1.10)

By [20, Theorem 1.1], OY is the open T-leaf of (O%, ;). The Poisson variety (F3,w,) has a
natural T-extension (Fg x T, ,, > 0), whose T-leaves with respect to the diagonal action
of T are precisely all the sub-varieties OF x T for w € W". Here x,, >« 0, as a Poisson
structure on F; x T, is the sum of the product Poisson structure (r,,0) and a certain
mixed term defined using the T-action on F? (see (1.13)). We show in Corollary 4.5 that,

via a Poisson isomorphism J,,, : (y,, Tp,) = (Fa, X T, Ty, < 0) and for each u € W", the
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Poisson groupoid (ruh, T9,) = (O, 1,,) is isomorphic to a Poisson groupoid
-1
O8 ) X T, 1y, 5 0) = (O, 7). (1.11)

The advantages of the isomorphic model in (1.11) are at least three-fold.
First of all, as ((’)éu'u_l) x T,m,, > 0) is the T-extension of ((’)éu’u_l),nm), we
can apply results in [6, 18] on arbitrary generalized Schubert cells and their
T-extensions. In particular, the model in (1.11) allows us to describe all the symplectic
leaves of ("% ) %, ) thereby proving that the symplectic leaf of (¥, 7, )
through the section of units of the groupoid reu’h — oujg g symplectic groupoid
over (OY, ).

Secondly, each (O™ ) x T,x,, < 0) is a (localization of a) Poisson symmetric
CGL extension by [6, Theorem 5.12] and [22, §4.2], so the Goodearl-Yakimov theory
in [13] gives a cluster variety structure on OB o T, The isomorphisms Oéu'ufl) X
T = p@uh) = c@u) thyg provide tools for future research on comparing the
cluster structure on O™" ) x T via the Goodearl-Yakimov theory with that on (@4
established by L. Shen and D. Weng [27].

Thirdly, in their work [10] on Lagrangian fillings of Legendrian links, Gao
et al. show that varieties of the form O} for G = SL,, are isomorphic to augmentation
varieties of certain positive braid Legendrian links. It would be very interesting to
explore connections between the Poisson groupoid structure on Oéu’uil) x T in this paper
and the results in [10].

1.4 The 3rd isomorphic model via generalized double Bruhat cells

For the 3rd isomorphic model for the Poisson groupoid (I‘(u'ufl), Typ) = (O%, ), we first
explain some background. Recall from [9] that associated to each pair u,v € W one has
the double Bruhat cell GV = BuB N B_vB_, and that (see, e.g., [15]) the decomposition
G = |y yew G*" is that of (G, ;) into T-leaves for the T-action on G by left translation.
The 1st two authors proved in [21] that for any u € W, (G*'%, 7y,) is a Poisson groupoid
over (O%, m;), but the groupoid structure depends on a choice i of a representative of u
in the normalizer subgroup N;(T) of T in G. Using the description of symplectic leaves of
g in G** given by Kogan and Zelevinsky [15], it is then proved in [21] that all symplectic
leaves of (G*“%, ) are symplectic groupoids over (OY%, 7).

Generalizing the decomposition of G into double Bruhat cells, the 1st two

authors introduced in [20] a Poisson manifold (G,, ,, &

nn)r for each integer n > 1, and its
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18042 J.H.Luetal

decomposition

Gn,n — |_I GWv

u,vewn

into T-leaves, where each GV is called a generalized double Bruhat cell (one has
(Gy1,m1) = (G, 7g)). The 2nd author then showed in [26] that for every u € W%,
(G“'u,ﬁn'n) is a Poisson groupoid over (OY,m,), where again the groupoid structure
depends on a choice & = (4, ..., u,) € N;(T)" representing u. The question of whether
or not symplectic leaves of (G"", 7, ,,) are symplectic groupoids over (O%, r,,) was left
unanswered in [26], due to the fact that description of symplectic leaves of (G"", 7, ;)
was not available.

In this paper, we show that for any u € W", each choice u € N;(T)" representing

u gives a T-equivariant Poisson embedding

Eg: (G"Y, 7y ) = (Dyy, Top) (1.12)
whose image is exactly ™" "), The Poisson groupoid (G**, 7, ,) = (0% x,,) defined in
[26] using the choice u is then shown to become precisely the groupoid (F(u'“fl),ﬁm) =
(O%, 7, via E;. Through the (i-dependent) Poisson embedding E;, we have thus an
intrinsic explanation on the origin of the Poisson groupoid structures on G"" as well
as on their dependence on the representatives u. At this connection, we point out that
the construction of the Poisson groupoids (G*%, 7, ,) = (O%, ) in [26] is based on a
general theory on local Poisson groupoids over mixed product Poisson manifolds and
actions by double symplectic groupoids, an approach completely different from what
we use in this paper.

When n = 1, I', = (G/B) x B_ is the action groupoid (G/B) x B_ =2 G/B for the
action of B_ on G/B by left translation. The fact that (I',, 77,) is a Poisson groupoid over
(G/B, ), and that one has the Poisson embeddings in (1.12) for n = 1, are also proved
in [21]. Putting these results in [21] (for n = 1) and that in [26] (on the Poisson groupoid

structures on G*'%) in one unified framework was part of the motivation for this paper.

1.5 Organization of the paper

After a general construction in §2 of a series of Poisson groupoids associated to any
Poisson Lie group and a closed Poisson Lie sub-group, we turn to the Poisson Lie group

(G, my;) and its Poisson Lie sub-group B in §3, where we introduce the total configuration
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Poisson groupoids
(TCops Ton) = (Fp ), m 21,
of flags. In §4, we discuss the Poisson sub-groupoids
@D 7 )= (0% ,), ueW® n=>1,

of (I'y,, 7y,) = (F,,m,) and their three isomorphic models. In §5 we prove that the
symplectic leaf of (F(u'ufl),ﬁZn) passing through the section of units of the groupoid
rwu™) = OU is a symplectic groupoid over (OY, ,,).

The paper contains several extensive appendices. The most technical parts of
the paper are the proofs that various isomorphisms between varieties are in fact
isomorphisms of Poisson varieties, and we present these proofs in the appendices §A
to §C.

In §A, we show how the various Poisson varieties considered in this paper are
mixed product Poisson varieties as defined in [19].

In §B, we show that the T-equivariant isomorphism J,, : T';, — F5 x T defined in
(3.14) is a Poisson isomorphism from (I',,, 7,,) to (Fy x T, m,, < 0).

Generalizing the case of m = n from [20, §1.4], we introduce in §C a T-Poisson
manifold (G,, ,, 7, ,) for any pair of integers m,n > 1 whose T-leaves are shown to
be generalized double Bruhat cells GV, where (u,v) € W™ x W"™. The main results
of §C are certain explicit T-equivariant Poisson isomorphisms between the single

T-leaves
~ -1
(G, ) — ((953“"’ DX T, Ty < O)

for all (u,v) € W™ x W", and similar Poisson isomorphisms between T-leaves of (?’n, T,)
to those of the form (O¥ x T,x,,; > 0) for w € W"*!. These facts illustrate again the
role of generalized Schubert cells (or their T-extensions for the examples in this paper)
as building blocks for Poisson varieties associated to the Poisson Lie group (G, 7).

In §D, we determine the symplectic leaves of (O} x T,n,, >« 0) for any n > 1 and
w € W". Although only the cases of w = (u,u™!) are needed in the main text of the paper,
the results for arbitrary w allow us to determine the symplectic leaves in all generalized

double Bruhat cells G"V, thereby extending the result of Kogan and Zelevinsky [15] for
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Table 1 Notation table for Poisson varieties

Varieties

Poisson structures

Poisson subvarieties

Fp (1.1)

7n, : Projection

of (mst)™

I'n(3.8), TI'“(4.7),
FY7(C.10), A%(D.29),

AWYV(D.46)

Fy x F_p (4.27) Zm,n: Mixed product G(m,n) (4.29), S“V(D.45)

of T and 7_p, GYV (4.30)
Fp (1.1) 7n: Projection OY%(1.5), F3(1.9),
of (7st)" OY%(1.10)
Cn (3.9) 7n: Pushforward CY(4.17)
of 7,
B" = (G/B)" Tn: Pushforward —
of mp,

the case of u, v € W. We in fact describe the symplectic leaves in all the three series
(Frol X Tr T[n > 0)! (Gm+nl ﬁm,n)l (ﬁnr ﬁn)r mrn Z lr

of T-Poisson varieties. Results in §D provide test stone examples towards a general

theory of symplectic leaves in T-leaves to be carried out elsewhere.

1.6 Notation and basic definitions

For convenience of the reader, we list the Poisson varieties discussed in the paper in
Table 1.

For a manifold X and 1 < k < dim X, let }Ck(X) be the space of all k-vector fields
on X, i.e., all smooth sections of AKTX, where TX is the tangent bundle of X. When X is
a complex manifold, TX will stand for the holomorphic tangent bundle and xkx) the
space of all holomorphic k-vector fields on X. If X and Y are manifolds and if V,, € xkx)
and V, € X¥(v), let (V,,0), (0, V,) € ¥¥(X x Y) be given by

Vy, O)(x,y) = iyVX(X) and (O, V)(x,y) =1V, (y), xeXyeY,

where iy X > XxY, ¥+~ (X,y)forx e X,andi, : Y - X x Y,y — (x,7) for

y’ € Y. This convention also extends to multi-vector fields on n-fold product manifolds
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X; x---x X, for any integern > 2. If V; € %k(Xi) for i € [1, n], we also write

(V1IV2!'-~/Vn)=V1 XV2X"'XVn

=(V,0,...,00+(0,V,,...,0)+ -+ (0,0,...,V,) € XXX, x X, x -+ x X,,).

Recall that a Poisson manifold is a pair (X, ), where X is a manifold and 7 €
X2(X), called a Poisson structure, satisfies [r, 7] = 0, where [, | is the Schouten bracket
on X*(X) = eak%k(X). For a Poisson structure = on X, define

. T'X — TX, (%), B) =n(a, B),

where « and 8 are any 1-forms on X. If X, is a Poisson sub-manifold of (X, ), that is,
X, is a sub-manifold of X such that 7 (x) € A?T, X, for all x € X;, the restriction of 7 to
X, will still be denoted by 7, so that (X;, ) is a Poisson manifold.

The identity element of a group is typically denoted as e. Let A be any Lie group
with Lie algebra a. The left and right translations on A by a € A will be denoted by L,
and R,, respectively, and for any integer k > 1 and x € AFa and & € A¥a*, x* and x% (resp.
gl and £F) will, respectively, denote the left and right invariant k-vector fields (resp. k-
forms) on A with value x (resp. &) at e € A. If A acts on a manifold Y from the right with

the action map p: ¥ x A — Y, we will also denote by p the Lie algebra homomorphism

d
pia— XY, P = T liopy,eXp(tx), X€ayeVY.

Similarly, if : AxY — Y is aleft action by A, one has the Lie algebra anti-homomorphism
1 d
Ta— XY, X)) = altzo)\(exp(tx),y), xXxeaqyeyY.

For clarity and for convenience of the reader, we recall some terminology on

groupoids and Poisson groupoids and refer to [24, 29, 30] for the basics of the subject.

Definition 1.1. (1) A sub-groupoid of a groupoid I' = M is said to be wide if it contains
the set of units of ' = M.

(2) The full sub-groupoid of a groupoid I' = M over a subset M’ C M is the
intersection HII(M/ ) N 6-1(M’) as a groupoid over M’ whose structure maps are the
restrictions of those for I' = M, where 6, and 6_ are, respectively, the source and target
maps of I' = M.

202 4900300 80 U0 3senb Aq 9€€/¥89/S€081/1Z/€Z0Z/3I01e/UlWI/W0d dno olwapede//:sdiy Wwoly papeojumoq



18046 J.H.Luetal

Definition 1.2. A Poisson groupoid is a Lie groupoid I' = M together with a Poisson
structure 7 on I' such that {(y,y’, m(y,y") : 6_(y) = 6,.(y"} C I'? is a coisotropic
sub-manifold of (I'},7 x 7 x (—n)), where 6,,0_ : T — M are the source and target

maps, and

m:{(y,y)el?: 0_(y) =6,.(y)) — T

is the partially defined multiplication on I'. In such a case, there is a unique Poisson
structure m,, on M such that 6, : (I',7) — (M, ,,) is Poisson and 6_ : (I',7) — (M, m,)
is anti-Poisson, and we also say that (I',7) is a Poisson groupoid over (M, x,,). If in
addition 7 is non-degenerate and dimI" = 2 dim M, one says that (I',7) = (M, x,,) is a
symplectic groupoid over (M, 7,,).

A Poisson (resp. symplectic) groupoid (I',7) = (M, x,,) is said to be (complex)
algebraic if both I' and M are smooth algebraic manifolds over C, all structure maps of
I’ = M are smooth algebraic morphisms, and both = and =z,, are algebraic Poisson (resp.

symplectic) structures. o
We also recall the notion of T-leaves that will be used throughout the paper.

Definition 1.3. If T is a torus, by a T-Poisson manifold we mean a Poisson manifold
(X, m,) with an action of T by Poisson isomorphisms. For a T-Poisson manifold (X, 7, ), a
T-orbit of symplectic leaves, or a T-leaf for short, of (X, n,) is a sub-manifold L of X of

the form

L=Ut2,

teT

where ¥ is a symplectic leaf of (X,n,), and the map T x ¥ — L,(t,x) — tx, is a

submersion.

We now recall a construction from [18, §2.6]. Let t be the Lie algebra of T and
assume that 1, — is a symmetric non-degenerate bilinear form on t. Let {h; : i =
1,...,r = dimt} be an orthonormal basis of t with respect to (, ). Given a T-Poisson

manifold (X, ;) with the T-action ¢ : T x X — X, we then have the Poisson structure
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7, <, 0 on X x T given by

Ty b, 0= (4, 0) + > _(a(hy),0) A (0, h]), (1.13)

i=1

where hf denoted the right (left) invariant vector field on T defined by h;. We call , >,
0 a T-extension of the Poisson structure m,, and we call (X x T, n, o<, 0) a T-extension
of the T-Poisson manifold (X, n,). It is easy to see that (X x T, o<, 0) is a T-Poisson
manifold with respect to the diagonal T-action. The following fact is proved in [18,
Lemma 2.23].

Lemma 1.4. With respect to the diagonal T-action on X xT, the T-leaves of (X xT, m, v,
0) are precisely all the sub-manifolds of the form L x T, where L is a T-leaf of (X, 7).

2 A Series of Poisson Groupoids Associated to Poisson Lie Groups

In this section, we give a construction of a series of Poisson groupoids associated to any

Poisson Lie group and a closed Poisson Lie subgroup.

2.1 Poisson Lie group actions and gauge Poisson groupoids

We refer to [4, 7] and especially to [19, §2] for basic facts and sign conventions on Poisson
Lie groups and Lie bialgebras.

Recall first that a Poisson Lie group is a pair (G, 7;), where G is a Lie group and
7, a Poisson bi-vector field on G which is multiplicative in the sense that the group
multiplication (G x G, n, x n;) = (G, n;) is a Poisson map. A right Poisson action of a

Poisson Lie group (G, ;) on a Poisson manifold (X, 7,) is, by definition, a Poisson map
p: (XxG, gy xm,) — (X, ), (x,9)+— xg, (2.14)

which also defines a right Lie group action of G on X. Left Poisson actions of (G, ) are
defined similarly. Recall also that a coisotropic subgroup of a Poisson Lie group (G, )
is a Lie subgroup of G that is also a coisotropic sub-manifold with respect to the Poisson

structure 7. The following fundamental fact is proved in [28].

Lemma 2.1. Suppose that p is a Poisson Lie group action as in (2.14), and suppose
that Q is a coisotropic subgroup of (G, ;) such that the restricted action of Q on X is

free and the quotient X/Q is a smooth manifold. Then the Poisson structure =, projects
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to a well-defined Poisson structure on X/Q, which will be called the quotient Poisson

structure of x,.

Example 2.2. Suppose that (X, ) and (Y, n,) are Poisson manifolds, both with right
Poisson actions by a Poisson Lie group (G,7,;) and such that the diagonal action of
G on X x Y is free and the quotient space (X x Y)/G is a smooth manifold. Then
(X xY,m, x (—m,)) has the right product Poisson action by the product Poisson Lie group
(G x G, x (—m,)). Since the diagonal of G x G is a coisotropic subgroup with respect to
7, x (—m,), the quotient space (X x Y)/G has the well-defined quotient Poisson structure

of m, x (—my). ¢

Suppose now that X — X/G is a principal G-bundle for a Lie group G. Let
(X x X)/G be the quotient space for the diagonal G-action on X x X, and denote elements
in X/G by [x] and in (X x X)/G by [x;,x,], where x,x,,x, € X. Recall that the gauge
groupoid of X — X/G is the manifold (X x X)/G with the following Lie groupoid

structure over X/G:
sourcemap 0, : (X xX)/G — X/G: [x, x,] —> [x{],
targetmap 6_: (X xX)/G — X/G: [x;, x,] —> [x,],
unitmape: X/G — (X xX)/G, [x]+— [x, x],
inverse map inv: (X x X)/G — X xX)/G: [x;, x,] —> [xy,x7],
multiplication: for y =[x, x,] and y’ = [x5, x,] with 6_(y) = 6,.(y"), vy’ = [x19, x4],
where g € G is the unique element such that x,g = x3.

Assume, in addition, that . is a multiplicative Poisson structure on G, =, is a
Poisson structure on X such that the G-action on X for the principal bundle X — X/G is
a right Poisson action of the Poisson Lie group (G, 7,) on (X, ). Let 7 € X2((X x X)/G)
be the quotient Poisson structure of m, x (—x,) and Ty € X%(X/G) the quotient Poisson

structure of z,. The following should be well known but we have not been able to find a

reference.

Lemma 2.3. With the Poisson structure = on (X x X)/G and ny

on X/G, the gauge
groupoid (X x X)/G = X/G is a Poisson groupoid.
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Proof. LetT = (X x X)/G for notational simplicity. Let Y = {(x;, Xy, X,, X4, X1, X,) € X°}.

It is clear that Y is a coisotropic sub-manifold of (XG, n}((ﬁ)), where

n)((ﬁ) =Ty X (=) X Ty X (—7y) X (=) X 7y, € x2(x%).
Let Y, ={(y,y,yy) €T3:6_(y) =60,(y))}, and let
J: XG —> F3, (XI’XZ’XS’X4’X5'X6) [ — ([X11X2]/[X31X4]1 [X51X6])'

Then J(Y) C Y;. Conversely, given y; = (y, v, vy’ € Yy, let y =[x, x,] and y' = [x3, x,]
for some x;,x,,x5,x, € X such that [x,] = [x3], and let g be the unique element in G
such that x,g = x3. Then y = (x,9,X,9,X3,X4,%,9,%4) € Y and J(y) = y;. This shows
that J(Y) = ¥;. Since J : x®, 7Y — (3,7 x 7 x (—n)) is Poisson, it follows from the
definition of coisotropic sub-manifolds that ¥; = J(Y) is coisotropic in (M3, 7 x 7 x
(—m)). Note also that both 6, and 6_ are surjective submersions. Thus (I, 7) is a Poisson
groupoid. By the definition of the Poisson structure r,;, (I',7) is a Poisson groupoid
over (X/G, myq)- u

We now adapt the constructions of quotient Poisson structures in Example 2.2
and the gauge Poisson groupoids in Lemma 2.3 to a setting suitable for applications in

this paper.

Example 2.4. [19, §7.1] Suppose that (G, ;) is a Poisson Lie group, (X, ) is Poisson
manifold with a free right Poisson action (x,g9) — xg by (G,n;), and (Y,7,) is a
Poisson manifold with a left Poisson action (g,y) — gy by (G, 7;). Then one has the
right Poisson action of the Poisson Lie group (G x G, 7w, x (—mn;)) on (X x Y, my, x m,)
given by (x,y) - (g;,92) = (x9;, ggly). Denote by X x. Y the quotient of X x Y by the
diagonal G-action (x,y)-g = (xg, g 'y) forx € X,y € Y, and g € G. Assuming that
X x; Y is a smooth manifold, it then has the well-defined quotient Poisson structure

of m, x m,. o

Assume now that (X,n,) is a Poisson manifold with a right Poisson action
(x,9) — xg by a Poisson Lie group (G, 7,) and assume that X — X/G is a principal
bundle. We make the further assumption that « : X — X is an anti-Poisson involution

with respect to the Poisson structure x,. One then has the unique left action (g, x) — gx
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of G on X determined by
k(@ 1x) =k(x)g, xeX,gegG,

which is a left Poisson action of (G,7m;) on (X,m,). Applying the construction in

Example 2.4, one has the quotient space X x; X of X x X by the right G-action
(X1, X)) g =(x,9, 9 'X5), Xx,%,€X,g€G,

and the quotient Poisson structure = on X x ;X of 7, x 7. Denote again elements in X/G
by [x] and in X x; X by [x;, x,], where x,x;,x, € X, and let again 7, € X%(X/G) be the

quotient Poisson structure of =,.

Lemma 2.5. With the assumption and notation as above, (X x; X,7) is a Poisson

groupoid over (X/G, my ;) with the following groupoid structure:

sourcemap 0, : X xgX — X/G: [x1, X5] —> [x1],

targetmap 6_: X xg;X — X/G: [x], X,] —> [k(x,)],

unitmape: X/G— X x;X, [xl— [x, k(x)],

inversemap inv: X x;X — X xoX: [x1, X5] — [k (x3), k(x)],

multiplication: for y =[x, x,] and y’ = [x5, x,] with 6_(y) = 6,.(y"), vy’ = [x,9, x4],

where g € G is the unique element such that « (x,)g = x5.

Proof. The map X x;X — (X x X)/G,[x;,x,] — [x;,k(x,)] is both an isomorphism of
Lie groupoids and an isomorphism of Poisson manifolds, where (X x X)/G has the gauge

Poisson groupoid for the right Poisson action (x,g) — xg as in Lemma 2.3. |

2.2 A series of Poisson groupoids

Assume that (G, ;) is a Poisson Lie group and that Q a closed Poisson Lie subgroup. For

each integer n > 1, one then has the quotient spaces

n n

— —
X,=GXxg---xgG and Y,=Gxq---xqG/Q. (2.15)
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The manifolds X,, and Y,, can be taken as successive quotient spaces as in Example 2.4.
Consequently, one has the well-defined quotient Poisson structures on X,, and Y,,, that
is, well-defined projections of the n-fold product Poisson structure n} on G", which
we will denote respectively as =, and n, . By the multiplicativity of 7;, one has the

following Poisson Lie group actions

(G,T[G) X (an T[Xn) — (an an)’ (g/ [91192,- . ~rgn]Xn) > [ggllg2/~ ~-,gn]Xn, (216)
Xy, g ) X (G ) —> (X, g ), ([gl,gz,...,gn]Xn, g) — [gl,...,gn_l,gng]Xn, (2.17)
(Grng) X (Ynl ﬂyn) — (Ynl nyn)/ (gr [glrgzr- . -,gn]yn) [ [gglrQZr- -~/gn]yn- (218)

As the inverse map on G is an anti-Poisson involution for (G, 7;), it follows that

L, Xy ) — Ky 70 )0 1919201 Gy, — 1970957 97

is anti-Poisson. As a direct application of Lemma 2.5 by taking X = X, with the right
Poisson action by the Poisson Lie group (Q, 7|,) given in (2.17) and by taking « = I, ,

one has

Theorem 2.6. For any Poisson Lie group (G, ), any closed Poisson Lie subgroup Q of
(G, ), and any positive integer n, Xon: Ty, ) is a Poisson groupoid over Yy, my,) with

the following groupoid structure:

source map 0, : Xy, —> Y, 1 gy, 9ouly,, = 91,1 90ly,
target map 6_: X,, > Y, 1 [g;,...,924lx,, [gg,i,...,g;illyn;

. . - -1y .
unitmape: Y, »> X,,, [gl,...,gn]yn =191 Gy gnl,...,gl ]in'
. . . -1 -17 .
inverse map inv: X,, — Xy, ¢ (g1, 9only,, 7 Gon: -1 97 Iy

multiplication: for y =[g;,...,9a,ly,, and vy’ =g}, ..., 95,1y, With0_(y) =6,.(/),

vY =191, - Gnr Gng1 92091 GnGnt1r Gnrzr - Gonlxy, -

3 The Total Configuration Poisson Groupoids of Flags and Isomorphic Models

We now apply the construction in §2 to the standard complex semisimple Lie

group (G, mg;).
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3.1 The complex semisimple Poisson Lie group (G, wst)

Let G be a connected complex semi-simple Lie group with Lie algebra g. We recall
the so-called standard multiplicative Poisson structure on G and refer the readers to
[4, 7, 19, 20] for more detail.

Fix again a pair (B,B_) of opposite Borel subgroups of G and let T = BN B_,
a maximal torus of G. Let N and N— be the respective unipotent radicals of B and B_.
Denote the Lie algebras of G,B,B_,N,N_ and T by g,b,b_,n,n_ and b, respectively. Fix
also a non-degenerate symmetric invariant bi-linear form (, ), ong. Let g =bh+ D wen Yo
be the root decomposition of g with respect to h, let AT C g* be the set of positive
roots with respect to b, and for each « € A%, let E, € g, and E_, € g_, be such that
(Ey E_o)g = 1. Let (hy)r?
restriction of (, ) g toh. Then the element

be a basis of h which is orthonormal with respect to the

dim b
re= > h®m+2 > E ,QFE, cg®g (3.1)
i=1 aeAT

is called the standard r-matrix on g. Let A € A%g be the skew-symmetric part of rg,
that is,

Ag= D (E,AE)= > (E,®E,—E,QE ),

aeAT acAt

and let 7y, be the bi-vector field on G defined by (see notation in §1.6)
my, = AL — AR, (3.2)

Then n , is a multiplicative Poisson structure on G, and (G, ;) is a standard semi-
simple Poisson Lie group. It is well-known (see, e.g., [11]) that both B and B_ are Poisson
Lie subgroups of (G, ng;). One thus has the Poisson Lie subgroups (B, 7,;) and (B_, ;)
of (G, ).

3.2 The total configuration Poisson groupoids of flags

Continuing with the set-up in §3.1, we can now apply the constructions in §2.2 to the
Poisson Lie group (G, ng;) and its closed Poisson Lie subgroup B. In this particular case,

as we have already done in §1.1, we denote the Poisson spaces X,, and Y,, in (2.15)
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respectively as
n n

~ —_——— —T—_—
F,=Gxp---xgG and F,=Gxgz---x5G/B,

and we denote the quotient Poisson structures on F,, and F,,, respectively, as 7,, and r,,.

Note that we have Poisson Lie group actions

5\'7’1, : (Grnst) X (?‘nlﬁn) — (ﬁnlﬁ:n)l (gr [,911921~- . rgn]f:n) [ [9911921- ~-,gn];~n, (33)

)"n . (Glnst) X (Fnlnn) — (Fn!nn)r (gr[glng!'-~/gn]Fn) > [991192/~'-/gn]pn- (34)
Recall that T = BN B_, a maximal torus of G. Since ng|; = O, the restrictions of the
actions to T (see (1.3) and (1.4)) make both (F,,, %,) and (F,, 7,,) into T-Poisson manifolds.

The multiplicativity of 7y also implies that we have the well-defined Poisson map

Mg, (Z?'n,ﬁn) — (G, g), 19,,99,--- ,gn];,n > 9192 G- (3.5)
Forw = (wy,...,w,) € W", set
BWB = (Bw;B) xg --- X (Bw,B) C F,,, (3.6)

the image of (Bw;B) x --- x (Bw,B) in 1?'”. One thus has

F = I_l (BwB) N ,u;nl (B_vB_) (disjoint union). (3.7)

n
weWm™ veW

For w € W, let [(w) be the length of w. For w = (wy,...,w,) € W", let l(w) =
l(wy) + --- + l(wy,). The following description of T-leaves of (F,,7,) is proved in
[20, Theorem 1.3].

Proposition 3.1. (1) For any w € W™ and v € W, the intersection (BwB) N y,gnl (B_vB_)
is a non-empty smooth sub-manifold of f’n of dimension I(w) + I[(v) + dim T;

(2) The decomposition in (3.7) is that of F,, into the T-leaves of 7,,.

Introduce now

Ty =1{91.92:-- - 9nls, - 91929 €B_} = /“‘;nl(B—) C Fn' (3.8)
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By Proposition 3.1, I',, is a union of T-leaves of 7,, and thus a Poisson sub-manifold of
(l?'n, 7,,). We now apply Theorem 2.6 to the Poisson Lie group (G, ;) and its Poisson Lie

subgroup B.

Theorem 3.2. For any integer n > 1, (F,,, 7,,) is a Poisson groupoid over (F,, 7,)) with

the following groupoid structure:

source map 0, : Fy, — Fp, [91,---,92ul5,, = 191, Gnls,
- -1 - .
target map 0_ : Fpp, — Fp, [g;, ..., 924)5,, & [ng,...,gniI]Fn,
: ) = - ~17_ .
unit map € : F,, — Fy,, [gl,...,gn]Fn — [gl,...,gn,gnl,...,g1 ]ﬁm,

; v F 7 -1 17 .
inverse map inv : Fy, — Fyp, [91,--.. 9onls,, = 92y, 97 15,

multiplication: for y =[g;,...,92,)5,, and y" =197, ..., gopl5,, With6_(y) =6,(y),

vy =191 - Gno Gnar 920Gt GnGngrr Gnszr -1 Gonliy,-

Furthermore, I',,, C F,, is a wide Poisson sub-groupoid of (F,,, Tp,) = (F,, 7).

Proof. Applying Theorem 2.6 directly to the Poisson Lie group (G, ;) and its Poisson
Lie subgroup B, we see that (F,,, 75,) = (F,, 7,) as described in Theorem 3.2 is a Poisson
groupoid. One also checks directly from the definitions of the structure maps of F'Zn =
F, that T, is a wide (set-theoretical) sub-groupoid of F,,, = F, (Definition 1.1). As I, is
a Poisson sub-manifold of (F,,,, 77,,,), it is a Poisson sub-groupoid of (F,,, 7,,) = (F,,7,)
as long as we prove that 6, : F,, — F, restricts to a submersion from I',,, to F,. To prove

this latter statement, we note the isomorphisms

Fp,— (G/B)"'XG, 191,92/ -1 Gonls,, — (G1.B,9192.B, - 9192 Gon—1.B, 9192 - Gan),

F, — (G/B)", 191,92, -19nlp, —> (91.B,9192.B,...,9192 - Gn B),

under which T',, is mapped to (G/B)*""! x B_, and 6,|r, : Iy, — F, becomes the

n

projection of (G/B)?"~! x B_ from the product (G/B)" of the 1st n factors and is thus

a submersion. |

Definition 3.3. For n > 1 the Poisson groupoid (I'y,, 7,,) = (F,, 7,) in Theorem 3.2 is

called the nth total configuration Poisson groupoid of flags of G. ¢
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In the next §3.3 and §3.4, we introduce two isomorphic models of (I'y,,7,,) =
(Fp 1)

3.3 The Poisson groupoid (Cop, T2n) = (B™, Tn)

Recall again that B = G/B is the (full) flag variety of G, and A = G/N is the decorated
flag variety of G, where N is the unipotent radical of B. For an integer n > 1, recall that

we have set
C, =B""1x A (3.9)

where A° = B_N/N is the open B_-orbit in A = G/N. Referring to an element f € B as a
flag and an element f in A as a decorated flag, the space C, then consists of all n-tuples
- ,fn_l,f’n), where f,...,f,,_; are flags and f"n is a decorated flag that is in general
position with the flag f represented by B_.

The spaces C,, appeared in [27], where the authors consider the special cases
when G = G, is simply connected and when G = G,y is of adjoint type. For any
pair of words (b,d) of length n in the simple reflections in W (called positive braids
in [27]), Shen and Weng introduced certain configuration spaces of flags, denoted as
Confg(ASC) and Confg(Aad) and called decorated double Bott-Samelson cells (see [27,
§2.2]), which can be embedded in C, for G = Gy, and G = G4, respectively, [27, §2.3]
(see Remark 4.3). As one of their main results, Shen and Weng prove in [27, Theorem
1.1 and Theorem 1.2] that both Confg(Asc) and Coan(.Aad) are smooth affine varieties;
the coordinate ring O(Coan(ASC)) is an upper cluster algebra, O(Coan(Aad)) is an
upper cluster Poisson algebra, and the pair (Coan(.Asc),Confg(Aad)) form a cluster
ensemble for which the Fock-Goncharov cluster duality conjecture holds. See [27]
for detail.

For n > 1, consider now the isomorphisms
@n : I, —C,, gy, - ,gnfl,gn]ﬁn — (G1.B,...,91 - 9p_1.B 91 9p_19,.N), (3.10)

O,: F,— B", 191, 1Gn_1.9nlp, —> @G1.B,.... 91 Gn_1.B, 91 -~ In_19,B). (3.11)

Under the isomorphisms ©,,, : I'y,, — C,,, and @,, : F,, — B", one checks directly that the

Lie groupoid I'y,, = F,, in Theorem 3.2 becomes the following Lie groupoid C,,, = B",
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where we denote an element in .A° = B_N/N as b_ N for a unique b_ € B_:

source map 0, : Cyp, = B" 1 (fi, ..., fon_1,b_N) = (fi,....[i

target map 6_ : Cy, — B": (fy, .- fon_1,b_N) > B fo_1,.... bZ )

unitmap € : B" — Cyp,, (f1, .- ) = (Foveo S fuerr - f1 eN);

inverse map inv : Cy,, — Cop : (fy, -+ fan_1b_N) = B fop_1,..., b2 fo, b2, bZE N);

multiplication: for y =(f},....fo,_1,b_N) and y'=(f{,.. .. f5,,_1, b_.N) with 6_(y)=6_(y"),

vy = oo oo b_frp1s oo b_fon_1, b_b_N).
Define Poisson structures 7,, on C,, and 7,, on B", respectively, by
7,=0,7, and 7,=0,(,). (3.12)
We now have the following direct consequence of Theorem 3.2.

Theorem 3.4. For any positive integer n, (C,,, T,,), with the groupoid structure as

above, is an algebraic Poisson groupoid over (B",7,,).

For each n > 1, we call 7,, (resp. 7,,) the standard Poisson structure on C,, (resp.

B). We prove in Proposition A.6 (see also Corollary A.7) that (8", 7,,) is a mixed product
of n copies of the Poisson variety (B, ;) in the sense defined in [19]. A similar statement

for (C,,7,) is given in Remark A.8.

3.4 The Poisson groupoid (F9, x T, w2y < 0) = (Fn, 7n)

Forn > 1, let again

Fp=1{91.92:---19nls, * 9192~ 9n € B_B/B}, (3.13)

an open sub-manifold of F,,. Recall that for g € B_B, we write g = [g]_Iglylg]l, with
l[g]_eN_,Igly e T, and [g], € N. Set also [gl., = [glglgl, for g € B_B. Define

Jn : Fn — Fyol X Tr Jn([gl,gz,.. . ,gn]’ﬁ-n) - ([gl,gz,.. . ,gn]Fnl [9192 N gn]o) (314)

Recall that T acts on F,, and ﬁ'n by (1.3) and (1.4), respectively. Let T act on itself by

translation and on FJ x T diagonally. Then J,, is T-equivariant and that the inverse of J,,
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is given by

T (0910 Gn1Gnley O =191 G, 90lG1 - G190z, - (3.15)

On the other hand, we have the Poisson structure m, >, 0 on F, x T which is the

T-extension of 7, with respect to the T-action 1,, on F,, (see §1.6 and (3.4)), namely,

dim b
T o<y 0= (m,,0) + z (O (R, 0) A (0, RR) € X2(F, x T), (3.16)

i=1

where {h;} is a basis of the Lie algebra b of T orthonormal with respect to (, ) Iy, and
for x € h, xR is again the right (and left) invariant vector field on T with value x at the

identity element.

Theorem 3.5. For any n > 1, J, : (I',,7,) — (Fy x T, 7, >, 0) is a Poisson

isomorphism.
Proof. This is Theorem B.1 in the §B. [ |

Using the isomorphism J,, : 'y, — F3, x T, we now transfer the groupoid

structure on I'y,, to one on FJ, x T. The following Lemma 3.6 is straightforward to check.

Lemma 3.6. Under the isomorphism J,, : I'y,, — F3 x T, the Lie groupoid I'y,, = F,,

n

becomes the following Lie groupoid F§, x T = F,:

source map 0, : F3, x T — Fy, (Igy,-- -1 Gan)e,, ) = g1, Gnlp,
target map 6_ : F3, x T — F,,
(91 - -+ Ganlpy, ) = [t'9:9, - '92n12092_r1'95r1—1' e 'g;-}—l]Fn;
unit map € : F, — F3, x T, [gy,...,gplp, — ([gl,...,gn,g,_ll,...,gfllFZn,e);
inverse map inv: F§, x T — F5, x T:
(91s- -+ Gonligy ) = € 19192 - Gon)o097m o1+ 197 Ngyr T
multiplication: for y = (Ig;, ..., gopl, , 1) and y'= (g}, ..., goplp,,  t) With 6_(y)=6,(y),

vY =91, -+ Gnr Gni1 G2nl9192 9202090+ GnTnsrs Gniar - -+ Gonley,  tE).
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By construction, we have now made (F3,, x T, m,, > 0) into a Poisson groupoid

over (F,,m,), as stated in the following companion of Theorem 3.2 and Theorem 3.4.

Theorem 3.7. For any integer n > 1, (F3, x T, m,, >< 0) with the groupoid structure as

above is a Poisson groupoid over (F,, ).

4 Special Configuration Poisson Groupoids of Flags and Isomorphic Models
4.1 T-leaves

In view of the three isomorphic models of the total configuration Poisson groupoids
given in §3.2 - §3.4, we now look at the T-leaves in (I',,, 7,,), (C,,, 7,,), and (F2 x T, m,, o< 0)
for any integer n > 1.

Recall again that T acts on F, and F, via (1.3) and (1.4), respectively, and on
C

isomorphisms

., = B! x A° and on F? x T diagonally. Recall also the T-equivariant Poisson

©,: Ty, 7,) — C,7,) and J,: ([,,7,) — (F2x T, m,0),
respectively, given in (3.10) and (3.14). For w = (w, ..., w,,) € W", introduce
M=r,nBwB crl, C"=0,I"YccC, and O¥xTCF)xT, (417
where recall that BwB is the image of Bw;B x --- x Bw,,B in F,, and that (see (1.10))
Og =1l91.92:---/Gnls, €O : 9195---9, € B_B/B} C O". (4.18)

By the definition of J,,, one has J,(T'") = OF x T for each w € W". It follows from the

decomposition F,, = | |,,.;y» BWB that one has the disjoint unions

r,= L] ™ c¢=1]]c" Fxr=|]©FxD. (4.19)

wewn wewn wewn

Proposition 4.1. For any integer n > 1, the decompositions in (4.19) are that of the

T-leaves of (I',,, ), (C,, ,), and (F9 x T, m, > 0). In particular, for any w € W",
e,: ™,7,) — C",%, and J,: TV,7,) — (O x T,x, < 0)

are T-equivariant isomorphisms of single T-leaves.
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Proof. The statement for the T-leaf decomposition for (I",,, 7,,) follows Proposition 3.1.
The rest of Proposition 4.1 follows from the fact that both ®,, : (T, 7,) — (C,,7,) and
J,: T, 7,) - (FS x T, x, = 0) are T-equivariant Poisson isomorphisms. We also note
that by [20, Theorem 1.1], each O} is the unique open T-leaf of (O%, x,,)), so the fact that
the T-leaves of (F§ x T, m,, < 0) are precisely of the form O} x T for w € W" also follows

from Lemma 1.4. | |

We give a description of CW. Let Giag be the diagonal of G x G. Recall that for
(fy.f») € B?, the Tits distance from f, to f, is defined to be the unique w € W such that
(f1.f2) € Ggiag(e.B, w.B), and we write f; Z f,. In particular, f; and f, are said to be in

general position if f} o fo, where wy, is the longest element in W. Set
fo=eBeB and f =wyBebB.

For f = b_N € A°, where b_ € B_, letf = b_ B € B. The following statement is now

clear from the definition of the isomorphism © : ', — C,,.

Lemma 4.2. For w = (w,,w,,...,w,) € W", the sub-variety C%W of C,, = B""! x A°
consists of all (f}, fy, ..., fu_1.f) € B} x A° such that

wi wo wn 7 Wo
fo—h—L— —fi —f.
Remark 4.3. For w = (wy,...,w,) € W", choose any reduced decomposition w; =
Se;, " Sa;, foreach 1 <i <n, wherel; = l(w;), and let
, i
_ (W)
b= (sal’l, coer Sayy r Sagyr e r Sagpr et Sagyr e San,zn) e W',

One then has C" = C? C (y,,. In the notation of [27], C® = Conf5(A). o

4.2 The Poisson groupoid (F(“'u_l), Ton) = (OY, ) and two isomorphic models

-1

Letnow u = (uq,...,u,) € W"and letu™! = (u;!,.

..,ul_l). Consider
rewh -, n@uuhB).

By Proposition 4.1, T®%™") is a single T-leaf of (T'yy,: Tpy,). One checks directly from the
definitions that I ") is the full sub-groupoid (see Definition 1.1) of r,, = F, over OY,
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that is,
l"(u,ufl) — 9_:1(011) N 9_—1(011),

where 0,,6_ : T,
(Fp, 1)

. — F, are the source and target maps of the groupoid (I'y,, 75,) =

Theorem 4.4. For any u = (u, u,,...,u,) € W=, (F(“'“fl),ifm) = (0%, r,)) is a Poisson

sub-groupoid of (I'y,,, Ty,) = (F,, 7,,).

Proof. Being a T-leaf of (I, 7,,), T™" ") is a Poisson sub-manifold of (I'y,, 7,,). It
1, : T . OU i g surjective submersion. Since I ")

w1y s T@ED L ou

remains to show that 0, |-

contains the image of O" C F,, under the unit map of I'y,, = F,;, 0, |,

is surjective. Define

-1
9: O(u'u ) —)Our [gl:gz:~--l,92n]F2n — LQIIQZ""’gn]Fn'
Clearly 6 is a submersion. Under the isomorphism J, : T@u ™) — o™
- -1
0, : T@wu™) . Ou hecomes the projection 0, : O ) x T - O%,(qt) — 6(q).

r@u-l) *
. -1y, . -1 . .
Since Oéu’u ) 1s open in ou) 6‘; is a submersion. Thus, 9+|

x T, the map

r@u-l) is a submersion. B

Recall from (3.11) the Poisson isomorphism ©,, : (F,, 7,) — (B",7,). Set

BY=0,(0% ={(fy,...f) € B :fy =5 f; —> f) —> ... =5 f.1,
so B" is a Poisson sub-manifold of (58",7,). We have the following immediate conse-

quence of Theorem 4.4.

Corollary 4.5. Foranyn > 1 and u € W%, (C(u'“fl),fm) = (B%,7,) is a Poisson
sub-groupoid of (C,,, 7,,) == (B",7,) in Theorem 3.4 and is isomorphic, via the
isomorphisms ©,, : T@¥ ) — c@uw™) apd @, : O — BY, to the Poisson groupoid
(rew™h 7 )= O%,x,).

Corollary 4.6. Foranyn > 1andu e W", (O,(au’u_l) x T, 1y, < 0) = (OY, ,,) is a Poisson
sub-groupoid of (F7, x T,m,, ><0) = (F",x,) in Theorem 3.7 and is isomorphic, via the

_ -1 —
isomorphism J,, : T@¥ ™) — O™ ) to the Poisson groupoid (N ), 7, ) = (O%,7,).
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Definition 4.7. For u € W", we refer to either of the three isomorphic Poisson

groupoids

— — -1
O, 7)) = (O 1), CD, Ry = (BYLT,), (O )X T, 15 99 0) = (0%, 1)
as a special configuration Poisson groupoid (of flags of G). o

The special configuration Poisson groupoids have a simple set-theoretical
description. We first set up some notation. Recall that N;(T) C G is the normalizer
of T in G. For u € W, let uT C Ng(T) be the set of representatives of u in N;(T). For

i e uT, set
C,=NunuN_. (4.20)

It is well known (see, for example, [9, Proposition 2.9]) that the maps

Cy, x B—> BuB, (c,b)—>cb and BxCy—> Bu'B, (b,c) —> bc?, (4.21)
are both isomorphisms. Foru = (uy,...,u,) € W* let uT” = u;T x --- x u,,T C Ng(T)"
and call any u = (¢4, ..., 1t,) € uT™ a representative of u. Foru = (tty,...,u,) € uT", set

Cu = Cul X Cuz X e X Cun (422)

One then has the isomorphisms

Cy X B—> BuB, (cy,Cy, ..., €y, b) >y, Cp_q, b5 (4.23)

Cy —> O" =BuB/B, (c1,Cy,...,Cp) > lcy,Cy... 0y, (4.24)

BxCy—> Bu™'B, (b,c},....Ch_y.cp)— bey) ™ (ch) o (@) g, (4.25)
Forc=(¢y,Cy,...,Cy) € Cy, setlcl, =lcy,...,c,l; and c=c,c;--- ¢, € G. Define

GY = ((¢,b,b_,c):c,c €Cq,beB,b_e€B ,cb=b ¢} CCyxBxB_xCy (4.26)
We then have the isomorphism Z,, : %% — I®4™) given by

Ty((Cyr-viCy)y by b, (Eh, . ) =y, ey Cpb, (C) L (C )T () gy, -
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Proposition 4.8. For any u € W" and u € uT", Z;, is an isomorphism of Lie groupoids
over OY, where the groupoid N®¥™") = OU is given as in Theorem 4.4, and g% = O is

the groupoid defined in [26] as follows:

source map 6, : Gut 5 0% (¢, b, b_, ) ],
target map 6_ : G%% — O%, (¢, b, b_, ¢) —> [Ty,
unit map e : O% — Gguy, lcl,, —> (c, e, e, 0),

inverse map inv: ¢%% — g%, (¢, b, b_, ¢)— (¢, b}, b7}, o),

multiplication : (¢, b, b_, ¢)(¢/, b/, b_, ¢y = (¢, bV, b_b"_, ).

Proof. By (4.23) and (4.25), Z, is an isomorphism of varieties. The fact that 7, is an
isomorphism from the groupoid G%% = O% to F@u™) = OU follows directly from the

definitions of the two groupoids. |

Remark 4.9. Under the isomorphism C, - O%, ¢ — [C]Fn, one can regard gul — OU g9

a groupoid &% = C;, and as a such, it is a sub-groupoid of the direct product
CﬁXBXB_XCu:?Cﬁ

of two groupoids: the pair groupoid C, x C; = C; and the direct product group B x B_

as a groupoid over the one point space, where we identify
CyXBxB_xCy—>Cy xCqyxBxB_, (¢,b,b_,c)—(c,c,b,b_).

4.3 Generalized double Bruhat cells as Poisson groupoids

We now give the 3rd isomorphic model of the special configuration Poisson groupoids
using generalized double Bruhat cells. For n > 1, recall the right action of G" on itself
given in (1.2). Let

F,=Gxg --xp G, (4.27)

the quotient of G" by B” ! x {¢} C G", and let 7_,, be the Poisson structure on F_,, that is
the (well-defined) projection of the Poisson structure (7 )" on G". For (g,,9s,....9,) €
G", denote its image in ﬁ'_n as lg;, ... ,gn];in. For any integers m,n > 1, we introduce

in §C.1 a Poisson structure 7,, , on F,, x F_,, which is the sum of the product Poisson
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structure (7,,, 7_,) with a certain mixed term. See Definition C.1. The Poisson structure

T n 18 T-invariant under the T-action on F,, x F_, given by

t . ([gl,gz, e 'gm]f«"m' [kl,kz, ceey kn]fin) = ([tgl,gz, [ ,gm];—m, [tkl,kz, ceey kn]?in). (4.28)

Introduce the sub-manifold

Gm,n ={(91.92/ - - 'gm]Fm'[kl'kZ" : "kn]T«"_n) 19192 G =Kiky o ky} C E{'m X ﬁ'—n'
(4.29)

Foru = (uy,...,u,,) € W"andv = (vq,...,v,) € W", let again BuB be the image of
(BuyB) x --- x (Bu,,B) in f’m, let B_VB_ C f’_n be the image of (B_v{B_) x --- x (B_v,B_)
inF

. and set

G" = G,y , N (BUB x B_VB_) C Gy, . (4.30)
It follows from the Bruhat decomposition of G that one has the disjoint union

Gn = ] e (4.31)
(W,v)eWm xwn

We prove in Corollary C.4 that G is a T-invariant Poisson sub-manifold of (f‘m X

mn
F_,, 7y, ), and that (4.31) is the decomposition of (G, ,,, 7., ,,) into its T-leaves. Gener-

alizing the case of
(Gl,llﬁl,l) = (G, nst)'

we call GV, for any u € W™ and v € W", a generalized double Bruhat cell. When m = n,

the Poisson manifold (F, x F_,, 7 as well as the generalized double Bruhat cells

)
nn
G™V for u,v € W", were introduced in [20, §1.4]. We also note that for any m,n, the
projections (F,, x F_,,, Tmn) = (F,,, 7y and (F,, x ﬁ'ﬁn,ﬁm,n) — (F_,,7_,) to the factors
are Poisson. It follows in particular that for any m > 1, the map

Gy Tmy) —> EiTn)s (91,9101 Gmlf 19192+ 9m) ¥ 191,910+ Iz, (4:32)
is a Poisson isomorphism.

Let now u = (u;,...,u,) € W", and consider the generalized double Bruhat cell

G"".Fixanyu = (ity,...,u,) € uT". AsB_uB_ = B_C, is a direct product decomposition

202 4900300 80 U0 3senb Aq 9€€/¥89/S€081/1Z/€Z0Z/3I01e/UlWI/W0d dno olwapede//:sdiy Wwoly papeojumoq



18064 J.H.Luetal

for any u € W and any @ € uT, one has the isomorphism
B_xCy—>B_uB_, (b_,cy, ¢y ..., cp)—Ib_c}, ¢, ..., C;Q]in. (4.33)
Recalling the definition of G%% Cy X B x B_ x Cy, one then has the isomorphism
Ta: G — GYY, (¢,b,b_,c) —> (lcy, ..., Cp_y, Cybly  Ib_Ch oo Chl ), (4.34)
where ¢ = (¢,...,Cp_1,Cp), € = (¢}, C,...,cp), and (c,b,b_, ) € GO,

Definition 4.10. [26] For each choice 1 € uT", define the groupoid G*" = O" such
that

jﬁ . gﬁ,ﬁ s Guu

is a groupoid isomorphism from the groupoid G%% = O in Proposition 4.8 to
GYY = O,

Using the parametrization J; : G%% — GY%, we can now define
u

Ey: GM"Y — Ty, (cy,....cqq, ¢l Ib_cy cp, . Cpli ) (4.35)
> ey, ... ¢y 1, 0yb, (e) 7l ()7 () gy,
where ((c,...,c,),b,b_,(c],....cp)) € guu,

Theorem 4.11. For each i € uT", the map E; is a T-equivariant Poisson embedding of

(GY"%, 7, ) into (I'y,, T,,) and gives a Poisson isomorphism
- -y ~
Eg: (G™, 7y ,) — (T ) 7,) C (Tgp, gp).

Consequently, with the groupoid structure defined as in Definition 4.10, (G""%, 7, ,,) =
(O%, ) is a Poisson groupoid, and Ej; is an isomorphism from the Poisson groupoid

. . -1y ~
(G, 7, ,) = (O, ) to the Poisson groupoid (™Y ), 7, ) = (O%, 7).

Proof. The fact that E, is a Poisson isomorphism onto (rawu), Ty,) is a special case of
Corollary C.7 by taking u = v and Ey, = E,, ;. That E, is a groupoid isomorphism follows
from the definition of the groupoid G**" = O" and Proposition 4.8. |
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Remark 4.12. We emphasize that the groupoid structure on G*'* over O" depends on
the choice of the representative u € uT™. If & = (&, ..., ,) € uT™ is another such choice,
and if ¢ € T is such that &, - - - @, = tU; - - - U, then E; = E5 or,, where r, : G** — G"" is

given by

rt([glr e lgn_llgn]'ﬁmf [kll LR 'kn—l'kn]ﬁ,n) = ([91, cee rgn_lrgnt]ﬁml [kll ey kn—llknt]f«",n)'

Thus, r; : G"" — G"" defines a groupoid isomorphism from the groupoid structure on
G%" defined by « to that defined by u. o

5 Configuration Symplectic Groupoids of Flags

In this section, we assume that G is connected and simply connected. Symplectic leaves
of (O x T, m, < 0),for any n > 1 and w € W", are determined in §D, where we also give
a complete description of the symplectic leaves of all the three series

(Fogx T, m,=0), (G

m+nl ﬁm,n)’ (Fn’ ﬁn)l mln Z 1’

of T-Poisson varieties. See §D for details. For any n > 1 and u € W", we show in
this section that all the units of the groupoid r@u™) — Ou gre contained in a single
symplectic leaf, denoted as AM™Y "), of (F(“'“fl),ﬁm), and that A®Y ™) is a Lie sub-

groupoid of (F(“"rl),ﬁm) = (O"Y, m,,), obtaining thus a symplectic groupoid
(A, 7)) = (0%, 1),

Using Theorem 4.11, we then show that every symplectic leaf of (G"", 7,, ,,) is symplectic

groupoid over (O%, 7).

5.1 The symplectic groupoid (A% D), Fop) = (O%, )

Assume that G is connected and simply connected. Let X*(T) be the character lattice
of T. For » € X*(T) and t € T, write t* for the value of A at t. Let &, C X*(T) be the
set of simple roots determined by the choice of B, and let {0, : @« € ®3} C X*(T) be the
corresponding set of fundamental weights. For u € W and t € T, we also set t* = 4~ 'tu
using any @ € uT.

Let now u = (u,,...,u,) € W" be arbitrary. Define

TY={teT:t% =1,Va € supp’(w)},
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where supp®(u) = {« € @ : w0, = w,, Vi € [1,nl}. Choose any u = (iy,...,u,) € uT?,
and let again C;, = Cy, x --- x Cy . Let u = uju,---u, € W. Using the isomorphism

Ty : G — T to write an element in T®% ) uniquely as

y=ley, ... chy,Cub, (C;L)*l, (c;lfl)*l, e, (c’l)*llim, (5.1)

where (cy,...,c,),(c},...,c,) € Cy, beB,b_eB_,andc,---c,_1c,b=b_cjc,---c

define the sub-variety A®Y ) of F@WU™) [y

/

o We

A®YD =) e 7O a5 in (5.1) 1 [blolb_ ¥ = e, [bl, € T}
Note that A®U™) contains all the units of the groupoid r@u™ — ou and that
T A D) = 08 C o b ) e GYU L blylb_TE = e, [bly € TV, (5.2)

Note that S% is a wide sub-groupoid of G&% = OU. It thus follows from Proposition 4.8
that A®¥™) is a wide sub-groupoid of T®¥™") = Ou,

Theorem 5.1. For any u € W", A®¥ ") is a symplectic leaf of (™" "), 7, ) and is a Lie
sub-groupoid of T™4™") = O, Consequently, (A®Y ™), 7, ) = (O%,7,) is a symplectic
groupoid.

Proof. Symplectic leaves of (I',7,,) for any n > 1 and any w € W" are described
in Theorem D.16, and the case of w = (u,u~!) € W2" is given in Example D.18. More
concretely, for y € T®¥™) in (5.1), let (Cr1r--1Can) € Gyt X oo % Cul—l and b,,...,b; €B
be such that

/N—1 / -1 __ /\—1
b(cy,) " =cp by, by(cy 1) =cCpioby 1, ..., by(c)) " = cCyuby.
-1
— — u
Theny =lcy,...,Cp_1/Cns Cpy1s-- -1 Con_1:Conbils,, and [byly = [bly . Let
W= (Uy,..., Uy, Uyt Y € WT,

We then have the alternative description of A®% ) ¢ T®U¥™) a5 consisting of all

— _ (wu
y=Iler, oo Cp1/Cpi Cpprro oo Con1: Cobyly, €T ,

202 4900300 80 U0 3senb Aq 9€€/¥89/S€081/1Z/€Z0Z/3I01e/UlWI/W0d dno olwapede//:sdiy Wwoly papeojumoq



Configuration Poisson Groupoids of Flags 18067

where (¢y,...,C,,Cpyq,-..,Coy) € Cyy by € Band b_ = ¢y,---C,Cpyq -+ Cyb; € B_ are
such that [b_l, € T and [b,]olb_l, = e. By Example D.18, A®¥ ") is the symplectic leaf
of (rwu™, 7T,,) passing through the point

def

— . . . .1 -1
[w,ull, = [@y,.... 0, unl,...,u1 Is,, erwu ),

1:"271

We already know that A®¥™) is a sub-groupoid of W% ) = OU. To show that
A®Y™) g 3 Lie sub-groupoid of T™¥™) = OY it remains to show that the source map
0, : r@u™) _, Ot restricts to a surjective submersion 6 := 0, cA@UTH . ou g
this end, let

Au~l)

zEu — g (AT c oY T

_ -1
Then ¥ ) is the symplectic leaf of 7,, =< 0 in O™ ) x T through the point

. . Py— Pyp— 71
[y, U, Uy U, €) € o8 T,
— . -1
By Example D.15, (1u H = pw, consisting of all ([cy, ..., Cyplp, 1) € oM™ ) « T, where
te T and (cy,...,Cyy,) € Cy, such that
C1Cy---Cyy €B.B and t*=Ic;,Cy, ..., Conlo

_ -1
We also know from Example D.15 that the projection P : ¥ (Wt hH Oéu’u ), (g, t) — q,is

a 2/sWPPWI_to.1 covering map, where supp(u) = ®,\supp®(u). Let

-1
p: Oéu,u ), oY, 91/ 1 GniGns1r- -1 Gonley, ¥ 1910 Gnlp, -
Since p is a submersion, one sees that ¢ =poPolJ,, : A®U™) . OU g 3 submersion. W

5.2 Symplectic leaves in GY"'" as symplectic groupoids

Let u € W" and consider the Poisson manifold (G*", 7, ,,). As (G"", 7, ) is a single
T-leaf, every symplectic leaf of (G"", 7, ,) passes through the point (a,0) € G"*" for

some u € uT". Let 1 € uT"?, and let S** be the symplectic leaf of (G“'“,nnln) through

(u,u). Using the parametrization J : Gul _, GWU jp (4.34), we write every g € G'"
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uniquely as
g=(cy,....cp_1,c;bls, b _C) oo icplz ). (5.3)

where ((cy,...,c,),b,b_,(c},...,cp)) € GuU Recall from (5.2) the wide sub-groupoid
Sl — O of the groupoid G&% = Y. Recall also from Theorem 4.11 the Poisson
isomorphism Ey : (G"", 7, ,,) — (F<“'“71),ﬁ2n). The following Theorem 5.2 is now a direct

consequence of Theorem 4.11 and Theorem 5.1.

Theorem 5.2. The symplectic leaf Sl of (G"Y, 7, ) through (0, 0) is given by
suua _ Eal(Aur“_l) = {ge G"asin (5.3): [blylb_1¥ =e, [b], € T"}.

Equip S%% with the structure of a Lie groupoid over O" via the isomorphism VA sua

SWU¥ Then (S"""‘,y"fn'n) = (0", m,,) is a symplectic groupoid.

A Mixed Product Poisson Structures

In §A.1, we recall from [19] the construction of mixed product Poisson structures using
Poisson Lie group actions. We then show in §A.2 that the Poisson varieties (C,,, 7,,) and

(B",7,) defined in §3.3 are all mixed product Poisson varieties.

A.1 Mixed product Poisson structures

The following definition was introduced in [19].

Definition A.1. Given two manifolds ¥; and Y,, by a mixed product Poisson structure
on the product manifold ¥; x ¥, we mean a Poisson bivector field = on Y; x Y, that
projects to well-defined Poisson structures on Y; and Y,. Given Y;, 1 < i < n, where
n > 2, a Poisson structure = on the product manifold ¥ = ¥; x --- x Y,, is said to
be a mixed product if the projection of 7 to ¥; x Y; is a well-defined mixed product

Poisson structure on Y; x Y; forany 1 <i <j < n, and in this case, we also call the pair

(Y; x--- x Y,,m) a mixed product Poisson manifold. ¢

Assume now that ((G, n;), (G*, m+)) is any pair of dual Poisson Lie groups, that
is, the Lie bialgebras (g, 89) and (g*, 89*) are dual to each other, where recall that 89 tg—
A%g and Sgr 1 9" — AZg* are respectively the linearizations of 7, and r. at the identity

elements of G and G*. Suppose that (X, 7,) and (¥, 7,) are two Poisson manifolds, with
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respective right and left Poisson actions
p: (X, my) x (G*,mpe) — (X,my) and A: (G,my) x (Y, 7,) — (Y, 7,) (A1)

by the Poisson Lie groups (G*,n.«) and (G, 7). Let p : g* — x'(X)and x: g - X1(Y) be
the corresponding Lie algebra homomorphism and Lie algebra anti-homomorphism (see
notation in §1.6). Then p and A are, respectively, right and left Lie bialgebra actions (see
[19, §2.5]). Define the bi-vector field

Ty X (o Ty = (T3, 0) + (0,7,) = D _(p(&]), 0) A (0, A(E)) (A.2)
i=1

on X x Y, where {§;},_,; ,, its dual basis for g*. Note that

..........

the definition of 7, x, ;) 7, only uses the Lie algebra actions p and .

Lemma-Definition A.2. [19, Proposition 4.2] For any pair (p, ) of Poisson Lie group
actions in (A.1), the bi-vector field n, x,,) 7, on X x Y is Poisson, and it is called the

mixed product of n, and m, associated to the pair (p, A).

Example A.3. Let (p,1) be a pair of Poisson Lie group actions as in (A.1). Equipping
G* x Y with the Poisson structure 7 = g« X(,., 1) Ty, Where pg. is the right action action

of G* on itself by right translation, one then has the left Poisson Lie group action
A (G, ) X (G XY, 1) — (G x Y, ), (a, (@,y) —> (ad',y), a,ad €G*,yeY.

Let X x g« (G* x Y) be the quotient of X x (G* x Y) by the right diagonal action of G*. The
Poisson structure m, x 7 on X x (G* x Y) then projects to a well-defined Poisson structure

on X X« (G* x Y), which we denote as 7’. On the other hand, one has the isomorphism
Vi Xxe(G'xY)— XxY, [x, (ay]+— (xa,y), xeX,aceG',yeY.
By an argument similar to that used in the proof of [18, Lemma A.1], one sees that
Vi (X X (G xY), 1) — (X XY, 7y X5 Ty)
is a Poisson map. o
Consider now the standard complex semi-simple Lie group (G, 7y,), and we keep

the notation set up in §3.1. Define the non-degenerate bilinear pairing (, ) ,_, between
b and b_ by

1

(X—+X0’ Y++YO)([17,[)): E(X—I y+)g+(XOI Yo)gl X €en_, XO, YOEhI y+ En' (A3)
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For a basis {x;} for b_ and dual basis {x'} for b under (, )(6_,p)» W€ choose (see §3.1)

)P — (ki1 <i < dimb) U{2E_, : a € AT}, (A.4)
Xmb —(p 1 <i<dimb) U(E, :a € AT). (A.5)

We now give three pairs of Poisson Lie groups to be used to form mixed Poisson

products.

Example A.4. With the non-degenerate pairing (, );_, between Lie algebras b_
of B_ and b of B given in (A.3), we have the 1st pair of dual Poisson Lie groups
((B_,mg), (B, —mg)). Under the same pairing (, ),_p), the Poisson Lie groups (B, )
and (B,m) are also dual to each other, where B’ is the manifold B_ with the
group structure opposite to that on B_. A third pair of dual Poisson Lie groups
is ((B_, —mg), (B, mg)), with the pairing between the Lie algebras b_ and b given by

—A, = (p_p)- Finally, we also have the pair of dual (direct product) Poisson Lie groups
(AlnA) = (B—Inst) X (nglﬂst)l (A*InA*) = (Bl _]Tst) X (Blnst)l

where the non-degenerate pairing between the Lie algebrasa =b_@®b_anda*=b&b

is the direct sum of the pairing (, ) _ ) With itself. o

Example A.5. Consider the maximal torus T of G with the zero Poisson structure as a
Poisson Lie group. By identifying the Lie algebra b of T with h* using the bilinear form
(\)gly, Tis also a dual Poisson Lie group of itself. Let (X, ,) be a T-Poisson manifold
with T-action o : T x X — X. The Poisson structure w, o<, 0 on X x T given in (1.13) is

then the mixed product Poisson structure defined using (T, 0) as a Poisson Lie group. ¢

A.2 The Poisson varieties (Cn, ) and (B",7y,) as mixed products

Consider now the complex semi-simple Poisson Lie group (G, ), and let the notation
be as in §3.1. Let Q be any closed coisotropic subgroup of (G, ny,), that is, Q is a closed
Lie subgroup of G which is also a coisotropic with respect to the Poisson structure ;.

For an integer n > 1, let
n

— ~
Fn,aszB"' xpG/Q=F,/Q,

and denoted by 7, , the Poisson structure on F, , that is the quotient of the Poisson
structure (ry)" on G". When n = 1, the quotient Poisson structure on G/Q will be

denoted as 7, /,. Note that when Q = {e} and when Q = B, we respectively have n,, , = 7,

202 4900300 80 U0 3senb Aq 9€€/¥89/S€081/1Z/€Z0Z/3I01e/UlWI/W0d dno olwapede//:sdiy Wwoly papeojumoq



Configuration Poisson Groupoids of Flags 18071

and 7, , = m,. In particular, the flag variety B := G/B has the Poisson structure
7y = 74/, and the decorated flag variety A = G/N has the Poisson structure 7 := 7.

Returning to the case of an arbitrary closed coisotropic Lie subgroup Q of
(G, mg), set

Q,=B"1%x(G/Q), n=>1.
One then has the isomorphism

®n,a : Fn,o - Qn' [gl"" 'gn—l'gn]?n — (gl~B""'gl "'gn—l-B'gl "'gn—lgn-o)'

Define the Poisson structure Ty, ON Q, by

Mo, = ®n,0 (”n,o)-

Our goal now is to express the Poisson manifold (Q,,, 7, ) as a mixed product of n —1
copies of (B, ;) with (G/Q,750)-

Let A/, be the left Poisson action of (G, 7y) on (G/Q, 74,) given by translation,

G/a
i.e,

hoja s (Gimg) X (G/Q, mg)0) —> (G/Q, 7g0), (9, 91.Q) —> gg,.Q.

Recall the bases {Xi};.i:hil b- of b_ and {Xi}?:h? b_
Mﬁc—l) € X?(B" 1) by (see notation in §1.6)

of bin (A4). For1 <j <k <n —1, define

dimb_
wi =700, 0, Ag(x), 0,1, 0)A(O, L.y 0, dg(xp), O, ., 0),
i=1 Jj® entry kth entry

and for 1 <j <n — 1, define /,L;n'a) € X2(Q,) by

dimb_
M}n,a) = Z 0, .. 0, dg/p(x), 0, ..., 0)A(O, ..., 0, Ag/n(x)).
i=1 jth entry

Proposition A.6. For any closed coisotropic subgroup Q of (G, 7y;), one has

n—1
—1
T, = (T, .o, T, nG/Q) + Z (u](r,lc ), 0) + Z u](-n'a). (A.6)
1<j<k<n—1 j=1

Proof. Note first that the standard r-matrix rg; on g given in (3.1) is given by

dim b_
re= >, X®x €g®g.

i=1
The case of Q = {e} follows from the proof of [19, Proposition 8.1] by setting, in the

notation of [19, Proposition 8.1], @, = B and r = ry. The case for arbitrary Q then
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follows from the following commutative diagram of Poisson manifolds

Onte n—1
Fnte)r Tnjep) —> B x G, 7g,)

| |

(Fn,o' nn,a) ? (in ngn)r
In,Q
where the 2nd vertical arrow is Idgn-1 X pg /o, With p;/, : G — G/Q the projection. |

For the special case of Q = B, let 7,, = ©,, ;(7,).

Corollary A.7. For any n > 1, the Poisson structure 7, on B" is given by

ﬁn:(nllnll"'lnl)—"_ Z M;Z)r (A.7)
1<j<k<n

where forl <j<k=<n, u;’,? € X2(B") is given by

dim b_
w =00, 0, Ag(xD), 0, ., YA, oo, O, Ag(x), O, ..., 0),
i=1 % entry kth entry

Remark A.8. By (A.6), T, 18 @ mixed product Poisson structure on Q,, in the sense of
Definition A.1. The Poisson structure Ty, O Q, = B" 1 x G/Q can also be written
as two fold mixed products: consider again the pair of dual Poisson Lie groups
(B_,mg), (B, —mg;)) from Example A.4. For 1 < k < n — 1, define the right Poisson action

pr of (B, —mg,) on BF by

Bt (BE, ) x (B, —mgy) —> (B, 7)),
((flle/ . rfk)r b) > (b_lflr b_1f21 s !b_lfk)r

and let A,,_ , be the left Poisson action of (B_, 7s) on (Q,,_x, 7, ) given by

)‘n—k,a : (B—'Trst) x (Qn—k' ”Qn_k) - (Qn—k' ﬂQn_k)’
b, Frroo Freke1,9.0) — (O_f1, o b_f_k_1. b_9.Q)).

It then follows from Proposition A.6 that

Ton = Tk X (Brin-ra) Ten i’
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See [19, Remark 6.10] for the general setting. In particular, setting 7, = 7, , for Q@ = I,

the Poisson structure 7, on B"~! x A then satisfies
j?n = ﬁk X(ﬁkr)‘nka) J?Tlfk’ 1 5 k S n— ].. (A.8)

<

B The Poisson Isomorphism J,,

B.1 The isomorphism Jy,
For n > 1, recall the Poisson action

)"n . (Glnst) X (Fnlﬂn) — (Fnlnn)l )\‘n(gl [glrng' "lgn]Fn) = [gglrgZI" . lgn]Fnr

which in particular makes (F,,, 7,,) into a T-Poisson manifold. By (1.13), one has the T-

extension (F, x T, m, >, 0) of (F,, 7). For notational simplicity, we set

dim b
My 0=, 00 0= (1,,00+ > (hy(R),0) A (0,h]) € X2(F, x T).

i=1

Recall that the open sub-manifold F? of F, is defined as
Fr=1{191:92:---/9nly, 1 9192 9n € B_),
and that we have the T-equivariant isomorphism J,, : I';, — F3 x T (see (3.14)) given by
J(91:92, -1 9n)s) = (91. 92/ - -+ Gnlp, . [9192 - - Gnlo),

where T acts on FJ x T diagonally. In this section we prove the following fact also stated

as Theorem 3.5.
Theorem B.1. Foranyn >1,J,:(T,, 7,) — (FoxT, r, > 0)is a Poisson isomorphism.

B.2 Some auxiliary lemmas

Consider the pair of dual Poisson Lie groups ((B_, ng,), (B, —7g)) from Example A.4. The
left Poisson action A, of (G, 7g) on (F,, w,) restricts to a left Poisson action of (B_, ;)
on (F,,m,), still denoted by 1,,. One also has the induced right Poisson action of (B, —m;)

on (F,, m,) by
op t (Fp, m,) X B, —1g) — (Fp, 1y,), (B.1)

(91:92: -1 9plg, D) —> [b_191'92""'9n]Fn'
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Recall that 1, also denotes the induced Lie algebra anti-homomorphism 4, : g — X!(F,),
and recall that for x € g, x® is the right invariant vector field on G with value x at the
identity element e. For every sub-manifold S of G that is invariant under left translation

by elements in B_, we have the Lie algebra anti-homomorphism
A bl — XN(S), Ay (0 =XF,.

We further simplify notation as follows.

Notation B.2. If (X, x,) is a Poisson manifold with a right Poisson action
p: (X, my) x (B, —mg) — (X,my), (x,b) —> xb, (B.2)

of the Poisson Lie group (B, —mg;), we set

dimb_
Tt =Ty X oy ) Tst = (T 0) + (0,71) = D (p(x"),0) A (0,xF) € X*(X x G),

i=1

Ty >,

dim b_
Ty Bty Ty = Ty X () Moy = (13, 0) + (0,7,) — D (p(x1),0) A (0,2, (x;)) € X2(X x Fy)
i=1
for n > 1, where {x'} and {x;} are given in (A.4). In the special case of (X, ) = (F,,, 7,,)
and p = p,,, for m > 1 as in (B.1), we further simplify the notation to set

dim b_
Ty = Ty 0) + (0, mg) + D (hpp(x),0) A (0, xF) € X2(F,, x G),

i=1

Ty D Mgy = Ty D,

dim b_
Ty B Ty = Ty 0, T = (T, 0) 4 (0,7) + D (A (x9),0) A (0,4, (x,)) € X2(Fy, X Fy).
i=1

<

For m,n > 1, consider the isomorphism ®,, , : F,, ., — F,, x F, given by

®m,n([gl' s 'gm+n]Fm+n) = ([glr s rgm]me [gl ImIm+1 Imr2r - gm+n]Fn' (B.3)

Consider also the isomorphism

O, Fy— F,_ 1 xG, 191,929z, —> 91,92/ -1 Gn—1)s,» 9192 Gn)- (B.4)

The following lemma follows directly from Remark A.8.

Lemma B.3. Form,n > 1, one has

O Tan) =T <, and 0, (7,) = m, | > Ty
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Assume that (X, ) is a Poisson manifold with a right Poisson action p of the

Poisson Lie group (B, —ng,) as in (B.2), and consider the isomorphism

I,: XxB_. — XxF))xT, (x,b_)— (x, b_B, [b_]y. (B.5)

Equip X xB_ and X x F{ with the Poisson structures m, <
Equip X x F{ with the action of T by

g and m, b1, 7y, respectively.

P 0

0, Tx(XxF?) — XxF?, (t (x,gB)—> (xt™!, tg.B), (B.6)

which preserves the Poisson structure m, <, 7;, so one has the T-extension Poisson

0
structure (7, >, ) <y Oon (X x Fy) x T.

Lemma B.4. Themap I, : (X x B_, 7y b1, ) — ((X ¥ F)) x T, (my >, Tp) >, 0) is a

Poisson isomorphism.
Proof. Consider the isomorphism
Iy: B_.—F)xT, b_+~—> (b_B,[b_l;), b_€B_.

By [18, Proposition A.7], Iy : (B_, mg) — (F{ x T, m; >< 0) is Poisson, where
dim b
m 0= (1,00 + > (0(hy),0) A (0,R]).

i=1

Note that I, = Id, x I,. Using the bases {x'} of b and {x;} of b_ in (A.4),

dim b
Ty b1, Ty = (7, 0) + (0, g) — 2 D (p(E,),0) A (0,ER) = > (p(hy),0) A (0, h]).
aeAt i=1

It follows that as bivector fields on X x F{ x T,

dim b
L(my b, Tgp) = (5, 0,0) + (0,7,,00 + > (0, A, (hy), 0) A (0, 0, hF)
i=1
dim b
~2 > (p(E,),0,0) A (0,1 (E_,),0) = > (p(h;),0,0) A (0,4 (Ry), BF).

aEAT i=1

202 4900300 80 U0 3senb Aq 9€€/¥89/S€081/1Z/€Z0Z/3I01e/UlWI/W0d dno olwapede//:sdiy Wwoly papeojumoq



18076 J.H.Luetal

On the other hand, by (B.6),

(T[X l><]p 7-[1) l><lo- 0 = (ijr 0/ 0) + (OIJTIIO) - 2 Z (p(Ea)!O/ 0) A (Ol)"l(Ea)!O)

aeAt
dim b dim b
= > (0(1),0,00 A (0,31 (h), 00+ > (=p(he), Ay (y), 0) A (0,0, hE).

i=1 i=1

Comparing terms, one sees that I, (7, <, 7g) = (4 ><1, 77) <, 0. u

B.3 Proof of Theorem B.1

Since J, =0,_;,0I, 00, and

_ . 06
(I, 7,) —> (F,_q xB_, m,_1>amg)

Iry_4
——— ((Fp_; XxF))x T, (m,_ >m;) >, 0)

6;11,1 XIdT

—— (FyxT, 7,0,
are Poisson maps, respectively, by Lemma B.3, Lemma B.4, and Lemma B.3 again. we see
that J, : (T, 7,) = (F3 x T, m,, >< 0) is Poisson.

This finishes the proof of Theorem B.1.

C Generalized Double Bruhat Cells

Generalizing the case of m = n from [20, §1.4], we introduce in this appendix the T-

Poisson manifold (G T n). for any pair of integers m,n > 1, and the generalized

mn’
double Bruhat cells G*V as its T-leaves, where (u,v) € W™ x W". The main results of this
appendix are presented in §C.2, where we establish, using any representative v € vI™
for each v € W", a piece-wise Poisson isomorphism from (G, ,, T ) 10 (Tppyyy) Tri)

and thus also to (Fp,,, x T, =« >< 0). These piece-wise Poisson isomorphisms

m+n
carry T-leaves to T-leaves, giving rise in particular to Poisson isomorphisms (see

Proposition C.8)
~ —1
Ryy: (GMY, 7 ) — (Oéu’v P X T, Ty B< 0) .

As a special case, we show in Corollary C.10 that each (f'n, 7,) is also piece-wise Poisson
isomorphic to (Fy,, x T, 7, > 0). Consequently every T-leaf of (1-"n, 7,) is also Poisson
isomorphic to (OY x T, m,,,, =< 0) for some w € W"*!. A similar statement for reduced

generalized double Bruhat cells is given in Proposition C.11.
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C.1 Generalized double Bruhat cells associated to conjugacy classes

Recall from §4.3 that for an integer n > 1, we have the quotient space

F,=Gxp ---x3 G

with the well-defined quotient Poisson structure 7_,, and that the image of

nl
(91,99, ---19,) € G*in F_, is denoted as [g;,... '9nls_,- Similar to the case of (F,, 7).
(F_,.7_,) is a T-Poisson manifold with the T-action given by
t N [911921 LI ,gn];:n = [tglrgZI oo lgn]fin- (Cl)
Recall from Example A.4 that we have the pair of dual Poisson Lie groups

(A,7,) = (B_, 1) x (BP,my), (A% 7mu) = (B, —7g) X (B, 7g)-

As the Poisson structure 7y, on G is multiplicative, one has the right and left Poisson

actions
Py, (ﬁn:”ﬁn) X (A%, mys) — (f‘n,nfn),
i A ) x Fopmy ) —> Fpomy )
of the Poisson Lie groups (4, 7;) and (A*, 7,«), respectively, given by

P91, s Gulg,, (b1, by)) = [b1_191r 92/-1 Gn1: Gnbols, (C.2)

X-n((b_llb_Z)r [91, ey gn]ﬁin) = [b_lglr 92/ ceey gn_ll gnb_21f7n1 (CS)

where g; € G for eachj € [1,n], and b;,b, € B, b_;,b_, € B_.

Definition C.1.  Forintegers m,n > 1, the Poisson structure 7,, ,, on F, xF_, is defined
to be the mixed product
T

mln:nmx by T

(Pmih—n) *—1"

Note that the Poisson structure 7,, ,, is invariant under the diagonal T-action on

FoxF.

m

Notation C.2. For a conjugacy class C in G, let
Grime =191, Gz, koo kpls )9y Gm(ky k) €CYCFp x F_y,
and foru= (uy,...,u,,) € W"andv=(vq,...,v,) € W" let
GV = Gy N ((BuB) x B_VB_)) C F,, xF_,,.

m,n,c
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We will refer to G- as the generalized double Bruhat cell associated to the conjugacy
class C and the sequences u and v. One thus has the decomposition of F,, x F_,, into the

disjoint union
F,xF ,=|]G, (C.4)
uw,v,c
where u € W™, v € W", and C runs over the set of all conjugacy classes in G.

Theorem C.3. (1) For any conjugacy class Cin G and anyu € W™, v € W", G¢" is a non-
empty connected smooth sub-manifold of ﬁ'm xf‘_n of dimension l(u)+I(v)+dim C+dim T;
(2) The decomposition (C.4) is that of F,, x F_,, into the T-leaves of T n for the

T-action given in (4.28).

Proof. The case when m = n is proved in [20, §1.5]. Let m and n be arbitrary, and

define Z,, C F,, ., and Z_, CF_ ) by

mcopies of G ncopies of B m copies of B_ n copies of ¢

Z,=Gxp-- XpgGxgBxp---xgB, Z_,=B_Xp ---Xpg B_xp Gxp ---xp G.

By the definition of the Poisson structure 7, , , 15, Zm X Z_y, is @ Poisson sub-manifold
of Fpin X F_miny Tminmn)- Define p 1 Fp o — Fpand p_ :F_, . — F_, by
V“([gl' 1 Im—19mr Im+1r -+ gm+n]17‘m+n) = [gll o Im-1 ImIm+1 'gm+n]?'m'

/L_(qu, o 9me Imegrr oo gm—s—n]?,(mﬂ”) = [gl I mIma1r Gmy2r oo gm+n]ﬁ7n-

By Example A.3, one sees that

b i=puly, XU_l, 0 oy X2 Ty ) —> Fpy x F_py, 7y )

is a T-equivariant Poisson isomorphism. The statement on the T-leaf decomposition
of (F,, x f:'_n,ffmyn) now follows from that for (f'm+n X f‘_(m+n),7"fm+n'm+n) given in
[20, Theorem 1.4]. |

Specializing to the case when C = {e} is the trivial conjugacy class, we have the
Poisson sub-manifold G,, ,, of (F,, x f’_n,ﬁmln), where, as we have already introduced

in §4.3,

n

Gm,n = Gm,n,{e} = {([91'92,. . .,gm]fam,[hl, hz,. . ’hn]f’n) 29192 Gp = h1h2 . hn}
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The restriction of 7, , to G,, ,, will still be denoted as 7, ,,. Again as we have done in
§4.3, forue W™ andve W",

vV _ AUV
G = Gy CGmn

is called a generalized double Bruhat cell. We now have the following Corollary C.4

which generalizes the corresponding statements in [9] on for double Bruhat cells in G.

Corollary C.4. (1) For any u € W™,v € W", the generalized double Bruhat cell G"V is a
non-empty connected sub-manifold of G,, ,, of dimension l(u) + (V) + dim T;
(2) the T-leaves of (G, .

G*V, whereu e W™ and v e W".

T ) are precisely the generalized double Bruhat cells

C.2 Piece-wise Poisson isomorphisms from (Gm n, Tmn) t0 (Cm4n, Tm+n)

Fix integers m,n > 1. Recall that the maximal torus T acts on both G, and I'

n m+n’
respectively via (4.28) and (1.4). Recall also that we have set
vl= (V,;l,...,vz_l,vl_l) if v=(vy,vy,...,v,) e W
Writing an arbitrary w € W™ as w = (u,v!) with u € W™ and v € W", by

Proposition 4.1, the T-leaf decomposition of (I, ,,, 7,,,,) can be re-written as

-1
Con = |_| revs,

uewm vewn

where recall that T@V ") = TN (B, v )B). For ve W", we set
GYin=GppnNFyxB_vB_) and Ty ., =T,..NE,xz®Bv B).
Here F,, x5 (Bv_!B) is the quotient of F,, x (Bv_!B) by the diagonal B-action
(gy,--- 'gm—llgm]f:mf 9)-b=(gy,... ,gm_l,gmb]gm, b_lg).

See Example 2.4 for the notation X x Y for manifolds X with a right B-action and Y
with a left B-action. Both Gy, ,, and I'}, |, are then unions of T-leaves in the respective

Poisson manifolds (G, ,,, 7., ) @and (T, 4, Ty y), @and one has the disjoint unions

G = |_| GV, and T, .= |_| Y

vewn vewn
For v = (vy,...,v,) € W" and any representative v = (v;,...,V,) € vI", recall
that
Cy=Cy x---xCy , where Cy, =Nv;NvN_ for 1 <j<n.
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Denoting an arbitrary element in C;, as ¢ = (¢, Cy, ..., C,) and recalling from (4.33) and

(4.25) the isomorphisms,

B xCy,—B_VB_, (b_,¢;,Cy,...,C)—1b ¢, ¢y, ..., én]?,nl

BxCy—> BV 'B, (b, ¢y, ..., ¢y, ) —> [bE, ety e
we have the well-defined map

Epyt Fp x (BLVB_) —> F,, x5 (Bv 'B), (C.5)

(91:-- G, Wb_E1,C00 . e )= g1, G €700 €5 01

Fmin®
Note that F,, x (B_vB_) is a Poisson sub-manifold of (F,, xF_,,, Tn), and F,, xp(Bv_!B)

is a Poisson sub-manifold of (l?'m+n, Tman)-

Theorem C .5. For any m > 0, any v W", and any v € vT™", the map

Epyt (Fp x (BLVB), Ty p) —> (Fyy x5 BV 'B), Ty )
is Poisson and restricts to a Poisson isomorphism from (G}, ,,, T, ) t0 (T}, 40 Ty )-
Theorem C.5 will be proved in §C.4. We first give some consequences of
Theorem C.5.

Remark C.6. The isomorphism E,, ; depends on the representative v of v, as indicated

in the notation. For a different choice ¥/, one has E,, ;s = r, o E,,, ;, for some t € T, where

e D — Togns 910 -0 Gmgn—1s gm+n]F’m+n > 191, - Imin—1/ gm+nt]f'm+n'

Form =n =1, G, , =G, and I', = B x B_ via [g9;,9,];, = (91.B,9:95). The
piece-wise isomorphisms from G to B x B_ have already been observed in [21, Remark

10]. See [21, Example 2] for concrete calculations for the case of G = SL(2, C). o

Forue W™, ve W" and v € vT", set now

Eyg def Epslguv: G*Y —> @y, (C.6)

Corollary C.7. The map E, ; gives a T-equivariant Poisson isomorphism

~ -1y - ~
Eyy: GV, Tppn) — T, 70 0) € T Tomg)-
Proof. We have already seen that E;, ; : G*Y — T
that E, (G*Y) c I™¥"). We show that E,

u,v

m+n 18 T-equivariant, and it is clear

is an isomorphism by writing down its
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inverse. By (4.23) and (4.25), one has the isomorphism BuB x C;, — B(u,v~!)B given by

. . . L1 -1 .1
(91 Im-19ml5, C1r -1 Cr1s €)= 1910 G111 G Cr 0 Cppqs -0 € ]an.
We thus have
-1. vl , P | . —1
(Eye) ™ - rev.s _, guv (G1r- 1 Gm-11Gmr Cn s Cpqr -0 €] ]ﬁmm
> (91, 1 Gm—1/9mlF,, [b_Cy, ) Cpy, GulE ),
where [g;, ..., 9m_1,9mlF, € BuB and (¢4, ..., €y, €,) € Cy are such that

.71 ._1 ._1
91" Im-19mCp Cp_q "€  =b_€B_. -

Recall now from §B that for any n > 1 we have the T-equivariant Poisson

isomorphism

Jn : (Fnlﬁ:n) —> (Frol X T, T, >4 0)! Jn([gl'gzl" . rgn]Fn) = ([91r92r-- . 'gn]Fn' [9192 o gn]o)

For m,n > 1, composing J,,,, with the piece-wise Poisson isomorphisms from
(Grunr Trn) 10 (T iy Tyyyy) in Theorem C.5, we obtain piece-wise Poisson isomorphism

from (G, s Ty ) t0 (Fryiyy X T, 4y <1 0), which we state in the next Proposition C.8.

Proposition C.8. Foranym > 1,v = (v{,...,v,) € W* and v = (v,...,V,) € vT",

one has the T-equivariant Poisson isomorphism K, , = Jy,,, © (Emyvlgy, ), explicitly

given as

Khn i G Fn) — (Fovn 0 (Fon x5 BY'B/B)) X T, Ty 3 0) (c.7)
([gl, oGz TGy G cn]in) — ([gl, G E N [b_]O),

where [gl,...,gmlfm c ?‘m, b_ € B_, and (¢, ..., ¢,) € C; are such that g,---g,, =

b_¢; ¢,

We have the following immediate consequence of Proposition C.8.

Corollary C.9. For any u € W™, one has the T-equivariant Poisson isomorphism

def _ 5 ~ -1
Kuo DKY lguv: (G, ) — (OS‘"’ X T, Ty 5 0) (C.8)

of single T-leaves, explicitly given by (C.7) by restricting [g;,...,gplz,, to BuB C ﬁ'm,

(v ;
where T acts on O, x T diagonally.
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18082 J.H.Luetal.
Note that for any n > 1, the map

(F'nlﬁ:n) — (Gnlllﬁ:n'])r [91192/ e /gn]f:'n > ([911921 e Ign]ﬁn/ 9192 . gn)l (Cg)

is a Poisson isomorphism due to the definition of the Poisson structure 7, ; on G, ;.
Applying Proposition C.8 to G, ,;, we also obtain piece-wise T-equivariant Poisson
isomorphisms from (F,, 7,) to (Fo,1 x T, 79,1 »< 0) which carry T-leaves to T-leaves.
To give the precise statement, recall from Proposition 3.1 that T-leaves of (F,,7,) are

precisely of the form
Fuv 2 (Bup) n uz (B_VB_), (C.10)
where u € W" and v € W, and that
Mg, - (ﬁn,ﬁn) —> (G, 7gy), 191.92/ -/ Gnls, —> 9192 n-
By Proposition C.8 and using the isomorphism in (C.9), we have the Poisson isomorphism
Tyt 15 (B_VB_) —> ((F,‘;+1 N (Fn Xp (BV_IB)/B)) X T, 7,y 5 0)

explicitly given by J,, ;(1gy, - -, Gnl5,) = (91, -1 Gns € g0 [D_]g), where gy, ..., 9,1z, €
,ugnl (B_vB_), and we write g,g,---9,, = b_¢ with unique b_ € B_ and ¢ € C;. Since
¢cteviNand[b_ly=Ig, - g,v 'y Jy,; is also given by
Ji(91, - 9nl5) = 0g1s - Gy Vg0 191 G0V o) (C.11)
Corollary C.10. Foranyv e W, v € vT and u € W", the restriction
def

~ -1
Ty = Tpplgur 1 Fov — (O ) X T, 7,1 > 0). (C.12)

is a T-equivariant Poisson isomorphism of T-leaves.

C.3 Reduced generalized double Bruhat cells

For m,n > 1, consider again the Poisson manifold (G,, ,, 7, ,), and let G,, ,,/T be the

quotient of G,, ,, by the right T-action
(91 Gm-1:9mlz,, By, By hy)s ) t=91, 1 Gm—1/ Gtz Ay, By Byl ).
(C.13)

Then one has the well-defined Poisson structure 7,, , on G, ,/T such that the projection
(G Tmn) = (G /T 7y, ) is Poisson. Note that T acts on (G, ,/T, 7, ,) by Poisson

isomorphisms via the action

t- (91,920 Iz o By By Bole ) = (891,90 Gz, s [Ehy g, Byl ). (C.14)
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Define the reduced generalized double Bruhat cell associated to u € W™ and v e W" as
L% = GYV/T.
One then has the disjoint union

Gmn/T= || I (C.15)

uewm,vewn

Proposition C.11. The decomposition in (C.15) is the T-leaf decomposition of
(Gpyn/T) 7y ) With Tespect to the T-action in (C.14). Furthermore, for any u € W™

andv e W7,

-1
@Y, Fp) —> (O, i), (C.16)

([gl,...,gm];,m, b &y, &y, ... cnlﬁ_n) T 19y, G E700 65, &0

Fm+n'

is a T-equivariant Poisson isomorphism of single T-leaves.

Proof. One checks by definitions that the map in (C.16) is a well-defined T-equivariant

-1
isomorphism. The fact that it is Poisson follows from Corollary C.9. Since Oéu’v )is a

single T-leaf of (Fp, ,,,, 7. p), LY is a single T-leaf of (G, ,,/T, Ty, ) |

Example C.12. Consider the special case when m = n = 1, so that G,; = G and
Ty; = mg. Let my be the left T-invariant Poisson structure on G/T such that the
projection (G, 7y) — (G/T,7g,) is Poisson. Then the T-leaves of (G/T,7,,) are precisely
the reduced double Bruhat cells L*V = G*V/T, where u,v € W and G*Y = BuBNB_VB_.
It follows from Proposition C.11 that for any representative v of v in N;(T) one has the

T-equivariant Poisson isomorphism

o~ _1 Lp—
LYY, 7y) — (OHYV D) 7,), gT —> g, v g,

C.4 Proof of Theorem C.5

We first prove two auxiliary lemmas.
Consider the quotient space

n

~ —
Fl, =B\F, =B\G xp--- x5 G,

where B acts on ?‘n as a subgroup of G via the action of G on ﬁ'n by (3.3), and denote by

7/, the Poisson structure on F/, that is the quotient Poisson structure of 7,, on F,,. Define
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similarly the quotient Poisson manifold (F_,,n’ ) of (F

_nT_y), Where

n

~ —_—
F ,=B\F ,=B\Gxp x5 G.

For every w € W", B\BwB is then a Poisson sub-manifold of (¥}, ;) and B_\B_wB_ a
Poisson sub-manifold of (F__,,7’,).
Fixnowv = (v,...,v,) € W* and any v = (Vy,...,V,) € vI™. By (4.33) and (4.25),

we have parametrizations
C; — B_\B_VB_: (Cy,Cy,...,Cp)—1C}, Cy, ..., Cn]FLn'
C, —> B\BV 'B: (¢;,¢ ¢ ) — [e1 et et
v . 11211y noroccr 2 1 F/n.
One thus has the isomorphism

Y5 BA\B_.VB_ —> B\BV 'B, (¢, ¢y, ..., Gplp 160 . &t 6

where (¢, &,, ..., ¢,) € C;.

Lemma C.13. The map
Yy (BL\B_VB_, 7’ ) — (B\BvV 'B, x},) (C.17)

is a Poisson isomorphism.

Proof. Definel,:B_\B_vVB_ — BvB/Bby
IV([(."I’ éz, ceey én]F/,n) = [él’ éz, ceey én]Fn’ (él’ éz, ceey én) (S CV'

By [26, Lemma 7.1], I, : (B_\B_vB_, n’,) — (BVB/B, —n,) is Poisson. One also has the

Poisson isomorphism
I, : (Fymy) —> Fpo—70), 191,920 9nls, —> 97" 950 97 s - (C.18)

Thus ¢, =I,, o I, is Poisson as stated. u

Recall from Example A.4 the pair ((B”®, 7,), (B, 7)) of dual Poisson Lie groups.

Note that one has the left Poisson action

Ay B®, my) x (B_\B_VB_, n',)) —> (B_\B_VB_, '), (C.19)

(b—l [gll '~-rgn711 gn]F’ )'—) [gll ”~rgn71r gnb,]F/_n, (C-zo)

—-n
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of the Poisson Lie group (B, ;). Let
Ap-1 0 (B, my) x (B\BvV !B, ) —> (B\Bv™'B, 1}, (C.21)

be the unique left Poisson action of (B’Y,7y) on (B\Bv™!B, 7;,) such that ¥, in (C.17)
becomes an isomorphism of Poisson manifolds with left Poisson actions by the Poisson
Lie group (B™, 7). Let p, be the right Poisson action of (B,7g) on itself by right
translation. Using the pair (o, ,A;-1) of respectively right and left Poisson actions of
the Poisson Lie groups (B, ry,) and (B, r,), one then has the mixed product Poisson

structure 7g; X(,, 5 ) Ty O B X (B\Bv~!B). Define the isomorphism

K,: Bv !B — B x (B\Bv 'B),

L1 -—1 .1 c1 .—1 .1
(be,  Cp_yreen €] T, = (b, 16 Cp i Cp 1),

where again (¢;,...,¢,_;,¢,) € C;.

Lemma C.14. Themap K, : (Bv''B, 7,,) - (Bx (B\BV'B), 75 X, ;. _,)7y) is a Poisson
P

isomorphism.

Proof. Note first that K = K,, 0.J; o I, with

—1 jn J{; Kn —1

Bv !B % BvB % (BvB/B) x B —% B x (B\Bv !B),
where I, : Bv "B — BvB,[g;,9,, ... ' Gnlz, — gt ... ,gz_l,gl_l]gn,
Jy: BVB — (BVB/B) x B, [¢y,...,&,_y,Cpbly, —> ([Ey,...,E, 1, Cplp s b),

where (¢4, ...,¢,_1,¢,) € Cy, and K,, : (BVvB/B) x B — B x (B\Bv~!B) is given by

. . . -1 L1 .1 .1

Ky(ey, o iCpyiCyly, D)= (b7, &7 ¢l ovnh € ]F’n)'

where again (¢,,...,¢&,_1,¢,) € Cy. It is clear that I, : (Bv !B, 7,) — (BVB, —7,)) is

Poisson. Denote 7w = X(py iy 1) n;,. To show K, (77,,) = 7, one needs to show
~ -1
Jy (1) = =Ky, (1)

as Poisson structures on (BvB/B) x B. The Poisson structure J;(7,) has been shown
in [26, Proposition 7.3] to be a mixed product. We now compute —K,!(7) using the
definition of n and then compare —K;l(n) with the formula for J,(7,) given in
[26, Proposition 7.3].
dim b_ . . idimb_ .
Let {x;};_; ~ be any basis of b_ with {x'},_; the dual basis of b under the

pairing between (, Y(o_,b) in (A.3). Recall that for x € b, x (resp. xf) denotes the left
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(resp. right) invariant vector field of B with value x at the identity element of B. By the
definition of 7, we have

dimb_
—K, () =K, [ (—mg =)+ DD ((3DE0) A0, Apmi(xy)

i=1
dim b_ .
= (s Tg) + D I3 g1 (7)), 0) A (0, (D), (C.22)

i=1
where I, : F,, — F;, is given in (C.18).
Consider now the Poisson Lie groups (B_, —my) and (B,my) that become dual

Poisson Lie groups under the pairing —(, ),_ ). Consider now the right Poisson action
(B_\B_vB_, -/ ) x (B_,—mg) —> (B_L\B_VB_, —7_,),
(91, - Gn1: Gnly D) 1910 - Gnas Gub 1w
of the Poisson Lie group (B_, —mg,), and let
py - (BVB/B, m,) x (B_, —mg) —> (BVB/B, m,)
be the unique right Poisson action of (B_, —m;) on (BvB/B, m,) such that

I :

v

(B_\B_vB_, —n',) — (Bv 'B/B, m,)

becomes an isomorphism of Poisson manifolds with right Poisson actions by the Poisson
Lie group (B_,—mg). Let A, be the left Poisson action of (B,my) on itself by left
translation. Using the pair (p;, A, ) of respectively right and left Poisson actions of
the Poisson Lie groups (B_, —rg;) and (B, 7g;), one then has the mixed product Poisson

structure 7, X, ;) s on (BVB/B) x B. By [26, Proposition 7.3],

dim b_
Ty () = T X (g Mot = (ns )+ D (%), 0) A (0, ()T,

i=1

One now checks from the definitions of the actions p, and ;-1 that

py(x) =I; (A1 (x)) € X' (BvB/B), Vxeb_.
Comparing with (C.22), one shows (C.22). This finishes the proof of Lemma C.14. |
Remark C.15. The proof of [26, Proposition 7.3] uses a quotient space of the Drinfeld

double of (G,7g), and one can also use similar arguments to prove Lemma C.14

directly. o
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Proof of Theorem C.5 Letp  ,:F_, — F_, be the projection map, and let
P,=1d; xp_,: F,xB_vB_ — F, x (B_\B_VB_).
By the definition of the Poisson structure 7,, ,,,
P,: (F,, x B_VB_, Ty, ) —> (F,, x (B_L\B_VB_), 7, X (5 TTon)
is Poisson, where A is given in (C.19), and §,, is the right Poisson action
P Fops To) X B, g) —> Fpy T)y (91,9201 Gl D) —> 191,92+ Gl -

Let P, = Id;, X ¢y : F,, x (B_\\B_VB_) — F,, x (Bv_'B/B). By Lemma C.13 and by the

definition of the Poisson action A1 in (C.21),
Py : (Fy x (BL\B_VB_), Ty, X5 - W) —> (Fy, x (BV 'B/B), 7, X (pmhy1) Tn)

is Poisson. On the other hand, by Lemma C.14 and Example A.3, the map

Q, : (F,, x (Bv''B/B), 7, X (g 1) Tn) — (Fp, xg BV B, 7y ),
.1 L1 .—1 .1 L1 .—1
(91,920 Gl LG o G CU e ) = 1900 G20 oo G v o Gy T T
is a Poisson isomorphism, where g,,...,9,, € G and (¢;,¢,,...,¢,;) € C;. As

Ene= Q, oP;,L oP,,

one concludes that E,, ; is Poisson as stated. This finishes the proof of Theorem C.5. W

D Symplectic Leaves of (OY x T, x,, 0<0)

In this appendix, we assume that G is connected and simply connected, and we describe
in Theorem D.12 the symplectic leaves of (OY x T,x, < 0) for arbitrary w € W™. We
then apply Theorem D.12 to obtain explicit descriptions of all the symplectic leaves in

the three series
FSXT, 1,<0), (G Tmpn)r  Fpo 7). mn=>1.

In particular, we describe all symplectic leaves in all generalized double Bruhat cells
G"V, generalizing the result of [15] for the case of u,v € W. This appendix is written in

a self-contained manner and can be read independently of the rest of the paper.

D.1 Notation

Assume that G is connected and simply connected. Recall from §3.1 that h denotes the
Lie algebra of the maximal torus T = BN B_ of G. Let X, (T) and X*(T) be, respectively,
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the co-character and the character lattices of T. Then
XM, C=h and X"(T)®,C=5p"

and we also regard X, (T) and X*(T) as respective subsets of i and h*. For » € X*(T) and
t € T, write t* € C* for the value of A on t. Recall that for w € W, we denote by wT the
set of all representative of w in the normalizer subgroup N (T) of T. One has the right

action

TxW—T, (t, w) — tV dzefv'lfltv'\/,

where w € wT for w € W, and (tW)* = t"* fort € T,w € W, and » € X*(T).

Let &, C X*(T) and {«” : @ € @y} C X, (T) be, respectively, the set of simple roots
and the set of simple co-roots determined by B. For « € ®, fix root vectors e, for « and
e_, for —a such that[e,,e_,] =a" € h. Let x, , : C — G be the one-parameter subgroups

given by
x,(z) = exp(ze,), x_,(z)=exp(ze_,), zeC.

For o € &, let s, € W be the corresponding simple reflection, and choose 5, € s,T by

Sy = X%, (=1)x_,(1)x,(—1). For future use, we also note that

x_,(2) =x,z 1s,0"(2)x,(z"), aedy zeC*. (D.1)
By [9, §1.4], for any reduced decomposition w = s, s,, - - - S,, of w, the element
—def _ _
w = Say Say 7 Sgy € N(T) (D.2)

represents w and is independent of the choice of the reduced decomposition.
Let {w, : @ € @4} be the set of fundamental weights. For a € @, let A“ e C[G] be

the corresponding principal minor on G, uniquely determined by
A" (9_9o94) = (o)™, 9g_€N_,goeT g, eN.
By [9, Proposition 2.3], when «,«’ € &, and « # o, one has
A (gx,(2)S,) = A (g), V geG,zeC. (D.3)

More generally, let u € W, let supp(u) be the set of all « € ®, such that s, appears in

some, equivalently every, reduced decomposition of u, and let

supp®(u) = {a € 9y : uw, = w,}.
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Recall that C; = NunNuN_. If u = s, s,, - S,, is a reduced decomposition of u, setting

u=_(s . ,sal), one then has the isomorphism [9, Proposition 2.11]

P
Iu: cl— Car Gu(21/ 2y, ..., 2) = X, (21)Sy, X4, (22)Sy, -+ X4 (215, (D.4)

It then follows from (D.3) that

A®(gc) = A™(cg) = A”(g), YV a €supp®(u), g€ G, ceCy (D.5)

We also note the open embedding [23, Proposition 2.7] (see also [9, Proposition 2.18])

my : (C*)! — N_ N BusB, My(€1,8g, ..., 6) =X_g (61)X_g, (65) - X_g, (8]). (D.6)

D.2 Description of symplectic leaves of (O x T,y s< 0)

Let w = (wy,...,w,) € W", and let w = (W,,...,Ww,) € WI" be arbitrary. Recall from
(4.22) that Cy, = Cy,, x -+ x Cy;, . By (4.24), one has the isomorphism

P Ciy —> O, (61,Cy,...,C) —>[C1,Cy,...,C (D.7)

TZ]Fn‘
Recall that Oy = {lgy,...,9gy)s, € OV : 91959, € B_B}. For (¢, ¢y, ..., ¢,) € Cy, then
(€1, Cp0- i Cplp, € O iff €1Cy---C, € B_B.

Recall also that for x € B_B, we write x = [X]_[X]O[X]+, where [x]_ € N_,[x], € T, and

[x], € N. One thus has the well-defined map

Tw: Of — T, 16,6y, ...,¢,),, V> 16165 4o, (D.8)

where (¢, ¢,,...,¢C,) € C;, and ¢,¢, - - - ¢, € B_B. Recall the T-action on OW C F,, in (1.3).
Lemma D.1. Forany w = (wy,...,w,) € W*and w = (Wy,...,W,) € WI"™, one has

@ @ =hh")"r4(q, heT qeOy, (D.9)

where w = wyw,---w, € W.

Proof. Let (¢y,...,C,) € Ci and write ¢; = x;w;, where x; e NN v'vl-N_v'vi_1 fori e [1,n].

For h € T, one then has

h . [él,éz, cee ’bn]Fn = [hél’ éz, cee 'én]Fn = [X/IWI’X/ZWZ’ cee ,X;-LV.V”]Fn,

where x| = hx,h™! and x; = h"1"Wi-1x,(h~1)W1Wi-1 for i € [2, n]. Now (D.9) follows from

(%}1y) (iptivg) -+ (Xphry) = By & - Gy ()™, n
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Remark D.2. The definition of the map r;, : Of' — T depends on the choice of w € wT™

as indicated in the notation. If w = (W, ..., w,,) € WT" is another choice, and if

. PN N n
WiWy W, =W W, - -W,tewl",

where t € T, then each (¢;,...,¢,) € Cy corresponds to a unique (¢y,...,C,) € Cg such
that[¢), ..., ¢,y Gl = [Cy, o) Cpyy ént/]}?n. It follows that
4 (Q) =ty (@), qeOY. (D.10)
o
Let again w = (w, wy,...,w,) € W"and w = w,w, ---w,, € W. Set
T ={a(@ )" :aeT}h (D.11)

Then dim TW = dim(Im(1 — w)), where 1 — w : h — h. For w € wT", let

Uy : OF xT — T/TY, (g, t) —> t_ztw(q).TW. (D.12)
Recall that [(w) = l(wy) + L(wy) + - - - + L(wy,).
Proposition D.3. For any w € W" and w € wT", symplectic leaves of (OF x T, x,, 0« 0)

are precisely all the connected components of the level sets of the map u,. In particular,

all symplectic leaves of (OY x T, m,, »< 0) have dimension I(w) + dim(Im(1 — w)).

Proof. As pu,; is a surjective submersion, all of its level sets are smooth and have
dimension equal to [(w) + dim(Im(1 — w)). By Remark D.2, the collection of level sets of
the map uy, is independent of the choice of the representative w € wT™. We may thus
choose W = (w,..., w,) € wI™.

For notational simplicity, we set ¥ = 7, =< 0, and let
. w _ 42
nw: OF xT — T, u(g,t) =t “1(q).
For (q,t) € OF x T, let
T[é't) : Tqu,t)(o‘e,v xT) — T(q,t)(o‘elv x T), (n&,t)(ﬂl)' /32) =7(q,t)(B1,B2),

where 8,8, € T(, ,

of T at u(qg,t) € T with h = Lie(T). Note that the Lie algebra of TW is Im(1 —w) C h. As u

>((’)g" x T), and we use translation in T to identify the tangent space

is a surjective submersion, it is enough to show that for every (q,t) € Of x T,

Im (nat)) — 17 Im(1 — w)), (D.13)
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where pu, : T(q,t)(O‘e"’ xT) = TyqnT = p is the differential of u at (g, t). Recall that
O¥ x T is a single T-leaf of 7, and that by [18, Proposition 2.24], the co-rank of n in
O¥ x T is equal to the co-dimension of T% in T. Thus the two vector spaces on the two
sides of (D.13) have the same dimension, and it is enough to show that Im (nf‘;’t)) C
pytIm(1 — w)).

For x € X*(T), denote by * the regular function on O}’ x T defined by

1X(q,t) = (u(g, )% =t rm(q)”.

For any regular function f on OF x T that is a weight vector with weight x; € X*(T) for
the diagonal action of T on OF x T, one has by [18, Corollary 2.15] and the definition
7 that

{/J“er}n = (X — WX, Xf)/‘LXfl (D.14)

where {, }, is the Poisson bracket on the coordinate ring of O} x T defined by =. For
x € b* let ¥ be the left invariant 1-form on T with value x at the identity element.
By (D.14),

7w (0) = o (x* — wx*) e X1 O¥ x T),

where o : h — X1(OY x T) is the Lie algebra homomorphism defined by the diagonal T-
action on OY x T, and x* € b is such that x'(x*) = (x, x) for x’ € h*. Note that for x € b*,
X|m@-w) = 0 if and only if x = wx. Now for x € h* with x = wx and 8 € TEkq,t)(Ow x T),

(1. (wlo B 1)) = = (B, 7oy " () = =B, o (x* —wx*)) = .

This shows that Im (T[(ﬁ;,t)) C u;'@m(1 — w)) and thus (D.13). ]

For w = (W, Wy,...,w,) € WI"™ and for a € T, we thus need to determine the

connected components of the level set
W def= - 1(@a TW) = {(q, 1) € OF x T: t 214(q) € aT"). (D.15)

To this end, let supp(w) = |J}-; supp(w;), and let

n
supp’(w) = ®\supp(w) = ﬂ supp’(w;) = {a € @ : w;w, = w,, Vi€ [1,nl}.

i=1

Introduce the sub-torus

T ={teT:t% =1, Yo € supp®(w)} (D.16)
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of T. Note that T" ¢ TW and that dim(TW) = |supp(w)|. Let

Sw: OV X T — T/TV : (q,t) —> t TY, (D.17)

w
and note that §,, has the T-equivariance
Sw(h-(q,t) =hdy(q,t), heT, (qt) Oy xT. (D.18)

Let t; € T be such that w,w, ---w,, = W, W, --- W, t; € wT.

Lemma D.4. For any w = (W, Wy,...,W,) € WI" and a € T, the restriction of the map
82, OV x T —> T/T", (q,t) —> t2. TV,

to ¥ C OV x T is a constant map: one has t? € a~'t;, T for all (g, t) € =W.

Proof. By (D.5), tw(q) € T for all q € OF, so by Remark D.2,
74 (Q) =ty T(@) €t TV, VqeOY. (D.19)

S -2 17 2 —1;
It follows that for every (q,t) € X', one has t7* € at; T, and thus t* € a™ "ty T". |

Remark D.5. By (D.5), A% (W, W, ---w,) =1 for every a € supp®(w). Thus,
A% (W Wy - W) = A (t;), Va € supp’(w).
Lemma D.4 is then equivalent to saying for every (g, t) € EZ" one has

()2 = @« A% (W, W, - W,), Ya e supp®(w). (D.20)

For a € T, define a level set of 8, in =¥ to be any non-empty level set of the map
Swlsw : =o' —> T/T™.

By (D.20), §,, has at most 2/S"PP° W)l Jevel sets in =¥, and every connected component of

>W is contained in one such level set. Consider the order 2/5"PP° W) suh-group

72

supp®(w) —

{a¥(£]) : a € supp®(w)}

of T® = {t € T : t* = e}. Note that for each a € T, TV is T -invariant for the

supp?®(w)
diagonal T-action on O} x T.

Lemma D.6. For any a € T, there are precisely 2/5"PP°W)l level sets of §,, in =¥, each

72

pair mutually isomorphic by the action of a unique element in SuppO(W)*
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7@

Proof. By the T-equivariance of §,, : Oy xT — T/ TW in (D.18), the group Ty ooy, aCtS
freely and transitively on the collection of all level sets of §,, in =%. |
Take now the special representative W = (W, Wy, ..., w,) € wI™, and let

SW={(qt)eOY xT: t 2ty e TV, te TV} C TV, (D.21)

Pick any g, € OY. Then 7(q,) € T by (D.5). Pick any t, € TW such that t2 = 1(qp)-
Then (gq, ty) € =W, showing that % # @. Thus, =¥ is a level set of §,, in =Y.

Theorem D.7. For any w € W", the sub-variety =W of O¥ x T is connected.

Theorem D.7 will be proved in §D.4. In the rest of §D.2, we use Theorem D.7 to

describe all the symplectic leaves of (OF x T, n,, < 0) for every w € W".

Theorem D.8. For any W € wT" and any a € T, the 2/WPP°Wl Jeyel sets of §,, in =¥
are precisely all the connected components of f),‘;" and are thus also all the symplectic

leaves of (OW x T, , > 0) contained in ¥,

Proof. Consider first when W = W. The level sets of &, in =¥, being isomorphic to
W C f)ew by Lemma D.6, are connected by Theorem D.7, and since they are both open
and closed, they are all the connected components of few For any a € T, choose any
h € T such that k=2 = a. Then h- ¥ = £¥. By the T-equivariance of §,, in (D.18), the
level sets of §,, in ©¥ are in bijection with the level sets of §,, in =¥ by the action of
h and are thus all the connected components of S¥. For an arbitrary w € wT", since
{EZ" taeT}= {f)aW : a € T} by Remark D.2, the level sets of §, in f)“;" are also all the
connected components of =1V,

By Proposition D.3, the level sets of §,, in i(‘;" are precisely all the symplectic

leaves of (OY x T, x,, > 0) contained in =% n
We have the following immediate consequence of Theorem D.8.

Corollary D.9. Let w € W" and w € wT". The symplectic leaf of (OY x T,x, < 0)
through any (q,, t;) € OF x T consists precisely of all (g, t) € OF x T satisfying
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In view of Corollary D.9, for w € W™ and w € wT", it is natural to consider

the map
gy X 8 1 OV X T — T/TY x T/T", (q,t) —> (t 214(q). TV, t TV). (D.22)

Let XW = (Mg X 8)(O¥ x T) C T/TY x T/TY be the image. Symplectic leaves of (OF x

T, m,, > 0) are then precisely all the level sets of the now surjective map
[hig X 8y @ OF x T — XV,
To characterize XW, note that Wy X 8y 18 T-equivariant, where T acts on T/T" x T/ ™ by
h-@T% a TV = (h 2%aT% ha' TV), a,a €T.
Note that T has the same the stabilizer subgroup every point in T/T% x T/TY, which is
StabW" ={heT: heT",h>ecT"}CT. (D.23)

Letp, : T/T" x T/TW — T/T" be the projection to the 1st factor, and note that p; is
T-equivariant, where T acts on T/T" by h- (a.TV) = h~2a T" for h,a € T. Recall again
t.:

w*

that t; € T is such that w,w, - - - w, = w,w,---w,

Theorem D.10. For any w € W" and w € wT", one has
XV = {((aT”,a TV e T/T” x T/T" : a(@)? e t;, TV} (D.24)

Moreover, XV is a single T-orbit in T/T% x T/T" and is thus smooth and isomorphic to

T/Stab". The subgroup Téi)pp%w)

gives a covering map p; : XW — T/T" whose fibers are orbits of

of T acts freely on XW, and the restriction of p; to xW
(2) : W

Tsupp"(w) in X%W.

Proof. Ifa,a € T are such that (a. TV, a’ TW) € XV, it follows from (D.22) that a(a’)?

T TW. Conversely, suppose that a,a’ € T are such that a(a’)? € Lo TW. Let x € TV be

such that a(a’)? = tyx?. Let /T, be any element in T such that thz = t,. Then

@T%,a ™) =h-(eT", ,/tw‘;lv“"’) e XV,

where h = a/(\/t;)"'x~! € T. Thus, XV is given as in (D.24).
As T acts transitively on the set of all symplectic leaves of (OF' x T, x,, 0« 0),
the subset XW of T/TW x T/T" is a single T-orbit and is thus also smooth. One checks

directly from the definitions that the stabilizer subgroup of T at every point in XW is
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Stab". The map p; : XW — T/TW, being is T-equivariant, is thus surjective. For any
fixed a.T" € T/T"Y, one has

pil@T") ={@T" aT") : a €T, (@T")* =a 't;.T"},
in XW, |

which is precisely an orbit of Téi)ppo W)

Corollary D.11. For any w € W" and w € wT", the map uy x 8y : O x T — XW
is a surjective submersion whose level sets are precisely all the symplectic leaves of
(OF x T, m, ><0).

Proof. As p; o (g X 8y) : OW x T — T/T" is a submersion, and as p; : XW — T/T" is

a covering map, iy, X 8y : OF x T — X% is also a submersion. |

For w e wT", let again ,/t; be any element in T such that (\/m)2 =t and set
sW L g eV xT: t720,(q) e TV, te /iy T, (D.25)
which is a level set of 8, in =¥ and thus a symplectic leaf of (O¥ x T, ,, >« 0). Note that
W=/t =W (D.26)

We now have the following alternative reformulation of Theorem D.8.

Theorem D.12. For any w € W" and w € wT™, symplectic leaves of (OF x T, m,, 0 0)

are precisely all the sub-varieties of OF’ x T of the form
h-SW={(qt) eO¥ xT: t2t,(q) € h 2TV, t € h/t5, T"),

where h € T. For hy,h, € T, h; - W = h, - £V if and only if h] 'h, € Stab" given in (D.23).

Remark D.13. Note that for any symplectic leaf ¥ of (O} x T, 7, o< 0) and for any
h e T, h-X = X if and only if h € Stab". For this reason, we call Stab" is the leaf
stabilizer of T in (OF x T,y 0 0). ©

We have already seen in Proposition D.3 that every symplectic leaf of (OF x
T, m, > 0) has dimension equal to [((w) +dim(Im(1 —w)) = [(w) +dim(T"). We now show
that TV is a 2/SWPPWl_t0-1 cover of OW x T™. To this end, let T act on O x T by

ho(q,t)=(qht), heT, (qt)ecO" xT.
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Consider T = {a¥(£1) : @ € suppw)} = {h € TW : h? = e}, a group of

supp(w)
order 2/SWPPMW)I Tt follows from the definitions that % is invariant under the action
(2)
of TSupp(w) '

Proposition D.14. For any w € wT", the map
W — O x T, (@, 1) — (g, t 1(Q),

is a covering map whose fibers are the orbits of Télzl)pp(w) in TW,
Proof. Let (q,t) € OW x TW. Writing t € /T, TV as t = /Ty x for x € TV, then
t=21,(q) = t if and only if x* = (¢)"ltgz(q). By (D.5), tr(q) € TW. The equation

x? = (t')"1(q), regarded as one in T%, then has exactly 2/5"PPW)! solutions, consisting

of a single T;lzl)pp(w) coset in TW. |
Example D.15. Consider the special case when w = (wy,...,w,) € W" is such that
W = w;w,---w, =e € W. Then T = {e}. Assume also that w = (W,...,Ww,) € wT"

satisfies w w,---Ww, = e € G. Then element t; € T given by e = w, --- W, t; lies in

TW, and by (D.19) the image of 7 : OF — T also lies in TW. Thus, the symplectic leaf of
(O x T, 7y, > 0) through the point ([wy, ..., w, ], ,e) € O x T is given by

W ={(qt) e OY x TV : t? = 15(q)).

By Proposition D.14, the projection W — OW,(q,t) — q, is a 2/S"PPW)l_to-1 covering

map. o
Recall that T, = {lg, 92/, 9nls, 1 9192 - 9p € B_}, with the T-action

t-191.92: -1 Gnls, =891, 92, ... Gulz, -

By Proposition 4.1, T-leaves of (T',,, 7,,) are precisely all the I''s as w runs over W",

where
' = (BWB) N T,,.

In the remainder of §D.2, we determine symplectic leaves in (I'%, 7,,) for every w € W",
which is enough for the discussion in §5 on configuration symplectic groupoids. In
fact only the cases of w = (u,u™!) for u € W™ are needed in §5. Symplectic leaves

in (G, s 7y, ) and (F,,7,) for all integers m, n > 1 are determined in §D.5 and §D.6.
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Let w = (wy,...,w,) € W" and choose any w = (W,,...,Ww,) € wI". With an

arbitrary y € ' uniquely written as (see (4.23))
y=Iley,....ch_1.cpbl;,,  where (cy,...,¢,) €Cy, beB, ¢---c,_1c,beB_, (D.27)
and withb_=c¢;---c,_,c,b € B_, define
Bi: TW — T/TY x T/TV, y > (Iblolb_1o.T", [b_1,.T"). (D.28)
Let ./t € T be as in Theorem D.12, and let
AV ={y eTW: blplb_ly € TV, [b_lo € tu@ TV} = 85" (e.TV, /4. T"). (D.29)
Theorem D.16. Let w € W™ and w € wT™.
(1) Symplectic leaves of (', 7,)) are precisely all the non-empty level sets of the
map B, and all have dimension equal to [(w) + dim(Im(1 — w)).

(2) Alternatively, symplectic leaves of (', ;) are all the sub-varieties of I''V of

the form
he AW ={y e TV : [blylb_l, € K2TY, [b_l, € h/ts TV},
where h € T and y € ' is written as in (D.27).
Proof. Under the Poisson isomorphism J, : ', 7,)) — (OF x T, 7, < 0) in (3.14),
one has
Jo(y) = ey, cpyiCulp,, b 1o),

where y is as in (D.27). Thus,

(g % 8) (T, (1)) = (blg[b_1) 1 T, [b_15.T™), (D.30)

and Jn(AW) = ¥W. Theorem D.16 now follows from Corollary D.9 and Theorem D.12. M

Remark D.17. By (D.30) and Theorem D.10, the image of 8 : 'Y — T/T" x T/TW is
YW= {(@T"ad T eT/T” x T/T" : a~'(a)? e t;, TV},

and symplectic leaves of (I'V,7,) are precisely all the level sets of the surjective

submersion
By : IV — YV,
Moreover, B, is T-equivariant, where T acts on T/T" x T/ T by

h-@T%, a. TV = (h*a. TV, ha' TV), a,d €T,
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and YW c T/T" x T/TW is a single T-orbit with Stab" in (D.23) as the stabilizer

subgroup. o

Example D.18. Consider the special case when w = (u,u’!) € W2, where u =
(Uuy,...,u,) € W* and u™! = (u,jl,...,ul_l). Choose any u = (ug,...,u,) € uT™, so
we have the point

-1 def |. . .1 .1
[wuls, = [y, 0y Uy ..., Uy ]

(uul
Fon el

1?2n
which is in fact independent of the choice of the representative 1 for u. Let

. . . ._1 .71 zn
W= Uy, ..., Uy, Uy ..., Uy ) EWT",

By Theorem D.16 and by Example D.15, the symplectic leaf of (F(“’ufl),ﬁm) through

[u,u™'l, is AW in (D.29), ie. the sub-variety of r@uw™ consisting of all y =

(€1, .../ Con_1,CoyD5,, , Where (cy, ..., Cop_1,Cyp) € Cyy, and b € B such that
€1+ Cyp1Copb=b_eB_ and [blylb_ly=e, [b_], € T"
This example is used in §5.1. o

D.3 Bott-Samelson coordinates and Lusztig toric charts on OW

To prepare for the proof of Theorem D.7 in §D.4, we recall in this section some
toric charts on generalized Schubert cells which are of interests of their own (see
Remark D.23).

Consider again an arbitrary w = (wy,wy,...,w,) € W". For each i € [1,n],
choose a reduced word w; of w; and regard w; as in W!"), One then has the

concatenation
~ ’
W= (Wy, Wy, ..., W) = (Sg,s Sy +- san,) e W™, (D.31)

where n’ = l(w) = l(w;) + l(wy) + -+ + l(w,,), and aj € &, for each j € [1,n/]. Using
the parametrization of OW by Ci = Cg, x --- x Gy in (D.7) and the parametrization

Iw, Cclwd Cy, in (D.4) for each i € [1,n], one obtains the isomorphism

- cv — oV, Q5 (21,29, Zg) = 9w, (21,1 21), oo G, (2, 100 Z0)]E
(D.32)

where [; = l(w;) + - --l(w;) for i € [1,n] and n’ = [,. Following [6], we call g : cv - oW
the Bott-Samelson parametrization of OV defined by w, and the resulting coordinates
(21,25, ...,2,) on OV the Bott-Samelson coordinates on O™ defined by w.

We now use W to define an open toric chart on O%.
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Lemma D.19. For any w = (wy,...,w,) € W", the map
Sw: (N_NBw;B) x --- x (N_NBw,B) — O%, (my,...,my,) > [my, ...,m,l. (D.33)

induces a biregular isomorphism between (N~ NBu;B) x - - - x (N_NBw,B) and the Zariski

open subset (O%), of O given by

(OW)O = {[Cl,Cz, e ’Cn]Fn . Ci S CWi'

c,---C;€B B,V ie[l,n]}.

Proof. Let(m,,...,m,) e (N_NBw;B) x--- x (N_NBw,B), and let c; € Cw, and b; € B
for i € [1,n] be defined by

ml =Clb1, blmz :Csz, “eey bn_lmn =Cnbn.
Then ¢y (my,...,my) =lcy, €5, ..., Cyly, by definition. As ¢; ---¢; = m, - -~mibi_1 € BB
foreachi € [1,n], one has ¢, (m4,..., m,) € (O%),. Furthermore, for any (c;,...,c,) € Cy
such that [cy, ..., cn]Fn € (OY)y,let m; e N_, i € [1,n], be given by
m; =g, mmy=Ilccl., ..., mm,---m,=Icc,---c,l_.

Then (m,,..., m,) is the unique element in (N_ N Bw;B) x --- x (N_ N Bw,,B) such that
Sw(my,my, ..., m,) = [y, ¢y, ..., ¢yl . Thus g, induces the biregular isomorphism as
described. |

Consider now the concatenation w in (D.31). Combining ¢, in (D.33) with the
open embeddings My ((CX)Z(WL') — N_NBw;B in (D.6) for i € [1, n], one obtains the open

embedding oy, : (C*)" — OW given by
ow(€1, 60, .. &) = [le (Slr--~"911)'--wmwn(sln,lﬂv--'Sn/)]Fn‘ (D.34)

We call o : " — OY¥ the Lusztig toric chart on OV defined by W.

We now solve the inverse parameter problem for the open embedding oy :
((CX)”/ — OY. More specifically, for each j € [1,n'], we will express ¢;, regarded as a
rational function on OW through (D.34), as a monomial of certain regular functions on
OW. To this end, using the Bott-Samelson parametrization qg : C" - OV in (D.32),

define regular functions ¢g ; on O% by
b5, Q7 (21,25, .. Zy)) = A Xy, (21)84, Xy, (22)S,, - -Xaj(zj)Eaj), jell,nl.  (D.35)

Set OF o =1{q€ O™ : ¢, (@b 2(@ -~ g (@ # O} C OW.
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Lemma D.20. One has U‘TV(((CX)"/) = Od‘?:méo‘ Moreover, for ¢ = (g1,...,&,) € ((Cx)"/,
o = (dions - 0a1855) Gaen,  jeln], (D.36)

where forj e [1,n'land i e [1,j — 1],

0, if aie{ai+1,...,aj_1},
Tij = 1 —o;(), if o ¢ {01} o #F
—1, if ai¢{(xi+1,...,0{j71}, (xlzolj

Proof. For notational simplicity, we set ¢; = ¢ ; forj € [1,n'].
Consider the generalized Schubert cell O C F,, defined by W € W™ . As each w;,

fori e [1,n], is a reduced word of w;, we have the isomorphism m : OW - OW given by

m([gl,---,gn/lpn,) =919 91 9 - Gy ey

where 9g;j € BsajB forjell,n]l. Lete = (6,...,&y) € ((Cx)n/ and z = (z;,...,2,) € " be
such that o (¢) = g (2), that is,

[x_o, (e1), e Xy, (en,)]Fn, = [x4,(21)Sg, s -+ -4 Xy, (zn,)Ean,]Fn
Letj € [1,n]. Then [x_, (&), ...,X?aj(sj)]Fj = [x,,(Z1)S4, s -1 X, (z S, ] and thus
X_g (87) 'Xfaj(sj)tjnj = x,,(2))5,, ...Xaj(zj)Eaj (D.37)
for some unique ¢; € T and n; € N. It follows that
bQm@) =17 (D.38)

This shows in particular that og(¢) € (’)¢ £0° Comparing (D.37) for j and j — 1, one then

has X o (eptin; =t; \n; X, (28, By (D.1), one has

i—1%g; (z)s € Bs, B.

Xy, (8]?1)§%,ocjv G (8; tn; =t;_in;
It follows that ozjv (ep)t; = t;-ijl, and thus by (D.38),

Sa. W

£i01(qw(2) = (] (e)t)™ = ¢, 7.
Writing s, @, = D ey (Cmom Y)w,, one then has

de’j(q‘Tv(Z)) = H (ta)ul)(sa ot O vy H (twal)(wa —aj,a )

aedg aedg
If o ¢ {og,..., @}, then t;f)j‘l = A% (X, (2))Sy, " Xy, (271)Sy ) = 1 by (D.3). If

a € {a,...,@;_,}, then tj‘."fl = ¢, (qx(2)), where j, = max{i € [1,j — 1] : @ = o).
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With rijr---:Tj—1,; as described, one thus has

1 , - -
& = m(%(Uw(g)))rld(flsz(aw(g))) 2. (¢j_1(0‘7v(8))) =,

Furthermore, given g = g (2) € (9;’;‘% 4o, ODE Sees by induction on j that there exist unique
& € C* and unique tj € T and n; € N for j € [1,n'] such that (D.37) holds. Thus, og(¢) =
g (2). This shows that o5 ((C*)") = (9;’)“’7\’#0. This finishes the proof of Lemma D.20. |

Remark D.21. For u € W let N, = NNuN_u ! so that C; = N,u. For w =

(wy, Wy, ..., w,) € W", one then has the isomorphism

Ny, X Ny, x - x Ny —> O, (91,92, Gp) > (91 W1, oWy, ..., gy Wplp . (D.39)

wy wa

Recall also from [9] that one has generalized minors
D, v, (9) = A“ (@G, g€,

where u,v € W and @ € ®,. Using the parametrization of O% in (D.39), one can also

express the functions ¢g ; € C[O"] as follows: fori € [1,n] and j € [[;_; + 1,1;],

b7, (91W1, G2 Wy, ... G Wy p,) = Aoy, S1;_y41Sj00; (g, Wy -+ Gi_1 Wi 190,

where we have set s; = s, for k € [1,n]. In the special case whenn =1sow =w € W
and W = (S, ,S,,) is a reduced word for w, we can parametrize O = BwB/B C G/B
by N, - O",g — gw B, and (D.36) can be rewritten as
—a(aY
Ha#aj Awu,salwsajwa(g) %) .
& = ., Jjell,ll, geN,,. (D.40)

J
Awl)tjrsl)tl "'sajwaj (g)Awaj: Say "'SaJ;l waj (g)

In this case, the fact that GW((CX)Z) = 0&;&0 also follows from [25, Proposition 5.2,
Corollary 6.6], and (D.40) has been proved in [25, Theorem 7.1]. Equivalent formulations
of (D.40) can be found in [2, Theorem 1.4] and [9, Theorem 2.19]. ¢

Corollary D.22. In the context of Lemma D.20, one has the isomorphism

ba = a1 ban) Of o —> CH". (D.41)

By Lemma D.20, ¢ : O;VW#O — (C*)™ is the inverse of o ! cH" - O;’;’m&o up to

. . . . ’
an invertible monomial transformation on (C*)™.

Remark D.23. The functions {¢g;,..., ¢} form an initial cluster for a cluster

structure on OY defined by Goodearl and Yakimov using the theory of symmetric
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Poisson CGLs [13], an aspect of generalized Schubert cells that will be explored

elsewhere. o

D.4 Proof of Theorem D.7

Let again w = (wy,...,w,) € W" and we return to the (non-empty) sub-variety =W of
O% x T given in (D.21), that is,

TV ={(qt)e OV xT: te TV, t %1,(q) € T").

We now prove Theorem D.7 which states that £% is connected.
Let AW = {(q,t,t) € OY x TV x TW : t~215(q) = t'}. Then AY — =%, (q,t,t) >
(q,t), is an isomorphism. We thus only need to show that AW is connected. Using the

fact that for a,,a, € T, a; = a, if and only if a* = a5* for all « € @, one has
AV = {(q, t,t) € O x TV x TV : (15(q))** = (t*t), Va € d,}.
Since TW" cTW ={teT:t% =1,Va € supp®(w)} and r(OF) C TW, one has
AV ={((q, t,t) € OF x TV x TV : (t55(q))* = (t*t)*, Va € supp(w)}.

Choose a reduced word for each w; and consider again the sequence w € W" of simple
reflections in (D.31), where n’ = l(w), and the sequence (b5 : j € [1,n]} of regular
functions on O given in (D.35). For o« € supp(w), let j,(«) € [1,n'] be the maximal
jell,n] suchthata = aj. By (D.5), one has (157(q))? = P,y (@ for all @ € supp(w) and
g € OY. On the other hand, since an element g € G lies in B_B if and only if A (g) # 0
forall @ € &, one has by (D.5) again that O = {g € OV : ¢ (@) # 0, Yo € supp(w)}}.
It follows that

AV ={(qt,t) e OV x TV x TV : D@ = (7)™, Ya € supp(w)}.
Consider the Zariski open subset AY’ of AW given by
AY =AY N (OF Lo x T™ x TY).
LetJ = {j, (o) : « € supp(w)} and J° = [1, n/]\J. Under the isomorphism
b < Idgw, pw : (9(‘7;“’7“#0 X TW x TV — (CH" x TW x T,
the sub-variety Ay C OF 40 X TW x T is then defined by the equations

b)) (@ = )™, Va € supp(w)
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on (g,t,t) € OF . x TW x TY. Thus, AY = (C)V’I x TW x T% = (C*)¢, where

d:=n'+ dim(Im(1 — w)). Now the complement of Af in AW is Ujeja z;, where
Z;={(q.t, t) e AV : ¢w,j(@ =0}

forj € J°. Thus, dim Z; < d for each j € J°. As AW is smooth of dimension d, Ay’ is dense
in AW. Since A} = (C*)? is connected, it follows that AW is connected.

This finishes the proof of Theorem D.7.

D.5 Symplectic leaves in generalized double Bruhat cells

Assume again that G is connected and simply connected. For any integers m,n > 1, we
describe in this section all the symplectic leaves of the T-Poisson variety (G
introduced in §4.3 and §C.1. By Corollary C.4, the T-leaves of (G

the generalized double Bruhat cells in G,, ,,. It is thus enough to determine symplectic

m,n'nm,n)

mnr Tm,n) @re precisely
leaves in all generalized Bruhat cells. We remark that symplectic leaves in (G, 1,7 ;) =
(G, g;) are determined by Kogan and Zelevinsky in [15].

Let thus u = (uy,...,u,) € W" and v = (v,...,v,) € W" be arbitrary. By

-1
Proposition C.8, one has a T-equivalent isomorphism K, : (G"Y,7,, ,) — OPV )
-1
T, 7.y >4 0) for each choice of ¥ € vT™. As symplectic leaves of (O™ ) x T, 7,,,, < 0)

are determined by Theorem D.12, we will use K, ; and Theorem D.12 for a special choice
of v to determine all the symplectic leaves of (G"", 7, ,,).
Forw e W,letw = (w—1)~! € wT (see [9, §1.4]). For representatives of u and v,

we choose
u=({U;,..., Uy, €ul™ and 5:(51,...,§n)evT”.

Recall that Cy = Gy x -+ x Gy, and C5 = G5, x -+ x C5 . Introduce

1

<l

G ={(cy,...,Cp b, b_,Cy,....Cr) €CgxBxB_xCs:c --cyb=b_c}---cp}. (D.A42)
One can then parametrize G%V by gﬁ by sending (cy,..., ¢, b,b_,c},...,cp) € Qﬁ'6 to

g= ([cl, 1 Cry 1/ Cbli [b_c’l,c’z,...,c;L]in) e G, (D.43)

Letu=1u; - U, € W,v=v;---v, € W, and recall that W —{a(@HW ' :a e T). Set

T — (@ H¥a" :aeT)={a":aeT ).
Let again supp®(u,v) = {a € ¢ : v, = Viw, = wy, ¥ i€ll,ml,jell,nl}, and set

TW ={teT:t% =1, Va e supp’(u,v)}.
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With g € G™V expressed as in (D.43), define now

G™Y — (T/T"") x (T/T™Y), g+ (Iblolb_1§.T%", [bly.T""). (D.44)

Xuyv +

Recall that T acts on G%V C G by (4.28). Recall also that l(w) = l(u,) + - -- + l(u,,) and
lvy=Uv) +---+1Uv,).

Theorem D.24. For any u € W™ and v € W", symplectic leaves of (G"V,7,,,) are
all the (non-empty) level sets of the map x, , in (D.44) and all have dimension equal to
I(w) + I(v) + dim(Im(1 — uv™1)). Alternatively,

suv &g e GUVasin (D.43): [bl, € TV, [blylb_1} € T (D.45)
is a symplectic leaf of (G"V, 7, ,), and every symplectic leaf of (G*V, 7,, ,) is of the form
a-S"™V ={geG"asin (D.43): [bly e a“T", [blylb_If € (a®)*T™")
for some a € T. Furthermore, for a,,a, € T, a; - S = a, - S*" if and only if al_laz e TuV

_ —1
and (aj'a,)? e TW .

Proof. For g € G"' as in (D.43), the T-equivariant Poisson isomorphism K

u
—1
(G, T ) = (O ) X T, m

<l

> 0) in (C.8) is given by

m+n
Kuﬁ(g) = ([Clr ey Cmfll Cmb/ (C;«L)_lr gy (C/z)_l, (C/l)_I]FnH.n’ [bi]o).
By (4.21), for g € GV as in (D.43), there are unique (Cp, 1,..-,Cppy) € CF X oo X CF
n 1
and b, ,y,...,by,,, € Bsuch that
-1 -1 -1
b(cp) ™ = Cpi1bmits D1 (Cho1) ™ = Crpiabiior oo by 1 (€))7 = Cpipnbp g
Then [cy,..., ¢y, Cpb, (C)7 L, -+ ,(C’z)*l,(C’l)’I]Fmﬂ = [C1  Comi Comg1r -+ Connliy -
Since
b(cr) ™ () (@), = gt Cmn1s Cong Py

_ -1 _ vl
one has ¢y ---Cp, 1€, Crii1 Coyyn_1Cmin = b_byy, and [by,, ,1g = [b]l§ . Thus

ey -+ Cm—1CmCm+1 " Cm+n—lcm+n]0 = [b—br_nl+n]0 = [b—]O([b]al)‘F1 :

Letw = (u,v!) e W™, sow = (ﬁl,...,ﬁm,vgl,...,vl_l,) e WT™ Let TW C OW x T
be as in (D.21). It then follows from definitions that K, (S"") = v,

— -1
By Theorem D.12, % is a symplectic leaf of o8V )T, T4 < 0) of dimension

equal to l(u) + (V) + dim(Im(1 — uv™!)). It follows that S"V is a symplectic leaf of

(G"Y, 7, ) of the same dimension.
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2) follows from Theorem D.12 and the fact that K < is a T-equivariant Poisson

isomorphism. |

Remark D.25. The Poisson structure 7,, ,, is also invariant under the T-action
(g;.--. ,gm]ﬁm,[kl, . ,kn]ﬁ_n) t= ([gl,...,gmfl,gmt]gm, k... "knfllknt]?'_n)'
One checks directly that for any u € W™,v e W", and a € T, one has

S"W.a={geG"asin(D.43): [bly€alT™, [bly[b_1} € a®T*"} = (a })* .SV,

D.6 Symplectic leaves of (E‘n, )

Consider now the T-Poisson variety (ﬁ'n,ﬁn) for n > 1, and recall that from (C.10) that

T-leaves of (F,,7,) are precisely of the form

f’r‘:’v = {[gllg21 cee Ign];‘n € BuB: 9192 o gn € B_VB_}’

where u € W" and v € W. The T-equivariant Poisson isomorphism (F,,, 7,)) — (Gp1i7p1)
in (C.9) gives a T-equivariant Poisson isomorphism from (f',lf'v,ﬁn) to (G™, T, 1). We can

thus use Theorem D.24 to get a description of all symplectic leaves of (Fy", 7,,).

More precisely, let u = (uy,uy,...,u,) e W*andve W,andletu=u u,---u, €
W. Write an element in BuB uniquely as [cy, ¢y, ..., ¢,bl;, , where (¢, ¢,, ..., ¢,) € Cy ¥
Cy, X+ xCy and b e B,and letc =c,c; - - - ¢, Let

A" ={lcy, ¢y .. ,C,blz, € BuB:cbeB_vB_, bl € TV, [b]o[ng]g e T*"}). (D.46)
Theorem D.26. Foranyu e W" and v € W,

(1) A%V is a symplectic leaf of (Fy'",7,) of dimension l(u) + I(v) + dim(Im(1 —
uvh));

(2) every symplectic leaf of (f‘h"",ﬁn) is of the form a - A"V for some a € T.

Moreover, for a;,a, € T, a, - A = a, - A" if and only if a;'a, € T%" and (a;'a,)? €

:Zvl,LV_1
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