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Abstract—Mobile Crowd Sensing (MCS) is an emerging
paradigm that engages participants collaboratively in completing
sensing tasks. The mobility and intelligence of mobile devices
offer an efficient solution for large-scale sensing applications, such
as in smart cities. Unmanned aerial vehicles (UAVs), considered
as mobile devices, can be integrated into MCS to collaborate with
human participants in order to meet the task sensing coverage
requirement. In this paper, we investigate a UAV-assisted task
allocation method (U-TAM) that allocates tasks to human par-
ticipants and UAVs concurrently. Distinct from existing methods,
U-TAM prioritizes minimizing the privacy leakage of human
participants while maximizing sensed coverage. To achieve this,
it initially predicts their trajectories using a deep reinforcement
learning approach, relying solely on the information provided by
their start and destination locations. In addition to the predicted
trajectories, the proposed U-TAM allocates tasks to human
participants based on their tolerance levels and limited budget.
This approach aligns with the Pareto optimal theory, seeking to
balance the trade-off among participants’ tolerance level, limited
budget, and the requirement for task sensing coverage. In the
meantime, the UAVs sense data efficiently from areas that are
not sensed by human participants or other UAVs. To this end,
we propose a multi-agent deep reinforcement learning frame-
work for multi-UAV trajectory planning, which integrates the
greedy method into deep Q-learning. We evaluate the proposed
method using simulation and a small-scale practical experiment.
Extensive experiments are used to verify the method’s efficiency.

Index Terms—Mobile crowd sensing, task allocation, Pareto
optimal theory, UAV assistance, reinforcement learning.

I. INTRODUCTION

Mobile crowd sensing (MCS) is a common sensing
paradigm that may assemble a crowd of mobile users to carry
out a range of sensing activities as a result of the development

This work was partly supported by the National Natural Science Foundation
of China (Grant No. 62002025, 62072047), the UGC General Research
Fund (Grant No. 17203320, 17209822), and the National Key Research and
Development Program of China (Grant NO. 2023YFB2904103).

Xinbin Liu, Ye Wang and Hui Gao (Corresponding author) is with School
of Computer Science (National Pilot Software Engineering School), Beijing
University of Posts and Telecommunications, Beijing 100876, China (E-mail:
{code, wye, gaohui786}@bupt.edu.cn).

Edith C.H. Ngai (Corresponding author) is with Department of Electrical
and Electronic Engineering, University of Hong Kong, Hong Kong, China
(E-mail: chngai@eee.hku.hk).

Bo Zhang and Wendong Wang are with the State Key Laboratory of Net-
working and Switching Technology, Beijing University of Posts and Telecom-
munications, Beijing 100876, China (E-mail: {zbo, wdwang}@bupt.edu.cn).

Chuhan Wang is with School of Physics and Optoelectronic Engineer-
ing, Guangdong University of Technology, Guangzhou, China (E-mail:
3220007252@mail2.gdut.edu.cn).

of smart mobile devices with strong sensing, networking, and
computing capabilities [1]–[4]. These benefits have made
a wide range of MCS applications possible, including envi-
ronment monitoring [5], public event reporting [6], road and
traffic monitoring [7].

One of the crucial aspects of the MCS system, vital for
ensuring the quality of sensing data, lies in the task allocation
process, which aims to meet sensing coverage requirements
within limited resources, such as budget constraints [8]. Sens-
ing coverage holds paramount significance in both spatial and
temporal dimensions [9], [10]. In practice, self-planned paths
by human participants may not fully address the platform’s
spatial-temporal coverage needs [11]. Additionally, existing
task allocation approaches primarily concentrate on selecting
a group of human participants under a limited budget without
considering their constraints, which indicate the number of
pieces of sensing data they intend to contribute. In reality, a
participant may not be able to contribute over-many pieces of
sensing data for MCS tasks, e.g., when he/she is steering or the
battery life of the mobile device is short [12]. Finding a trade-
off between the quantity of sensing data to be experienced
and a human participant’s constraint is therefore crucial. For
example, Xu et al. addressed the constrained sensing distance
of human participants by planning a path for each participant
within this limited range [13]. In another approach, Huang et
al. proposed a method that allocated tasks to human partici-
pants based on their available time without considering task
coverage requirements [14]. In practice, human participants
are not full-time employees dedicated to performing sensing
tasks, making it challenging to mandate data collection from
specific locations. Additionally, the allocation of tasks to
human participants to meet coverage requirements warrants
consideration.

For the establishment of ubiquitous MCS services, the
unmanned aerial vehicle (UAV), distinguished by its high
agility and flexibility, is increasingly recognized as a powerful
assistant for MCS. It facilitates the collection of sensing data
in challenging, hard-to-reach, and infrastructure-constrained
areas. Wang et al. and Jiang et al. proposed a UAV crowd-
sensing system that employed UAVs to perform tasks [15],
[16]. However, due to restrictions in certain cities, such as
Beijing, Seoul, and Washington D.C., where the use of UAVs
is prohibited, human participants remain essential to ensure
the continuity of MCS campaigns. Samir et al. proposed a
UAV-assisted vehicular network wherein sensors on vehicles
generate data streams, and UAVs were used to collect and pro-
cess this data [17]. In [18], the trajectory of multiple unmanned
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Fig. 1. The proposed hybrid MCS scenario.

ground vehicles (UGVs) and UAVs was jointly considered to
relay information for users. Both authors proposed scenarios
in which vehicles or humans collect data, and UAVs are
employed to relay or process the data. In reality, obstacles
such as buildings need to be considered when planning UAV
trajectories [19].

The hybrid MCS scenario is illustrated in Fig. 1, akin to the
approach presented in [20], [21]. Assuming there are MCS
tasks requiring the utilization of sensing information in a
specific region, such as noise level [22] and air quality [23],
various points of interest (PoIs) are scattered throughout the
designated area, requiring perception by either human partici-
pants or UAVs. Human participants may opt to apply for a task
based on their requested reward and interest in participating.
Concurrently, the UAVs, serving as an auxiliary component,
initiate their cruising phase to provide sensing data.

The endurance and performance of UAVs are limited by
their on-board battery capacity. Energy efficiency emerges
as a crucial prerequisite for these hybrid MCS systems. Put
differently, to avert energy wastage, careful arrangement of
each UAV’s trajectory, considering the positions of human par-
ticipants, other UAVs, and PoIs, becomes imperative. For the
human participants, a balance should be considered between
their tolerance levels and task sensing coverage requirement.
We take Fig.2 as an example, consider a scenario where human
participant A can contribute no more than three pieces of
sensing data. If PoIs 1, 2, and 3 are allocated to A based
on the predicted trajectory, there would be no other human
participant available to cover PoIs 1, 2, and 3. However, if
both human participants A and B cover PoIs 1, 2, 3, and 4,
5, 6, respectively, the sensing coverage requirement will be
fulfilled. Present approaches frequently address these issues
independently, lacking a comprehensive investigation from
the standpoint of human-UAV cooperation regarding work
distribution.

In order to address the issue, we suggest in this study a UAV-
assisted task allocation method (U-TAM) for MCS systems
to satisfy the task sensing coverage requirement. Specifically,
the proposed U-TAM takes task assignment optimization into
account. For the human participants, to cover the sensing
region and mitigate potential leakage of personal trajectory
information, U-TAM initially employs a reinforcement learn-
ing method to predict participant trajectories. Subsequently, it
allocates tasks based on the Pareto optimal theory, considering

Fig. 2. A task allocation example. The coverage ratio is 50% in situation 1,
while there is a chance to be fully covered in situation 2.

the predicted routes and tolerance levels of participants. On the
other side, for the UAVs, the U-TAM plans their trajectories
to sense data while taking into account the locations of human
participants, other UAVs, obstacles, and PoIs that human
participants do not frequently visit. In this context, the U-TAM
utilizes a multi-agent deep reinforcement learning framework
to plan trajectories for multiple UAVs, integrating the greedy
method into deep Q-learning.

The main contribution of this paper is summarized in the
following:
• To maximize sensing coverage, we introduce a UAV-

assisted task allocation method that concurrently assigns
tasks to both human participants and UAVs. We formulate
the optimization problem as NP-hard.

• Specifically, the proposed method takes into account both
human participants’ tolerance levels and UAVs’ sensing
efficiency. On one hand, the method allocates a limited
number of tasks to human participants under tolerance
constraints. On the other hand, the approach plans a
sensing path for each UAV, considering the locations of
participants, other UAVs, obstacles, and PoIs.

• We verify the effectiveness and efficiency of the proposed
U-TAM by conducting a real experiment and simulation
over real datasets.

The rest of this paper is organized as follows. We discuss
related research efforts in Section II. The system model is
described in Section III. We propose the trajectory-based
task allocation method for human participants in Section IV.
Last, the UAV trajectory scheduling algorithm is introduced
in Section V. Finally, we present the simulation results in
Section VI and conclude the paper in Section VII.

II. RELATED WORK

In this section, we study the pertinent literature for two
topics: task allocation strategies for MCS and UAV-assisted
MCS.

A. Task allocation methods

Zhu et al. proposed a shared bicycle return framework that
allocated shared bike return station tasks to participants who
rented the shared bikes, in order to re-balancing the number
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TABLE I
COMPARISON OF RELATED WORKS WITH OUR WORK

References Hybrid sensing scenario Multi-UAV Obstacle considered Optimization objective Optimization method
[17] 3 3 7 Sum age of information minimization DDPG
[18] 3 3 7 Average spectrum efficiency maximization DDPG
[19] 7 3 3 Collect data quantity maximization DRL
[24] 7 3 3 Collect data quantity maximization D-DQN
[25] 7 7 3 Average age of information minimization SAC+AO
[26] 7 3 7 Delivery reward maximization DDPG
[27] 7 3 3 Data collection time minimization DRL
[28] 7 3 7 Average age of information minimization DRL

Our work 3 3 3 Data coverage maximization DQN+GREEDY

of shared bikes of each station. The framework employed a
deep neural network to forecast the trends of bike demand
hot spots, and a reinforcement learning method was used to
allocate tasks [29]. Zhao et al. proposed a privacy-preserving
system that allocated tasks to participants who claimed a
low requested reward [30]. Ding et al. in [31] considered
the time-sensitive task allocation problem, the method first
computed the probabilities of participant reaching the data
sensed area before the deadline of the task, then allocated
the task to participant using the semi-Markov prediction and
meta-path prediction, respectively. Wang et al. proposed a task
allocation method in which tasks were allocated automatically
to participants in order to maximize the sensing quality [32].
Zhang et al. proposed a multi-task allocation method that
also took participant privacy protection into consideration.
With the purpose of enhancing the human participant and
task completion rate, authors evaluated the user reputation
levels, preferences, and task attributes utilizing the privacy-
preserving grouping and matching mechanisms [33]. Xiao et
al. proposed a participant selection method to alleviate the
problem of participants contributing low quality data. The
method required participants to upload their locations and
expertise first, and used an incentive mechanism to motivate
the selected participants to contribute high quality data [34].
Xu et al. in [35] focused on allocating tasks to enough
participants. The method allowed the selected participants to
recruit their social friends. Huang et al. in [36] proposed a
two-stage task allocation method. In the first stage, the method
allocated tasks to participants with the goal of maximizing the
task publisher’s revenue. For the second stage, the available
participants who were not recruited in the first stage still had a
chance to be assigned tasks. In order to minimize participants’
travel detour costs, Wang et al. proposed a task allocation
method that constructed an assignment graph to model the as-
signment relationship between the tasks and participants. Then
the method assigned tasks to participants to achieve Pareto-
optimal schemes [37]. Yin et al. proposed a task allocation
framework that considered the sensing coverage requirement
when the instant sensing and actuation tasks were undetected.
The authors designed a two-stage task allocation algorithm
that first clustered sensing locations and then allocated tasks
to meet the coverage requirement [38].

B. UAV-assisted MCS
Compared with human participants, UAVs could move to

desired places where human participants seldom or impossibly

go. Furthermore, as they are equipped with various sensors,
UAVs could complete more demanding tasks. Nowadays,
UAVs have been exploited for numerous urban sensing appli-
cations, such as traffic conditions [39], monitoring air pollu-
tion [40], and parking lots [41]. However, UAVs have obvious
constraints, such as a limited battery energy supply [42].
Authors in [43] re-utilized delivery UAVs in the crowdsensing
scenario. In general, sensing tasks were assigned to UAVs
according to the package delivery routes. Alkadi et al. argued
that current UAV traffic management systems lacked a clear
definition of secure interaction protocols. In order to solve the
problem, they employed a mobile crowdsensing mechanism
to enforce airspace rules and regulations [44]. Zhao et al.
in [45] focused on solving how to motivate participants to
perform tasks for the space-air-ground integrated vehicular
crowdsensing systems. They proposed an incentive mechanism
to eliminate the redundant number of selected participants.
Wang et al. considered the joint use of trucks and UAVs for
completing sensing tasks. In the process, the truck served as a
mobile drone hub and task executor that swapped batteries for
UAVs and collected sensing data [46]. Xie et al. proposed
a UAV selection method that designed a UAV reputation
incentive scheme and selected UAVs with high reputation
value [47].

C. Deep reinforcement learn-based UAV trajectory scheme

Samir and Wu et al. were both proposed deep deterministic
policy gradient (DDPG) methods for learning the trajectories
of the deployed UAVs [17], [18]. Wang et al. proposed a
trajectory planning method for multi-UAV scenario that em-
ployed deep Q-learning (DQN) to implement the method [24].
Fan et al. proposed a combined soft actor–critic (SAC) and
alternating optimization (AO) algorithm to navigate a UAV
to collect data [25]. Tao et al. aimed to leverage the package
delivery activities of UAVs to solve the task allocation problem
of MCS [26]. Authors employed a DDPG based trajectory
planning method to delivery package. Dai, Wei and Oubbati
et al. were proposed their own DRL based UAV trajectory
schemes that employed UAVs to collect sensing data [19],
[27], [28].

Compared with the aforementioned existing research, par-
ticularly the state-of-the-art methods discussed in Section II-C
that utilize DRL for UAV navigation (as shown in Table I),
our approach aims to enhance sensing data collection for
meeting task sensing coverage requirements. We introduce a
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hybrid MCS scenario wherein both human participants and
UAVs collect sensing data simultaneously. Confronted with
this intricate scenario, the task allocation method needs to
distribute sensing tasks efficiently between human participants
and UAVs. Here the proposed method considers human par-
ticipants’ tolerances and trajectories when allocating tasks to
them, and seek to balance the trade-off among participants’
tolerance level, limited budget, and the requirement for task
sensing coverage. Additionally, to prevent the collection of
redundant sensing data, the proposed method schedules UAV
trajectories by taking into account the locations of unsensed
tasks, human participants, obstacles, and other UAVs. We
propose a multi-agent deep reinforcement learning framework
for multi-UAV trajectory planning, which integrates the greedy
method into DQN.

III. SYSTEM MODEL

We consider a UAV-assisted MCS system that performs
tasks such as air quality monitoring, temperature measurement,
noise detection in a region. The system identifies several
PoIs distributed across the region that require sensing. Subse-
quently, the system concurrently assigns tasks to both human
participants and UAVs, as illustrated in Fig. 3. For human
participants, the system predicts their trajectories using a
reinforcement learning method, and allocates sensing tasks
based on the Pareto optimal theory according their tolerance
level and task coverage requirement. In the meantime, UAVs’
trajectories are planned to perform tasks and avoid sensed
PoIs, obstacles and other UAVs. In this context, a multi-
agent deep reinforcement learning framework is utilized to
plan trajectories, integrating the greedy method into deep Q-
learning.

Consider there is a task associated with a certain budget
B, and a number of PoIs P that distribute the sensing region
needed to be sensed. The whole sensing campaign is divided
into T time-slots with equal duration, as T = {t|1, 2, . . . , T}.
As the UAVs could be maintained frequently by the MCS
staff, it is easier to calibrate UAVs’ sensors than that of human
participants, data contributed by them are more accurate and
credible. Thus each PoI needs to be sensed a maximum of Λ
times by human participants or 1 time by UAVs in a single
time-slot. λtp indicates the total number of times a PoI p has
been sensed up to time-slot t.

As human participant trajectory privacy represents a distinct
category of personal privacy [48], measures are taken to min-
imize the potential leakage of personal information. Instead
of disclosing the entirety of a human participant’s trajectory,
only the initial and destination locations are required. For a
human participant i who wants to perform the task, he/she
first claims his/her beginning and destination locations which
are denoted by (lbi , l

d
i ). Also, at the start of first time-slot,

a human participant claims the reward they requested. We
refer to Li = {xti,p} as the total set of PoIs that participant
i has perceived, with xti,p = 1 signifying that participant
i has contributed sensing data to PoI p during time-slot t,
otherwise xti,p = 0. There is a tolerance threshold ψi for each
human participant indicating the maximum number of pieces

TABLE II
LIST OF IMPORTANT NOTATIONS

Notation Explantation

B, P Task budget, number of PoIs
T , T Number of time-slots, set of time-slots
Λ Required sensing times of a PoI
λtp Total sensed times of PoI p up to time-slot t
lbi , ldi Start and destination locations of human par-

ticipant i
Li Set of PoIs sensed by human participant i
xt·,p Parameter of whether a PoI p is sensed during

time-slot t
ψi Tolerance threshold of human participant i
L· Coverage set
r(Li) Final reward of human participant i
θtj , vtj Direction and speed of UAV j

etj Power consumption of UAV j

Lj Set of PoIs sensed by UAV j

of sensing data that he/she could collect. And r(Li) stands
for the recruited participant i’s final reward.

Following our former research [49], we consider sensing
tasks to require all UAVs to fly around and cover PoIs.
In the beginning, a UAV j is fully charged and its flight
movements are influenced by two parameters (θtj , v

t
j)j∈J ,

θtj is the direction and vtj is the speed. We consider the
power consumption etj of UAV j, which is directly related
to the distance UAV j can fly, namely, etj = γdtj , and the
battery capacity of a UAV j is Ej . The whole coverage set
is Lj = {xtj,p}, where xtj,p = 1 represents a UAV j that
contributes a piece of high-quality sensing data at PoI p during
time-slot t, and xtj,p = 0 otherwise.

The frequently used notations are summarized in Table II.
This paper aims to optimize the coverage completed ratio,

which measures the amount of sensing data acquired to satisfy
the coverage requirement while taking into account the budget
and UAV energy limits.

maximize:

∑T
t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Li

∣∣∣∣∣
Λ ∗ P ∗ T

+

∑T
t=1

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣
P ∗ T

subject to:
T∑

t=1

I∑
i=1

r(Li) ≤ B,

Li ≤ ψi, i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T},
T∑

t=1

etj ≤ Ej ,

(1)
where I and J is the number of recruiting partici-

pants and UAVs, respectively.
∑T

t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Li

∣∣∣∣∣ denotes

the total contributed sensing data by human participants.∑T
t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Li

∣∣∣∣∣/Λ ∗ P ∗ T is the final coverage ratio

sensed by human participants. The amount of sensing data

collected by UAVs is denoted by
∑T

t=1

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣.
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Fig. 3. Workflow of the proposed U-TAM.

Λ is the number of required times sensed from a PoI.∑T
t=1

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣/P ∗ T is the final coverage ratio

sensed by UAVs. ψi is the tolerance threshold for each human
participant. The problem formulation of this paper is an NP-
hard problem [49].

IV. TRAJECTORY-BASED TOLERANCE-AWARE TASK
ALLOCATION METHOD FOR HUMAN PARTICIPANTS

As we mentioned in Section I, the method simultaneously
allocates tasks to both UAVs and human participants according
to their trajectories. In this section we describe the proposed
method in order to maximize sensing coverage. We first
focus on proposing the task allocation method for human
participants. Taking into account the tolerance level of human
participants, representing the maximum amount of sensing
data they can contribute, along with the coverage requirement
for each task, the task allocation method for the MCS system
aims to maximize the sensed coverage while adhering to the
tolerance constraints of human participants. This approach
aligns with the Pareto optimal theory, asserting that the sensed
coverage cannot be increased if a human participant shifts to
sense another PoI, considering their tolerance level.

Specifically, the method first predicts the trajectories of hu-
man participants based on their start and destination locations.

Then tasks are allocated to them following the Pareto optimal
theory, which considers their tolerance level and the predicted
trajectories. After that, we will combine human participant task
allocation with UAV trajectory planning in the next section.

A. Human participant trajectory prediction method

As we mentioned in Section I, in order to allocate tasks
efficiently, we predict the trajectory of human participants be-
fore allocating tasks to them. Similar to the digital navigation
map, here we suppose that each human participant claims the
start and end sites to the platform where he/she would like
to contribute sensing data. Then the proposed method predicts
the human participant’s trajectory immediately and allocates
task to him/her. Generally speaking, human participants are
usually able to make an experienced judgment based on the
actual congestion and choose roads with good road conditions.
A route is more likely to be superior if there are more human
participants who choose it. This indicates that the superiority
of a route can usually be reflected in the number of times it
is chosen. Therefore, better routes can be predicted based on
a large number of reliable historical trajectories.

We formulate the trajectory prediction problem for human
participants as a Markov Decision Process (MDP) and propose
a reinforcement learning algorithm for predicting trajectories
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based on historical GPS tracks, which is formulated as Tr =
{< p1, p2, . . . , pn > |pk = (lonk, latk, timk)}, where lonk,
latk and timk are the longitude, latitude and time information,
respectively. The road network is represented as a directed
graph G = (U,S), where U is the full set of road junction
nodes and S is the full set of all road sections in the road
network. The junction node of an arbitrary road is denoted ui,
and sij denotes the road from node ui to node uj . We take the
form of a limited latitude and longitude range, select certain
intervals and applied road network matching to convert the
sequence of GPS tracks of human participants into sequences
of vertices in the graph where Tr = {< p1, p2, . . . , pn > |pi =
(ui, timi)}.

Here the trajectory prediction problem is formulated as a
MDP, which is defined as a tuple (S,A, F,R), including:
a set of states S, a set of actions A, the function of state
transition probability F : S ×A ×S→ [0, 1] and the output
reward function S×A → R.

1) State space and observation space: S = {uk|uk ∈ U}
denotes the state set of an MDP, where uk denotes the current
road junction node u at hypothetical step k. Each human
participant only knows his/her current junction node location
uk in graph G, which is called observation.

2) Action space: The action set is denoted by A = {au|u ∈
U}, where au is the next road junction that can be reached
on the road junction node u.

3) Probability distribution and state transition: F :
S × A × S → [0, 1] denotes the probability distribution
P{uk+1|uk, {au}u∈U} of a state transition, in which the
current state is uk and when action au is chosen, the state
is transitioned to a new state uk+1.

4) Reward function: S × A → R expresses the expected
immediate reward received after the state is transitioned from
uk to uk+1.

Before introducing our reward function, we first denote
a conditional turning probability under destination constraint
by Pr(uj |d), which represents the probability that a human
participant chooses uj for the next junction node in order
to reach the destination d. A simple way to calculate the
value of Pr(uj |d) is to enumerate the road sections in all
trajectories that end at d, then calculate the percentage of the
trajectories that contain the road junction uj . The expression
is Pr(uj |d) =

∑
Tr(uj ,d)∑
Tr(d)

.
We normalize and employ Pr(uj |d) as a reward reference

for making an action from uk to uk+1, specifically defined as
follows,

r(s, a) = −(1− Pr(uk+1|d))× L(uk, uk+1),

where L(uk, uk+1) represents the length of the road from uk to
uk+1. When the agent reaches the destination d, it will receive
a larger reward based on the straight-line distance between its
initial position and the destination d.

5)Problem formulation: Our problem can be formulated as:

Q∗(uk, au
k

) =Q(uk, au
k

)+

α
(
r + γmax

auk
Q(uk+1, au

k+1

)−Q(uk, au
k

)
)
,

Algorithm 1 Deep Q-Networks in route prediction
Input: Start point u0, end point ue, max steps K
Output: Deep Q-Network Q(s, a)

1: Initialize replay memory D, its capacity is N ;
2: Initialize action-value function Q with all zero weights;
3: for episode i in range [1, episodes] do
4: Initialize s0 = u0, k = 0;
5: while current state sk! = ue and step k < K do
6: Select an action ak with ε-greedy strategy that ak =

argmaxaQ
∗(sk, ak);

7: Execute ak, get reward rk and new state sk+1;
8: Store (sk, ak, rk, sk+1) in D;
9: Sample random mini-batch of transitions (sk, ak, rk,

sk+1) from D;
10: if sk+1 = ue then
11: yk = rk;
12: else
13: yk = rk + γmaxa′(sk+1, ak+1);
14: end if
15: Train the Q-networks with (yk −Q(sk, ak))2 as the

loss function;
16: k = k + 1;
17: end while
18: end for

and the optimal strategy of predicting a human participant’s
trajectory is given by π = arg maxau Q∗(uk, au

k

), where
γ ∈ (0, 1) represents the discount factor to show the im-
portance between the future and present reward. This is a
discrete Markov dynamic decision process. Here we use the
DQN approach to predict the route chosen by the human
participants. DQN combines the advantages of deep learning
and reinforcement learning. In human road prediction, DQN
can integrate different input data, such as historical travel prob-
abilities and road distances, and learn through reinforcement
learning how to make the most appropriate decisions in a given
environment.

The prediction method is shown in Algorithm 1. The main
processes are described as follows:

1) At the beginning, the algorithm initializes both the
experience replay memory D with capacity N , and the
action-value function Q with all zero weights (Line 1-2).

2) In Line 3-4, the agent which is initialized at position
u0 tries to find an empirical path to reach ue for each
episode. The step count of the agent is recorded by k.

3) Last, in Line 5-6, at the current episode the agent
repeatedly chooses one of the neighboring rode junction
nodes. Then the agent adds it to its route based on an
ε-greedy strategy. Whenever the agent chooses such an
action ak, it receives an immediate reward rk from the
environment and gets the next state sk+1 (Line 7).

4) Finally, we store the values of (sk, ak, rk, sk+1) in
the experience replay memory D, and take a number of
samples from D to calculate the current target Q-Value
yk.

All parameters of the Q-Network are updated by means of
gradient back propagation, which is based on the mean square
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loss error function. After that, we extract a route as the most
likely route, which is with the highest Q-value from the trained
Q-Network.

B. Tolerance-aware task allocation method for human partic-
ipants

If we ignore UAVs temporarily and only take human par-
ticipants into account for the MCS campaigns, the target of
this paper could be formulated as:

maximize:

∑T
t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Li

∣∣∣∣∣
Λ ∗ P ∗ T

subject to:
T∑

t=1

I∑
i=1

r(Li) ≤ B,

Li ≤ ψi, i ∈ {1, 2, . . . , I}, t ∈ {1, 2, . . . , T}.

(2)

Here (2) can be transformed into a multi-objective optimiza-
tion problem, which can be formulated as:

maximize: fj(x) =

{
0, xj = 0

1, xj 6= 0

subject to:
I∑

i=1

r(xi) ≤ B,

Li ≤ ψi, i ∈ {1, 2, . . . , I},

where x ∈ {0, 1, . . . , I} and j ∈ {1, 2, . . . , P}, I and P is the
number of recruiting participants and PoIs, respectively. It is
clear that PoI j is allocated to driver xj when fj(x) = 1. The
budget for task is denoted by B. ψi is the tolerance threshold
for each human participant.

For our multi-objective function optimal problems, assump-
tion of a vector is f(X) =

(
f1(X), f2(X), . . . , fn(X)

)
. There

are two decision variables Xu, Xv . Decision Xu is said to
weak-dominate decision Xv if and only if f(Xu) ≤ f(Xv)
for all j in [0, J] and f(Xu) is strictly better than f(Xv)
at least one objective. If there exists both i and j such that
fi(Xu) < fi(Xv) and fj(Xu) > fj(Xv), thus Xu non-
dominates Xv . The objective of our multi-objective optimiza-
tion problem is to find a Pareto optimal solution, which defined
as follows:

A solution Xu is a Pareto optimal solution if there is no
other solution Xv , that dominates Xu.

Finding the Pareto optimal solution set means finding the
Pareto optimal front. Here we employ a fast non-dominated
sorting method to find the front. Briefly speaking, this method
divides different PoIs allocation results into different sets,
and repeats this step until the optimal set of non-dominated
solutions is found [50]. The fast non-dominated sorting method
is shown in Algorithm 2, which the time complexity is
O(m ·N2). We describe the main processes as follows:

1) The size of a task allocation set P is denoted by
N . There are two parameters np and Sp needed to
be calculated for each task allocation result p in the
set. Where np represents the number of task allocation
results for which Pareto dominates p, and Sp represents

Algorithm 2 Fast non-dominated sorting
Input: A task allocation set P
Output: Different non-dominated sets stored by F

1: F1 = ∅;
2: for p ∈ P do
3: np = 0, Sp = ∅;
4: for q ∈ P do
5: if p Pareto dominates q then
6: Sp = Sp

⋃
{q};

7: else
8: np = np + 1;
9: end if

10: if np = 0 then
11: F1 = F1

⋃
{p};

12: end if
13: end for
14: end for
15: F = {F1};
16: i = 1;
17: while Fi 6= ∅ do
18: Fi+1 = ∅;
19: for p ∈ Fi do
20: for q ∈ Sp do
21: nq = nq − 1;
22: if nq = 0 then
23: Fi+1 = Fi+1

⋃
{q};

24: end if
25: end for
26: end for
27: F = F

⋃
Fi+1;

28: i = i+ 1;
29: end while

the set of task allocation results dominated by p. In
the beginning, for each task allocation result p ∈ P,
initialize np = 0, and Sp = ∅ (Line 3).

2) In Line 2-14, the method iterates through the entire task
allocation set P, calculates np and Sp for each task
allocation result p, and places p with np = 0 into current
non-dominated set F1.

3) The method iterates through Fi in Line 17-29. For each
task allocation result p in Fi, the value of nq keeps to
reduce as long as a task allocation result q exists in Sp. If
nq is 0, then q will be added into a new non-dominated
set.

4) The method continues to repeat step 3) until Fi == ∅,
where Sp = 0.

The UAVs collaboration method is described in Algo-
rithm 3. Here we suppose that Pt is the last task allocation set
of the tth generation, and Qt is the offspring task allocation
set that is generated by Pt. They are of the same size N . We
firstly combine Pt with Qt, then divide them into different sets
(F1,F2, . . . ,Fn) using the non-dominated sorting algorithm
described in Algorithm 2. The selection process starts at layer
F1, and ends until its size attains or exceeds N for the first
time. The main procedure is described as follows:

1) At the beginning, the algorithm initializes the final
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Algorithm 3 Selection process of next generation St

Input: Last task allocation set Pt

Output: Next task allocation set St

1: St = ∅, i = 1;
2: Qt = Recombination-Mutation(Pt);
3: F = Non-dominated-sorting(Pt

⋃
Qt);

4: while |St|+ |Fi| <= N do
5: for p ∈ Fi do
6: St = St

⋃
p;

7: end for
8: i = i+ 1;
9: end while

10: if |St| < N then
11: The number of points that need to be picked out of

Fi : K = N − |St|;
12: Select any K remaining allocation results on the

NSGA-III reference point model;
13: end if

selecting set St = ∅. Then the algorithm generates Qt

from Pt based on genetic recombination and polynomial
variation (Line 1-2).

2) The result of Pt

⋃
Qt is separated into different sets

by using the non-dominated-sorting method, which are
stored by F (Line 3).

3) In Line 4-8, the algorithm adds all allocation results
repeatedly from Fi to St until |St|+ |Fi| > N .

4) The proposed algorithm selects N elements from Fi

(Line 10-13).
After many generations of evolution, we finally choose the

solution with the lowest budget cost from the N allocation
results to be our optimal solution. The solution is the highest
Pareto non-dominance, namely the Pareto optimal solution.

V. A TRAJECTORY SCHEDULING APPROACH FOR UAVS

In this section, we introduce a UAV trajectory scheduling
approach that directs the UAVs to contribute sensing data
jointly with human participants. The approach instructs the
UAVs to sense data from PoIs which are rarely accessed by
human participants, and all of UAVs to cooperatively collect
PoIs while avoiding obstacles and other UAVs. It is worth
noting that the trajectory scheduling method is calculated
by the platform which is typically run on a cloud server.
The UAVs receive and follow commands. More details are
introduced in the sections below.

Similar to the trajectory prediction method for human
participants, the UAVs also need to choose their next actions
based on the information of currently observing about their
environment. We employ a reinforcement learning method to
solve the UAV trajectory schedule problem. However, we also
consider that as the number of UAVs are much fewer than
that of PoIs in the UAV-assisted MCS context, the size of
UAVs’ observations can be effectively reduced by using the
greedy method. Furthermore, the greedy method could also
help UAVs avoid a lot of repetitive and inefficient exploration,
and find the nearest PoIs quickly. Here we combine the deep

Q-networks (DQN) with the greedy method to make trajectory
schedules for UAVs.

1) The observation space: The observation space S of a
UAV contains the following three parts, namely the UAV’s
own position, the relative position of the nearest PoI, and the
relative position of the nearest UAV.

2) Action space: The action space A contains the actual
flight actions that a UAV can perform, i.e., flying a number
of distances in a certain direction (up, down, left, right, upper
left, lower left, upper right, lower right).

3) Probability distribution and state transition: F :
S × A × S → [0, 1] denotes the probability distribution
P{sk+1|sk, {as}s∈S} of a state transition, in which the cur-
rent state is sk and when action as is chosen, the state is
transitioned to a new state sk+1.

4) Reward function: S × A → R expresses the expected
immediate reward received after the state is transitioned from
sk to sk+1. We define the reward received by the UAV u for
making action a in state s as follows:

ru(s, a) = cu(s, a)− pu(s, a),

where cu(s, a) denotes the reward that a UAV u can get
by collecting PoIs after executing action a in the current
observation s, the magnitude of the reward increases with the
number of PoIs collected. cu(s, a) is define as:

cu(s, a) = n× v(p),

where n represents the number of PoIs collected by the UAV
during its action a, while v(p) denotes the value of a single
PoI. If there are no PoIs to collect, the reward will be expressed
as a negative relative distance from the UAV to the current
nearest PoI. pu(s, a) denotes the penalty brought by the UAV
doing action a in state s. If the UAV hits an obstacle or flies
out of the boundary after executing the action a, pu(s, a) will
incur a significant penalty value. Otherwise pu(s, a) will be
calculated based on the distance between the UAV and its
nearest uncollected PoI.

5) Problem Formulation: After the state transition function
F and reward r are given by (3) and (4), our problem can be
formulated as:

Qu,∗(sk, ak) = E
sk+1∼F
∀u∈U

[
ru(sk, ak) + γmax

ak+1
Qu(sk+1, ak+1)

]
,

and our optimal strategy of UAVs is described as:

πu,∗ = arg max
ak

∀u∈U

[
E

sk+1∼F
[ru(sk, ak) + γmax

ak+1
Qu(sk+1, ak+1)]

]
,

where γ ∈ (0, 1) represents the discount factor to show the
importance between the future and present reward. The UAV
trajectory scheduling method is shown in Algorithm 4, which
the main steps are expressed as follows.

1) At the beginning, the algorithm initializes both the
experience replay memory buffer D with its capacity
N , and the action-value function Q with all zero weights
(Line 1-2).
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Algorithm 4 UAV’s trajectory scheduling method
Input: Start state sstart, Start power pf , max steps K
Output: Deep Q-Network Q(s, a)

1: Initialize replay memory D, its capacity is N ;
2: Initialize action-value function Q with all zero weights;
3: for episode i in range [1, episodes] do
4: Initialize s0 = sstart, p = pf , k = 0;
5: while current power p > 0 and step k < K do
6: Generate a random probability ε
7: if ε < ε0 then
8: Generate a random probability β ∈ [0, 1];
9: if β < β0 then

10: Select an action ag using a greedy method;
11: ak = ag;
12: else
13: Select an action ar randomly;
14: ak = ar;
15: end if
16: else
17: Select an action ak that ak = maxaQ

∗(sk, ak);
18: end if
19: Execute ak, get reward rk and new state sk+1;
20: Store (sk, ak, rk, sk+1) in D;
21: Sample random mini-batch of transitions (sk, ak, rk,

sk+1) from D;
22: if p ≤ pe or k = K then
23: yk = rk;
24: else
25: yk = rk + γmaxa′(sk+1, ak+1);
26: end if
27: Train the Q-networks with (yk −Q(sk, ak))2 as the

loss function;
28: k = k + 1;
29: end while
30: end for

2) The UAV’s initial state is denoted by s0 and explores
the environment based on the probability of ε. If the
UAV decides to perform an exploratory action, it either
chooses a greedy action with a probability of β, or
performs behavior with the highest value of Q∗(sk, ak)
in the current network (Line 4-18).

3) The UAVs repeatedly choose the actions. After each
action is performed, the feedback that is given by the
environment will be stored in D (Line 19-20).

4) Finally, we choose a batch of samples from the experi-
ence replay memory D and update the Deep Q-Network
based on the mean squared error loss function mentioned
in the Algorithm 4 (Line 21-27).

VI. PERFORMANCE EVALUATION

This section begins by presenting the precise experimental
setup along with the necessary parameters. The results are then
discussed and compared to the widely used baselines.

TABLE III
PARAMETER OF SETTINGS

Parameters Value

No. of human participants Range from 20% to 100% of
the total number of 200 par-
ticipants, the default setting is
200

No. of UAVs Range from 1 to 5, the default
setting is 4

Max. flight distance of UAV 18 000m under an idealized
condition

Speed of UAV Range from 0m/s to 20m/s
Sensing range Range from 12m to 20m, the

default setting is 20m
No. of PoIs Range from 170 to 270, the

default setting is 270
The amount of budget Range from 400 to 2 000

units, the default setting is
2 000 units

Amount of request reward Range from 10 to 30 units
Randomly

Tolerance level Range from 3 to 5 pieces of
sensing data Randomly

No. of requested data of each PoI 1 for UAVs and 5 for human
participants

No. of time-slots 20

A. Setup

We employ a dataset of taxi movement trajectories as
a reference for historical trajectories of human participants,
which was collected in Rome, Italy [51]. The dataset contains
320 taxi drivers’ travel tracks for one month, each track
contains a number of records that include the taxi driver’s
ID, timestamp and GPS location (latitude and longitude). The
parameter settings for our experiments are recorded in the
Table III, some of these parameters are set following the
configurations from work [49], including the number of UAVs
and the quantity of requested data. We follow the work [18],
[52] to set the parameters of signal transmission power, noise
power spectral density and channel bandwidth. The subsequent
procedure outlines the construction of our simulation platform.

• The dataset we employed for the simulation contains
different areas of the city of Rome, of which we take
1 000 × 1 000m2 as our simulation area. We scatter PoIs
for every 50m on the area.

• We conduct the simulation experiments based on the DJI
Mavic 21 drone, which the maximum sensing range is
20m and maximum flight distance is 18 000m under an
idealized condition. To ensure safety, the speed of the
drone is set between 0m/s and 20m/s.

• In the context of real-world environments with geograph-
ical constraints, UAV path planning becomes a highly
complex task. UAVs are subject to various influences
such as terrain occlusion, battery limitations, and channel
noise. Taking into account the impact of channel noise
during UAV flight, this paper, based on the settings
of work [18], [52], proposes that each time the UAV
performs a flight action or senses data, its battery con-
sumption includes not only the energy required for the

1https://www.dji.com/be/mavic-2/info#specs
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Fig. 4. Experiment on PoI sensed by tolerance-aware human participants,
impact of (a) budget and (b) the number of human participants on the number
of collected PoIs.

flight action but also an additional attenuation related to
the transmission power (with a magnitude of 20dBm),
a noise power spectral density of 10−17W/Hz, and a
channel bandwidth of 1MHz.

• The experiments are run on an Ubuntu 18.04.3 X64 server
with a four-core, 3.60 GHz Intel(R) Xeon(R) Gold 5122
processor, 62GB of memory, and four Nvidia GeForce
RTX 2080Ti graphics cards. Python 3.7 and Pytorch
1.7.0 are used to put the proposed method into practice.
To train and evaluate the algorithms, we have created
a unique reinforcement learning simulation environment
that mimics OpenAI Gym, a traditional reinforcement
learning environment.

• There are 270 PoIs prepared to be collected. For the
UAVs, each PoI only needs to be collected one single
time, whereas for the human participants, 5 times are
required. The UAVs and human participants update their
behavior synchronously once per time-slot.

• We set the requested reward and tolerance level of a
human participant randomly in the range of [10, 30] units
and [3, 5] pieces of sensing data, respectively.

B. Simulation Results

Firstly, for human participants, Fig. 4 is presented to eval-
uate whether the proposed method is tolerance-aware and
takes sensing coverage into consideration. As the amount of
sensing data should not exceed the tolerance level of human
participant, how to allocate task to them becomes important.
Fig. 4 illustrates that the proposed method collects more
PoIs compared to the method that does not consider sensing
coverage (referred to as "w/o U-TAM"). It is important to note
that, in order to ensure data quality, a PoI is included in the
count of successfully sensed PoIs when it is detected multiple
times by human participants.

Next we show moving trajectories for 2, 3, 4, 5 UAVs in
Fig. 5. All of the UAVs successfully avoid obstacles and stay in
the sensing areas. Because of the purposed U-TAM, each UAV
has a clear direction to go and sense instead of flying around
some PoIs and re-sensing them several times. Furthermore,
with the increase number of UAVs, each one learns a new
trajectory to sense, which clearly shows that UAVs could
learn to collaborate with others. Because there were enough
UAVs deployed and they were trained to work together, for

Fig. 5. UAV trajectories (lines for UAVs trajectories, gray blocks for obstacles,
blue dots for un-sensed PoIs, and purple dots for sensed by participants).

Fig. 6. (a) impact of number of PoIs on coverage completed ratio, and (b)
impact of sensing range of UAVs on the number of PoIs.

instance, we can see from Fig. 3(d) that each UAV assumed
responsibility for sensing a limited area and refrained from
exploring beyond the range of other UAVs.

We conducted a comparative analysis of our human par-
ticipant trajectory prediction method with two alternative
approaches. The first method utilizes a fuzzy logic system
to predict human participant trajectories [53]. This approach
takes historical trajectory information of human participants
as input and operates in three steps: converting crisp values
into degrees of matching with linguistic values through mem-
bership functions, inferring fuzzy output based on predefined
rules, and finally converting the fuzzy output into a crisp value
using a typical center of gravity strategy. The second compared
method is Dijkstra, a well-known route planning algorithm.
Through experiments conducted on the same dataset, the
accuracy results are 72.1% for our proposed method, 61.7%
for the fuzzy logic system [53], and 48.7% for Dijkstra,
respectively.

To compare with our proposed algorithm, we first employed
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Fig. 7. Impact of (a) the number of UAVs, (b) sensing range of UAVs, (c) the
number of PoIs, and (d) the number of participants on coverage completed
ratio.

a single sensing medium to contribute data, i.e., UAVs or
participants, which are referred to as “UAV only” and “Partic-
ipant only”, respectively. The impact of the number of PoIs on
coverage completed ratio is shown in Fig. 6(a), where there are
4 UAVs sensing tasks. The proposed method always performs
better than others. For example, U-TAM gains 81.3% and
84.6% more than that of participant only when the number of
PoIs are 210 and 250, respectively. Fig.6(b) shows the impact
of the sensing range of UAVs on the number of PoIs, where
the number of PoIs increases with the sensing range extending.
Here U-TAM improves 15.8% and 10.6% more PoIs than that
of UAV only.

Next, we compared the proposed method with five baselines.
The first one is UMA [49], which employs a reinforcement
learning method named MADDPG to navigate UAVs (referred
to as “UMA”). The second one is DRL-PP [27], which is
likewise a reinforcement learning-based trajectory scheduling
solution for UAVs (referred to as “DRL-PP”). A greedy
approach is proposed as the third method that directs a UAV
to sense a PoI in order to maximize the immediate reward
(referred to as “Reward M”). The last method takes an action
that maximizes the number of sensed PoIs (referred to as
“PoI M”). The final one allows UAVs to take action randomly
(referred to as “Random”).

We can infer the following conclusions from Fig. 7: in
terms of coverage completed ratio, U-TAM regularly performs
better than all baselines. For instance, in Fig. 7(a), we can
observe that the number of UAVs has a monotonic effect
on the coverage completed ratio for all approaches. This is
because having more UAVs enables better data collection. We
observe that U-TAM gives 5.4% and 17.7% more than that of
DRL-PP, when the number of UAVs is 5 and 1, respectively.
The U-TAM similarly exhibits the highest performance in
Fig. 7(b), giving 9.6% and 17.7% more than Reward M. In
Fig. 7(c), when there are 210 and 190 PoIs, respectively,

TABLE IV
RESOURCE COST OF CPU AND MEMORY FOR PERFORMING U-TAM

Number of UAVs 2 3 4 5
Cost of CPUs (%) 100 99.7 100 100

Unified cost of CPUs (%) 25.0 24.9 25.0 25.0
Cost of memory (%) 3.6 3.6 3.6 3.7

Fig. 8. (a) Experiment scenario, which area is 8 × 8m2. We employ bottles
and chairs to act as PoIs and obstacles, respectively. (b) 4 UAVs are employed
to perform the real experiment, which model is DJI RoboMaster TT.

U-TAM improves the coverage completed ratio by 23.7%
and 4.4% in comparison to PoI M. Finally, when there are
100% and 20% of human participants, respectively, U-TAM
improves 73.5% and 80.1% when compared to Random, as
shown in Fig. 7(d).

We finally measured how many resources were used to
run the proposed algorithm when 2, 3, 4, or 5 UAVs were
executing tasks. As shown in Tab. IV, our CPU utilization ratio
is between 99.7% and 100%, while the maximum utilization
ratio of our 4-core CPU is 400%. Here we unify the ratio
of CPU into a range of [0, 100%] which is shown in the third
line of Tab. IV. The memory utilization ratio remains at around
3.7%.

C. A small-scale real experiment for the proposed UAV tra-
jectory scheduling approach

To further test the performance of the proposed method, a
small scale real experiment was carried out on a 8×8m2 area
which is shown in Fig. 8(a). Here we employed 16 mineral
water bottles as PoIs, and 3 plastic chairs and buckets to
act as obstacles. We used 4 UAVs to perform tasks (shown
in Fig. 8(b)). The main procedure of the experiment was
that, the proposed method first calculated real time trajectories
for each UAV, which were shown in the lower right screen.
Then the UAVs flew correspondingly following the trajectory
commands that were transmitted by Wi-Fi signals. All of the
PoIs were sensed successfully at the end of the experiment.
And none of the UAVs hit the obstacles or other UAVs.

The video can be downloaded at Baidu Netdisk 2 with the
extraction code “utam”.

VII. CONCLUSION AND FUTURE WORK

In order to maximize the sensing coverage, we proposed a
UAV-assisted task allocation method (U-TAM) that allocated
tasks to human participants and UAVs simultaneously in this
paper. The UAVs coordinate with each other and improve the

2https://pan.baidu.com/s/1uVxYLSzUqcH20R-yyWtW9A

https://pan.baidu.com/s/1uVxYLSzUqcH20R-yyWtW9A
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sensing coverage by complementing the sensing data provided
by the human participants. In addition, the method took human
participants’ tolerance into consideration. With the purpose
of finding the balance between task allocation requirements
and human participants’ tolerance level, the proposed U-
TAM first predicted the trajectories of human participants
and then allocated tasks to them following the Pareto optimal
theory. The experiment results well justified the efficiency and
robustness of the U-TAM in terms of coverage completed ratio,
compared with the state-of-the-art.

The proposed hybrid sensing MCS system could find appli-
cations in smart city scenarios, where data can be easily sensed
by human participants and UAVs to enhance the quality of
life for citizens and improve public services in urban environ-
ments. The DRL based method facilitates UAV navigation for
data sensing without human intervention. However, achieving
the outstanding performance of DRL comes with challenges,
requiring not only a substantial amount of training data but
also a large number of network parameters and significant
computational power. It becomes crucial to explore alternative
strategies for running the DRL-based method locally when
network connections to servers fail. Mobile devices emerge as
potential solutions, given their ubiquity in daily life. Never-
theless, most mobile devices have limitations in computational
resources. In the future, we anticipate addressing the challenge
of deploying DRL models on mobile devices. This could
involve leveraging model compression technologies to reduce
computational resource requirements, storage overhead, and
inference time.
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