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Let G be a connected complex semi-simple Lie group and B its flag variety. For every

positive integer n, we introduce a Poisson groupoid over Bn, called the nth total

configuration Poisson groupoid of flags of G, which contains a family of Poisson sub-

groupoids whose total spaces are generalized double Bruhat cells and bases generalized

Schubert cells in Bn. Certain symplectic leaves of these Poisson sub-groupoids are then

shown to be symplectic groupoids over generalized Schubert cells. We also give explicit

descriptions of symplectic leaves in three series of Poisson varieties associated to G.

1 Introduction and Statements of Results

1.1 Introduction

Symplectic groupoids, and more generally Poisson groupoids, were introduced by

Karasev [16] and Weinstein [29, 30] to study singular foliations and quantizations of

Poisson manifolds. See [3, 14] for more concrete implementations of the program. A

Poisson manifold is said to be integrable if it is the base of a symplectic groupoid. While

not every Poisson manifold is integrable (see [5] for the obstructions), “natural” Poisson

manifolds are expected to have natural integrations to symplectic groupoids. When the

Poisson manifold is algebraic, one would also want the symplectic groupoids to be
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algebraic. It is a fundamental problem of Poisson geometry to construct explicit and

systematic examples of symplectic groupoids, especially in the category of algebraic

Poisson manifolds. (All the algebraic Poisson manifolds considered in this paper have

symplectic leaves that are locally closed algebraic subvarieties.)

Lie theory provides a rich class of Poisson manifolds: every connected complex

semi-simple Lie group G carries a standard multiplicative Poisson structure πst, defined

using the choice of a pair (B, B−) of opposite Borel subgroups of G (see §3.1), and many

important manifolds in Lie theory carry Poisson structures closely related to the Poisson

Lie group (G, πst). Four series of such Poisson manifolds have been introduced and

studied by the 1st two authors in [19, 20]. Among them are the two series of quotients

of Gn, denoted respectively as

F̃n = G ×B × · · · ×B G and Fn = F̃n/B = G ×B × · · · ×B G/B, n ≥ 1. (1.1)

Here and for the rest of the paper, we consider the right action of Gn on itself by

(g1, g2, . . . , gn) · (h1, h2, . . . , hn) = (g1h1, h−1
1 g2h2, . . . , h−1

n−1gnhn), hj, gj ∈ G. (1.2)

Then F̃n is the quotient of Gn by Bn−1 × {e} ⊂ Gn, while Fn is the quotient of Gn by

Bn ⊂ Gn. By [19, §7.1], the product Poisson structure (πst)
n on Gn projects to well-defined

Poisson structures on F̃n and on Fn, respectively, denoted as π̃n and πn. See §2.2 for a

more general construction.

For Z = F̃n or Fn, denote by [g1, . . . , gn]Z the image in Z of (g1, . . . , gn) ∈ Gn. Let

T = B ∩ B−, a maximal torus of G. Then T acts on F̃n and Fn, respectively, by

t · [g1, g2, . . . , gn]Fn
= [tg1, g2, . . . , gn]Fn

, (1.3)

t · [g1, g2, . . . , gn]F̃n
= [tg1, g2, . . . , gn]F̃n

, (1.4)

preserving the Poisson structures π̃n and πn. A systematic study of the T-orbits of

symplectic leaves, or T-leaves for short (see Definition 1.3), of both (̃Fn, π̃n) and (Fn, πn)

are given in [20]. In particular, it is shown in [20, Theorem 1.3 and Theorem 1.1] that

both (F̃n, π̃n) and (Fn, πn) have finitely many T-leaves. Setting B = G/B, the flag variety

of G, note that for each n one has the isomorphism

Fn −→ Bn, [g1, g2, . . . , gn]Fn
�−→ (g1·B, (g1g2)·B, . . . , (g1g2 · · · gn)·B).
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We thus also regard Fn as a product of flag varieties. Similarly, one has the isomorphism

F̃n −→ Bn−1 × G, [g1, g2, . . . , gn]F̃n
�−→ (g1·B, (g1g2)·B, . . . , (g1g2 · · · gn−1)·B, g1g2 · · · gn).

The 1st main result of the paper says that for each n ≥ 1 the Poisson

manifold (̃F2n, π̃2n) is a Poisson groupoid over (Fn, πn), and that certain T-leaves of

(F̃2n, π̃2n) (resp. symplectic leaves therein) are Poisson (resp. symplectic) sub-groupoids.

We also give several isomorphic models for the Poisson groupoids, which shed dif-

ferent lights and put them in different contexts. The isomorphic models are estab-

lished through Poisson isomorphisms between T-leaves in various T-Poisson vari-

eties, the proofs of which, being technical, are presented in the appendices. In

Appendix §D in particular, we determine symplectic leaves in all the T-leaves of

three series of T-Poisson varieties including (̃Fn, π̃n) for all n. We remark that while

T-leaves of many T-Poisson varieties associated to the Poisson Lie group (G, πst)

have been determined (see, for example, [8, 17, 20]), describing the symplectic leaves

therein is a harder problem and it has been done only for the case of (G, πst)

itself by Kogan and Zelevinsky in [15]. Results in Appendix §D thus constitute a

big step towards a general theory of leaves in T-leaves and is thus of independent

interest.

In the rest of the introduction, we explain our motivation and give more details

of the main results of the paper. See in particular §1.3 on identifications of the total

and base spaces of the Poisson groupoids in this paper with cluster varieties studied

by Shen and Weng [27], and with augmentation varieties of Legendrian links by Gao

et al. [10]. We also point out the recent work [1] by Alvarez, which contains a construction

of a Poisson groupoid over Fn as the moduli space of flat G-bundles over the disk with

decorated boundary. Precise relations between the Poisson groupoids in [1] and the ones

in this paper, and further study on their dual Poisson groupoids and double symplectic

groupoids will be given elsewhere.

1.2 Generalized Schubert cells and configuration Poisson groupoids of flags

Let W be the Weyl group of (G, T), and recall that the flag variety B = G/B has the

decomposition into Schubert cells Ou := BuB/B, where u ∈ W. (In the literature, BuB/B,

for u ∈ W, is sometimes called a Bruhat cell in G/B. In this paper, we use the term

Schubert cell, reserving the term Bruhat cell for the sub-manifold BuB in G as suggested

by Berenstein.) Similarly, for n ≥ 1 and u = (u1, . . . , un) ∈ Wn, denote the image of
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18038 J. H. Lu et al.

Bu1B × · · · × BunB in Fn as

Ou = (Bu1B) ×B · · · ×B (BunB)/B ⊂ Fn. (1.5)

One has the disjoint union decomposition

Fn =
⊔

u∈Wn

Ou.

For u ∈ Wn, Ou ⊂ Fn is called a generalized Bruhat cell in [6, 20]. In this paper, we

will refer to them as generalized Schubert cells to be consistent with the case when

n = 1. By [20, Theorem 1.1], each generalized Schubert cell Ou ⊂ Fn, being a union of

(finitely many) T-leaves of πn, is a Poisson sub-manifold of (Fn, πn). Following [6, 20], the

restriction of πn to Ou, again denoted as πn, is called the standard Poisson structure

on Ou.

In this paper, we first give in §2 a general construction of a series of Poisson

groupoids associated to any Poisson Lie group and a closed Poisson Lie sub-group. The

natural Poisson groupoid structure on (̃F2n, π̃2n) over (Fn, πn) is then a special case of

the general construction (see Theorem 3.2). We introduce the sub-manifold

�2n
def= {[g1, g2, . . . , , g2n]F̃2n

: g1g2 · · · g2n ∈ B−}

of F̃2n, which, by Proposition 3.1 and Theorem 3.2, is a union of T-leaves of (̃F2n, π̃2n)

and a Poisson sub-groupoid of the Poisson groupoid (̃F2n, π̃2n) ⇒ (Fn, πn). We call

θ± : (�2n, π̃2n) ⇒ (Fn, πn), n ≥ 1,

the nth total configuration Poisson groupoid of flags of G or simply the a total

configuration Poisson groupoid, where θ+ and θ− are the source and target maps. For

each u ∈ Wn, let

�(u,u−1) def= θ−1+ (Ou) ∩ θ−1− (Ou) ⇒ Ou (1.6)

be the full sub-groupoid of �2n ⇒ Fn over Ou (see Definition 1.1). We show in

Theorem 4.4 that �(u,u−1) is a single T-leaf of (�2n, π̃2n). Consequently,

θ+, θ− : (�(u,u−1), π̃2n) ⇒ (Ou, πn) (1.7)
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is an (algebraic) Poisson sub-groupoid of (�2n, π̃2n) ⇒ (Fn, πn). Furthermore, we show

that the symplectic leaf of (�(u,u−1), π̃2n) through the section of units of the groupoid in

(1.7) is an (algebraic) symplectic groupoid over (Ou, πn). We call (�(u,u−1), π̃2n) ⇒ (Ou, πn)

a special configuration Poisson groupoid of flags of G.

Our interest in generalized Schubert cells Ou with their standard Poisson

structures πn, for u ∈ Wn, stems from some of their remarkable features in relation to

cluster algebras and to other Poisson manifolds related to the Poisson Lie group (G, πst).

First of all, it is shown in [6] that for any u = (u1, . . . , un) ∈ Wn, one can use

root subgroups of G and reduced decompositions for each ui to parametrize Ou by

C
l(u), thus obtaining the so-called Bott-Samelson coordinates (z1, . . . , zl(u)) on Ou and

a Poisson bracket { , }u on C[z1, z2, . . . , zl(u)]. Here l(u) = l(u1) + · · · + l(un) and l(ui) is the

length of ui. Explicit formulas for { , }u are given in [6, Theorem 5.15] in terms of root

strings and structure constants of the Lie algebra of G. In particular, it is shown in [6]

that the polynomial Poisson algebra (C[z1, z2, . . . , zl(u)], { , }u) is a symmetric Poisson CGL

extension in the sense of Goodearl and Yakimov, a special class of Poisson polynomial

algebras introduced and studied in [12, 13] by the same authors in the context of cluster

algebras.

Secondly, generalized Schubert cells with the standard Poisson structures form

basic building blocks for many of the Poisson manifolds associated to the Poisson Lie

group (G, πst). For example, it is shown in [22] that a number of Poisson homogeneous

spaces (G/Q, πG/Q) of the Poisson Lie group (G, πst), including (G, πst) itself and (G/B, π1),

admit so-called Bott–Samelson atlases, which are built out of generalized Schubert cells,

and the Poisson structure πG/Q is presented as symmetric Poisson CGL extensions in all

of the coordinate charts of the Bott–Samelson atlas. We refer to [22] for more detail.

The explicit and natural Poisson and symplectic groupoids over the generalized

Schubert cells (Ou, πn) constructed in this paper add another dimension to this dis-

tinguished class of Poisson manifolds. The Poisson groupoids (�(u,u−1), π̃2n) ⇒ (Ou, πn)

are interesting on their own. Indeed, we give three additional isomorphic models of

(�(u,u−1), π̃2n) ⇒ (Ou, πn), each having advantages over the others and putting these

Poisson and symplectic groupoids in different perspectives. We now give more details

on these models.

1.3 Two isomorphic models of (�(u,u−1), π̃2n) ⇒ (Ou, πn)

Let B = G/B be the flag variety of G, and let A = G/N be the decorated flag variety

(also known as the basic affine space) of G, where N be the unipotent sub-group of B.
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18040 J. H. Lu et al.

Let Ao = B−N/N, an open subvariety of A. For n ≥ 1, set C2n = B2n−1 ×Ao. Under natural

isomorphisms C2n → �2n and Fn → Bn, the Poisson groupoid (�2n, π̃2n) ⇒ (Fn, πn)

becomes the Poisson groupoid

(C2n, π̂2n) ⇒ (Bn, πn), (1.8)

see Theorem 3.4 for detail. Correspondingly, for each u ∈ Wn, the special configuration

Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn) is then isomorphic to a Poisson sub-groupoid

(C(u,u−1), π̂2n) ⇒ (Bu, πn)

of the Poisson groupoid in (1.8), where u−1 = (u−1
n , . . . , u−1

2 , u−1
1 ) ∈ Wn if u =

(u1, u2, . . . , un) (see Corollary 4.5). The variety C(u,u−1) ⊂ C2n consists of sequences of

flags with relative Tits distances prescribed by u (see Lemma 4.2) and is an example of

a decorated double Bott–Samelson cell introduced by Shen and Weng [27]. We explain

in §A.2 that (Bn, πn) is a mixed product of n copies of the Poisson variety (B, π1) in the

sense defined in [19], and a similar statement holds for the Poisson variety (C2n, π̂2n).

By [27], each C(u,u−1) is a Poisson cluster variety when G is of adjoint type. Relations

between the Poisson groupoid structure defined in this paper and the cluster structure

on these varieties defined in [27] will be a very interesting topic to explore (see [27,

Remark 1.10]).

For the 2nd isomorphic model, consider the open sub-manifold Fo
n of Fn given by

Fo
n = {[g1, g2, . . . , gn]Fn

: g1g2 · · · gn ∈ B−B/B}, (1.9)

and for w ∈ Wn, let

Ow
e = Ow ∩ Fo

n = {[g1, g2, . . . , gn]Fn
∈ Ow : g1g2 · · · gn ∈ B−B/B}. (1.10)

By [20, Theorem 1.1], Ow
e is the open T-leaf of (Ow, πn). The Poisson variety (Fo

n, πn) has a

natural T-extension (Fo
n ×T, πn 	
 0), whose T-leaves with respect to the diagonal action

of T are precisely all the sub-varieties Ow
e × T for w ∈ Wn. Here πn 	
 0, as a Poisson

structure on Fo
n × T, is the sum of the product Poisson structure (πn, 0) and a certain

mixed term defined using the T-action on Fo
n (see (1.13)). We show in Corollary 4.5 that,

via a Poisson isomorphism J2n : (�2n, π̃2n) → (Fo
2n × T, π2n 	
 0) and for each u ∈ Wn, the
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Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn) is isomorphic to a Poisson groupoid

(O(u,u−1)
e × T, π2n 	
 0) ⇒ (Ou, πn). (1.11)

The advantages of the isomorphic model in (1.11) are at least three-fold.

First of all, as (O(u,u−1)
e × T, π2n 	
 0) is the T-extension of (O(u,u−1)

e , π2n), we

can apply results in [6, 18] on arbitrary generalized Schubert cells and their

T-extensions. In particular, the model in (1.11) allows us to describe all the symplectic

leaves of (�(u,u−1), π̃2n), thereby proving that the symplectic leaf of (�(u,u−1), π̃2n)

through the section of units of the groupoid �(u,u−1) ⇒ Ou is a symplectic groupoid

over (Ou, πn).

Secondly, each (O(u,u−1)
e × T, π2n 	
 0) is a (localization of a) Poisson symmetric

CGL extension by [6, Theorem 5.12] and [22, §4.2], so the Goodearl–Yakimov theory

in [13] gives a cluster variety structure on O(u,u−1)
e × T. The isomorphisms O(u,u−1)

e ×
T ∼= �(u,u−1) ∼= C(u,u−1) thus provide tools for future research on comparing the

cluster structure on O(u,u−1)
e × T via the Goodearl-Yakimov theory with that on C(u,u−1)

established by L. Shen and D. Weng [27].

Thirdly, in their work [10] on Lagrangian fillings of Legendrian links, Gao

et al. show that varieties of the form Ow
e for G = SLn are isomorphic to augmentation

varieties of certain positive braid Legendrian links. It would be very interesting to

explore connections between the Poisson groupoid structure on O(u,u−1)
e ×T in this paper

and the results in [10].

1.4 The 3rd isomorphic model via generalized double Bruhat cells

For the 3rd isomorphic model for the Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn), we first

explain some background. Recall from [9] that associated to each pair u, v ∈ W one has

the double Bruhat cell Gu,v = BuB ∩ B−vB−, and that (see, e.g., [15]) the decomposition

G = ⊔
u,v∈W Gu,v is that of (G, πst) into T-leaves for the T-action on G by left translation.

The 1st two authors proved in [21] that for any u ∈ W, (Gu,u, πst) is a Poisson groupoid

over (Ou, π1), but the groupoid structure depends on a choice u̇ of a representative of u

in the normalizer subgroup NG(T) of T in G. Using the description of symplectic leaves of

πst in Gu,u given by Kogan and Zelevinsky [15], it is then proved in [21] that all symplectic

leaves of (Gu,u, πst) are symplectic groupoids over (Ou, π1).

Generalizing the decomposition of G into double Bruhat cells, the 1st two

authors introduced in [20] a Poisson manifold (Gn,n, π̃n,n), for each integer n ≥ 1, and its
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decomposition

Gn,n =
⊔

u,v∈Wn

Gu,v

into T-leaves, where each Gu,v is called a generalized double Bruhat cell (one has

(G1,1, π1,1) ∼= (G, πst)). The 2nd author then showed in [26] that for every u ∈ Wn,

(Gu,u, π̃n,n) is a Poisson groupoid over (Ou, πn), where again the groupoid structure

depends on a choice u̇ = (u̇1, . . . , u̇n) ∈ NG(T)n representing u. The question of whether

or not symplectic leaves of (Gu,u, π̃n,n) are symplectic groupoids over (Ou, πn) was left

unanswered in [26], due to the fact that description of symplectic leaves of (Gu,u, π̃n,n)

was not available.

In this paper, we show that for any u ∈ Wn, each choice u̇ ∈ NG(T)n representing

u gives a T-equivariant Poisson embedding

Eu̇ : (Gu,u, π̃n,n) ↪→ (�2n, π̃2n) (1.12)

whose image is exactly �(u,u−1). The Poisson groupoid (Gu,u, π̃n,n) ⇒ (Ou, πn) defined in

[26] using the choice u̇ is then shown to become precisely the groupoid (�(u,u−1), π̃2n) ⇒
(Ou, πn) via Eu̇. Through the (u̇-dependent) Poisson embedding Eu̇, we have thus an

intrinsic explanation on the origin of the Poisson groupoid structures on Gu,u as well

as on their dependence on the representatives u̇. At this connection, we point out that

the construction of the Poisson groupoids (Gu,u, π̃n,n) ⇒ (Ou, πn) in [26] is based on a

general theory on local Poisson groupoids over mixed product Poisson manifolds and

actions by double symplectic groupoids, an approach completely different from what

we use in this paper.

When n = 1, �2 = (G/B) × B− is the action groupoid (G/B) × B− ⇒ G/B for the

action of B− on G/B by left translation. The fact that (�2, π̃2) is a Poisson groupoid over

(G/B, π1), and that one has the Poisson embeddings in (1.12) for n = 1, are also proved

in [21]. Putting these results in [21] (for n = 1) and that in [26] (on the Poisson groupoid

structures on Gu,u) in one unified framework was part of the motivation for this paper.

1.5 Organization of the paper

After a general construction in §2 of a series of Poisson groupoids associated to any

Poisson Lie group and a closed Poisson Lie sub-group, we turn to the Poisson Lie group

(G, πst) and its Poisson Lie sub-group B in §3, where we introduce the total configuration
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Poisson groupoids

(�2n, π̃2n) ⇒ (Fn, πn), n ≥ 1,

of flags. In §4, we discuss the Poisson sub-groupoids

(�(u,u−1), π̃2n) ⇒ (Ou, πn), u ∈ Wn, n ≥ 1,

of (�2n, π̃2n) ⇒ (Fn, πn) and their three isomorphic models. In §5 we prove that the

symplectic leaf of (�(u,u−1), π̃2n) passing through the section of units of the groupoid

�(u,u−1) ⇒ Ou is a symplectic groupoid over (Ou, πn).

The paper contains several extensive appendices. The most technical parts of

the paper are the proofs that various isomorphisms between varieties are in fact

isomorphisms of Poisson varieties, and we present these proofs in the appendices §A

to §C.

In §A, we show how the various Poisson varieties considered in this paper are

mixed product Poisson varieties as defined in [19].

In §B, we show that the T-equivariant isomorphism Jn : �n → Fo
n × T defined in

(3.14) is a Poisson isomorphism from (�n, π̃n) to (Fo
n × T, πn 	
 0).

Generalizing the case of m = n from [20, §1.4], we introduce in §C a T-Poisson

manifold (Gm,n, π̃m,n) for any pair of integers m, n ≥ 1 whose T-leaves are shown to

be generalized double Bruhat cells Gu,v, where (u, v) ∈ Wm × Wn. The main results

of §C are certain explicit T-equivariant Poisson isomorphisms between the single

T-leaves

(Gu,v, π̃m,n)
∼−→

(
O(u,v−1)

e × T, πm+n 	
 0
)

for all (u, v) ∈ Wm ×Wn, and similar Poisson isomorphisms between T-leaves of (̃Fn, π̃n)

to those of the form (Ow
e × T, πn+1 	
 0) for w ∈ Wn+1. These facts illustrate again the

role of generalized Schubert cells (or their T-extensions for the examples in this paper)

as building blocks for Poisson varieties associated to the Poisson Lie group (G, πst).

In §D, we determine the symplectic leaves of (Ow
e × T, πn 	
 0) for any n ≥ 1 and

w ∈ Wn. Although only the cases of w = (u, u−1) are needed in the main text of the paper,

the results for arbitrary w allow us to determine the symplectic leaves in all generalized

double Bruhat cells Gu,v, thereby extending the result of Kogan and Zelevinsky [15] for
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Table 1 Notation table for Poisson varieties

Varieties Poisson structures Poisson subvarieties

F̃n (1.1) π̃n : Projection �n(3.8), �u(4.7),

of (πst)
n F̃u,v

n (C.10), �u̇(D.29),

�u,v (D.46)

F̃m × F̃−n (4.27) π̃m,n: Mixed product G(m,n) (4.29), Su,v(D.45)

of π̃m and π̃−n Gu,v (4.30)

Fn (1.1) πn: Projection Ou(1.5), Fo
n(1.9),

of (πst)
n Ou

e (1.10)

Cn (3.9) π̂n: Pushforward Cu(4.17)

of π̃n

Bn = (G/B)n πn: Pushforward —

of πn

the case of u, v ∈ W. We in fact describe the symplectic leaves in all the three series

(Fo
n × T, πn 	
 0), (Gm+n, π̃m,n), (F̃n, π̃n), m, n ≥ 1,

of T-Poisson varieties. Results in §D provide test stone examples towards a general

theory of symplectic leaves in T-leaves to be carried out elsewhere.

1.6 Notation and basic definitions

For convenience of the reader, we list the Poisson varieties discussed in the paper in

Table 1.

For a manifold X and 1 ≤ k ≤ dim X, let Xk(X) be the space of all k-vector fields

on X, i.e., all smooth sections of ∧kTX, where TX is the tangent bundle of X. When X is

a complex manifold, TX will stand for the holomorphic tangent bundle and Xk(X) the

space of all holomorphic k-vector fields on X. If X and Y are manifolds and if VX ∈ Xk(X)

and VY ∈ Xk(Y), let (VX , 0), (0, VY) ∈ Xk(X × Y) be given by

(VX , 0)(x, y) = iyVX(x) and (0, VY)(x, y) = ixVY(y), x ∈ X, y ∈ Y,

where iy : X → X × Y, x′ �→ (x′, y) for x′ ∈ X, and ix : Y → X × Y, y′ �→ (x, y′) for

y′ ∈ Y. This convention also extends to multi-vector fields on n-fold product manifolds
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X1 × · · · × Xn for any integer n ≥ 2. If Vi ∈ Xk(Xi) for i ∈ [1, n], we also write

(V1, V2, . . . , Vn) = V1 × V2 × · · · × Vn

= (V1, 0, . . . , 0)+(0, V2, . . . , 0)+ · · · + (0, 0, . . . , Vn)∈Xk(X1 × X2 × · · · × Xn).

Recall that a Poisson manifold is a pair (X, π), where X is a manifold and π ∈
X2(X), called a Poisson structure, satisfies [π , π ] = 0, where [ , ] is the Schouten bracket

on X•(X) = ⊕kX
k(X). For a Poisson structure π on X, define

π# : T∗X −→ TX, (π#(α), β) = π(α, β),

where α and β are any 1-forms on X. If X1 is a Poisson sub-manifold of (X, π), that is,

X1 is a sub-manifold of X such that π(x) ∈ ∧2TxX1 for all x ∈ X1, the restriction of π to

X1 will still be denoted by π , so that (X1, π) is a Poisson manifold.

The identity element of a group is typically denoted as e. Let A be any Lie group

with Lie algebra a. The left and right translations on A by a ∈ A will be denoted by La

and Ra, respectively, and for any integer k ≥ 1 and x ∈ ∧ka and ξ ∈ ∧ka∗, xL and xR (resp.

ξL and ξR) will, respectively, denote the left and right invariant k-vector fields (resp. k-

forms) on A with value x (resp. ξ ) at e ∈ A. If A acts on a manifold Y from the right with

the action map ρ : Y × A → Y, we will also denote by ρ the Lie algebra homomorphism

ρ : a −→ X1(Y), ρ(x)(y) = d

dt
|t=0ρ(y, exp(tx)), x ∈ a, y ∈ Y.

Similarly, if : A×Y → Y is a left action by A, one has the Lie algebra anti-homomorphism

: a −→ X1(Y), λ(x)(y) = d

dt
|t=0λ(exp(tx), y), x ∈ a, y ∈ Y.

For clarity and for convenience of the reader, we recall some terminology on

groupoids and Poisson groupoids and refer to [24, 29, 30] for the basics of the subject.

Definition 1.1. (1) A sub-groupoid of a groupoid � ⇒ M is said to be wide if it contains

the set of units of � ⇒ M.

(2) The full sub-groupoid of a groupoid � ⇒ M over a subset M ′ ⊂ M is the

intersection θ−1+ (M ′) ∩ θ−1− (M ′) as a groupoid over M ′ whose structure maps are the

restrictions of those for � ⇒ M, where θ+ and θ− are, respectively, the source and target

maps of � ⇒ M.
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18046 J. H. Lu et al.

Definition 1.2. A Poisson groupoid is a Lie groupoid � ⇒ M together with a Poisson

structure π on � such that {(γ , γ ′, m(γ , γ ′)) : θ−(γ ) = θ+(γ ′)} ⊂ �3 is a coisotropic

sub-manifold of (�3, π × π × (−π)), where θ+, θ− : � → M are the source and target

maps, and

m : {(γ , γ ′) ∈ �2 : θ−(γ ) = θ+(γ ′)} −→ �

is the partially defined multiplication on �. In such a case, there is a unique Poisson

structure πM on M such that θ+ : (�, π) → (M, πM) is Poisson and θ− : (�, π) → (M, πM)

is anti-Poisson, and we also say that (�, π) is a Poisson groupoid over (M, πM). If in

addition π is non-degenerate and dim � = 2 dim M, one says that (�, π) ⇒ (M, πM) is a

symplectic groupoid over (M, πM).

A Poisson (resp. symplectic) groupoid (�, π) ⇒ (M, πM) is said to be (complex)

algebraic if both � and M are smooth algebraic manifolds over C, all structure maps of

� ⇒ M are smooth algebraic morphisms, and both π and πM are algebraic Poisson (resp.

symplectic) structures. �

We also recall the notion of T-leaves that will be used throughout the paper.

Definition 1.3. If T is a torus, by a T-Poisson manifold we mean a Poisson manifold

(X, πX) with an action of T by Poisson isomorphisms. For a T-Poisson manifold (X, πX), a

T-orbit of symplectic leaves, or a T-leaf for short, of (X, πX) is a sub-manifold L of X of

the form

L =
⋃
t∈T

t
,

where 
 is a symplectic leaf of (X, πX), and the map T × 
 → L, (t, x) → tx, is a

submersion.

We now recall a construction from [18, §2.6]. Let t be the Lie algebra of T and

assume that λ , → is a symmetric non-degenerate bilinear form on t. Let {hi : i =
1, . . . , r = dim t} be an orthonormal basis of t with respect to 〈 , 〉. Given a T-Poisson

manifold (X, πX) with the T-action σ : T × X → X, we then have the Poisson structure
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πX 	
σ 0 on X × T given by

πX 	
σ 0 = (πX , 0) +
r∑

i=1

(σ (hi), 0) ∧ (0, hR
i ), (1.13)

where hR
i denoted the right (left) invariant vector field on T defined by hi. We call πX 	
σ

0 a T-extension of the Poisson structure πX , and we call (X × T, πX 	
σ 0) a T-extension

of the T-Poisson manifold (X, πX). It is easy to see that (X × T, πX 	
σ 0) is a T-Poisson

manifold with respect to the diagonal T-action. The following fact is proved in [18,

Lemma 2.23].

Lemma 1.4. With respect to the diagonal T-action on X×T, the T-leaves of (X×T, πX 	
σ

0) are precisely all the sub-manifolds of the form L × T, where L is a T-leaf of (X, πX).

2 A Series of Poisson Groupoids Associated to Poisson Lie Groups

In this section, we give a construction of a series of Poisson groupoids associated to any

Poisson Lie group and a closed Poisson Lie subgroup.

2.1 Poisson Lie group actions and gauge Poisson groupoids

We refer to [4, 7] and especially to [19, §2] for basic facts and sign conventions on Poisson

Lie groups and Lie bialgebras.

Recall first that a Poisson Lie group is a pair (G, πG), where G is a Lie group and

πG a Poisson bi-vector field on G which is multiplicative in the sense that the group

multiplication (G × G, πG × πG) → (G, πG) is a Poisson map. A right Poisson action of a

Poisson Lie group (G, πG) on a Poisson manifold (X, πX) is, by definition, a Poisson map

ρ : (X × G, πX × πG) −→ (X, πX), (x, g) �−→ xg, (2.14)

which also defines a right Lie group action of G on X. Left Poisson actions of (G, πG) are

defined similarly. Recall also that a coisotropic subgroup of a Poisson Lie group (G, πG)

is a Lie subgroup of G that is also a coisotropic sub-manifold with respect to the Poisson

structure πG. The following fundamental fact is proved in [28].

Lemma 2.1. Suppose that ρ is a Poisson Lie group action as in (2.14), and suppose

that Q is a coisotropic subgroup of (G, πG) such that the restricted action of Q on X is

free and the quotient X/Q is a smooth manifold. Then the Poisson structure πX projects
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to a well-defined Poisson structure on X/Q, which will be called the quotient Poisson

structure of πX .

Example 2.2. Suppose that (X, πX) and (Y, πY) are Poisson manifolds, both with right

Poisson actions by a Poisson Lie group (G, πG) and such that the diagonal action of

G on X × Y is free and the quotient space (X × Y)/G is a smooth manifold. Then

(X ×Y, πX ×(−πY)) has the right product Poisson action by the product Poisson Lie group

(G × G, πG × (−πG)). Since the diagonal of G × G is a coisotropic subgroup with respect to

πG × (−πG), the quotient space (X ×Y)/G has the well-defined quotient Poisson structure

of πX × (−πY). �

Suppose now that X → X/G is a principal G-bundle for a Lie group G. Let

(X ×X)/G be the quotient space for the diagonal G-action on X ×X, and denote elements

in X/G by [x] and in (X × X)/G by [x1, x2], where x, x1, x2 ∈ X. Recall that the gauge

groupoid of X → X/G is the manifold (X × X)/G with the following Lie groupoid

structure over X/G:

source map θ+ : (X × X)/G −→ X/G : [x1, x2] �−→ [x1],

target map θ− : (X × X)/G −→ X/G : [x1, x2] �−→ [x2],

unit map ε : X/G −→ (X × X)/G, [x] �−→ [x, x],

inverse map inv : (X × X)/G −→ (X × X)/G : [x1, x2] �−→ [x2, x1],

multiplication: for γ = [x1, x2] and γ ′ = [x3, x4] with θ−(γ ) = θ+(γ ′), γ γ ′ = [x1g, x4],

where g ∈ G is the unique element such that x2g = x3.

Assume, in addition, that πG is a multiplicative Poisson structure on G, πX is a

Poisson structure on X such that the G-action on X for the principal bundle X → X/G is

a right Poisson action of the Poisson Lie group (G, πG) on (X, πX). Let π ∈ X2((X × X)/G)

be the quotient Poisson structure of πX × (−πX) and πX/G ∈ X2(X/G) the quotient Poisson

structure of πX . The following should be well known but we have not been able to find a

reference.

Lemma 2.3. With the Poisson structure π on (X × X)/G and πX/G on X/G, the gauge

groupoid (X × X)/G ⇒ X/G is a Poisson groupoid.
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Proof. Let � = (X × X)/G for notational simplicity. Let Y = {(x1, x2, x2, x4, x1, x4) ∈ X6}.
It is clear that Y is a coisotropic sub-manifold of (X6, π(6)

X ), where

π
(6)
X = πX × (−πX) × πX × (−πX) × (−πX) × πX ∈ X2(X6).

Let Y1 = {(γ , γ ′, γ γ ′) ∈ �3 : θ−(γ ) = θ+(γ ′)}, and let

J : X6 −→ �3, (x1, x2, x3, x4, x5, x6) �−→ ([x1, x2], [x3, x4], [x5, x6]).

Then J(Y) ⊂ Y1. Conversely, given y1 = (γ , γ ′, γ γ ′) ∈ Y1, let γ = [x1, x2] and γ ′ = [x3, x4]

for some x1, x2, x3, x4 ∈ X such that [x2] = [x3], and let g be the unique element in G

such that x2g = x3. Then y = (x1g, x2g, x3, x4, x1g, x4) ∈ Y and J(y) = y1. This shows

that J(Y) = Y1. Since J : (X6, π(6)
X ) → (�3, π × π × (−π)) is Poisson, it follows from the

definition of coisotropic sub-manifolds that Y1 = J(Y) is coisotropic in (�3, π × π ×
(−π)). Note also that both θ+ and θ− are surjective submersions. Thus (�, π) is a Poisson

groupoid. By the definition of the Poisson structure πX/G, (�, π) is a Poisson groupoid

over (X/G, πX/G). �

We now adapt the constructions of quotient Poisson structures in Example 2.2

and the gauge Poisson groupoids in Lemma 2.3 to a setting suitable for applications in

this paper.

Example 2.4. [19, §7.1] Suppose that (G, πG) is a Poisson Lie group, (X, πX) is Poisson

manifold with a free right Poisson action (x, g) �→ xg by (G, πG), and (Y, πY) is a

Poisson manifold with a left Poisson action (g, y) �→ gy by (G, πG). Then one has the

right Poisson action of the Poisson Lie group (G × G, πG × (−πG)) on (X × Y, πX × πY)

given by (x, y) · (g1, g2) = (xg1, g−1
2 y). Denote by X ×G Y the quotient of X × Y by the

diagonal G-action (x, y) · g = (xg, g−1y) for x ∈ X, y ∈ Y, and g ∈ G. Assuming that

X ×G Y is a smooth manifold, it then has the well-defined quotient Poisson structure

of πX × πY . �

Assume now that (X, πX) is a Poisson manifold with a right Poisson action

(x, g) → xg by a Poisson Lie group (G, πG) and assume that X → X/G is a principal

bundle. We make the further assumption that κ : X → X is an anti-Poisson involution

with respect to the Poisson structure πX . One then has the unique left action (g, x) �→ gx
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of G on X determined by

κ(g−1x) = κ(x)g, x ∈ X, g ∈ G,

which is a left Poisson action of (G, πG) on (X, πX). Applying the construction in

Example 2.4, one has the quotient space X ×G X of X × X by the right G-action

(x1, x2) · g = (x1g, g−1x2), x1, x2 ∈ X, g ∈ G,

and the quotient Poisson structure π on X ×G X of πX ×πX . Denote again elements in X/G

by [x] and in X ×G X by [x1, x2], where x, x1, x2 ∈ X, and let again πX/G ∈ X2(X/G) be the

quotient Poisson structure of πX .

Lemma 2.5. With the assumption and notation as above, (X ×G X, π) is a Poisson

groupoid over (X/G, πX/G) with the following groupoid structure:

source map θ+ : X ×G X −→ X/G : [x1, x2] �−→ [x1],

target map θ− : X ×G X −→ X/G : [x1, x2] �−→ [κ(x2)],

unit map ε : X/G −→ X ×G X, [x] �−→ [x, κ(x)],

inverse map inv : X ×G X −→ X ×G X : [x1, x2] �−→ [κ(x2), κ(x1)],

multiplication: for γ = [x1, x2] and γ ′ = [x3, x4] with θ−(γ ) = θ+(γ ′), γ γ ′ = [x1g, x4],

where g ∈ G is the unique element such that κ(x2)g = x3.

Proof. The map X ×G X → (X × X)/G, [x1, x2] → [x1, k(x2)] is both an isomorphism of

Lie groupoids and an isomorphism of Poisson manifolds, where (X ×X)/G has the gauge

Poisson groupoid for the right Poisson action (x, g) → xg as in Lemma 2.3. �

2.2 A series of Poisson groupoids

Assume that (G, πG) is a Poisson Lie group and that Q a closed Poisson Lie subgroup. For

each integer n ≥ 1, one then has the quotient spaces

Xn =
n︷ ︸︸ ︷

G ×Q · · · ×Q G and Yn =
n︷ ︸︸ ︷

G ×Q · · · ×Q G /Q. (2.15)
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The manifolds Xn and Yn can be taken as successive quotient spaces as in Example 2.4.

Consequently, one has the well-defined quotient Poisson structures on Xn and Yn, that

is, well-defined projections of the n-fold product Poisson structure πn
G on Gn, which

we will denote respectively as πXn
and πYn

. By the multiplicativity of πG, one has the

following Poisson Lie group actions

(G, πG) × (Xn, πXn
) −→ (Xn, πXn

), (g, [g1, g2, . . . , gn]Xn
) �−→ [gg1, g2, . . . , gn]Xn

, (2.16)

(Xn, πXn
) × (G, πG) −→ (Xn, πXn

), ([g1, g2, . . . , gn]Xn
, g) �−→ [g1, . . . , gn−1, gng]Xn

, (2.17)

(G, πG) × (Yn, πYn
) −→ (Yn, πYn

), (g, [g1, g2, . . . , gn]Yn
) �−→ [gg1, g2, . . . , gn]Yn

. (2.18)

As the inverse map on G is an anti-Poisson involution for (G, πG), it follows that

IXn
: (Xn, πXn

) −→ (Xn, πXn
), [g1, g2, . . . , gn]Xn

�−→ [g−1
n , . . . , g−1

2 , g−1
1 ]Xn

is anti-Poisson. As a direct application of Lemma 2.5 by taking X = Xn with the right

Poisson action by the Poisson Lie group (Q, πG|Q) given in (2.17) and by taking κ = IXn
,

one has

Theorem 2.6. For any Poisson Lie group (G, πG), any closed Poisson Lie subgroup Q of

(G, πG), and any positive integer n, (X2n, πX2n
) is a Poisson groupoid over (Yn, πYn

) with

the following groupoid structure:

source map θ+ : X2n → Yn : [g1, . . . , g2n]X2n
�→ [g1, . . . , gn]Yn

;

target map θ− : X2n → Yn : [g1, . . . , g2n]X2n
�→ [g−1

2n , . . . , g−1
n+1]Yn

;

unit map ε : Yn → X2n, [g1, . . . , gn]Yn
�→ [g1, . . . , gn, g−1

n , . . . , g−1
1 ]X2n

;

inverse map inv : X2n → X2n : [g1, . . . , g2n]X2n
�→ [g−1

2n , . . . , g−1
1 ]X2n

;

multiplication: for γ = [g1, . . . , g2n]X2n
and γ ′ = [g′

1, . . . , g′
2n]X2n

with θ−(γ ) = θ+(γ ′),

γ γ ′ = [g1, . . . , gn, gn+1 · · · g2ng′
1 · · · g′

ng′
n+1, g′

n+2, . . . , g′
2n]X2n

.

3 The Total Configuration Poisson Groupoids of Flags and Isomorphic Models

We now apply the construction in §2 to the standard complex semisimple Lie

group (G, πst).
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3.1 The complex semisimple Poisson Lie group (G, πst)

Let G be a connected complex semi-simple Lie group with Lie algebra g. We recall

the so-called standard multiplicative Poisson structure on G and refer the readers to

[4, 7, 19, 20] for more detail.

Fix again a pair (B, B−) of opposite Borel subgroups of G and let T = B ∩ B−,

a maximal torus of G. Let N and N− be the respective unipotent radicals of B and B−.

Denote the Lie algebras of G, B, B−, N, N− and T by g, b, b−, n, n− and h, respectively. Fix

also a non-degenerate symmetric invariant bi-linear form 〈 , 〉g on g. Let g = h+ ∑
α∈� gα

be the root decomposition of g with respect to h, let �+ ⊂ g∗ be the set of positive

roots with respect to b, and for each α ∈ �+, let Eα ∈ gα and E−α ∈ g−α be such that

〈Eα, E−α〉g = 1. Let {hi}dimh

i=1 be a basis of h which is orthonormal with respect to the

restriction of 〈 , 〉g to h. Then the element

rst =
dimh∑
i=1

hi ⊗ hi + 2
∑

α∈�+
E−α ⊗ Eα ∈ g ⊗ g (3.1)

is called the standard r-matrix on g. Let �st ∈ ∧2g be the skew-symmetric part of rst,

that is,

�st =
∑

α∈�+
(E−α ∧ Eα) =

∑
α∈�+

(E−α ⊗ Eα − Eα ⊗ E−α),

and let πst be the bi-vector field on G defined by (see notation in §1.6)

πst = �L
st − �R

st. (3.2)

Then πst is a multiplicative Poisson structure on G, and (G, πst) is a standard semi-

simple Poisson Lie group. It is well-known (see, e.g., [11]) that both B and B− are Poisson

Lie subgroups of (G, πst). One thus has the Poisson Lie subgroups (B, πst) and (B−, πst)

of (G, πst).

3.2 The total configuration Poisson groupoids of flags

Continuing with the set-up in §3.1, we can now apply the constructions in §2.2 to the

Poisson Lie group (G, πst) and its closed Poisson Lie subgroup B. In this particular case,

as we have already done in §1.1, we denote the Poisson spaces Xn and Yn in (2.15)
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respectively as

F̃n =
n︷ ︸︸ ︷

G ×B · · · ×B G and Fn =
n︷ ︸︸ ︷

G ×B · · · ×B G /B,

and we denote the quotient Poisson structures on F̃n and Fn, respectively, as π̃n and πn.

Note that we have Poisson Lie group actions

λ̃n : (G, πst) × (F̃n, π̃n) −→ (F̃n, π̃n), (g, [g1, g2, . . . , gn]F̃n
) �−→ [gg1, g2, . . . , gn]F̃n

, (3.3)

λn : (G, πst) × (Fn, πn) −→ (Fn, πn), (g, [g1, g2, . . . , gn]Fn
) �−→ [gg1, g2, . . . , gn]Fn

. (3.4)

Recall that T = B ∩ B−, a maximal torus of G. Since πst|T = 0, the restrictions of the

actions to T (see (1.3) and (1.4)) make both (̃Fn, π̃n) and (Fn, πn) into T-Poisson manifolds.

The multiplicativity of πst also implies that we have the well-defined Poisson map

μF̃n
: (F̃n, π̃n) −→ (G, πst), [g1, g2, . . . , gn]F̃n

�−→ g1g2 · · · gn. (3.5)

For w = (w1, . . . , wn) ∈ Wn, set

BwB = (Bw1B) ×B · · · ×B (BwnB) ⊂ F̃n, (3.6)

the image of (Bw1B) × · · · × (BwnB) in F̃n. One thus has

F̃n =
⊔

w∈Wm,v∈W

(BwB) ∩ μ−1
F̃n

(B−vB−) (disjoint union). (3.7)

For w ∈ W, let l(w) be the length of w. For w = (w1, . . . , wn) ∈ Wn, let l(w) =
l(w1) + · · · + l(wn). The following description of T-leaves of (̃Fn, π̃n) is proved in

[20, Theorem 1.3].

Proposition 3.1. (1) For any w ∈ Wn and v ∈ W, the intersection (BwB) ∩ μ−1
F̃n

(B−vB−)

is a non-empty smooth sub-manifold of F̃n of dimension l(w) + l(v) + dim T;

(2) The decomposition in (3.7) is that of F̃n into the T-leaves of π̃n.

Introduce now

�n = {[g1, g2, . . . , gn]F̃n
: g1g2 · · · gn ∈ B−} = μ−1

F̃n
(B−) ⊂ F̃n. (3.8)
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By Proposition 3.1, �n is a union of T-leaves of π̃n and thus a Poisson sub-manifold of

(F̃n, π̃n). We now apply Theorem 2.6 to the Poisson Lie group (G, πst) and its Poisson Lie

subgroup B.

Theorem 3.2. For any integer n ≥ 1, (̃F2n, π̃2n) is a Poisson groupoid over (Fn, πn) with

the following groupoid structure:

source map θ+ : F̃2n → Fn, [g1, . . . , g2n]F̃2n
�→ [g1, . . . , gn]Fn

;

target map θ− : F̃2n → Fn, [g1, . . . , g2n]F̃2n
�→ [g−1

2n , . . . , g−1
n+1]Fn

;

unit map ε : Fn → F̃2n, [g1, . . . , gn]Fn
�→ [g1, . . . , gn, g−1

n , . . . , g−1
1 ]F̃2n

;

inverse map inv : F̃2n → F̃2n, [g1, . . . , g2n]F̃2n
�→ [g−1

2n , . . . , g−1
1 ]F̃2n

;

multiplication: for γ = [g1, . . . , g2n]F̃2n
and γ ′ = [g′

1, . . . , g′
2n]F̃2n

with θ−(γ ) = θ+(γ ′),

γ γ ′ = [g1, . . . , gn, gn+1 · · · g2ng′
1 · · · g′

ng′
n+1, g′

n+2, . . . , g′
2n]F̃2n

.

Furthermore, �2n ⊂ F̃2n is a wide Poisson sub-groupoid of (̃F2n, π̃2n) ⇒ (Fn, πn).

Proof. Applying Theorem 2.6 directly to the Poisson Lie group (G, πst) and its Poisson

Lie subgroup B, we see that (̃F2n, π̃2n) ⇒ (Fn, πn) as described in Theorem 3.2 is a Poisson

groupoid. One also checks directly from the definitions of the structure maps of F̃2n ⇒
Fn that �2n is a wide (set-theoretical) sub-groupoid of F̃2n ⇒ Fn (Definition 1.1). As �2n is

a Poisson sub-manifold of (̃F2n, π̃2n), it is a Poisson sub-groupoid of (̃F2n, π̃2n) ⇒ (Fn, πn)

as long as we prove that θ+ : F̃2n → Fn restricts to a submersion from �2n to Fn. To prove

this latter statement, we note the isomorphisms

F̃2n −→(G/B)2n−1×G, [g1, g2, . . . , g2n]F̃2n
�−→(g1·B, g1g2·B, . . . , g1g2 · · · g2n−1·B, g1g2 · · · g2n),

Fn −→ (G/B)n, [g1, g2, . . . , gn]Fn
�−→ (g1·B, g1g2·B, . . . , g1g2 · · · gn·B),

under which �2n is mapped to (G/B)2n−1 × B−, and θ+|�2n
: �2n → Fn becomes the

projection of (G/B)2n−1 × B− from the product (G/B)n of the 1st n factors and is thus

a submersion. �

Definition 3.3. For n ≥ 1 the Poisson groupoid (�2n, π̃2n) ⇒ (Fn, πn) in Theorem 3.2 is

called the nth total configuration Poisson groupoid of flags of G. �
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In the next §3.3 and §3.4, we introduce two isomorphic models of (�2n, π̃2n) ⇒
(Fn, πn).

3.3 The Poisson groupoid (C2n, π̂2n) ⇒ (Bn, πn)

Recall again that B = G/B is the (full) flag variety of G, and A = G/N is the decorated

flag variety of G, where N is the unipotent radical of B. For an integer n ≥ 1, recall that

we have set

Cn = Bn−1 × Ao, (3.9)

where Ao = B−N/N is the open B−-orbit in A = G/N. Referring to an element f ∈ B as a

f lag and an element f̂ in A as a decorated flag, the space Cn then consists of all n-tuples

(f1, . . . , fn−1, f̂n), where f1, . . . , fn−1 are flags and f̂n is a decorated flag that is in general

position with the flag f− represented by B−.

The spaces Cn appeared in [27], where the authors consider the special cases

when G = Gsc is simply connected and when G = Gad is of adjoint type. For any

pair of words (b, d) of length n in the simple reflections in W (called positive braids

in [27]), Shen and Weng introduced certain configuration spaces of flags, denoted as

Confb
d(Asc) and Confb

d(Aad) and called decorated double Bott–Samelson cells (see [27,

§2.2]), which can be embedded in Cn for G = Gsc and G = Gad, respectively, [27, §2.3]

(see Remark 4.3). As one of their main results, Shen and Weng prove in [27, Theorem

1.1 and Theorem 1.2] that both Confb
d(Asc) and Confb

d(Aad) are smooth affine varieties;

the coordinate ring O(Confb
d(Asc)) is an upper cluster algebra, O(Confb

d(Aad)) is an

upper cluster Poisson algebra, and the pair (Confb
d(Asc), Confb

d(Aad)) form a cluster

ensemble for which the Fock-Goncharov cluster duality conjecture holds. See [27]

for detail.

For n ≥ 1, consider now the isomorphisms

�̂n : �n −→ Cn, [g1, · · · , gn−1, gn]F̃n
�−→ (g1·B, . . . , g1 · · · gn−1·B, g1 · · · gn−1gn·N), (3.10)

�n : Fn −→ Bn, [g1, · · · , gn−1, gn]Fn
�−→ (g1·B, . . . , g1 · · · gn−1·B, g1 · · · gn−1gn·B). (3.11)

Under the isomorphisms �̂2n : �2n → C2n and �n : Fn → Bn, one checks directly that the

Lie groupoid �2n ⇒ Fn in Theorem 3.2 becomes the following Lie groupoid C2n ⇒ Bn,
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18056 J. H. Lu et al.

where we denote an element in Ao = B−N/N as b−·N for a unique b− ∈ B−:

source map θ+ : C2n → Bn : (f1, . . . , f2n−1, b−·N) �→ (f1, . . . , fn);

target map θ− : C2n → Bn : (f1, . . . , f2n−1, b−·N) �→ (b−1− f2n−1, . . . , b−1− fn);

unit map ε : Bn → C2n, (f1, . . . , fn) → (f1, . . . , fn, fn−1, . . . , f1, e·N);

inverse map inv : C2n → C2n : (f1, . . . , f2n−1, b−·N) �→ (b−1− f2n−1, . . . , b−1− f2, b−1− f1, b−1− ·N);

multiplication: for γ =(f1,. . ., f2n−1, b−·N) and γ ′=(f ′
1,. . ., f ′

2n−1, b′−·N) with θ−(γ )=θ+(γ ′),

γ γ ′ = (f1, . . . , fn, b−f ′
n+1, . . . b−f ′

2n−1, b−b′−·N).

Define Poisson structures π̂n on Cn and πn on Bn, respectively, by

π̂n = �̂n(π̃n) and πn = �n(πn). (3.12)

We now have the following direct consequence of Theorem 3.2.

Theorem 3.4. For any positive integer n, (C2n, π̂2n), with the groupoid structure as

above, is an algebraic Poisson groupoid over (Bn, πn).

For each n ≥ 1, we call π̂n (resp. πn) the standard Poisson structure on Cn (resp.

Bn). We prove in Proposition A.6 (see also Corollary A.7) that (Bn, πn) is a mixed product

of n copies of the Poisson variety (B, π1) in the sense defined in [19]. A similar statement

for (Cn, π̂n) is given in Remark A.8.

3.4 The Poisson groupoid (Fo
2n × T, π2n 	
 0) ⇒ (Fn, πn)

For n ≥ 1, let again

Fo
n = {[g1, g2, . . . , gn]Fn

: g1g2 · · · gn ∈ B−B/B}, (3.13)

an open sub-manifold of Fn. Recall that for g ∈ B−B, we write g = [g]−[g]0[g]+ with

[g]− ∈ N−, [g]0 ∈ T, and [g]+ ∈ N. Set also [g]≥0 = [g]0[g]+ for g ∈ B−B. Define

Jn : �n −→ Fo
n × T, Jn([g1, g2, . . . , gn]F̃n

) = ([g1, g2, . . . , gn]Fn
, [g1g2 · · · gn]0). (3.14)

Recall that T acts on Fn and F̃n by (1.3) and (1.4), respectively. Let T act on itself by

translation and on Fo
n ×T diagonally. Then Jn is T-equivariant and that the inverse of Jn
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is given by

J−1
n ([g1, . . . , gn−1, gn]Fn

, t) = [g1, . . . , gn−1, gn[g1 · · · gn−1gn]−1
≥0t]F̃n

. (3.15)

On the other hand, we have the Poisson structure πn 	
λn
0 on Fn × T which is the

T-extension of πn with respect to the T-action λn on Fn (see §1.6 and (3.4)), namely,

πn 	
λn
0 := (πn, 0) +

dimh∑
i=1

(λn(hi), 0) ∧ (0, hR
i ) ∈ X2(Fn × T), (3.16)

where {hi} is a basis of the Lie algebra h of T orthonormal with respect to 〈 , 〉g|h, and

for x ∈ h, xR is again the right (and left) invariant vector field on T with value x at the

identity element.

Theorem 3.5. For any n ≥ 1, Jn : (�n, π̃n) → (Fo
n × T, πn 	
λn

0) is a Poisson

isomorphism.

Proof. This is Theorem B.1 in the §B. �

Using the isomorphism J2n : �2n → Fo
2n × T, we now transfer the groupoid

structure on �2n to one on Fo
2n ×T. The following Lemma 3.6 is straightforward to check.

Lemma 3.6. Under the isomorphism J2n : �2n → Fo
2n × T, the Lie groupoid �2n ⇒ Fn

becomes the following Lie groupoid Fo
2n × T ⇒ Fn:

source map θ+ : Fo
2n × T → Fn, ([g1, . . . , g2n]F2n

, t) �→ [g1, . . . , gn]Fn
;

target map θ− : Fo
2n × T → Fn,

([g1, . . . , g2n]F2n
, t) �→ [t−1[g1g2 · · · g2n]≥0g−1

2n , g−1
2n−1, . . . , g−1

n+1]Fn
;

unit map ε : Fn → Fo
2n × T, [g1, . . . , gn]Fn

�→ ([g1, . . . , gn, g−1
n , . . . , g−1

1 ]F2n
, e);

inverse map inv : Fo
2n × T → Fo

2n × T :

([g1, . . . , g2n]F2n
, t) �→ (t−1[g1g2 · · · g2n]≥0g−1

2n , g−1
2n−1, . . . , g−1

1 ]F2n
, t−1);

multiplication: for γ = ([g1, . . . , g2n]F2n
, t) and γ ′ = ([g′

1, . . . , g′
2n]F2n

, t′) with θ−(γ )= θ+(γ ′),

γ γ ′ = ([g1, . . . , gn, gn+1 · · · g2n[g1g2 · · · g2n]−1
≥0g′

1 · · · g′
ng′

n+1, g′
n+2, . . . , g′

2n]F2n
, tt′).
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18058 J. H. Lu et al.

By construction, we have now made (Fo
2n × T, π2n 	
 0) into a Poisson groupoid

over (Fn, πn), as stated in the following companion of Theorem 3.2 and Theorem 3.4.

Theorem 3.7. For any integer n ≥ 1, (Fo
2n × T, π2n 	
 0) with the groupoid structure as

above is a Poisson groupoid over (Fn, πn).

4 Special Configuration Poisson Groupoids of Flags and Isomorphic Models

4.1 T-leaves

In view of the three isomorphic models of the total configuration Poisson groupoids

given in §3.2 - §3.4, we now look at the T-leaves in (�n, π̃n), (Cn, π̃n), and (Fo
n × T, πn 	
 0)

for any integer n ≥ 1.

Recall again that T acts on Fn and F̃n via (1.3) and (1.4), respectively, and on

Cn = Bn−1 × Ao and on Fo
n × T diagonally. Recall also the T-equivariant Poisson

isomorphisms

�̂n : (�n, π̃n) −→ (Cn, π̂n) and Jn : (�n, π̃n) −→ (Fo
n × T, πn 	
 0),

respectively, given in (3.10) and (3.14). For w = (w1, . . . , wn) ∈ Wn, introduce

�w = �n ∩ (BwB) ⊂ �n, Cw = �̂n(�w) ⊂ Cn, and Ow
e × T ⊂ Fo

n × T, (4.17)

where recall that BwB is the image of Bw1B × · · · × BwnB in F̃n and that (see (1.10))

Ow
e = {[g1, g2, . . . , gn]Fn

∈ Ow : g1g2 · · · gn ∈ B−B/B} ⊂ Ow. (4.18)

By the definition of Jn, one has Jn(�w) = Ow
e × T for each w ∈ Wn. It follows from the

decomposition F̃n = ⊔
w∈Wn BwB that one has the disjoint unions

�n =
⊔

w∈Wn

�w, Cn =
⊔

w∈Wn

Cw, Fo
n × T =

⊔
w∈Wn

(Ow
e × T). (4.19)

Proposition 4.1. For any integer n ≥ 1, the decompositions in (4.19) are that of the

T-leaves of (�n, π̃n), (Cn, π̃n), and (Fo
n × T, πn 	
 0). In particular, for any w ∈ Wn,

�̂n : (�w, π̃n) −→ (Cw, π̂n) and Jn : (�w, π̃n) −→ (Ow
e × T, πn 	
 0)

are T-equivariant isomorphisms of single T-leaves.
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Proof. The statement for the T-leaf decomposition for (�n, π̃n) follows Proposition 3.1.

The rest of Proposition 4.1 follows from the fact that both �̂n : (�n, π̃n) → (Cn, π̂n) and

Jn : (�n, π̃n) → (Fo
n × T, πn 	
 0) are T-equivariant Poisson isomorphisms. We also note

that by [20, Theorem 1.1], each Ow
e is the unique open T-leaf of (Ow, πn), so the fact that

the T-leaves of (Fo
n × T, πn 	
 0) are precisely of the form Ow

e × T for w ∈ Wn also follows

from Lemma 1.4. �

We give a description of Cw. Let Gdiag be the diagonal of G × G. Recall that for

(f1, f2) ∈ B2, the Tits distance from f1 to f2 is defined to be the unique w ∈ W such that

(f1, f2) ∈ Gdiag(e·B, w·B), and we write f1
w−→ f2. In particular, f1 and f2 are said to be in

general position if f1
w0−→ f2, where w0 is the longest element in W. Set

f0 = e·B ∈ B and f− = w0·B ∈ B.

For f = b−·N ∈ Ao, where b− ∈ B−, let f̄ = b−·B ∈ B. The following statement is now

clear from the definition of the isomorphism �̂ : �n → Cn.

Lemma 4.2. For w = (w1, w2, . . . , wn) ∈ Wn, the sub-variety Cw of Cn = Bn−1 × Ao

consists of all (f1, f2, . . . , fn−1, fn) ∈ Bn−1 × Ao such that

f0
w1−→ f1

w2−→ f2 −→ · · · wn−→ f̄n
w0−→ f−.

Remark 4.3. For w = (w1, . . . , wn) ∈ Wn, choose any reduced decomposition wi =
sαi,1

· · · sαi,li
for each 1 ≤ i ≤ n, where li = l(wi), and let

b = (sα1,1
, . . . , sα1,l1

, sα2,1
, . . . , sα2,l2

, . . . , sαn,1
, . . . , sαn,ln

) ∈ Wl(w).

One then has Cw ∼= Cb ⊂ Cl(w). In the notation of [27], Cb = Confb
e(A). �

4.2 The Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn) and two isomorphic models

Let now u = (u1, . . . , un) ∈ Wn and let u−1 = (u−1
n , . . . , u−1

1 ). Consider

�(u,u−1) = �2n ∩ (B(u, u−1)B).

By Proposition 4.1, �(u,u−1) is a single T-leaf of (�2n, π̃2n). One checks directly from the

definitions that �(u,u−1) is the full sub-groupoid (see Definition 1.1) of �2n ⇒ Fn over Ou,
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that is,

�(u,u−1) = θ−1+ (Ou) ∩ θ−1− (Ou),

where θ+, θ− : �2n → Fn are the source and target maps of the groupoid (�2n, π̃2n) ⇒
(Fn, πn).

Theorem 4.4. For any u = (u1, u2, . . . , un) ∈ Wn, (�(u,u−1), π̃2n) ⇒ (Ou, πn) is a Poisson

sub-groupoid of (�2n, π̃2n) ⇒ (Fn, πn).

Proof. Being a T-leaf of (�2n, π̃2n), �(u,u−1) is a Poisson sub-manifold of (�2n, π̃2n). It

remains to show that θ+|
�(u,u−1) : �(u,u−1) → Ou is a surjective submersion. Since �(u,u−1)

contains the image of Ou ⊂ Fn under the unit map of �2n ⇒ Fn, θ+|
�(u,u−1) : �(u,u−1) → Ou

is surjective. Define

θ : O(u,u−1) −→ Ou, [g1, g2, . . . , g2n]F2n
�−→ [g1, g2, . . . , gn]Fn

.

Clearly θ is a submersion. Under the isomorphism J2n : �(u,u−1) → O(u,u−1)
e × T, the map

θ+|
�(u,u−1) : �(u,u−1) → Ou becomes the projection θ ′+ : O(u,u−1)

e × T → Ou, (q, t) → θ(q).

Since O(u,u−1)
e is open in O(u,u−1), θ ′+ is a submersion. Thus, θ+|

�(u,u−1) is a submersion. �

Recall from (3.11) the Poisson isomorphism �n : (Fn, πn) → (Bn, πn). Set

Bu = �n(Ou) = {(f1, . . . , fn) ∈ Bn : f0
u1−→ f1

u2−→ f2
u3−→ · · · un−→ fn},

so Bu is a Poisson sub-manifold of (Bn, πn). We have the following immediate conse-

quence of Theorem 4.4.

Corollary 4.5. For any n ≥ 1 and u ∈ Wn, (C(u,u−1), π̂2n) ⇒ (Bu, πn) is a Poisson

sub-groupoid of (C2n, π̂2n) ⇒ (Bn, πn) in Theorem 3.4 and is isomorphic, via the

isomorphisms �̂2n : �(u,u−1) → C(u,u−1) and �n : Ou → Bu, to the Poisson groupoid

(�(u,u−1), π̃2n) ⇒ (Ou, πn).

Corollary 4.6. For any n ≥ 1 and u ∈ Wn, (O(u,u−1)
e ×T, π2n 	
 0) ⇒ (Ou, πn) is a Poisson

sub-groupoid of (Fo
2n × T, π2n 	
 0) ⇒ (Fn, πn) in Theorem 3.7 and is isomorphic, via the

isomorphism J2n : �(u,u−1) → O(u,u−1)
e , to the Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn).
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Definition 4.7. For u ∈ Wn, we refer to either of the three isomorphic Poisson

groupoids

(�(u,u−1), π̃2n) ⇒ (Ou, πn), (C(u,u−1), π̂2n) ⇒ (Bu, πn), (O(u,u−1)
e × T, π2n 	
 0) ⇒ (Ou, πn)

as a special configuration Poisson groupoid (of flags of G). �

The special configuration Poisson groupoids have a simple set-theoretical

description. We first set up some notation. Recall that NG(T) ⊂ G is the normalizer

of T in G. For u ∈ W, let uT ⊂ NG(T) be the set of representatives of u in NG(T). For

u̇ ∈ uT, set

Cu̇ = Nu̇ ∩ u̇N−. (4.20)

It is well known (see, for example, [9, Proposition 2.9]) that the maps

Cu̇ × B −→ BuB, (c, b) �−→ cb and B × Cu̇ −→ Bu−1B, (b, c) �−→ bc−1, (4.21)

are both isomorphisms. For u = (u1, . . . , un) ∈ Wn, let uTn = u1T × · · · × unT ⊂ NG(T)n

and call any u̇ = (u̇1, . . . , u̇n) ∈ uTn a representative of u. For u̇ = (u̇1, . . . , u̇n) ∈ uTn, set

Cu̇ = Cu̇1
× Cu̇2

× · · · × Cu̇n
. (4.22)

One then has the isomorphisms

Cu̇ × B −→ BuB, (c1, c2, . . . , cn, b) �−→ [c1, · · · cn−1, cnb]F̃n
, (4.23)

Cu̇ −→ Ou = BuB/B, (c1, c2, . . . , cn) �−→ [c1, c2, . . . , cn]Fn
, (4.24)

B × Cu̇ −→ Bu−1B, (b, c′
1, . . . , c′

n−1, c′
n) �−→ [b(c′

n)−1, (c′
n−1)−1, . . . , (c′

1)−1]F̃n
. (4.25)

For c = (c1, c2, . . . , cn) ∈ Cu̇, set [c]Fn
= [c1, . . . , cn]Fn

and c = c1c2 · · · cn ∈ G. Define

Gu̇,u̇ = {(c, b, b−, c′) : c, c′ ∈ Cu̇, b ∈ B, b− ∈ B−, c b = b−c′} ⊂ Cu̇ × B × B− × Cu̇. (4.26)

We then have the isomorphism Iu̇ : Gu̇,u̇ → �(u,u−1) given by

Iu̇((c1, . . . , cn), b, b−, (c′
1, . . . , c′

n)) = [c1, . . . , cn−1, cnb, (c′
n)−1, (c′

n−1)−1, . . . , (c′
1)−1]F̃2n

.
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Proposition 4.8. For any u ∈ Wn and u̇ ∈ uTn, Iu̇ is an isomorphism of Lie groupoids

over Ou, where the groupoid �(u,u−1) ⇒ Ou is given as in Theorem 4.4, and Gu̇,u̇ ⇒ Ou is

the groupoid defined in [26] as follows:

source map θ+ : Gu̇,u̇ −→ Ou, (c, b, b−, c′) �−→ [c]Fn
,

target map θ− : Gu̇,u̇ −→ Ou, (c, b, b−, c′) �−→ [c′]Fn
,

unit map ε : Ou −→ Gu̇,u̇, [c]Fn
�−→ (c, e, e, c),

inverse map inv : Gu̇,u̇ −→ Gu̇,u̇, (c, b, b−, c′) �−→ (c′, b−1, b−1− , c),

multiplication : (c, b, b−, c′)(c′, b′, b′−, c′′) = (c, bb′, b−b′−, c′′).

Proof. By (4.23) and (4.25), Iu̇ is an isomorphism of varieties. The fact that Iu̇ is an

isomorphism from the groupoid Gu̇,u̇ ⇒ Ou to �(u,u−1) ⇒ Ou follows directly from the

definitions of the two groupoids. �

Remark 4.9. Under the isomorphism Cu̇ → Ou, c �→ [c]Fn
, one can regard Gu̇,u̇ ⇒ Ou as

a groupoid Gu̇,u̇ ⇒ Cu̇, and as a such, it is a sub-groupoid of the direct product

Cu̇ × B × B− × Cu̇ ⇒ Cu̇

of two groupoids: the pair groupoid Cu̇ × Cu̇ ⇒ Cu̇ and the direct product group B × B−
as a groupoid over the one point space, where we identify

Cu̇ × B × B− × Cu̇ −→ Cu̇ × Cu̇ × B × B−, (c, b, b−, c′) �−→ (c, c′, b, b−).

4.3 Generalized double Bruhat cells as Poisson groupoids

We now give the 3rd isomorphic model of the special configuration Poisson groupoids

using generalized double Bruhat cells. For n ≥ 1, recall the right action of Gn on itself

given in (1.2). Let

F̃−n = G ×B− · · · ×B− G, (4.27)

the quotient of Gn by Bn−1− ×{e} ⊂ Gn, and let π̃−n be the Poisson structure on F̃−n that is

the (well-defined) projection of the Poisson structure (πst)
n on Gn. For (g1, g2, . . . , gn) ∈

Gn, denote its image in F̃−n as [g1, . . . , gn]F̃−n
. For any integers m, n ≥ 1, we introduce

in §C.1 a Poisson structure π̃m,n on F̃m × F̃−n, which is the sum of the product Poisson
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structure (π̃m, π̃−n) with a certain mixed term. See Definition C.1. The Poisson structure

π̃m,n is T-invariant under the T-action on F̃m × F̃−n given by

t · ([g1, g2, . . . , gm]F̃m
, [k1, k2, . . . , kn]F̃−n

) = ([tg1, g2, . . . , gm]F̃m
, [tk1, k2, . . . , kn]F̃−n

). (4.28)

Introduce the sub-manifold

Gm,n = {([g1, g2, . . . , gm]F̃m
, [k1, k2, . . . , kn]F̃−n

) : g1g2 · · · gn = k1k2 · · · kn} ⊂ F̃m × F̃−n.

(4.29)

For u = (u1, . . . , um) ∈ Wm and v = (v1, . . . , vn) ∈ Wn, let again BuB be the image of

(Bu1B) × · · · × (BumB) in F̃m, let B−vB− ⊂ F̃−n be the image of (B−v1B−) × · · · × (B−vnB−)

in F̃−n, and set

Gu,v = Gm,n ∩ (BuB × B−vB−) ⊂ Gm,n. (4.30)

It follows from the Bruhat decomposition of G that one has the disjoint union

Gm,n =
⊔

(u,v)∈Wm×Wn

Gu,v. (4.31)

We prove in Corollary C.4 that Gm,n is a T-invariant Poisson sub-manifold of (̃Fm ×
F̃−n, π̃m,n), and that (4.31) is the decomposition of (Gm,n, π̃m,n) into its T-leaves. Gener-

alizing the case of

(G1,1, π̃1,1) ∼= (G, πst),

we call Gu,v, for any u ∈ Wm and v ∈ Wn, a generalized double Bruhat cell. When m = n,

the Poisson manifold (̃Fn × F̃−n, π̃n,n), as well as the generalized double Bruhat cells

Gu,v for u, v ∈ Wn, were introduced in [20, §1.4]. We also note that for any m, n, the

projections (̃Fm × F̃−n, π̃m,n) → (F̃m, π̃m) and (F̃m × F̃−n, π̃m,n) → (F̃−n, π̃−n) to the factors

are Poisson. It follows in particular that for any m ≥ 1, the map

(Gm,1, π̃m,1) −→ (F̃m, π̃m), ([g1, g1, . . . , gm]F̃m
, g1g2 · · · gm) �−→ [g1, g1, . . . , gm]F̃m

, (4.32)

is a Poisson isomorphism.

Let now u = (u1, . . . , un) ∈ Wn, and consider the generalized double Bruhat cell

Gu,u. Fix any u̇ = (u̇1, . . . , u̇n) ∈ uTn. As B−uB− = B−Cu̇ is a direct product decomposition

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/21/18035/6847336 by guest on 08 O
ctober 2024



18064 J. H. Lu et al.

for any u ∈ W and any u̇ ∈ uT, one has the isomorphism

B− × Cu̇ −→ B−uB−, (b−, c′
1, c′

2, . . . , c′
n) �−→ [b−c′

1, c′
2, . . . , c′

n]F̃−n
. (4.33)

Recalling the definition of Gu̇,u̇ ⊂ Cu̇ × B × B− × Cu̇, one then has the isomorphism

Ju̇ : Gu̇,u̇ −→ Gu,u, (c, b, b−, c′) �−→ ([c1, . . . , cn−1, cnb]F̃n
, [b−c′

1, c′
2, . . . , c′

n]F̃−n
), (4.34)

where c = (c1, . . . , cn−1, cn), c′ = (c′
1, c′

2, . . . , c′
n), and (c, b, b−, c′) ∈ Gu̇,u̇.

Definition 4.10. [26] For each choice u̇ ∈ uTn, define the groupoid Gu,u ⇒ Ou such

that

Ju̇ : Gu̇,u̇ −→ Gu,u

is a groupoid isomorphism from the groupoid Gu̇,u̇ ⇒ Ou in Proposition 4.8 to

Gu,u ⇒ Ou.

Using the parametrization Ju̇ : Gu̇,u̇ → Gu,u, we can now define

Eu̇ : Gu,u −→ �2n, ([c1, . . . , cn−1, cnb]F̃n
, [b−c′

1, c′
2, . . . , c′

n]F̃−n
) (4.35)

�−→ [c1, . . . , cn−1, cnb, (c′
n)−1, . . . , (c′

2)−1, (c′
1)−1]̃F2n

,

where ((c1, . . . , cn), b, b−, (c′
1, . . . , c′

n)) ∈ Gu̇,u̇.

Theorem 4.11. For each u̇ ∈ uTn, the map Eu̇ is a T-equivariant Poisson embedding of

(Gu,u, π̃n,n) into (�2n, π̃2n) and gives a Poisson isomorphism

Eu̇ : (Gu,u, π̃n,n) −→ (�(u,u−1), π̃2n) ⊂ (�2n, π̃2n).

Consequently, with the groupoid structure defined as in Definition 4.10, (Gu,u, π̃n,n) ⇒
(Ou, πn) is a Poisson groupoid, and Eu̇ is an isomorphism from the Poisson groupoid

(Gu,u, π̃n,n) ⇒ (Ou, πn) to the Poisson groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn).

Proof. The fact that Eu̇ is a Poisson isomorphism onto (�(u,u−1), π̃2n) is a special case of

Corollary C.7 by taking u = v and Eu̇ = Eu,u̇. That Eu̇ is a groupoid isomorphism follows

from the definition of the groupoid Gu,u ⇒ Ou and Proposition 4.8. �
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Remark 4.12. We emphasize that the groupoid structure on Gu,u over Ou depends on

the choice of the representative u̇ ∈ uTn. If û = (û1, . . . , ûn) ∈ uTn is another such choice,

and if t ∈ T is such that û1 · · · ûn = tu̇1 · · · u̇n, then Eu̇ = Eû ◦ rt, where rt : Gu,u → Gu,u is

given by

rt([g1, . . . , gn−1, gn]F̃m
, [k1, . . . , kn−1, kn]F̃−n

) = ([g1, . . . , gn−1, gnt]F̃m
, [k1, . . . , kn−1, knt]F̃−n

),

Thus, rt : Gu,u → Gu,u defines a groupoid isomorphism from the groupoid structure on

Gu,u defined by u̇ to that defined by û. �

5 Configuration Symplectic Groupoids of Flags

In this section, we assume that G is connected and simply connected. Symplectic leaves

of (Ow
e × T, πn 	
 0), for any n ≥ 1 and w ∈ Wn, are determined in §D, where we also give

a complete description of the symplectic leaves of all the three series

(Fo
n × T, πn 	
 0), (Gm+n, π̃m,n), (F̃n, π̃n), m, n ≥ 1,

of T-Poisson varieties. See §D for details. For any n ≥ 1 and u ∈ Wn, we show in

this section that all the units of the groupoid �(u,u−1) ⇒ Ou are contained in a single

symplectic leaf, denoted as �(u,u−1), of (�(u,u−1), π̃2n), and that �(u,u−1) is a Lie sub-

groupoid of (�(u,u−1), π̃2n) ⇒ (Ou, πn), obtaining thus a symplectic groupoid

(�(u,u−1), π̃2n) ⇒ (Ou, πn).

Using Theorem 4.11, we then show that every symplectic leaf of (Gu,u, π̃n,n) is symplectic

groupoid over (Ou, πn).

5.1 The symplectic groupoid (�(u,u−1), π̃2n) ⇒ (Ou, πn)

Assume that G is connected and simply connected. Let X∗(T) be the character lattice

of T. For λ ∈ X∗(T) and t ∈ T, write tλ for the value of λ at t. Let �0 ⊂ X∗(T) be the

set of simple roots determined by the choice of B, and let {ωα : α ∈ �0} ⊂ X∗(T) be the

corresponding set of fundamental weights. For u ∈ W and t ∈ T, we also set tu = u̇−1tu̇

using any u̇ ∈ uT.

Let now u = (u1, . . . , un) ∈ Wn be arbitrary. Define

T̃u = {t ∈ T : tωα = 1, ∀α ∈ suppo(u)},
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where suppo(u) = {α ∈ �0 : uiωα = ωα, ∀ i ∈ [1, n]}. Choose any u̇ = (u̇1, . . . , u̇n) ∈ uTn,

and let again Cu̇ = Cu̇1
× · · · × Cu̇n

. Let u = u1u2 · · · un ∈ W. Using the isomorphism

Iu̇ : Gu̇,u̇ → �(u,u−1) to write an element in �(u,u−1) uniquely as

γ = [c1, . . . , cn−1, cnb, (c′
n)−1, (c′

n−1)−1, . . . , (c′
1)−1]F̃2n

, (5.1)

where (c1, . . . , cn), (c′
1, . . . , c′

n) ∈ Cu̇, b ∈ B, b− ∈ B−, and c1 · · · cn−1cn b = b−c′
1c′

2 · · · c′
n, we

define the sub-variety �(u,u−1) of �(u,u−1) by

�(u,u−1) = {γ ∈ �(u,u−1) as in (5.1) : [b]0[b−]u0 = e, [b]0 ∈ T̃u}.

Note that �(u,u−1) contains all the units of the groupoid �(u,u−1) ⇒ Ou, and that

I−1
u̇ (�(u,u−1)) = Su̇,u̇ def= {(c, b, b−, c′) ∈ Gu̇,u̇ : [b]0[b−]u0 = e, [b]0 ∈ T̃u}. (5.2)

Note that Su̇,u̇ is a wide sub-groupoid of Gu̇,u̇ ⇒ Ou. It thus follows from Proposition 4.8

that �(u,u−1) is a wide sub-groupoid of �(u,u−1) ⇒ Ou.

Theorem 5.1. For any u ∈ Wn, �(u,u−1) is a symplectic leaf of (�(u,u−1), π̃2n) and is a Lie

sub-groupoid of �(u,u−1) ⇒ Ou. Consequently, (�(u,u−1), π̃2n) ⇒ (Ou, πn) is a symplectic

groupoid.

Proof. Symplectic leaves of (�w, π̃n) for any n ≥ 1 and any w ∈ Wn are described

in Theorem D.16, and the case of w = (u, u−1) ∈ W2n is given in Example D.18. More

concretely, for γ ∈ �(u,u−1) in (5.1), let (cn+1, . . . , c2n) ∈ Cu̇−1
n

× · · · × Cu̇−1
1

and bn, . . . , b1 ∈ B

be such that

b(c′
n)−1 = cn+1bn, bn(c′

n−1)−1 = cn+2bn−1, . . . , b2(c′
1)−1 = c2nb1.

Then γ = [c1, . . . , cn−1, cn, cn+1, . . . , c2n−1, c2nb1]F̃2n
and [b1]0 = [b]u

−1

0 . Let

ẇ = (u̇1, . . . , u̇n, u̇−1
n , . . . , u̇−1

1 ) ∈ wT2n.

We then have the alternative description of �(u,u−1) ⊂ �(u,u−1) as consisting of all

γ = [c1, . . . , cn−1, cn, cn+1, . . . , c2n−1, c2nb1]F̃2n
∈ �(u,u−1),
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Configuration Poisson Groupoids of Flags 18067

where (c1, . . . , cn, cn+1, . . . , c2n) ∈ Cẇ, b1 ∈ B, and b− = c1, · · · cncn+1 · · · c2nb1 ∈ B− are

such that [b−]0 ∈ T̃u and [b1]0[b−]0 = e. By Example D.18, �(u,u−1) is the symplectic leaf

of (�(u,u−1), π̃2n) passing through the point

[u, u−1]F̃2n

def= [u̇1, . . . , u̇n, u̇−1
n , . . . , u̇−1

1 ]F̃2n
∈ �(u,u−1).

We already know that �(u,u−1) is a sub-groupoid of �(u,u−1) ⇒ Ou. To show that

�(u,u−1) is a Lie sub-groupoid of �(u,u−1) ⇒ Ou, it remains to show that the source map

θ+ : �(u,u−1) → Ou restricts to a surjective submersion θ := θ+|
�(u,u−1) : �(u,u−1) → Ou. To

this end, let


(u,u−1) = J2n(�(u,u−1)) ⊂ O(u,u−1)
e × T.

Then 
(u,u−1) is the symplectic leaf of π2n 	
 0 in O(u,u−1)
e × T through the point

([u̇1, . . . , u̇n, u̇−1
n , . . . , u̇−1

1 ]F2n
, e) ∈ O(u,u−1)

e × T.

By Example D.15, 
(u,u−1) = 
ẇ, consisting of all ([c1, . . . , c2n]F2n
, t) ∈ O(u,u−1)

e × T, where

t ∈ T̃u and (c1, . . . , c2n) ∈ Cẇ such that

c1c2 · · · c2n ∈ B−B and t2 = [c1, c2, . . . , c2n]0.

We also know from Example D.15 that the projection P : 
(u,u−1) → O(u,u−1)
e , (q, t) �→ q, is

a 2|supp(u)|-to-1 covering map, where supp(u) = �0\suppo(u). Let

p : O(u,u−1)
e −→ Ou, [g1, . . . , gn, gn+1, . . . , g2n]F2n

�−→ [g1, . . . , gn]Fn
.

Since p is a submersion, one sees that θ = p ◦ P ◦ J2n : �(u,u−1) → Ou is a submersion. �

5.2 Symplectic leaves in Gu,u as symplectic groupoids

Let u ∈ Wn and consider the Poisson manifold (Gu,u, π̃n,n). As (Gu,u, π̃n,n) is a single

T-leaf, every symplectic leaf of (Gu,u, π̃n,n) passes through the point (u̇, u̇) ∈ Gu,u for

some u̇ ∈ uTn. Let u̇ ∈ uTn, and let Su̇,u̇ be the symplectic leaf of (Gu,u, π̃n,n) through

(u̇, u̇). Using the parametrization Ju̇ : Gu̇,u̇ → Gu,u in (4.34), we write every g ∈ Gu,u
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uniquely as

g = ([c1, . . . , cn−1, cnb]F̃n
, [b−c′

1, c′
2, . . . , c′

n]F̃−n
). (5.3)

where ((c1, . . . , cn), b, b−, (c′
1, . . . , c′

n)) ∈ Gu̇,u̇. Recall from (5.2) the wide sub-groupoid

Su̇,u̇ ⇒ Ou of the groupoid Gu̇,u̇ ⇒ Ou. Recall also from Theorem 4.11 the Poisson

isomorphism Eu̇ : (Gu,u, π̃n,n) → (�(u,u−1), π̃2n). The following Theorem 5.2 is now a direct

consequence of Theorem 4.11 and Theorem 5.1.

Theorem 5.2. The symplectic leaf Su̇,u̇ of (Gu,u, π̃n,n) through (u̇, u̇) is given by

Su̇,u̇ = E−1
u̇ (�u,u−1

) = {g ∈ Gu,u as in (5.3) : [b]0[b−]u0 = e, [b]0 ∈ T̃u}.

Equip Su̇,u̇ with the structure of a Lie groupoid over Ou via the isomorphism Ju̇ : Su̇,u̇ →
Su̇,u̇. Then (Su̇,u̇, π̃n,n) ⇒ (Ou, πn) is a symplectic groupoid.

A Mixed Product Poisson Structures

In §A.1, we recall from [19] the construction of mixed product Poisson structures using

Poisson Lie group actions. We then show in §A.2 that the Poisson varieties (Cn, π̂n) and

(Bn, πn) defined in §3.3 are all mixed product Poisson varieties.

A.1 Mixed product Poisson structures

The following definition was introduced in [19].

Definition A.1. Given two manifolds Y1 and Y2, by a mixed product Poisson structure

on the product manifold Y1 × Y2 we mean a Poisson bivector field π on Y1 × Y2 that

projects to well-defined Poisson structures on Y1 and Y2. Given Yi, 1 ≤ i ≤ n, where

n ≥ 2, a Poisson structure π on the product manifold Y = Y1 × · · · × Yn is said to

be a mixed product if the projection of π to Yi × Yj is a well-defined mixed product

Poisson structure on Yi × Yj for any 1 ≤ i < j ≤ n, and in this case, we also call the pair

(Y1 × · · · × Yn, π) a mixed product Poisson manifold. �

Assume now that ((G, πG), (G∗, πG∗)) is any pair of dual Poisson Lie groups, that

is, the Lie bialgebras (g, δg) and (g∗, δg∗) are dual to each other, where recall that δg : g →
∧2g and δg∗ : g∗ → ∧2g∗ are respectively the linearizations of πG and πG∗ at the identity

elements of G and G∗. Suppose that (X, πX) and (Y, πY) are two Poisson manifolds, with
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respective right and left Poisson actions

ρ : (X, πX) × (G∗, πG∗) −→ (X, πX) and λ : (G, πG) × (Y, πY) −→ (Y, πY) (A.1)

by the Poisson Lie groups (G∗, πG∗) and (G, πG). Let ρ : g∗ → X1(X) and λ : g → X1(Y) be

the corresponding Lie algebra homomorphism and Lie algebra anti-homomorphism (see

notation in §1.6). Then ρ and λ are, respectively, right and left Lie bialgebra actions (see

[19, §2.5]). Define the bi-vector field

πX ×(ρ,λ) πY = (πX , 0) + (0, πY) −
n∑

i=1

(ρ(ξ∗
i ), 0) ∧ (0, λ(ξi)) (A.2)

on X ×Y, where {ξi}i=1,...,n is any basis for g and {ξ∗
i }i=1,...,n its dual basis for g∗. Note that

the definition of πX ×(ρ,λ) πY only uses the Lie algebra actions ρ and λ.

Lemma-Definition A.2. [19, Proposition 4.2] For any pair (ρ, λ) of Poisson Lie group

actions in (A.1), the bi-vector field πX ×(ρ,λ) πY on X × Y is Poisson, and it is called the

mixed product of πX and πY associated to the pair (ρ, λ).

Example A.3. Let (ρ, λ) be a pair of Poisson Lie group actions as in (A.1). Equipping

G∗ × Y with the Poisson structure π = πG∗ ×(ρG∗ ,λ) πY , where ρG∗ is the right action action

of G∗ on itself by right translation, one then has the left Poisson Lie group action

λ′ : (G∗, πG∗) × (G∗ × Y, π) −→ (G∗ × Y, π), (a, (a′, y)) �−→ (aa′, y), a, a′ ∈ G∗, y ∈ Y.

Let X ×G∗ (G∗ × Y) be the quotient of X × (G∗ × Y) by the right diagonal action of G∗. The

Poisson structure πX ×π on X ×(G∗×Y) then projects to a well-defined Poisson structure

on X ×G∗ (G∗ × Y), which we denote as π ′. On the other hand, one has the isomorphism

ψ : X ×G∗ (G∗ × Y) −→ X × Y, [x, (a, y)] �−→ (xa, y), x ∈ X, a ∈ G∗, y ∈ Y.

By an argument similar to that used in the proof of [18, Lemma A.1], one sees that

ψ : (X ×G∗ (G∗ × Y), π ′) −→ (X × Y, πX ×(ρ,λ) πY)

is a Poisson map. �

Consider now the standard complex semi-simple Lie group (G, πst), and we keep

the notation set up in §3.1. Define the non-degenerate bilinear pairing 〈 , 〉(b,b−) between

b and b− by

〈x− + x0, y+ + y0〉(b−,b) = 1

2
〈x−, y+〉g + 〈x0, y0〉g, x− ∈ n−, x0, y0 ∈ h, y+ ∈ n. (A.3)
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For a basis {xi} for b− and dual basis {xi} for b under 〈 , 〉(b−,b), we choose (see §3.1)

{xi}dimb−
i=1 = {hi : 1 ≤ i ≤ dim h} ∪ {2E−α : α ∈ �+}, (A.4)

{xi}dimb
i=1 = {hi : 1 ≤ i ≤ dim h} ∪ {Eα : α ∈ �+}. (A.5)

We now give three pairs of Poisson Lie groups to be used to form mixed Poisson

products.

Example A.4. With the non-degenerate pairing 〈 , 〉(b−,b) between Lie algebras b−
of B− and b of B given in (A.3), we have the 1st pair of dual Poisson Lie groups

((B−, πst), (B, −πst)). Under the same pairing 〈 , 〉(b−,b), the Poisson Lie groups (Bop
− , πst)

and (B, πst) are also dual to each other, where Bop
− is the manifold B− with the

group structure opposite to that on B−. A third pair of dual Poisson Lie groups

is ((B−, −πst), (B, πst)), with the pairing between the Lie algebras b− and b given by

−λ , →(b−,b). Finally, we also have the pair of dual (direct product) Poisson Lie groups

(A, πA) = (B−, πst) × (Bop
− , πst), (A∗, πA∗) = (B, −πst) × (B, πst),

where the non-degenerate pairing between the Lie algebras a = b− ⊕ b− and a∗ = b ⊕ b

is the direct sum of the pairing 〈 , 〉(b−,b) with itself. �

Example A.5. Consider the maximal torus T of G with the zero Poisson structure as a

Poisson Lie group. By identifying the Lie algebra h of T with h∗ using the bilinear form

〈 , 〉g|h, T is also a dual Poisson Lie group of itself. Let (X, πX) be a T-Poisson manifold

with T-action σ : T × X → X. The Poisson structure πX 	
σ 0 on X × T given in (1.13) is

then the mixed product Poisson structure defined using (T, 0) as a Poisson Lie group. �

A.2 The Poisson varieties (Cn, π̂n) and (Bn, πn) as mixed products

Consider now the complex semi-simple Poisson Lie group (G, πst), and let the notation

be as in §3.1. Let Q be any closed coisotropic subgroup of (G, πst), that is, Q is a closed

Lie subgroup of G which is also a coisotropic with respect to the Poisson structure πst.

For an integer n ≥ 1, let

Fn,Q =
n︷ ︸︸ ︷

G ×B · · · ×B G /Q = F̃n/Q,

and denoted by πn,Q the Poisson structure on Fn,Q that is the quotient of the Poisson

structure (πst)
n on Gn. When n = 1, the quotient Poisson structure on G/Q will be

denoted as πG/Q. Note that when Q = {e} and when Q = B, we respectively have πn,Q = π̃n
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and πn,Q = πn. In particular, the flag variety B := G/B has the Poisson structure

π1 = πG/B, and the decorated flag variety A = G/N has the Poisson structure π̂1 := πG/N .

Returning to the case of an arbitrary closed coisotropic Lie subgroup Q of

(G, πst), set

Qn = Bn−1 × (G/Q), n ≥ 1.

One then has the isomorphism

�n,Q : Fn,Q → Qn, [g1, · · · , gn−1, gn]F̃n
�−→ (g1·B, . . . , g1 · · · gn−1·B, g1 · · · gn−1gn·Q).

Define the Poisson structure πQn
on Qn by

πQn
= �n,Q(πn,Q).

Our goal now is to express the Poisson manifold (Qn, πQn
) as a mixed product of n − 1

copies of (B, π1) with (G/Q, πG/Q).

Let λG/Q be the left Poisson action of (G, πst) on (G/Q, πG/Q) given by translation,

i.e,

λG/Q : (G, πst) × (G/Q, πG/Q) −→ (G/Q, πG/Q), (g, g1·Q) �−→ gg1·Q.

Recall the bases {xi}dimb−
i=1 of b− and {xi}dimb−

i=1 of b in (A.4). For 1 ≤ j < k ≤ n − 1, define

μ
(n−1)

j,k ∈ X2(Bn−1) by (see notation in §1.6)

μ
(n−1)

j,k =
dimb−∑

i=1

(0, . . . , 0, λG/B(x
i)

jth entry

, 0, . . . , 0) ∧ (0, . . . , 0, λG/B(xi)

kth entry

, 0, . . . , 0),

and for 1 ≤ j ≤ n − 1, define μ
(n,Q)

j ∈ X2(Qn) by

μ
(n,Q)

j =
dimb−∑

i=1

(0, . . . , 0, λG/B(x
i)

jth entry

, 0, . . . , 0) ∧ (0, . . . , 0, λG/Q(xi)).

Proposition A.6. For any closed coisotropic subgroup Q of (G, πst), one has

πQn
= (π1, . . . , π1, πG/Q) +

∑
1≤j<k≤n−1

(μ
(n−1)

j,k , 0) +
n−1∑
j=1

μ
(n,Q)

j . (A.6)

Proof. Note first that the standard r-matrix rst on g given in (3.1) is given by

rst =
dimb−∑

i=1

xi ⊗ xi ∈ g ⊗ g.

The case of Q = {e} follows from the proof of [19, Proposition 8.1] by setting, in the

notation of [19, Proposition 8.1], Q+ = B and r = rst. The case for arbitrary Q then
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18072 J. H. Lu et al.

follows from the following commutative diagram of Poisson manifolds

where the 2nd vertical arrow is IdBn−1 × pG/Q, with pG/Q : G → G/Q the projection. �

For the special case of Q = B, let πn = �n,B(πn).

Corollary A.7. For any n ≥ 1, the Poisson structure πn on Bn is given by

πn = (π1, π1, . . . , π1) +
∑

1≤j<k≤n

μ
(n)

jk , (A.7)

where for 1 ≤ j < k ≤ n, μ
(n)

j,k ∈ X2(Bn) is given by

μ
(n)

j,k =
dimb−∑

i=1

(0, . . . , 0, λG/B(x
i)

jth entry

, 0, . . . , 0) ∧ (0, . . . , 0, λG/B(xi)

kth entry

, 0, . . . , 0).

Remark A.8. By (A.6), πQn
is a mixed product Poisson structure on Qn in the sense of

Definition A.1. The Poisson structure πQn
on Qn = Bn−1 × G/Q can also be written

as two fold mixed products: consider again the pair of dual Poisson Lie groups

((B−, πst), (B, −πst)) from Example A.4. For 1 ≤ k ≤ n − 1, define the right Poisson action

ρ̃k of (B, −πst) on Bk by

ρ̃k : (Bk, πk) × (B, −πst) −→ (Bk, πk),

((f1, f2, . . . , fk), b) �−→ (b−1f1, b−1f2, . . . , b−1fk),

and let λn−k,Q be the left Poisson action of (B−, πst) on (Qn−k, πQn−k
) given by

λn−k,Q : (B−, πst) × (Qn−k, πQn−k
) −→ (Qn−k, πQn−k

),

(b−, (f1, . . . , fn−k−1, g·Q)) �−→ (b−f1, . . . , b−fn−k−1, b−g·Q)).

It then follows from Proposition A.6 that

πQn
= πk ×(ρ̃k,λn−k,Q) πQn−k

.
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See [19, Remark 6.10] for the general setting. In particular, setting π̂n = πn,Q for Q = N,

the Poisson structure π̂n on Bn−1 × A then satisfies

π̂n = πk ×(ρ̃k,λn−k,N ) π̂n−k, 1 ≤ k ≤ n − 1. (A.8)

�

B The Poisson Isomorphism Jn

B.1 The isomorphism Jn

For n ≥ 1, recall the Poisson action

λn : (G, πst) × (Fn, πn) −→ (Fn, πn), λn(g, [g1, g2, . . . , gn]Fn
) = [gg1, g2, . . . , gn]Fn

,

which in particular makes (Fn, πn) into a T-Poisson manifold. By (1.13), one has the T-

extension (Fn × T, πn 	
λn
0) of (Fn, πn). For notational simplicity, we set

πn 	
 0 = πn 	
λn
0 = (πn, 0) +

dimh∑
i=1

(λn(hi), 0) ∧ (0, hR
i ) ∈ X2(Fn × T).

Recall that the open sub-manifold Fo
n of Fn is defined as

Fo
n = {[g1, g2, . . . , gn]Fn

: g1g2 · · · gn ∈ B−},

and that we have the T-equivariant isomorphism Jn : �n → Fo
n × T (see (3.14)) given by

Jn([g1, g2, . . . , gn]F̃n
) = ([g1, g2, . . . , gn]Fn

, [g1g2 · · · gn]0),

where T acts on Fo
n ×T diagonally. In this section we prove the following fact also stated

as Theorem 3.5.

Theorem B .1. For any n ≥ 1, Jn : (�n, π̃n) → (Fo
n×T, πn 	
 0) is a Poisson isomorphism.

B.2 Some auxiliary lemmas

Consider the pair of dual Poisson Lie groups ((B−, πst), (B, −πst)) from Example A.4. The

left Poisson action λn of (G, πst) on (Fn, πn) restricts to a left Poisson action of (B−, πst)

on (Fn, πn), still denoted by λn. One also has the induced right Poisson action of (B, −πst)

on (Fn, πn) by

ρn : (Fn, πn) × (B, −πst) −→ (Fn, πn), (B.1)

([g1, g2, . . . , gn]Fn
, b) �−→ [b−1g1, g2, . . . , gn]Fn

.
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Recall that λn also denotes the induced Lie algebra anti-homomorphism λn : g → X1(Fn),

and recall that for x ∈ g, xR is the right invariant vector field on G with value x at the

identity element e. For every sub-manifold S of G that is invariant under left translation

by elements in B−, we have the Lie algebra anti-homomorphism

λb− : b− −→ X1(S), λb−(x) = xR|S.

We further simplify notation as follows.

Notation B.2. If (X, πX) is a Poisson manifold with a right Poisson action

ρ : (X, πX) × (B, −πst) −→ (X, πX), (x, b) �−→ xb, (B.2)

of the Poisson Lie group (B, −πst), we set

πX 	
ρ πst = πX ×(ρ,λb− ) πst = (πX , 0) + (0, πst) −
dimb−∑

i=1

(ρ(xi), 0) ∧ (0, xR
i ) ∈ X2(X × G),

πX 	
ρ πn = πX ×(ρ,λn) πst = (πX , 0) + (0, πn) −
dimb−∑

i=1

(ρ(xi), 0) ∧ (0, λn(xi)) ∈ X2(X × Fn)

for n ≥ 1, where {xi} and {xi} are given in (A.4). In the special case of (X, πX) = (Fm, πm)

and ρ = ρm for m ≥ 1 as in (B.1), we further simplify the notation to set

πm 	
 πst = πm 	
ρm
πst = (πm, 0) + (0, πst) +

dimb−∑
i=1

(λm(xi), 0) ∧ (0, xR
i ) ∈ X2(Fm × G),

πm 	
 πn = πm 	
ρm
πn = (πm, 0) + (0, πn) +

dimb−∑
i=1

(λm(xi), 0) ∧ (0, λn(xi)) ∈ X2(Fm × Fn).

�

For m, n ≥ 1, consider the isomorphism �m,n : Fm+n → Fm × Fn given by

�m,n([g1, . . . , gm+n]Fm+n
) = ([g1, . . . , gm]Fm

, [g1 · · · gmgm+1, gm+2, . . . , gm+n]Fn
. (B.3)

Consider also the isomorphism

�̃n : F̃n −→ Fn−1 × G, [g1, g2, . . . , gn]F̃n
�−→ ([g1, g2, . . . , gn−1]Fn

, g1g2 · · · gn). (B.4)

The following lemma follows directly from Remark A.8.

Lemma B.3. For m, n ≥ 1, one has

�m,n(πm+n) = πm 	
 πn and �̃n(π̃n) = πn−1 	
 πst.
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Assume that (X, πX) is a Poisson manifold with a right Poisson action ρ of the

Poisson Lie group (B, −πst) as in (B.2), and consider the isomorphism

IX : X × B− −→ (X × Fo
1 ) × T, (x, b−) �−→ (x, b−·B, [b−]0). (B.5)

Equip X×B− and X×Fo
1 with the Poisson structures πX 	
ρ πst and πX 	
ρ π1, respectively.

Equip X × Fo
1 with the action of T by

σ1 : T × (X × Fo
1 ) −→ X × Fo

1 , (t, (x, g·B)) �−→ (xt−1, tg·B), (B.6)

which preserves the Poisson structure πX 	
ρ π1, so one has the T-extension Poisson

structure (πX 	
ρ π1) 	
σ1
0 on (X × F1) × T.

Lemma B.4. The map IX : (X × B−, πX 	
ρ πst) → ((X × Fo
1 ) × T, (πX 	
ρ π1) 	
σ1

0) is a

Poisson isomorphism.

Proof. Consider the isomorphism

I0 : B− −→ Fo
1 × T, b− �−→ (b−·B, [b−]0), b− ∈ B−.

By [18, Proposition A.7], I0 : (B−, πst) → (Fo
1 × T, π1 	
 0) is Poisson, where

π1 	
 0 = (π1, 0) +
dimh∑
i=1

(λ1(hi), 0) ∧ (0, hR
i ).

Note that IX = IdX × I0. Using the bases {xi} of b and {xi} of b− in (A.4),

πX 	
ρ πst = (πX , 0) + (0, πst) − 2
∑

α∈�+
(ρ(Eα), 0) ∧ (0, ER−α) −

dimh∑
i=1

(ρ(hi), 0) ∧ (0, hR
i ).

It follows that as bivector fields on X × Fo
1 × T,

IX(πX 	
ρ πst) = (πX , 0, 0) + (0, π1, 0) +
dimh∑
i=1

(0, λ1(hi), 0) ∧ (0, 0, hR
i )

− 2
∑

α∈�+
(ρ(Eα), 0, 0) ∧ (0, λ1(E−α), 0) −

dimh∑
i=1

(ρ(hi), 0, 0) ∧ (0, λ1(hi), hR
i ).
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On the other hand, by (B.6),

(πX 	
ρ π1) 	
σ 0 = (πX , 0, 0) + (0, π1, 0) − 2
∑

α∈�+
(ρ(Eα), 0, 0) ∧ (0, λ1(E

α
), 0)

−
dimh∑
i=1

(ρ(hi), 0, 0) ∧ (0, λ1(hi), 0) +
dimh∑
i=1

(−ρ(hi), λ1(hi), 0) ∧ (0, 0, hR
i ).

Comparing terms, one sees that IX(πX 	
ρ πst) = (πX 	
ρ π1) 	
σ1
0. �

B.3 Proof of Theorem B.1

Since Jn = �n−1,2 ◦ IFn−1
◦ �̃n, and

(�, π̃n)
�̃n−→ (Fn−1 × B−, πn−1 	
 πst)

IFn−1−−−−−→ ((Fn−1 × Fo
1 ) × T, (πn−1 	
 π1) 	
σ1

0)

�−1
n−1,1×IdT−−−−−→ (Fo

n × T, πn 	
 0),

are Poisson maps, respectively, by Lemma B.3, Lemma B.4, and Lemma B.3 again. we see

that Jn : (�n, π̃n) → (Fo
n × T, πn 	
 0) is Poisson.

This finishes the proof of Theorem B.1.

C Generalized Double Bruhat Cells

Generalizing the case of m = n from [20, §1.4], we introduce in this appendix the T-

Poisson manifold (Gm,n, π̃m,n), for any pair of integers m, n ≥ 1, and the generalized

double Bruhat cells Gu,v as its T-leaves, where (u, v) ∈ Wm×Wn. The main results of this

appendix are presented in §C.2, where we establish, using any representative v̇ ∈ vTn

for each v ∈ Wn, a piece-wise Poisson isomorphism from (Gm,n, π̃m,n) to (�m+n, π̃m+n)

and thus also to (Fo
m+n × T, πm+n 	
 0). These piece-wise Poisson isomorphisms

carry T-leaves to T-leaves, giving rise in particular to Poisson isomorphisms (see

Proposition C.8)

Ku,v̇ : (Gu,v, π̃m,n)
∼−→

(
O(u,v−1)

e × T, πm+n 	
 0
)

.

As a special case, we show in Corollary C.10 that each (̃Fn, π̃n) is also piece-wise Poisson

isomorphic to (Fo
n+1 × T, πn+1 	
 0). Consequently every T-leaf of (̃Fn, π̃n) is also Poisson

isomorphic to (Ow
e × T, πn+1 	
 0) for some w ∈ Wn+1. A similar statement for reduced

generalized double Bruhat cells is given in Proposition C.11.
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C.1 Generalized double Bruhat cells associated to conjugacy classes

Recall from §4.3 that for an integer n ≥ 1, we have the quotient space

F̃−n = G ×B− · · · ×B− G

with the well-defined quotient Poisson structure π̃−n, and that the image of

(g1, g2, . . . , gn) ∈ Gn in F̃−n is denoted as [g1, . . . , gn]F̃−n
. Similar to the case of (̃Fn, π̃n),

(F̃−n, π̃−n) is a T-Poisson manifold with the T-action given by

t · [g1, g2, . . . , gn]F̃−n
= [tg1, g2, . . . , gn]F̃−n

. (C.1)

Recall from Example A.4 that we have the pair of dual Poisson Lie groups

(A, πA) = (B−, πst) × (Bop
− , πst), (A∗, πA∗) = (B, −πst) × (B, πst).

As the Poisson structure πst on G is multiplicative, one has the right and left Poisson

actions

ρ̃n : (F̃n, πF̃n
) × (A∗, πA∗) −→ (F̃n, πF̃n

),

λ̃−n : (A, πA) × (F̃−n, πF̃−n
) −→ (F̃−n, πF̃−n

)

of the Poisson Lie groups (A, πG) and (A∗, πA∗), respectively, given by

ρ̃n([g1, . . . , gn]F̃n
, (b1, b2)) = [b−1

1 g1, g2, . . . , gn−1, gnb2]F̃n
, (C.2)

λ̃−n((b−1, b−2), [g1, . . . , gn]F̃−n
) = [b−1g1, g2, . . . , gn−1, gnb−2]F̃−n

, (C.3)

where gj ∈ G for each j ∈ [1, n], and b1, b2 ∈ B, b−1, b−2 ∈ B−.

Definition C.1. For integers m, n ≥ 1, the Poisson structure π̃m,n on F̃m×F̃−n is defined

to be the mixed product

π̃m,n = π̃m ×(ρ̃m,λ̃−n) π̃−n.

Note that the Poisson structure π̃m,n is invariant under the diagonal T-action on

F̃m × F̃−n.

Notation C.2. For a conjugacy class C in G, let

Gm,n,C = {([g1, . . . , gm]F̃m
, [k1, . . . , kn]F̃−n

) : g1 · · · gm(k1 · · · kn)−1 ∈ C} ⊂ F̃m × F̃−n,

and for u = (u1, . . . , um) ∈ Wm and v = (v1, . . . , vn) ∈ Wn, let

Gu,v
C = Gm,n,C ∩ (

(BuB) × B−vB−)
) ⊂ F̃m × F̃−n.
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We will refer to Gu,v
C as the generalized double Bruhat cell associated to the conjugacy

class C and the sequences u and v. One thus has the decomposition of F̃m × F̃−n into the

disjoint union

F̃m × F̃−n =
⊔

u,v,C

Gu,v
C , (C.4)

where u ∈ Wm, v ∈ Wn, and C runs over the set of all conjugacy classes in G.

Theorem C .3. (1) For any conjugacy class C in G and any u ∈ Wm, v ∈ Wn, Gu,v
C is a non-

empty connected smooth sub-manifold of F̃m×F̃−n of dimension l(u)+l(v)+dim C+dim T;

(2) The decomposition (C.4) is that of F̃m × F̃−n into the T-leaves of π̃m,n for the

T-action given in (4.28).

Proof. The case when m = n is proved in [20, §1.5]. Let m and n be arbitrary, and

define Zm ⊂ F̃m+n and Z−n ⊂ F̃−(m+n) by

Zm =
m copies of G︷ ︸︸ ︷
G×B · · · ×B G ×B

n copies of B︷ ︸︸ ︷
B ×B · · · ×B B, Z−n =

m copies of B−︷ ︸︸ ︷
B− ×B− · · · ×B− B− ×B−

n copies of G︷ ︸︸ ︷
G ×B− · · · ×B− G .

By the definition of the Poisson structure π̃m+n,m+n, Zm ×Z−n is a Poisson sub-manifold

of (F̃m+n × F̃−(m+n), π̃m+n,m+n). Define μ : F̃m+n → F̃m and μ− : F̃−(m+n) → F̃−n by

μ([g1, . . . , gm−1, gm, gm+1, . . . , gm+n]F̃m+n
) = [g1, . . . , gm−1, gmgm+1 · · · gm+n ]̃Fm

,

μ−([g1, . . . , gm, gm+1, . . . , gm+n]F̃−(m+n)
) = [g1 · · · gmgm+1, gm+2, . . . , gm+n ]̃F−n

.

By Example A.3, one sees that

φ := μ|Zm
× μ−|Z−n

: (Zm × Z−n, π̃m,n) −→ (F̃m × F̃−n, π̃m,n)

is a T-equivariant Poisson isomorphism. The statement on the T-leaf decomposition

of (F̃m × F̃−n, π̃m,n) now follows from that for (̃Fm+n × F̃−(m+n), π̃m+n,m+n) given in

[20, Theorem 1.4]. �

Specializing to the case when C = {e} is the trivial conjugacy class, we have the

Poisson sub-manifold Gm,n of (F̃m × F̃−n, π̃m,n), where, as we have already introduced

in §4.3,

Gm,n = Gm,n,{e} = {([g1, g2, . . . , gm]F̃m
, [h1, h2, . . . , hn]F̃n

) : g1g2 · · · gn = h1h2 · · · hn}.
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The restriction of π̃m,n to Gm,n will still be denoted as πm,n. Again as we have done in

§4.3, for u ∈ Wm and v ∈ Wn,

Gu,v = Gu,v
{e} ⊂ Gm,n

is called a generalized double Bruhat cell. We now have the following Corollary C.4

which generalizes the corresponding statements in [9] on for double Bruhat cells in G.

Corollary C.4. (1) For any u ∈ Wm, v ∈ Wn, the generalized double Bruhat cell Gu,v is a

non-empty connected sub-manifold of Gm,n of dimension l(u) + l(v) + dim T;

(2) the T-leaves of (Gm,n, π̃m,n) are precisely the generalized double Bruhat cells

Gu,v, where u ∈ Wm and v ∈ Wn.

C.2 Piece-wise Poisson isomorphisms from (Gm,n, π̃m,n) to (�m+n, π̃m+n)

Fix integers m, n ≥ 1. Recall that the maximal torus T acts on both Gm,n and �m+n,

respectively via (4.28) and (1.4). Recall also that we have set

v−1 = (v−1
n , . . . , v−1

2 , v−1
1 ) if v = (v1, v2, . . . , vn) ∈ Wn.

Writing an arbitrary w ∈ Wm+n as w = (u, v−1) with u ∈ Wm and v ∈ Wn, by

Proposition 4.1, the T-leaf decomposition of (�m+n, π̃m+n) can be re-written as

�m+n =
⊔

u∈Wm,v∈Wn

�(u,v−1),

where recall that �(u,v−1) = �m+n ∩ (B(u, v−1)B). For v ∈ Wn, we set

Gv
m,n = Gm,n ∩ (F̃m × (B−vB−) and �v

m+n = �m+n ∩ (F̃m ×B (Bv−1B)).

Here F̃m ×B (Bv−1B) is the quotient of F̃m × (Bv−1B) by the diagonal B-action

([g1, . . . , gm−1, gm]F̃m
, g) · b = ([g1, . . . , gm−1, gmb]F̃m

, b−1g).

See Example 2.4 for the notation X ×B Y for manifolds X with a right B-action and Y

with a left B-action. Both Gv
m,n and �v

m+n are then unions of T-leaves in the respective

Poisson manifolds (Gm,n, π̃m,n) and (�m+n, π̃m+n), and one has the disjoint unions

Gm,n =
⊔

v∈Wn

Gv
m,n and �m+n =

⊔
v∈Wn

�v
m+n.

For v = (v1, . . . , vn) ∈ Wn and any representative v̇ = (v̇1, . . . , v̇n) ∈ vTn, recall

that

Cv̇ = Cv̇1
× · · · × Cv̇n

, where Cv̇j
= Nv̇j ∩ v̇jN− for 1 ≤ j ≤ n.
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Denoting an arbitrary element in Cv̇ as ċ = (ċ1, ċ2, . . . , ċn) and recalling from (4.33) and

(4.25) the isomorphisms,

B− × Cv̇ −→ B−vB−, (b−, ċ1, ċ2, . . . , ċn) �−→ [b−ċ1, ċ2, . . . , ċn]F̃−n
,

B × Cv̇ −→ Bv−1B, (b, ċ1, . . . , ċn−1, ċn) �−→ [bċ−1
n , ċ−1

n−1, . . . , ċ−1
1 ]F̃n

,

we have the well-defined map

Em,v̇ : F̃m × (B−vB−) −→ F̃m ×B (Bv−1B), (C.5)

([g1, . . . , gm]F̃m
, [b−ċ1, ċ2, . . . , ċn]F̃−n

) �−→ [g1, . . . , gm, ċ−1
n , . . . , ċ−1

2 , ċ−1
1 ]F̃m+n

.

Note that F̃m × (B−vB−) is a Poisson sub-manifold of (̃Fm × F̃−n, π̃m,n), and F̃m ×B (Bv−1B)

is a Poisson sub-manifold of (̃Fm+n, π̃m+n).

Theorem C .5. For any m ≥ 0, any v ∈ Wn, and any v̇ ∈ vTn, the map

Em,v̇ : (F̃m × (B−vB−), π̃m,n) −→ (F̃m ×B (Bv−1B), π̃m+n)

is Poisson and restricts to a Poisson isomorphism from (Gv
m,n, π̃m,n) to (�v

m+n, π̃m+n).

Theorem C.5 will be proved in §C.4. We first give some consequences of

Theorem C.5.

Remark C.6. The isomorphism Em,v̇ depends on the representative v̇ of v, as indicated

in the notation. For a different choice v̇′, one has Em,v̇′ = rt ◦ Em,v̇ for some t ∈ T, where

rt : �m+n −→ �m+n, [g1, . . . , gm+n−1, gm+n ]̃Fm+n
�−→ [g1, . . . , gm+n−1, gm+nt]̃Fm+n

.

For m = n = 1, Gm,n
∼= G, and �2

∼= B × B− via [g1, g2]F2
→ (g1·B, g1g2). The

piece-wise isomorphisms from G to B × B− have already been observed in [21, Remark

10]. See [21, Example 2] for concrete calculations for the case of G = SL(2,C). �

For u ∈ Wm, v ∈ Wn, and v̇ ∈ vTn, set now

Eu,v̇
def= Em,v̇|Gu,v : Gu,v −→ �(u,v−1). (C.6)

Corollary C.7. The map Eu,v̇ gives a T-equivariant Poisson isomorphism

Eu,v̇ : (Gu,v, π̃m,n) −→ (�(u,v−1), π̃m+n) ⊂ (�m+n, π̃m+n).

Proof. We have already seen that Eu,v̇ : Gu,v → �m+n is T-equivariant, and it is clear

that Eu,v̇(Gu,v) ⊂ �(u,v−1). We show that Eu,v̇ is an isomorphism by writing down its
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inverse. By (4.23) and (4.25), one has the isomorphism BuB × Cv̇ → B(u, v−1)B given by

([g1, . . . , gm−1, gm]F̃n
, ċ1, . . . , ċn−1, ċn) �−→ [g1, . . . , gm−1, gm, ċ−1

n , ċ−1
n−1, . . . , ċ−1

1 ]F̃m+n
.

We thus have

(Eu,v̇)−1 : �(u,v−1) → Gu,v, [g1, . . . , gm−1, gm, ċ−1
n , ċ−1

n−1, . . . , ċ−1
1 ]F̃m+n

�−→ ([g1, . . . , gm−1, gm ]̃Fm
, [b−ċ1, . . . , ċn−1, ċn ]̃F−n

),

where [g1, . . . , gm−1, gm ]̃Fm
∈ BuB and (ċ1, . . . , ċn−1, ċn) ∈ Cv̇ are such that

g1 · · · gm−1gm ċ−1
n ċ−1

n−1 · · · ċ−1
1 = b− ∈ B−.

�

Recall now from §B that for any n ≥ 1 we have the T-equivariant Poisson

isomorphism

Jn : (�n, π̃n) −→ (Fo
n × T, πn 	
 0), Jn([g1, g2, . . . , gn]F̃n

) = ([g1, g2, . . . , gn]Fn
, [g1g2 · · · gn]0).

For m, n ≥ 1, composing Jm+n with the piece-wise Poisson isomorphisms from

(Gm,n, π̃m,n) to (�m+n, π̃m+n) in Theorem C.5, we obtain piece-wise Poisson isomorphism

from (Gm,n, π̃m,n) to (Fo
m+n × T, πm+n 	
 0), which we state in the next Proposition C.8.

Proposition C.8. For any m ≥ 1, v = (v1, . . . , vn) ∈ Wn, and v̇ = (v̇1, . . . , v̇n) ∈ vTn,

one has the T-equivariant Poisson isomorphism Kv̇
m,n := Jm+n ◦ (

Em,v̇|Gv
m,n

)
, explicitly

given as

Kv̇
m,n : (Gv

m,n, π̃m,n) −→
(
Fo

m+n ∩
(
F̃m ×B (Bv−1B/B)

)
× T, πm+n 	
 0

)
, (C.7)

(
[g1, . . ., gm]F̃m

, [b−ċ1, ċ2, . . ., ċn]F̃−n

)
�−→

(
[g1, . . . , gm, ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]Fm+n
, [b−]0

)
,

where [g1, . . . , gm]F̃m
∈ F̃m, b− ∈ B−, and (ċ1, . . . , ċn) ∈ Cv̇ are such that g1 · · · gm =

b−ċ1 · · · ċn.

We have the following immediate consequence of Proposition C.8.

Corollary C.9. For any u ∈ Wm, one has the T-equivariant Poisson isomorphism

Ku,v̇
def= Kv̇

m,n|Gu,v : (Gu,v, π̃m,n) −→
(
O(u,v−1)

e × T, πm+n 	
 0
)

(C.8)

of single T-leaves, explicitly given by (C.7) by restricting [g1, . . . , gm]F̃m
to BuB ⊂ F̃m,

where T acts on O(u,v−1)
e × T diagonally.
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Note that for any n ≥ 1, the map

(F̃n, π̃n) −→ (Gn,1, π̃n,1), [g1, g2, . . . , gn]F̃n
�−→ ([g1, g2, . . . , gn]F̃n

, g1g2 · · · gn), (C.9)

is a Poisson isomorphism due to the definition of the Poisson structure π̃n,1 on Gn,1.

Applying Proposition C.8 to Gn,1, we also obtain piece-wise T-equivariant Poisson

isomorphisms from (̃Fn, π̃n) to (Fo
n+1 × T, π2n+1 	
 0) which carry T-leaves to T-leaves.

To give the precise statement, recall from Proposition 3.1 that T-leaves of (̃Fn, π̃n) are

precisely of the form

F̃u,v
n

def= (BuB) ∩ μ−1
F̃n

(B−vB−), (C.10)

where u ∈ Wn and v ∈ W, and that

μF̃n
: (F̃n, π̃n) −→ (G, πst), [g1, g2, . . . , gn]F̃n

�−→ g1g2 · · · gn.

By Proposition C.8 and using the isomorphism in (C.9), we have the Poisson isomorphism

Jn,v̇ : μ−1
F̃n

(B−vB−) −→
((

Fo
n+1 ∩

(
F̃n ×B (Bv−1B)/B

))
× T, πn+1 	
 0

)

explicitly given by Jn,v̇([g1, . . . , gn]F̃n
) = ([g1, . . . , gn, ċ−1]Fn+1

, [b−]0), where [g1, . . . , gn]F̃n
∈

μ−1
F̃n

(B−vB−), and we write g1g2 · · · gn = b−ċ with unique b− ∈ B− and ċ ∈ Cv̇. Since

ċ−1 ∈ v̇−1N and [b−]0 = [g1 · · · gnv̇−1]0, Jn,v̇ is also given by

Jn,v̇([g1, . . . , gn]F̃n
) = ([g1, . . . , gn, v̇−1]Fn+1

, [g1 · · · gnv̇−1]0). (C.11)

Corollary C.10. For any v ∈ W, v̇ ∈ vT and u ∈ Wn, the restriction

Ju,v̇
def= Jn,v̇|F̃u,v

n
: F̃u,v

n −→ (O(u,v−1)
e × T, πn+1 	
 0). (C.12)

is a T-equivariant Poisson isomorphism of T-leaves.

C.3 Reduced generalized double Bruhat cells

For m, n ≥ 1, consider again the Poisson manifold (Gm,n, π̃m,n), and let Gm,n/T be the

quotient of Gm,n by the right T-action

([g1, · · ·, gm−1, gm]F̃m
, [h1, . . . , hn−1, hn]F̃−n

)· t=([g1, · · ·, gm−1, gmt]F̃m
, [h1, . . . , hn−1, hnt]F̃−n

).

(C.13)

Then one has the well-defined Poisson structure π̂m,n on Gm,n/T such that the projection

(Gm,n, π̃m,n) → (Gm,n/T, π̂m,n) is Poisson. Note that T acts on (Gm,n/T, π̂m,n) by Poisson

isomorphisms via the action

t · ([g1, g2, · · · , gm]F̃m
, [h1, h2, . . . , hn]F̃−n

) = ([tg1, g2, · · · , gm]F̃m
, [th1, h2, . . . , hn]F̃−n

). (C.14)
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Define the reduced generalized double Bruhat cell associated to u ∈ Wm and v ∈ Wn as

Lu,v = Gu,v/T.

One then has the disjoint union

Gm,n/T =
⊔

u∈Wm,v∈Wn

Lu,v. (C.15)

Proposition C.11. The decomposition in (C.15) is the T-leaf decomposition of

(Gm,n/T, π̂m,n) with respect to the T-action in (C.14). Furthermore, for any u ∈ Wm

and v ∈ Wn,

(Lu,v, π̂m,n) −→ (O(u,v−1)
e , πm+n), (C.16)(

[g1, . . . , gm]F̃m
, [b−ċ1, ċ2, . . . , ċn]F̃−n

)
T �−→ [g1, . . . , gm, ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]Fm+n
,

is a T-equivariant Poisson isomorphism of single T-leaves.

Proof. One checks by definitions that the map in (C.16) is a well-defined T-equivariant

isomorphism. The fact that it is Poisson follows from Corollary C.9. Since O(u,v−1)
e is a

single T-leaf of (Fo
m+n, πm+n), Lu,v is a single T-leaf of (Gm,n/T, π̂m,n). �

Example C.12. Consider the special case when m = n = 1, so that G1,1 = G and

π̃1,1 = πst. Let π̂st be the left T-invariant Poisson structure on G/T such that the

projection (G, πst) → (G/T, π̂st) is Poisson. Then the T-leaves of (G/T, π̂st) are precisely

the reduced double Bruhat cells Lu,v = Gu,v/T, where u, v ∈ W and Gu,v = BuB ∩ B−vB−.

It follows from Proposition C.11 that for any representative v̇ of v in NG(T) one has the

T-equivariant Poisson isomorphism

(Lu,v, π̂st) −→ (O(u,v−1)
e , π2), gT �−→ [g, v̇−1]F2

.

C.4 Proof of Theorem C.5

We first prove two auxiliary lemmas.

Consider the quotient space

F ′
n = B\F̃n = B\

n︷ ︸︸ ︷
G ×B · · · ×B G,

where B acts on F̃n as a subgroup of G via the action of G on F̃n by (3.3), and denote by

π ′
n the Poisson structure on F ′

n that is the quotient Poisson structure of π̃n on F̃n. Define
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similarly the quotient Poisson manifold (F ′−n, π ′−n) of (F̃−n, π̃−n), where

F ′−n = B−\F̃−n = B−\
n︷ ︸︸ ︷

G ×B− · · · ×B− G .

For every w ∈ Wn, B\BwB is then a Poisson sub-manifold of (F ′
n, π ′

n) and B−\B−wB− a

Poisson sub-manifold of (F ′−n, π ′−n).

Fix now v = (v1, . . . , vn) ∈ Wn and any v̇ = (v̇1, . . . , v̇n) ∈ vTn. By (4.33) and (4.25),

we have parametrizations

Cv̇
∼−→ B−\B−vB− : (ċ1, ċ2, . . . , ċn) �−→ [ċ1, ċ2, . . . , ċn]F′−n

,

Cv̇
∼−→ B\Bv−1B : (ċ1, ċ2, . . . , ċn) �−→ [ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]F′
n
.

One thus has the isomorphism

ψv̇ : B−\B−vB− −→ B\Bv−1B, [ċ1, ċ2, . . . , ċn]F′−n
�−→ [ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]F′
n
,

where (ċ1, ċ2, . . . , ċn) ∈ Cv̇.

Lemma C.13. The map

ψv̇ : (B−\B−vB−, π ′−n) → (B\Bv−1B, π ′
n) (C.17)

is a Poisson isomorphism.

Proof. Define Iv̇ : B−\B−vB− → BvB/B by

Iv̇([ċ1, ċ2, . . . , ċn]F′−n
) = [ċ1, ċ2, . . . , ċn]Fn

, (ċ1, ċ2, . . . , ċn) ∈ Cv̇.

By [26, Lemma 7.1], Iv̇ : (B−\B−vB−, π ′−n) → (BvB/B, −πn) is Poisson. One also has the

Poisson isomorphism

In : (Fn, πn) −→ (F ′
n, −π ′

n), [g1, g2, . . . , gn]Fn
�−→ [g−1

n , . . . , g−1
2 , g−1

1 ]F′
n
. (C.18)

Thus φv̇ = In ◦ Iv̇ is Poisson as stated. �

Recall from Example A.4 the pair ((Bop
− , πst), (B, πst)) of dual Poisson Lie groups.

Note that one has the left Poisson action

λ−
v : (Bop

− , πst) × (B−\B−vB−, π ′−n) −→ (B−\B−vB−, π ′−n), (C.19)

(b−, [g1, . . . , gn−1, gn]F′−n
) �−→ [g1, . . . , gn−1, gnb−]F′−n

, (C.20)
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of the Poisson Lie group (Bop
− , πst). Let

λv̇−1 : (Bop
− , πst) × (B\Bv−1B, π ′

n) −→ (B\Bv−1B, π ′
n) (C.21)

be the unique left Poisson action of (Bop
− , πst) on (B\Bv−1B, π ′

n) such that ψv̇ in (C.17)

becomes an isomorphism of Poisson manifolds with left Poisson actions by the Poisson

Lie group (Bop
− , πst). Let ρ+ be the right Poisson action of (B, πst) on itself by right

translation. Using the pair (ρ+, λv̇−1) of respectively right and left Poisson actions of

the Poisson Lie groups (B, πst) and (Bop
− , πst), one then has the mixed product Poisson

structure πst ×(ρ+,λv̇−1 ) π ′
n on B × (B\Bv−1B). Define the isomorphism

Kv̇ : Bv−1B −→ B × (B\Bv−1B),

[bċ−1
n , ċ−1

n−1, . . . , ċ−1
1 ]F̃n

�−→ (b, [ċ−1
n , ċ−1

n−1, . . . , ċ−1
1 ]F′

n
),

where again (ċ1, . . . , ċn−1, ċn) ∈ Cv̇.

Lemma C.14. The map Kv̇ : (Bv−1B, π̃n) → (B× (B\Bv−1B), πst ×(ρ+,λv̇−1 ) π
′
n) is a Poisson

isomorphism.

Proof. Note first that Kv̇ = Kn ◦ Jv̇ ◦ Ĩn with

Bv−1B
Ĩn−→ BvB

Jv̇−→ (BvB/B) × B
Kn−→ B × (B\Bv−1B),

where Ĩn : Bv−1B → BvB, [g1, g2, . . . , gn]F̃n
�→ [g−1

n , . . . , g−1
2 , g−1

1 ]F̃n
,

Jv̇ : BvB −→ (BvB/B) × B, [ċ1, . . . , ċn−1, ċnb]F̃n
�−→ ([ċ1, . . . , ċn−1, ċn]Fn

, b),

where (ċ1, . . . , ċn−1, ċn) ∈ Cv̇, and Kn : (BvB/B) × B → B × (B\Bv−1B) is given by

Kn([ċ1, . . . , ċn−1, ċn]Fn
, b) = (b−1, [ċ−1

n , ċ−1
n−1, . . . , ċ−1

1 ]F′
n
),

where again (ċ1, . . . , ċn−1, ċn) ∈ Cv̇. It is clear that Ĩn : (Bv−1B, π̃n) → (BvB, −π̃n) is

Poisson. Denote π = πst ×(ρ+,λv̇−1 ) π ′
n. To show Kv̇(π̃n) = π , one needs to show

Jv̇(π̃n) = −K−1
n (π)

as Poisson structures on (BvB/B) × B. The Poisson structure Jv̇(π̃n) has been shown

in [26, Proposition 7.3] to be a mixed product. We now compute −K−1
n (π) using the

definition of π and then compare −K−1
n (π) with the formula for Jv̇(π̃n) given in

[26, Proposition 7.3].

Let {xi}dimb−
i=1 be any basis of b− with {xi}dimb−

i=1 the dual basis of b under the

pairing between 〈 , 〉(b−,b) in (A.3). Recall that for x ∈ b, xL (resp. xR) denotes the left
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(resp. right) invariant vector field of B with value x at the identity element of B. By the

definition of π , we have

−K−1
n (π) = K−1

n

⎛
⎝(−πst, −π ′

n) +
dimb−∑

i=1

((xi)L, 0) ∧ (0, λv̇−1(xi))

⎞
⎠

= (πn, πst) +
dimb−∑

i=1

(I−1
n (λv̇−1(xi)), 0) ∧ (0, (xi)R), (C.22)

where In : Fn → F ′
n is given in (C.18).

Consider now the Poisson Lie groups (B−, −πst) and (B, πst) that become dual

Poisson Lie groups under the pairing −〈 , 〉(b−,b). Consider now the right Poisson action

(B−\B−vB−, −π ′−n) × (B−, −πst) −→ (B−\B−vB−, −π ′−n),

([g1, . . . , gn−1, gn]F′−n
, b−) �−→ [g1, . . . , gn−1, gnb−]F′−n

,

of the Poisson Lie group (B−, −πst), and let

ρv̇ : (BvB/B, πn) × (B−, −πst) −→ (BvB/B, πn)

be the unique right Poisson action of (B−, −πst) on (BvB/B, πn) such that

Iv̇ : (B−\B−vB−, −π ′−n) −→ (Bv−1B/B, πn)

becomes an isomorphism of Poisson manifolds with right Poisson actions by the Poisson

Lie group (B−, −πst). Let λ+ be the left Poisson action of (B, πst) on itself by left

translation. Using the pair (ρv̇, λ+) of respectively right and left Poisson actions of

the Poisson Lie groups (B−, −πst) and (B, πst), one then has the mixed product Poisson

structure πn ×(ρv̇ ,λ+) πst on (BvB/B) × B. By [26, Proposition 7.3],

Jv̇(π̃n) = πn ×(ρv̇,λ+) πst = (πn, πst) +
dimb−∑

i=1

(ρv̇(xi), 0) ∧ (0, (xi)R).

One now checks from the definitions of the actions ρv̇ and λv̇−1 that

ρv̇(x) = I−1
n (λv̇−1(x)) ∈ X1(BvB/B), ∀ x ∈ b−.

Comparing with (C.22), one shows (C.22). This finishes the proof of Lemma C.14. �

Remark C.15. The proof of [26, Proposition 7.3] uses a quotient space of the Drinfeld

double of (G, πst), and one can also use similar arguments to prove Lemma C.14

directly. �
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Proof of Theorem C.5 Let p′−n : F̃−n → F ′−n be the projection map, and let

Pn = IdF̃m
× p′−n : F̃m × B−vB− −→ F̃m × (B−\B−vB−).

By the definition of the Poisson structure π̃m,n,

Pn : (F̃m × B−vB−, π̃m,n) −→ (F̃m × (B−\B−vB−), π̃m ×(ρ̃m,λ−
v ) π ′−n)

is Poisson, where λ−
v is given in (C.19), and ρ̃m is the right Poisson action

ρ̃m : (F̃m, π̃m) × (B, πst) −→ (F̃m, π̃m), ([g1, g2, . . . , gm]F̃m
, b) �−→ [g1, g2, . . . , gmb]F̃m

.

Let P′
n = IdF̃m

× φv̇ : F̃m × (B−\B−vB−) → F̃m × (Bv−1B/B). By Lemma C.13 and by the

definition of the Poisson action λv̇−1 in (C.21),

P′
n : (F̃m × (B−\B−vB−), π̃m ×(ρ̃m,λ−

v ) π ′−n) −→ (F̃m × (Bv−1B/B), π̃m ×(ρ̃m,λv̇−1 ) πn)

is Poisson. On the other hand, by Lemma C.14 and Example A.3, the map

Qn : (F̃m × (Bv−1B/B), π̃m ×(ρ̃m,λv̇−1 ) πn) −→ (F̃m ×B Bv−1B, π̃m+n),

([g1, g2, . . . , gm]F̃m
, [ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]Fn
) �−→ [g1, g2, . . . , gm, ċ−1

n , . . . , ċ−1
2 , ċ−1

1 ]F̃m+n
,

is a Poisson isomorphism, where g1, . . . , gm ∈ G and (ċ1, ċ2, . . . , ċn) ∈ Cv̇. As

Em,v̇ = Qn ◦ P′
n ◦ Pn,

one concludes that Em,v̇ is Poisson as stated. This finishes the proof of Theorem C.5. �

D Symplectic Leaves of (Ow
e × T, πn 	
 0)

In this appendix, we assume that G is connected and simply connected, and we describe

in Theorem D.12 the symplectic leaves of (Ow
e × T, πn 	
 0) for arbitrary w ∈ Wn. We

then apply Theorem D.12 to obtain explicit descriptions of all the symplectic leaves in

the three series

(Fo
n × T, πn 	
 0), (Gm+n, π̃m,n), (F̃n, π̃n), m, n ≥ 1.

In particular, we describe all symplectic leaves in all generalized double Bruhat cells

Gu,v, generalizing the result of [15] for the case of u, v ∈ W. This appendix is written in

a self-contained manner and can be read independently of the rest of the paper.

D.1 Notation

Assume that G is connected and simply connected. Recall from §3.1 that h denotes the

Lie algebra of the maximal torus T = B ∩ B− of G. Let X∗(T) and X∗(T) be, respectively,
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18088 J. H. Lu et al.

the co-character and the character lattices of T. Then

X∗(T) ⊗
Z
C = h and X∗(T) ⊗

Z
C = h∗,

and we also regard X∗(T) and X∗(T) as respective subsets of h and h∗. For λ ∈ X∗(T) and

t ∈ T, write tλ ∈ C
× for the value of λ on t. Recall that for w ∈ W, we denote by wT the

set of all representative of w in the normalizer subgroup NG(T) of T. One has the right

action

T × W −→ T, (t, w) �−→ tw def= ẇ−1tẇ,

where ẇ ∈ wT for w ∈ W, and (tw)λ = twλ for t ∈ T, w ∈ W, and λ ∈ X∗(T).

Let �0 ⊂ X∗(T) and {α∨ : α ∈ �0} ⊂ X∗(T) be, respectively, the set of simple roots

and the set of simple co-roots determined by B. For α ∈ �0, fix root vectors eα for α and

e−α for −α such that [eα, e−α] = α∨ ∈ h. Let x±α : C → G be the one-parameter subgroups

given by

xα(z) = exp(z eα), x−α(z) = exp(z e−α), z ∈ C.

For α ∈ �0, let sα ∈ W be the corresponding simple reflection, and choose sα ∈ sαT by

sα = xα(−1)x−α(1)xα(−1). For future use, we also note that

x−α(z) = xα(z−1)sαα∨(z)xα(z−1), α ∈ �0, z ∈ C
×. (D.1)

By [9, §1.4], for any reduced decomposition w = sα1
sα2

· · · sαl
of w, the element

w
def= sα1

sα2
· · · sαl

∈ NG(T) (D.2)

represents w and is independent of the choice of the reduced decomposition.

Let {ωα : α ∈ �0} be the set of fundamental weights. For α ∈ �0, let �ωα ∈ C[G] be

the corresponding principal minor on G, uniquely determined by

�ωα(g−g0g+) = (g0)ωα , g− ∈ N−, g0 ∈ T, g+ ∈ N.

By [9, Proposition 2.3], when α, α′ ∈ �0 and α �= α′, one has

�ωα(gxα′(z)sα′) = �ωα(g), ∀ g ∈ G, z ∈ C. (D.3)

More generally, let u ∈ W, let supp(u) be the set of all α ∈ �0 such that sα appears in

some, equivalently every, reduced decomposition of u, and let

suppo(u) = {α ∈ �0 : uωα = ωα}.
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Recall that Cu = Nu ∩ uN−. If u = sα1
sα2

· · · sαl
is a reduced decomposition of u, setting

u = (sα1
, . . . , sαl

), one then has the isomorphism [9, Proposition 2.11]

gu : C
l −→ Cu, gu(z1, z2, . . . , zl) = xα1

(z1)sα1
xα2

(z2)sα2
· · · xαl

(zl)sαl
. (D.4)

It then follows from (D.3) that

�ωα(gc) = �ωα(cg) = �ωα(g), ∀ α ∈ suppo(u), g ∈ G, c ∈ Cu. (D.5)

We also note the open embedding [23, Proposition 2.7] (see also [9, Proposition 2.18])

mu : (C×)l −→ N− ∩ BuB, mu(ε1, ε2, . . . , εl) = x−α1
(ε1)x−α2

(ε2) · · · x−αl
(εl). (D.6)

D.2 Description of symplectic leaves of (Ow
e × T, πn 	
 0)

Let w = (w1, . . . , wn) ∈ Wn, and let ẇ = (ẇ1, . . . , ẇn) ∈ wTn be arbitrary. Recall from

(4.22) that Cẇ = Cẇ1
× · · · × Cẇn

. By (4.24), one has the isomorphism

ρẇ : Cẇ −→ Ow, (ċ1, ċ2, . . . , ċn) �−→ [ċ1, ċ2, . . . , ċn]Fn
. (D.7)

Recall that Ow
e = {[g1, . . . , gn]Fn

∈ Ow : g1g2 · · · gn ∈ B−B}. For (ċ1, ċ2, . . . , ċn) ∈ Cẇ, then

[ċ1, ċ2, . . . , ċn]Fn
∈ Ow

e iff ċ1ċ2 · · · ċn ∈ B−B.

Recall also that for x ∈ B−B, we write x = [x]−[x]0[x]+, where [x]− ∈ N−, [x]0 ∈ T, and

[x]+ ∈ N. One thus has the well-defined map

τẇ : Ow
e −→ T, [ċ1, ċ2, . . . , ċn]Fn

�−→ [ċ1ċ2 · · · ċn]0, (D.8)

where (ċ1, ċ2, . . . , ċn) ∈ Cẇ and ċ1ċ2 · · · ċn ∈ B−B. Recall the T-action on Ow ⊂ Fn in (1.3).

Lemma D.1. For any w = (w1, . . . , wn) ∈ Wn and ẇ = (ẇ1, . . . , ẇn) ∈ wTn, one has

τẇ(a · q) = h(h−1)wτẇ(q), h ∈ T, q ∈ Ow
e , (D.9)

where w = w1w2 · · · wn ∈ W.

Proof. Let (ċ1, . . . , ċn) ∈ Cw and write ċi = xiẇi, where xi ∈ N ∩ ẇiN−ẇ −1
i for i ∈ [1, n].

For h ∈ T, one then has

h · [ċ1, ċ2, . . . , ċn]Fn
= [hċ1, ċ2, . . . , ċn]Fn

= [x′
1ẇ1, x′

2ẇ2, . . . , x′
nẇn]Fn

,

where x′
1 = hx1h−1 and x′

i = hw1···wi−1xi(h
−1)w1···wi−1 for i ∈ [2, n]. Now (D.9) follows from

(x′
1ẇ1)(x′

2ẇ2) · · · (x′
nẇn) = hċ1ċ2 · · · ċn(h−1)w.

�
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18090 J. H. Lu et al.

Remark D.2. The definition of the map τẇ : Ow
e → T depends on the choice of ẇ ∈ wTn

as indicated in the notation. If ŵ = (ŵ1, . . . , ŵn) ∈ wTn is another choice, and if

ẇ1ẇ2 · · · ẇn = ŵ1ŵ2 · · · ŵnt ∈ wTn,

where t ∈ T, then each (ċ1, . . . , ċn) ∈ Cẇ corresponds to a unique (ĉ1, . . . , ĉn) ∈ Cŵ such

that [ċ1, . . . , ċn−1, ċn]F̃n
= [ĉ1, . . . , ĉn−1, ĉnt′]F̃n

. It follows that

τẇ(q) = tτŵ(q), q ∈ Ow
e . (D.10)

�

Let again w = (w1, w2, . . . , wn) ∈ Wn and w = w1w2 · · · wn ∈ W. Set

Tw = {a(a−1)w : a ∈ T}. (D.11)

Then dim Tw = dim(Im(1 − w)), where 1 − w : h → h. For ẇ ∈ wTn, let

μẇ : Ow
e × T −→ T/Tw, (q, t) �−→ t−2τẇ(q)·Tw. (D.12)

Recall that l(w) = l(w1) + l(w2) + · · · + l(wn).

Proposition D.3. For any w ∈ Wn and ẇ ∈ wTn, symplectic leaves of (Ow
e × T, πn 	
 0)

are precisely all the connected components of the level sets of the map μẇ. In particular,

all symplectic leaves of (Ow
e × T, πn 	
 0) have dimension l(w) + dim(Im(1 − w)).

Proof. As μẇ is a surjective submersion, all of its level sets are smooth and have

dimension equal to l(w) + dim(Im(1 − w)). By Remark D.2, the collection of level sets of

the map μẇ is independent of the choice of the representative ẇ ∈ wTn. We may thus

choose w = (w1, . . . , wn) ∈ wTn.

For notational simplicity, we set π = πn 	
 0, and let

μ : Ow
e × T −→ T, μ(q, t) = t−2τw(q).

For (q, t) ∈ Ow
e × T, let

π#
(q,t) : T∗

(q,t)(Ow
e × T) −→ T(q,t)(Ow

e × T),
(
π#

(q,t)(β1), β2

)
= π(q, t)(β1, β2),

where β1, β2 ∈ T∗
(q,t)(Ow

e × T), and we use translation in T to identify the tangent space

of T at μ(q, t) ∈ T with h = Lie(T). Note that the Lie algebra of Tw is Im(1 − w) ⊂ h. As μ

is a surjective submersion, it is enough to show that for every (q, t) ∈ Ow
e × T,

Im
(
π#

(q,t)

)
= μ−1∗ (Im(1 − w)), (D.13)
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where μ∗ : T(q,t)(Ow
e × T) → Tμ(q,t)T ∼= h is the differential of μ at (q, t). Recall that

Ow
e × T is a single T-leaf of π , and that by [18, Proposition 2.24], the co-rank of π in

Ow
e × T is equal to the co-dimension of Tw in T. Thus the two vector spaces on the two

sides of (D.13) have the same dimension, and it is enough to show that Im
(
π#

(q,t)

)
⊂

μ−1∗ (Im(1 − w)).

For χ ∈ X∗(T), denote by μχ the regular function on Ow
e × T defined by

μχ(q, t) = (μ(q, t))χ = t−2χτw(q)χ .

For any regular function f on Ow
e × T that is a weight vector with weight χf ∈ X∗(T) for

the diagonal action of T on Ow
e × T, one has by [18, Corollary 2.15] and the definition

π that

{μχ , f }π = 〈χ − wχ , χf 〉μχ f , (D.14)

where { , }π is the Poisson bracket on the coordinate ring of Ow
e × T defined by π . For

χ ∈ h∗, let χ̃ be the left invariant 1-form on T with value χ at the identity element.

By (D.14),

π#(μ∗(χ̃)) = σ(χ# − wχ#) ∈ X1(Ow
e × T),

where σ : h → X1(Ow
e × T) is the Lie algebra homomorphism defined by the diagonal T-

action on Ow
e ×T, and χ# ∈ h is such that χ ′(χ#) = 〈χ , χ ′〉 for χ ′ ∈ h∗. Note that for χ ∈ h∗,

χ |Im(1−w) = 0 if and only if χ = wχ . Now for χ ∈ h∗ with χ = wχ and β ∈ T∗
(q,t)(Ow × T),

(
μ∗

(
π#

(q,t)(β), χ
))

= −
(
β, π#

(q,t)(μ
∗(χ̃))

)
= −(β, σ(χ# − wχ#)) = 0.

This shows that Im
(
π#

(q,t)

)
⊂ μ−1∗ (Im(1 − w)) and thus (D.13). �

For ẇ = (ẇ1, ẇ2, . . . , ẇn) ∈ wTn and for a ∈ T, we thus need to determine the

connected components of the level set


̃ẇ
a

def= μ−1
ẇ (a·Tw) = {(q, t) ∈ Ow

e × T : t−2τẇ(q) ∈ aTw}. (D.15)

To this end, let supp(w) = ⋃n
i=1 supp(wi), and let

suppo(w) = �0\supp(w) =
n⋂

i=1

suppo(wi) = {α ∈ �0 : wiωα = ωα, ∀ i ∈ [1, n]}.

Introduce the sub-torus

T̃w = {t ∈ T : tωα = 1, ∀α ∈ suppo(w)} (D.16)
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of T. Note that Tw ⊂ T̃w and that dim(T̃w) = |supp(w)|. Let

δw : Ow
e × T −→ T/T̃w : (q, t) �−→ t·T̃w, (D.17)

and note that δw has the T-equivariance

δw(h · (q, t)) = hδw(q, t), h ∈ T, (q, t) ∈ Ow
e × T. (D.18)

Let tẇ ∈ T be such that ẇ1ẇ2 · · · ẇn = w1w2 · · · wn tẇ ∈ wT.

Lemma D.4. For any ẇ = (ẇ1, ẇ2, . . . , ẇn) ∈ wTn and a ∈ T, the restriction of the map

δ2
w : Ow

e × T −→ T/T̃w, (q, t) �−→ t2·T̃w,

to 
̃ẇ
a ⊂ Ow

e × T is a constant map: one has t2 ∈ a−1tẇT̃w for all (q, t) ∈ 
̃ẇ
a .

Proof. By (D.5), τw(q) ∈ T̃w for all q ∈ Ow
e , so by Remark D.2,

τẇ(q) = tẇ τw(q) ∈ tẇ T̃w, ∀ q ∈ Ow
e . (D.19)

It follows that for every (q, t) ∈ 
̃ẇ
a , one has t−2 ∈ at−1

ẇ T̃w, and thus t2 ∈ a−1tẇ T̃w. �

Remark D.5. By (D.5), �ωα(w1w2 · · · wn) = 1 for every α ∈ suppo(w). Thus,

�ωα(ẇ1ẇ2 · · · ẇn) = �ωα(tẇ), ∀α ∈ suppo(w).

Lemma D.4 is then equivalent to saying for every (q, t) ∈ 
̃ẇ
a one has

(tωα )2 = a−ωα�ωα (ẇ1ẇ2 · · · ẇn), ∀ α ∈ suppo(w). (D.20)

�

For a ∈ T, define a level set of δw in 
̃ẇ
a to be any non-empty level set of the map

δw|

̃ẇ

a
: 
̃ẇ

a −→ T/T̃w.

By (D.20), δw has at most 2|suppo(w)| level sets in 
̃ẇ
a , and every connected component of


̃ẇ
a is contained in one such level set. Consider the order 2|suppo(w)| sub-group

T(2)
suppo(w) = {α∨(±1) : α ∈ suppo(w)}

of T(2) = {t ∈ T : t2 = e}. Note that for each a ∈ T, 
̃ẇ
a is T(2)

suppo(w)-invariant for the

diagonal T-action on Ow
e × T.

Lemma D.6. For any a ∈ T, there are precisely 2|suppo(w)| level sets of δw in 
̃ẇ
a , each

pair mutually isomorphic by the action of a unique element in T(2)
suppo(w).
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Proof. By the T-equivariance of δw : Ow
e × T → T/T̃w in (D.18), the group T(2)

suppo(w) acts

freely and transitively on the collection of all level sets of δw in 
̃ẇ
a . �

Take now the special representative w = (w1, w2, . . . , wn) ∈ wTn, and let


w = {(q, t) ∈ Ow
e × T : t−2τw(q) ∈ Tw, t ∈ T̃w} ⊂ 
̃w

e . (D.21)

Pick any q0 ∈ Ow
e . Then τw(q0) ∈ T̃w by (D.5). Pick any t0 ∈ T̃w such that t2

0 = τw(q0).

Then (q0, t0) ∈ 
w, showing that 
w �= ∅. Thus, 
w is a level set of δw in 
̃w
e .

Theorem D.7. For any w ∈ Wn, the sub-variety 
w of Ow
e × T is connected.

Theorem D.7 will be proved in §D.4. In the rest of §D.2, we use Theorem D.7 to

describe all the symplectic leaves of (Ow
e × T, πn 	
 0) for every w ∈ Wn.

Theorem D.8. For any ẇ ∈ wTn and any a ∈ T, the 2|suppo(w)| level sets of δw in 
̃ẇ
a

are precisely all the connected components of 
̃ẇ
a and are thus also all the symplectic

leaves of (Ow
e × T, πn 	
 0) contained in 
̃ẇ

a .

Proof. Consider first when ẇ = w. The level sets of δw in 
̃w
e , being isomorphic to


w ⊂ 
̃w
e by Lemma D.6, are connected by Theorem D.7, and since they are both open

and closed, they are all the connected components of 
̃w
e . For any a ∈ T, choose any

h ∈ T such that h−2 = a. Then h · 
̃w
e = 
̃w

a . By the T-equivariance of δw in (D.18), the

level sets of δw in 
̃w
a are in bijection with the level sets of δw in 
̃w

e by the action of

h and are thus all the connected components of 
̃w
a . For an arbitrary ẇ ∈ wTn, since

{
̃ẇ
a : a ∈ T} = {
̃w

a : a ∈ T} by Remark D.2, the level sets of δw in 
̃ẇ
a are also all the

connected components of 
̃ẇ
a .

By Proposition D.3, the level sets of δw in 
̃ẇ
a are precisely all the symplectic

leaves of (Ow
e × T, πn 	
 0) contained in 
̃ẇ

a . �

We have the following immediate consequence of Theorem D.8.

Corollary D.9. Let w ∈ Wn and ẇ ∈ wTn. The symplectic leaf of (Ow
e × T, πn 	
 0)

through any (q0, t0) ∈ Ow
e × T consists precisely of all (q, t) ∈ Ow

e × T satisfying

μẇ(q, t) = μẇ(q0, t0) and δw(q, t) = δw(q0, t0).
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In view of Corollary D.9, for w ∈ Wn and ẇ ∈ wTn, it is natural to consider

the map

μẇ × δw : Ow
e × T −→ T/Tw × T/T̃w, (q, t) �−→ (t−2τẇ(q)·Tw, t·T̃w). (D.22)

Let Xẇ = (μẇ × δw)(Ow
e × T) ⊂ T/Tw × T/T̃w be the image. Symplectic leaves of (Ow

e ×
T, πn 	
 0) are then precisely all the level sets of the now surjective map

μẇ × δw : Ow
e × T −→ Xẇ.

To characterize Xẇ, note that μẇ × δw is T-equivariant, where T acts on T/Tw ×T/T̃w by

h · (a·Tw, a′·T̃w) = (h−2a·Tw, ha′·T̃w), a, a′ ∈ T.

Note that T has the same the stabilizer subgroup every point in T/Tw × T/T̃w, which is

Stabw = {h ∈ T : h ∈ T̃w, h2 ∈ Tw} ⊂ T. (D.23)

Let p1 : T/Tw × T/T̃w → T/Tw be the projection to the 1st factor, and note that p1 is

T-equivariant, where T acts on T/Tw by h · (a·Tw) = h−2a·Tw for h, a ∈ T. Recall again

that tẇ ∈ T is such that ẇ1ẇ2 · · · ẇn = w1w2 · · · wn tẇ.

Theorem D.10. For any w ∈ Wn and ẇ ∈ wTn, one has

Xẇ = {(a·Tw, a′·T̃w) ∈ T/Tw × T/T̃w : a(a′)2 ∈ tẇ T̃w}. (D.24)

Moreover, Xẇ is a single T-orbit in T/Tw × T/T̃w and is thus smooth and isomorphic to

T/Stabw. The subgroup T(2)
suppo(w) of T acts freely on Xẇ, and the restriction of p1 to Xẇ

gives a covering map p1 : Xẇ → T/Tw whose fibers are orbits of T(2)
suppo(w) in Xẇ.

Proof. If a, a′ ∈ T are such that (a·Tw, a′·T̃w) ∈ Xẇ, it follows from (D.22) that a(a′)2 ∈
tẇ T̃w. Conversely, suppose that a, a′ ∈ T are such that a(a′)2 ∈ tẇ T̃w. Let x ∈ T̃w be

such that a(a′)2 = tẇx2. Let
√

tẇ be any element in T such that
√

tẇ
2 = tẇ. Then

(a·Tw, a′·T̃w) = h · (e·Tw,
√

tẇ·T̃w) ∈ Xẇ,

where h = a′(√tẇ)−1x−1 ∈ T. Thus, Xẇ is given as in (D.24).

As T acts transitively on the set of all symplectic leaves of (Ow
e × T, πn 	
 0),

the subset Xẇ of T/Tw × T/T̃w is a single T-orbit and is thus also smooth. One checks

directly from the definitions that the stabilizer subgroup of T at every point in Xẇ is
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Configuration Poisson Groupoids of Flags 18095

Stabw. The map p1 : Xẇ → T/Tw, being is T-equivariant, is thus surjective. For any

fixed a·Tw ∈ T/Tw, one has

p−1
1 (a·Tw) = {(a·Tw, a′·T̃w) : a′ ∈ T, (a′·T̃w)2 = a−1tẇ·T̃w},

which is precisely an orbit of T(2)
suppo(w) in Xẇ. �

Corollary D.11. For any w ∈ Wn and ẇ ∈ wTn, the map μẇ × δw : Ow
e × T → Xẇ

is a surjective submersion whose level sets are precisely all the symplectic leaves of

(Ow
e × T, πn 	
 0).

Proof. As p1 ◦ (μẇ × δw) : Ow
e × T → T/Tw is a submersion, and as p1 : Xẇ → T/Tw is

a covering map, μẇ × δw : Ow
e × T → Xẇ is also a submersion. �

For ẇ ∈ wTn, let again
√

tẇ be any element in T such that (
√

tẇ)2 = tẇ, and set


ẇ def= {(q, t) ∈ Ow
e × T : t−2τẇ(q) ∈ Tw, t ∈ √

tẇ T̃w}, (D.25)

which is a level set of δw in 
̃ẇ
a and thus a symplectic leaf of (Ow

e ×T, πn 	
 0). Note that


ẇ = √
tẇ · 
w. (D.26)

We now have the following alternative reformulation of Theorem D.8.

Theorem D.12. For any w ∈ Wn and ẇ ∈ wTn, symplectic leaves of (Ow
e × T, πn 	
 0)

are precisely all the sub-varieties of Ow
e × T of the form

h · 
ẇ = {(q, t) ∈ Ow
e × T : t−2τẇ(q) ∈ h−2Tw, t ∈ h

√
tẇ T̃w},

where h ∈ T. For h1, h2 ∈ T, h1 ·
ẇ = h2 ·
ẇ if and only if h−1
1 h2 ∈ Stabw given in (D.23).

Remark D.13. Note that for any symplectic leaf 
 of (Ow
e × T, πn 	
 0) and for any

h ∈ T, h · 
 = 
 if and only if h ∈ Stabw. For this reason, we call Stabw is the leaf-

stabilizer of T in (Ow
e × T, πb 	
 0). �

We have already seen in Proposition D.3 that every symplectic leaf of (Ow
e ×

T, πn 	
 0) has dimension equal to l(w)+dim(Im(1−w)) = l(w)+dim(Tw). We now show

that 
ẇ is a 2|supp(w)|-to-1 cover of Ow
e × Tw. To this end, let T act on Ow

e × T by

h ◦ (q, t) = (q, ht), h ∈ T, (q, t) ∈ Ow × T.
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18096 J. H. Lu et al.

Consider T(2)
supp(w) = {α∨(±1) : α ∈ supp(w)} = {h ∈ T̃w : h2 = e}, a group of

order 2|supp(w)|. It follows from the definitions that 
ẇ is invariant under the action

of T(2)
supp(w).

Proposition D.14. For any ẇ ∈ wTn, the map


ẇ −→ Ow
e × Tw, (q, t) �−→ (q, t−2τẇ(q)),

is a covering map whose fibers are the orbits of T(2)
supp(w) in 
ẇ.

Proof. Let (q, t′) ∈ Ow
e × Tw. Writing t ∈ √

tẇ T̃w as t = √
tẇ x for x ∈ T̃w, then

t−2τẇ(q) = t′ if and only if x2 = (t′)−1τw(q). By (D.5), τw(q) ∈ T̃w. The equation

x2 = (t′)−1τw(q), regarded as one in T̃w, then has exactly 2|supp(w)| solutions, consisting

of a single T(2)
supp(w) coset in T̃w. �

Example D.15. Consider the special case when w = (w1, . . . , wn) ∈ Wn is such that

w = w1w2 · · · wn = e ∈ W. Then Tw = {e}. Assume also that w = (ẇ1, . . . , ẇn) ∈ wTn

satisfies ẇ1ẇ2 · · · ẇn = e ∈ G. Then element tẇ ∈ T given by e = w1 · · · wn tẇ lies in

T̃w, and by (D.19) the image of τẇ : Ow
e → T also lies in T̃w. Thus, the symplectic leaf of

(Ow
e × T, πn 	
 0) through the point ([ẇ1, . . . , ẇn]Fn

, e) ∈ Ow
e × T is given by


ẇ = {(q, t) ∈ Ow
e × T̃w : t2 = τẇ(q)}.

By Proposition D.14, the projection 
ẇ → Ow
e , (q, t) �→ q, is a 2|supp(w)|-to-1 covering

map. �

Recall that �n = {[g1, g2, . . . , gn]F̃n
: g1g2 · · · gn ∈ B−}, with the T-action

t · [g1, g2, . . . , gn]F̃n
= [tg1, g2, . . . , gn]F̃n

.

By Proposition 4.1, T-leaves of (�n, π̃n) are precisely all the �w’s as w runs over Wn,

where

�w = (BwB) ∩ �n.

In the remainder of §D.2, we determine symplectic leaves in (�w, π̃n) for every w ∈ Wn,

which is enough for the discussion in §5 on configuration symplectic groupoids. In

fact only the cases of w = (u, u−1) for u ∈ Wm are needed in §5. Symplectic leaves

in (Gm,n, π̃m,n) and (F̃n, π̃n) for all integers m, n ≥ 1 are determined in §D.5 and §D.6.
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Let w = (w1, . . . , wn) ∈ Wn and choose any ẇ = (ẇ1, . . . , ẇn) ∈ wTn. With an

arbitrary γ ∈ �w uniquely written as (see (4.23))

γ = [c1, . . . , cn−1, cnb]F̃n
, where (c1, . . . , cn) ∈ Cẇ, b ∈ B, c1 · · · cn−1cnb ∈ B−, (D.27)

and with b− = c1 · · · cn−1cnb ∈ B−, define

βẇ : �w −→ T/Tw × T/T̃w, γ �−→ (
[b]0[b−]0·Tw, [b−]0·T̃w)

. (D.28)

Let
√

tẇ ∈ T be as in Theorem D.12, and let

�ẇ = {γ ∈ �w : [b]0[b−]0 ∈ Tw, [b−]0 ∈ √
tẇ T̃w} = β−1

ẇ

(
e·Tw,

√
tẇ·T̃w)

. (D.29)

Theorem D.16. Let w ∈ Wn and ẇ ∈ wTn.

(1) Symplectic leaves of (�w, π̃n) are precisely all the non-empty level sets of the

map βẇ and all have dimension equal to l(w) + dim(Im(1 − w)).

(2) Alternatively, symplectic leaves of (�w, π̃n) are all the sub-varieties of �w of

the form

h · �ẇ = {γ ∈ �w : [b]0[b−]0 ∈ h2Tw, [b−]0 ∈ h
√

tẇ T̃w},
where h ∈ T and γ ∈ �w is written as in (D.27).

Proof. Under the Poisson isomorphism Jn : (�w, π̃n) → (Ow
e × T, πn 	
 0) in (3.14),

one has

Jn(γ ) = ([c1, . . . , cn−1, cn]Fn
, [b−]0),

where γ is as in (D.27). Thus,

(μẇ × δw)(Jn(γ )) = ([b]0[b−]0)−1
·T

w, [b−]0·T̃w), (D.30)

and Jn(�ẇ) = 
ẇ. Theorem D.16 now follows from Corollary D.9 and Theorem D.12. �

Remark D.17. By (D.30) and Theorem D.10, the image of βẇ : �w → T/Tw × T/T̃w is

Yẇ = {(a·Tw, a′·T̃w) ∈ T/Tw × T/T̃w : a−1(a′)2 ∈ tẇ T̃w},
and symplectic leaves of (�w, π̃n) are precisely all the level sets of the surjective

submersion

βẇ : �w −→ Yẇ.

Moreover, βẇ is T-equivariant, where T acts on T/Tw × T/T̃w by

h · (a·Tw, a′·T̃w) = (h2a·Tw, ha′·T̃w), a, a′ ∈ T,
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18098 J. H. Lu et al.

and Yẇ ⊂ T/Tw × T/T̃w is a single T-orbit with Stabw in (D.23) as the stabilizer

subgroup. �

Example D.18. Consider the special case when w = (u, u−1) ∈ W2n, where u =
(u1, . . . , un) ∈ Wn and u−1 = (u−1

n , . . . , u−1
1 ). Choose any u̇ = (u̇1, . . . , u̇n) ∈ uTn, so

we have the point

[u, u−1]F̃2n

def= [u̇1, . . . , u̇n, u̇−1
n , . . . , u̇−1

1 ]F̃2n
∈ �(u,u−1)

which is in fact independent of the choice of the representative u̇ for u. Let

ẇ = (u̇1, . . . , u̇n, u̇−1
n , . . . , u̇−1

1 ) ∈ wT2n.

By Theorem D.16 and by Example D.15, the symplectic leaf of (�(u,u−1), π̃2n) through

[u, u−1]F̃2n
is �ẇ in (D.29), i.e. the sub-variety of �(u,u−1) consisting of all γ =

[c1, . . . , c2n−1, c2nb]F̃2n
, where (c1, . . . , c2n−1, c2n) ∈ Cẇ and b ∈ B such that

c1 · · · c2n−1c2nb = b− ∈ B− and [b]0[b−]0 = e, [b−]0 ∈ T̃u.

This example is used in §5.1. �

D.3 Bott–Samelson coordinates and Lusztig toric charts on Ow

To prepare for the proof of Theorem D.7 in §D.4, we recall in this section some

toric charts on generalized Schubert cells which are of interests of their own (see

Remark D.23).

Consider again an arbitrary w = (w1, w2, . . . , wn) ∈ Wn. For each i ∈ [1, n],

choose a reduced word wi of wi and regard wi as in Wl(wi). One then has the

concatenation

w̃ = (w1, w2, . . . , wn) = (sα1
, sα2

, . . . , sαn′ ) ∈ Wn′
, (D.31)

where n′ = l(w) = l(w1) + l(w2) + · · · + l(wn), and αj ∈ �0 for each j ∈ [1, n′]. Using

the parametrization of Ow by Cw = Cw1
× · · · × Cwn

in (D.7) and the parametrization

gwi
: Cl(wi) → Cwi

in (D.4) for each i ∈ [1, n], one obtains the isomorphism

qw̃ : C
n′ −→ Ow, qw̃(z1, z2, . . . , zn′) = [gw1

(z1, . . . , zl1), . . . , gwn
(zln−1+1, . . . , zn′)]̃Fn

,

(D.32)

where li = l(w1) + · · · l(wi) for i ∈ [1, n] and n′ = ln. Following [6], we call qw̃ : Cn′ → Ow

the Bott–Samelson parametrization of Ow defined by w̃, and the resulting coordinates

(z1, z2, . . . , zn′) on Ow the Bott–Samelson coordinates on Ow defined by w̃.

We now use w̃ to define an open toric chart on Ow.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/21/18035/6847336 by guest on 08 O
ctober 2024



Configuration Poisson Groupoids of Flags 18099

Lemma D.19. For any w = (w1, . . . , wn) ∈ Wn, the map

ςw : (N− ∩ Bw1B) × · · · × (N− ∩ BwnB) −→ Ow, (m1, . . . , mn) �−→ [m1, . . . , mn]Fn
(D.33)

induces a biregular isomorphism between (N−∩Bu1B)×· · ·×(N−∩BwnB) and the Zariski

open subset (Ow)0 of Ow given by

(Ow)0 = {[c1, c2, . . . , cn]Fn
: ci ∈ Cwi

, c1 · · · ci ∈ B−B, ∀ i ∈ [1, n]}.

Proof. Let (m1, . . . , mn) ∈ (N− ∩ Bw1B) × · · · × (N− ∩ BwnB), and let ci ∈ Cwi
and bi ∈ B

for i ∈ [1, n] be defined by

m1 = c1b1, b1m2 = c2b2, . . . , bn−1mn = cnbn.

Then ςw(m1, . . . , mn) = [c1, c2, . . . , cn]Fn
by definition. As c1 · · · ci = m1 · · · mib

−1
i ∈ B−B

for each i ∈ [1, n], one has ςw(m1, . . . , mn) ∈ (Ow)0. Furthermore, for any (c1, . . . , cn) ∈ Cẇ

such that [c1, . . . , cn]Fn
∈ (Ow)0, let mi ∈ N−, i ∈ [1, n], be given by

m1 = [c1]−, m1m2 = [c1c2]−, . . . , m1m2 · · · mn = [c1c2 · · · cn]−.

Then (m1, . . . , mn) is the unique element in (N− ∩ Bw1B) × · · · × (N− ∩ BwnB) such that

ςw(m1, m2, . . . , mr) = [c1, c2, . . . , cn]Fn
. Thus ςw induces the biregular isomorphism as

described. �

Consider now the concatenation w̃ in (D.31). Combining ςw in (D.33) with the

open embeddings mwi
: (C×)l(wi) → N− ∩ BwiB in (D.6) for i ∈ [1, n], one obtains the open

embedding σw̃ : (C×)n′ → Ow
e given by

σw̃(ε1, ε2, . . . , εn′) = [mw1
(ε1, . . . , εl1), . . . , mwn

(εln−1+1, . . . , εn′)]Fn
. (D.34)

We call σw̃ : (C×)n′ → Ow
e the Lusztig toric chart on Ow defined by w̃.

We now solve the inverse parameter problem for the open embedding σw̃ :

(C×)n′ → Ow
e . More specifically, for each j ∈ [1, n′], we will express εj, regarded as a

rational function on Ow through (D.34), as a monomial of certain regular functions on

Ow. To this end, using the Bott–Samelson parametrization qw̃ : C
n′ → Ow in (D.32),

define regular functions φw̃,j on Ow by

φw̃,j(qw̃(z1, z2, . . . , zn′)) = �
ωαj (xα1

(z1)sα1
xα2

(z2)sα2
· · · xαj

(zj)sαj
), j ∈ [1, n′]. (D.35)

Set Ow
φw̃ �=0 = {q ∈ Ow : φw̃,1(q)φw̃,2(q) · · · φw̃,n′(q) �= 0} ⊂ Ow.
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18100 J. H. Lu et al.

Lemma D.20. One has σw̃((C×)n′
) = Ow

φw̃ �=0. Moreover, for ε = (ε1, . . . , εn′) ∈ (C×)n′
,

εj =
(
φ

r1,j

w̃,1φ
r2,j

w̃,2 · · ·φrj−1,j

w̃,j−1φ−1
w̃,j

)
(σw̃(ε)), j ∈ [1, n′], (D.36)

where for j ∈ [1, n′] and i ∈ [1, j − 1],

ri,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if αi ∈ {αi+1, . . . , αj−1},
−αj(α

∨
i ), if αi /∈ {αi+1, . . . , αj−1}, αi �= αj,

−1, if αi /∈ {αi+1, . . . , αj−1}, αi = αj.

Proof. For notational simplicity, we set φj = φw̃,j for j ∈ [1, n′].
Consider the generalized Schubert cell Ow̃ ⊂ Fn′ defined by w̃ ∈ Wn′

. As each wi,

for i ∈ [1, n], is a reduced word of wi, we have the isomorphism m : Ow̃ → Ow given by

m
(
[g1, . . . , gn′ ]Fn′

)
= [g1 · · · gl1 , gl1+1 · · · gl2 , . . . , gln−1+1 · · · gn′ ]Fn

,

where gj ∈ Bsαj
B for j ∈ [1, n′]. Let ε = (ε1, . . . , εn′) ∈ (C×)n′

and z = (z1, . . . , zn′) ∈ C
n′

be

such that σw̃(ε) = qw̃(z), that is,

[x−α1
(ε1), . . . , x−αn′ (εn′)]Fn′ = [xα1

(z1)sα1
, . . . , xαn′ (zn′)sαn′ ]Fn′ .

Let j ∈ [1, n′]. Then [x−α1
(ε1), . . . , x−αj

(εj)]Fj
= [xα1

(z1)sα1
, . . . , xαj

(zj)sαj
]Fj

and thus

x−α1
(ε1) · · · x−αj

(εj)tjnj = xα1
(z1)sα1

· · · xαj
(zj)sαj

(D.37)

for some unique tj ∈ T and nj ∈ N. It follows that

φj(qw̃(z)) = t
ωαj

j . (D.38)

This shows in particular that σw̃(ε) ∈ Ow
φw̃ �=0. Comparing (D.37) for j and j − 1, one then

has x−αj
(εj)tjnj = tj−1nj−1xαj

(zj)sαj
. By (D.1), one has

xαj
(ε−1

j )sαj
α∨

j (εj)xαj
(ε−1

j )tjnj = tj−1nj−1xαj
(zj)sαj

∈ Bsαj
B.

It follows that α∨
j (εj)tj = t

sαj

j−1, and thus by (D.38),

εjφj(qw̃(z)) = (α∨
j (εj)tj)

ωαj = t
sαj ωαj

j−1 .

Writing sαj
ωαj

= ∑
α∈�0

(sαj
ωαj

, α∨)ωα, one then has

εjφj(qw̃(z)) =
∏

α∈�0

(tωα

j−1)
(sαj ωαj , α∨) =

∏
α∈�0

(tωα

j−1)
(ωαj −αj,α∨)

.

If α /∈ {α1, . . . , αj−1}, then tωα

j−1 = �ωα(xα1
(z1)sα1

· · · xαj−1
(zj−1)sαj−1

) = 1 by (D.3). If

α ∈ {α1, . . . , αj−1}, then tωα

j−1 = φjα (qw̃(z)), where jα = max{i ∈ [1, j − 1] : α = αi}.
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With r1,j, . . . , rj−1,j as described, one thus has

εj = 1

φj(σw̃(ε))
(φ1(σw̃(ε)))r1,j(φ2(σw̃(ε)))r2,j · · · (φj−1(σw̃(ε)))rj−1,j .

Furthermore, given q = qw̃(z) ∈ Ow
φw̃ �=0, one sees by induction on j that there exist unique

εj ∈ C
× and unique tj ∈ T and nj ∈ N for j ∈ [1, n′] such that (D.37) holds. Thus, σw̃(ε) =

qw̃(z). This shows that σw̃((C×)n) = Ow
φw̃ �=0. This finishes the proof of Lemma D.20. �

Remark D.21. For u ∈ W let Nu = N ∩ uN−u−1 so that Cu = Nuu. For w =
(w1, w2, . . . , wn) ∈ Wn, one then has the isomorphism

Nw1
× Nw2

× · · · × Nwn
−→ Ow, (g1, g2, . . . , gn) �−→ [g1w1, g2w2, . . . , gnwn]Fn

. (D.39)

Recall also from [9] that one has generalized minors

�uωα ,vωα
(g) = �ωα(u−1gv), g ∈ G,

where u, v ∈ W and α ∈ �0. Using the parametrization of Ow in (D.39), one can also

express the functions φw̃,j ∈ C[Ow] as follows: for i ∈ [1, n] and j ∈ [li−1 + 1, li],

φw̃,j([g1w1, g2w2, . . . , gnwn]Fn
) = �ωαj , sli−1+1···sjωαj

([g1w1 · · · gi−1wi−1gi),

where we have set sk = sαk
for k ∈ [1, n′]. In the special case when n = 1 so w = w ∈ W

and w̃ = (sα1
, · · · , sαl

) is a reduced word for w, we can parametrize Ow = BwB/B ⊂ G/B

by Nw → Ow, g �→ gw·B, and (D.36) can be rewritten as

εj =
∏

α �=αj
�ωα , sα1 ···sαj ωα

(g)−αj(α
∨)

�ωαj , sα1 ···sαj ωαj
(g)�ωαj , sα1 ···sαj−1ωαj

(g)
, j ∈ [1, l], g ∈ Nw. (D.40)

In this case, the fact that σw̃((C×)l) = Ow
φw̃ �=0 also follows from [25, Proposition 5.2,

Corollary 6.6], and (D.40) has been proved in [25, Theorem 7.1]. Equivalent formulations

of (D.40) can be found in [2, Theorem 1.4] and [9, Theorem 2.19]. �

Corollary D.22. In the context of Lemma D.20, one has the isomorphism

φw̃ = (φw̃,1, . . . , φw̃,n′) : Ow
φw̃ �=0 −→ (C×)n′

. (D.41)

By Lemma D.20, φw̃ : Ow
φw̃ �=0 → (C×)n′

is the inverse of σw̃ : (C×)n′ → Ow
φw̃ �=0 up to

an invertible monomial transformation on (C×)n′
.

Remark D.23. The functions {φw̃,1, . . . , φw̃,n′ } form an initial cluster for a cluster

structure on Ow defined by Goodearl and Yakimov using the theory of symmetric
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Poisson CGLs [13], an aspect of generalized Schubert cells that will be explored

elsewhere. �

D.4 Proof of Theorem D.7

Let again w = (w1, . . . , wn) ∈ Wn and we return to the (non-empty) sub-variety 
w of

Ow × T given in (D.21), that is,


w = {(q, t) ∈ Ow
e × T : t ∈ T̃w, t−2τw(q) ∈ Tw}.

We now prove Theorem D.7 which states that 
w is connected.

Let Aw = {(q, t, t′) ∈ Ow
e × T̃w × Tw : t−2τw(q) = t′}. Then Aw → 
w, (q, t, t′) �→

(q, t), is an isomorphism. We thus only need to show that Aw is connected. Using the

fact that for a1, a2 ∈ T, a1 = a2 if and only if aωα

1 = aωα

2 for all α ∈ �0, one has

Aw = {(q, t, t′) ∈ Ow
e × T̃w × Tw : (τw(q))ωα = (t2t′)ωα , ∀α ∈ �0}.

Since Tw ⊂ T̃w = {t ∈ T : tωα = 1, ∀α ∈ suppo(w)} and τw(Ow
e ) ⊂ T̃w, one has

Aw = {(q, t, t′) ∈ Ow
e × T̃w × Tw : (τw(q))ωα = (t2t′)ωα , ∀α ∈ supp(w)}.

Choose a reduced word for each wi and consider again the sequence w̃ ∈ Wn′
of simple

reflections in (D.31), where n′ = l(w), and the sequence {φw̃,j : j ∈ [1, n′]} of regular

functions on Ow given in (D.35). For α ∈ supp(w), let j•(α) ∈ [1, n′] be the maximal

j ∈ [1, n′] such that α = αj. By (D.5), one has (τw(q))ωα = φw̃,j•(α)(q) for all α ∈ supp(w) and

q ∈ Ow
e . On the other hand, since an element g ∈ G lies in B−B if and only if �ωα(g) �= 0

for all α ∈ �0, one has by (D.5) again that Ow
e = {q ∈ Ow : φw̃,j•(α)(q) �= 0, ∀α ∈ supp(w)}}.

It follows that

Aw = {(q, t, t′) ∈ Ow × T̃w × Tw : φw̃,j•(α)(q) = (t2t′)ωα , ∀α ∈ supp(w)}.

Consider the Zariski open subset Aw
0 of Aw given by

Aw
0 = Aw ∩ (Ow

φw̃ �=0 × T̃w × Tw).

Let J = {j•(α) : α ∈ supp(w)} and Jo = [1, n′]\J. Under the isomorphism

φw̃ × IdT̃w×Tw : Ow
φw̃ �=0 × T̃w × Tw −→ (C×)n′ × T̃w × Tw,

the sub-variety Aw
0 ⊂ Ow

φw̃ �=0 × T̃w × Tw is then defined by the equations

φw̃,j•(α)(q) = (t2t′)ωα , ∀α ∈ supp(w)
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on (q, t, t′) ∈ Ow
φw̃ �=0 × T̃w × Tw. Thus, Aw

0
∼= (C×)|Jo| × T̃w × Tw ∼= (C×)d, where

d := n′ + dim(Im(1 − w)). Now the complement of Aw
0 in Aw is

⋃
j∈Jo Zj, where

Zj = {(q, t, t′) ∈ Aw : φw̃,j(q) = 0}

for j ∈ Jo. Thus, dim Zj < d for each j ∈ Jo. As Aw is smooth of dimension d, Aw
0 is dense

in Aw. Since Aw
0

∼= (C×)d is connected, it follows that Aw is connected.

This finishes the proof of Theorem D.7.

D.5 Symplectic leaves in generalized double Bruhat cells

Assume again that G is connected and simply connected. For any integers m, n ≥ 1, we

describe in this section all the symplectic leaves of the T-Poisson variety (Gm,n, π̃m,n)

introduced in §4.3 and §C.1. By Corollary C.4, the T-leaves of (Gm,n, π̃m,n) are precisely

the generalized double Bruhat cells in Gm,n. It is thus enough to determine symplectic

leaves in all generalized Bruhat cells. We remark that symplectic leaves in (G1,1, π̃1,1) ∼=
(G, πst) are determined by Kogan and Zelevinsky in [15].

Let thus u = (u1, . . . , um) ∈ Wm and v = (v1, . . . , vn) ∈ Wn be arbitrary. By

Proposition C.8, one has a T-equivalent isomorphism Ku,v̇ : (Gu,v, π̃m,n) → (O(u,v−1)
e ×

T, πm+n 	
 0) for each choice of v̇ ∈ vTn. As symplectic leaves of (O(u,v−1)
e × T, πm+n 	
 0)

are determined by Theorem D.12, we will use Ku,v̇ and Theorem D.12 for a special choice

of v̇ to determine all the symplectic leaves of (Gu,v, π̃m,n).

For w ∈ W, let w = (w−1)−1 ∈ wT (see [9, §1.4]). For representatives of u and v,

we choose

u = (u1, . . . , um) ∈ uTm and v = (v1, . . . , vn) ∈ vTn.

Recall that Cu = Cu1
× · · · × Cum

and Cv = Cv1
× · · · × Cvn

. Introduce

Gu,v = {(c1, . . . , cm, b, b−, c′
1, . . . , c′

n) ∈ Cu × B × B− × Cv : c1 · · · cmb = b−c′
1 · · · c′

n}. (D.42)

One can then parametrize Gu,v by Gu,v by sending (c1, . . . , cm, b, b−, c′
1, . . . , c′

n) ∈ Gu,v to

g =
(
[c1, . . . , cm−1, cmb]F̃m

, [b−c′
1, c′

2, . . . , c′
n]F̃−n

)
∈ Gu,v. (D.43)

Let u = u1 · · · um ∈ W, v = v1 · · · vn ∈ W, and recall that Tuv−1 = {a(a−1)uv−1
: a ∈ T}. Set

Tu,v = {(a−1)uav : a ∈ T} = {av : a ∈ Tuv−1}.

Let again suppo(u, v) = {α ∈ �0 : uiωα = vjωα = ωα, ∀ i ∈ [1, m], j ∈ [1, n]}, and set

T̃u,v = {t ∈ T : tωα = 1, ∀ α ∈ suppo(u, v)}.
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With g ∈ Gu,v expressed as in (D.43), define now

χu,v : Gu,v −→ (T/Tu,v) × (T/T̃u,v), g �−→ (
[b]0[b−]v0 ·Tu,v, [b]0·T̃u,v)

. (D.44)

Recall that T acts on Gu,v ⊂ Gm,n by (4.28). Recall also that l(u) = l(u1) + · · · + l(um) and

l(v) = l(v1) + · · · + l(vn).

Theorem D.24. For any u ∈ Wm and v ∈ Wn, symplectic leaves of (Gu,v, π̃m,n) are

all the (non-empty) level sets of the map χu,v in (D.44) and all have dimension equal to

l(u) + l(v) + dim(Im(1 − uv−1)). Alternatively,

Su,v def= {g ∈ Gu,v as in (D.43) : [b]0 ∈ T̃u,v, [b]0[b−]v0 ∈ Tu,v} (D.45)

is a symplectic leaf of (Gu,v, π̃m,n), and every symplectic leaf of (Gu,v, π̃m,n) is of the form

a · Su,v = {g ∈ Gu,v as in (D.43) : [b]0 ∈ auT̃u,v, [b]0[b−]v0 ∈ (a2)uTu,v}
for some a ∈ T. Furthermore, for a1, a2 ∈ T, a1 · Su,v = a2 · Su,v if and only if a−1

1 a2 ∈ T̃u,v

and (a−1
1 a2)2 ∈ Tuv−1

.

Proof. For g ∈ Gu,v as in (D.43), the T-equivariant Poisson isomorphism Ku,v :

(Gu,v, π̃m,n) → (O(u,v−1)
e × T, πm+n 	
 0) in (C.8) is given by

Ku,v(g) = ([c1, . . . , cm−1, cmb, (c′
n)−1, · · · , (c′

2)−1, (c′
1)−1]Fm+n

, [b−]0).

By (4.21), for g ∈ Gu,v as in (D.43), there are unique (cm+1, . . . , cm+n) ∈ C
v−1

n
× · · · × C

v−1
1

and bm+1, . . . , bm+n ∈ B such that

b(c′
n)−1 = cm+1bm+1, bm+1(c′

n−1)−1 = cm+2bm+2, . . . , bn+m−1(c′
1)−1 = cm+nbm+n.

Then [c1, . . . , cm−1, cmb, (c′
n)−1, · · · , (c′

2)−1, (c′
1)−1]Fm+n

= [c1, . . . , cm, cm+1, . . . , cm+n]Fm+n
.

Since

[b(c′
n)−1, · · · , (c′

2)−1, (c′
1)−1]F̃n

= [cm+1, . . . , cm+n−1, cm+nbm+n]F̃n
,

one has c1 · · · cm−1cmcm+1 · · · cm+n−1cm+n = b−b−1
m+n, and [bm+n]0 = [b]v

−1

0 . Thus

[c1 · · · cm−1cmcm+1 · · · cm+n−1cm+n]0 = [b−b−1
m+n]0 = [b−]0([b]−1

0 )v−1
.

Let w = (u, v−1) ∈ Wm+n, so w = (u1, . . . , um, v−1
n , . . . , v−1

1 , ) ∈ wTm+n. Let 
w ⊂ Ow
e × T

be as in (D.21). It then follows from definitions that Ku,v(Su,v) = 
w.

By Theorem D.12, 
w is a symplectic leaf of (O(u,v−1)
e ×T, πm+n 	
 0) of dimension

equal to l(u) + l(v) + dim(Im(1 − uv−1)). It follows that Su,v is a symplectic leaf of

(Gu,v, π̃m,n) of the same dimension.
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2) follows from Theorem D.12 and the fact that Ku,v is a T-equivariant Poisson

isomorphism. �

Remark D.25. The Poisson structure π̃m,n is also invariant under the T-action

([g1, . . . , gm]F̃m
, [k1, . . . , kn]F̃−n

) · t = ([g1, . . . , gm−1, gmt]F̃m
, [k1, . . . , kn−1, knt]F̃−n

).

One checks directly that for any u ∈ Wm, v ∈ Wn, and a ∈ T, one has

Su,v · a = {g ∈ Gu,v as in (D.43) : [b]0 ∈ aT̃u,v, [b]0[b−]v0 ∈ a2Tu,v} = (a−1)u · Su,v.

�

D.6 Symplectic leaves of (F̃n, π̃n)

Consider now the T-Poisson variety (̃Fn, π̃n) for n ≥ 1, and recall that from (C.10) that

T-leaves of (̃Fn, π̃n) are precisely of the form

F̃u,v
n = {[g1, g2, . . . , gn]F̃n

∈ BuB : g1g2 · · · gn ∈ B−vB−},

where u ∈ Wn and v ∈ W. The T-equivariant Poisson isomorphism (̃Fn, π̃n) → (Gn,1, πn,1)

in (C.9) gives a T-equivariant Poisson isomorphism from (̃Fu,v
n , π̃n) to (Gu,v, π̃n,1). We can

thus use Theorem D.24 to get a description of all symplectic leaves of (̃Fu,v
n , π̃n).

More precisely, let u = (u1, u2, . . . , un) ∈ Wn and v ∈ W, and let u = u1u2 · · · un ∈
W. Write an element in BuB uniquely as [c1, c2, . . . , cnb]F̃n

, where (c1, c2, . . . , cn) ∈ Cu1
×

Cu2
× · · · × Cun

and b ∈ B, and let c = c1c2 · · · cn. Let

�u,v = {[c1, c2, . . . , cnb]F̃n
∈ BuB : c b ∈ B−vB−, [b]0 ∈ T̃u,v, [b]0[c b v−1]v0 ∈ Tu,v}. (D.46)

Theorem D.26. For any u ∈ Wn and v ∈ W,

(1) �u,v is a symplectic leaf of (̃Fu,v
n , π̃n) of dimension l(u) + l(v) + dim(Im(1 −

uv−1));

(2) every symplectic leaf of (̃Fu,v
n , π̃n) is of the form a · �u,v for some a ∈ T.

Moreover, for a1, a2 ∈ T, a1 · �u,v = a2 · �u,v if and only if a−1
1 a2 ∈ T̃u,v and (a−1

1 a2)2 ∈
Tuv−1

.
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