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replication dynamics maintained by the resilient
β-catenin/Hoxa9/Prmt1 axis
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KEY PO INT S

•Novel complementary
functions between
β-catenin and Hoxa9 in
regulating Prmt1 to
protect stem cell
quiescence and DNA
replication dynamics.

• Prmt1 KO phenocopies
and its re-expression
partially rescues cellular
and molecular defects
of β-catenin/Hoxa9 KO.
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Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements
for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are
required to preserve the stem cell reservoir and replenish the blood cell system in
response to hematopoietic stress, respectively. Here, we show that key self-renewal
factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual
functions in maintaining quiescence and enabling efficient DNA replication fork dynamics
to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs).
Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoi-
esis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell
cycle, DNA replication, and damage in HSPCs. Mechanistically, β-catenin and Hoxa9
function in a compensatory manner to sustain key transcriptional programs that converge
on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which pro-
tects the quiescent state and ensures an adequate supply of DNA replication and repair
bld-2023-022082-m
ain.p
factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular
phenotypes of β-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1
expression. The discovery of the highly resilient β-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA
replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their
intricate regulation but also a potential tractable target for therapeutic intervention.
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Introduction
Life-long regeneration of the blood system relies on a rare
population of self-renewing hematopoietic stem cells (HSCs) that
are capable of upkeeping faithful genome replication and
integrity.1-6 Maintenance of quiescence/dormancy not only
allows cells to persist in nondividing state over extended time to
preserve self-renewal potential, but also protects against DNA
damage and functional exhaustion.1,2,7 However, HSCs must also
respond efficiently to hematological stress such as infection,
blood loss, or exposure to cytotoxic agents by re-entering active
cell cycle to rapidly generate functional progenitors and proge-
nies of different lineages. In contrast to quiescent HSCs (qHSCs),
active HSCs (aHSCs) must robustly replicate their genome to
replenish the hematopoietic system without depleting the stem
population.8-10 So far, factors have been identified to enable
either but not both features (eg, cyclin-dependent kinase
LUME 143, NUMBER 16
inhibitors for quiescence and minichromosome maintenance
[MCM] proteins for genome replication),3,11,12 suggesting the
maintenance of each cell status by distinct molecular pathways.
Although this stepwise regulation of different pathways in gov-
erning status switching is in line with linear discrete hematopoi-
etic differentiation model, emerging evidence indicate that HSC
differentiation and acquisition of lineage-specific fates is a
continuous process, characterized by a highly coordinated tran-
scriptional program.4,13,14 Given the interfluent requirement of
qHSC and aHSC states that enable swift adaptation to changing
requirements,13,15 it remains to be determined if there are
indeed common pathways operating to safeguard both quies-
cence and efficient DNA replication.4,7,12

To gain novel insights into the molecular regulation of HSC
functions, signaling pathways such as Homeobox, Wnt, Notch,
and Hedgehog, which are frequently dysregulated in cancer,
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have been shown to govern self-renewal in hematopoietic stem
and progenitor cells (HSPCs).16 Ectopic expression of Hoxa917-20

or β-catenin,21-26 the key component of canonical Wnt
pathway,27 promotes HSC expansion and eventually leukemic
transformation.16 Importantly, overexpression of either factor is
highly predictive of poor patient prognosis, whereas their
inhibitions suppress leukemia development, leading to intense
therapeutic interests in targeting these factors.28,29 However,
inactivation of β-catenin or Hoxa9 has only modest impacts on
adult HSCs, suggesting (1) the existence of alternative pathways
that support hematopoietic self-renewal in the absence of
either factor or (2) their otherwise distinct physiological func-
tions in normal HSCs that are different from those upon their
overexpression. Extensive searches for such alternative path-
ways over the past decade (eg, γ-catenin in β-catenin knockout
(KO) and Hoxb3/4 in Hoxa9 KO) have so far yielded little suc-
cess, casting doubts about the physiological roles of these key
self-renewal molecules in HSC functions.30,31 Clearly, resolving
this dilemma will have profound implications on stem cell
biology and also strategic therapeutic design. How HSCs sus-
tain their functions in the absence of either factor or what the
underlying mechanisms are remains enigmatic.

Here we establish, for the first time, how endogenous β-catenin
and Hoxa9 function in a novel complementary manner with dual
roles in protecting HSCs from exit of quiescence and accumu-
lation of replication stress, in which activation of key down-
stream epigenetic enzyme Prmt1 is responsible, at least in part,
for circumventing functional decline of HSCs.
3/16/1586/2227921/blood_bld-2023-022082-m
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Methods
Mouse models and transplantation studies
β-cateninfl/fl mice32 were crossed with Hoxa9−/− mice19,33 to
generate Hoxa9−/− β-cateninfl/fl Rosa-CreER mice. Conditional
Prmt1 KO mouse models were generated using targeted
enrichment score cell clones of C57BL/6, as described previ-
ously.34 Further details are provided in supplemental Methods,
available on the Blood website. A total of 1 × 106 CD45.2+

donor bone marrow cells were transplanted IV into lethally
irradiated (13 Gy total body γ-irradiation) C57BL/6 congenic
strain expressing pan-leukocyte marker CD45.1 (Jackson Lab-
oratory; JAX:002014) recipient mice along with 2 × 105

CD45.1+ helper bone marrow cells. Deletion of floxed alleles
were achieved via daily intraperitoneal injection of tamoxifen
(60 μL at 20 mg/mL) for 5 consecutive days.

Immunophenotype analysis and sorting
Femora and tibiae were isolated from mice that received
transplant and gently crushed in staining medium (Phosphate
buffered saline + 2% fetal bovine serum) before red blood cell
lysis. Detailed staining procedure for stem and progenitor
populations can be found in supplemental Methods. Stained
cells were analyzed on a BD LSRII flow cytometer using the
gating strategy illustrated in supplemental Figure 1F and
described previously.35

Ki67 and BrdU immunostaining
For in vivo bromodeoxyuridine (BrdU) incorporation analysis, mice
that received transplant were intraperitoneally injected with 150 μL
(10 mg/mL solution) BrdU (BD Biosciences) 2 weeks after induction
В-CATENIN/HOXA9/PRMT1 AXIS REGULATES HSC FUNCTIONS
of target gene deletion. After 48 hours, mice were euthanized and
femora, tibiae, and pelvis were isolated, and LSKs (Lin–c-Kit+Sca1+)
were sorted by fluorescence-activated cell sorting. For Ki67
staining, LSK cells were isolated from transplanted mice 2 weeks
after targeted gene deletion. Isolated LSKs were fixed, per-
meabilized, and stained as outlined in supplemental Methods.

Immunofluorescent staining
Bone marrow isolated from KO mouse models were enriched
for cKit+ cells using CD117 Micro-Beads (Miltenyi Biotec) by
positive selection according to manufacturer’s instructions. ckit+

HSPCs were treated with either 4-hydroxytamoxifen (25 ng/mL;
Sigma) or ethanol (vehicle) for 48 hours before fixation and
staining as outlined in supplemental Methods.

DNA fiber assay
CD45.2+ ckit+ HSPCs were isolated from mice that received
transplant, and 5000 cells per sample were incubated at 37◦C for
30 minutes in StemSpan medium (StemCell Technologies). Sub-
sequently, 19 mM 5-Chloro-20-deoxyuridine (CldU; Sigma) was
added to the medium for 30 minutes. Medium was exchanged,
and cells were incubated with 28 mM 5-iodo-20-deoxyuridine
(IdU; Sigma) for 30 minutes. DNA fibers were then spread on
glass slides and stained as described previously.36,37

RNA sequencing
Total RNA from LSK cells was isolated using the RNeasy Plus
Micro Kit (Qiagen), and Library preparation was performed
using Ultra II Directional RNA Library Prep Kit for Illumina (New
England BioLabs, E7760L), according to manufacturer’s
instructions. Detailed information in supplemental Methods.

Assay for Transposase Accessible Chromatin
sequencing
A total of 50 000 LSK cells from wild-type (WT) or KO mouse
models were used for assay for transposase-accessible chro-
matin with high-throughput sequencing (ATAC-seq), which was
performed as described previously with minor modifications.38

Peaks were detected using function callpeak from the MACS2
tool with ‘–format BAMPE’ option.39 Profile plots were gener-
ated with computeMatrix and plotProfile from deepTools.40

CUT&RUN sequencing
Cleavage under targets and release using nuclease (CUT&RUN)
sequencing was performed using 0.5 million HSPCs from WT
BL6 mice or Ctnnb1-Biotin-3xFLAG knockin mice (JAX:029511)
according to Epicypher CUT&RUN Protocol V2.0. Detailed
information is provided in supplemental Methods.

Results
Coinactivation of Hoxa9 and β-catenin induces
severe defects in hematopoietic stem populations
To identify potential molecular pathways that sustain stem cell
integrity in the absence of Hoxa9 or β-catenin, RNA-sequencing
was performed on LSKs harboring inactivation of either factor.
To our surprise, among the top candidate pathways involved in
maintaining HSC functions are canonical Wnt signaling and
Hoxa9 pathways upon the reciprocal inactivation of Hoxa9 and
β-catenin respectively (supplemental Figure 1A-B). Although no
prior molecular link has been reported in HSCs between these
18 APRIL 2024 | VOLUME 143, NUMBER 16 1587
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2 pathways, the hypothesis of their novel cross talk in preserving
HSC functionality is consistent with our recent discovery of the
coregulation of posterior Hoxa loci and Ctnnb by long non-
coding RNA, HOTTIP.17,26 To further investigate this novel cross
talk, we generated a Hoxa9-/- Ctnnb1fl/fl Cre ER mouse model by
crossing our previously described Hoxa9 KO mice33 with Ctnnb1
floxed mice carrying Rosa26-CreER allele23 for serial bone
marrow transplant assays (Figure 1A; supplemental Figure 1C-E).
In contrast to single Hoxa9 or β-catenin inactivation, in which we
observed only mild hematopoietic phenotypes with a noticeable
reduction of common myeloid progenitor as previously
reported,33,41 combined inactivation of Hoxa9/β-catenin (dKO)
resulted in severe hematopoietic defects at all measured time
points (Figure 1B; supplemental Figure 1F-P). Defects originated
as early as the long-term HSC stage, with a substantial sixfold
reduction and a fivefold reduction in short-term HSCs at 12-
week time point compared with WT counterparts. Consistent
with a stem cell defect, we also observed significant reductions in
downstream myeloid progenitor populations including common
myeloid progenitor (eightfold), granulocyte-monocyte progeni-
tor (10-fold), and megakaryocyte and erythrocyte progenitors
(sevenfold). In line with these findings, the absolute number and
percentage of total CD45.2+ donor cells were drastically reduced
in the dKO bone marrow (17%) compared with single KOs (67%)
(Figure 1C; supplemental Figure 1Q-R). At a functional level,
in vitro clonogenic assays revealed that dKO bone marrow cells
generated markedly reduced myeloid colony numbers, of which
mature CFU-G and CFU-E were the predominant composition
(supplemental Figure 1S). LSKs isolated from dKO mice gener-
ated significantly fewer colonies and were devoid of multipo-
tential progenitors (CFU-GEMM), in contrast to the diverse
colony composition of control and single KO cells (supplemental
Figure 1T). The frequency of long-term culture initiating cells
(LTC-ICs) was also significantly diminished in dKO HSPCs
(Figure 1D), consistent with functional decline of HSCs. Finally,
the ability of dKO cells to engraft and reconstitute the bone
marrow of secondary recipient mice was severely impaired
compared with WT and single KO cells (supplemental Figure 1U-
V). Together, these data suggest that coinactivation of β-catenin/
Hoxa9 results in significant functional defects in the stem
population.

To gain further insight into the mechanisms underlying the stem
cell defects in dKO HSCs, RNA-sequencing analysis was per-
formed and revealed a significant reduction of stem-related gene
sets in dKO LSKs compared with either β-catenin KO or Hoxa9 KO
alone. Indeed, genes downregulated in HSCs (Jaatinen_Hema-
topoeietic_Stem_Cell_DN and Boquest_Stem_Cell_DN) were
positively enriched in dKO LSKs, with additional enrichment in
stem cell differentiation pathways (WP_Stem_Cell_Differentiation)
(Figure 1E; supplemental Table 1), suggesting their roles in
maintaining stemness. Comparison of differentially expressed
genes (DEGs ≥ 1.5-fold; P adjusted ≤ .05) in Hoxa9 KO and
β-catenin KO LSKs revealed that a small subset (n = 226) is
coordinately regulated by the single KOs, consistent with an
independent and compensatory relationship between these 2
pathways in governing HSC functions (Figure 1F). Strikingly, Gene
Ontology analysis revealed that the DEGs exclusively regulated by
dKO LSKs (n = 877) were overwhelmingly correlated with cellular
processes involved in regulating cell cycle, DNA replication,
double-strand break repair, and genomic stability (Figure 1F),
suggesting their key functions in regulating cell cycle, DNA
1588 18 APRIL 2024 | VOLUME 143, NUMBER 16
replication, and repair. Further mechanistic insight into the
Hoxa9/β-catenin cross talk was revealed by CUT&RUN
sequencing on endogenous HOXA9 and endogenously FLAG-
tagged β-CATENIN in HSPCs. Genome-wide chromatin map-
ping of HOXA9 and β-CATENIN binding demonstrated a striking
correlation in binding site occupancy (supplemental Figure 1W).
Consistent with RNA sequencing analysis, the regions of HOXA9/
β-CATENIN co-occupancy were enriched in pathways regulating
cell cycle, DNA repair, and replication in addition to stem cell
pluripotency pathways, with co-occupancy detected at the loci of
HSC regulators including Myc, Fos, Jarid2, and Stat3
(supplemental Figure 1X-Y).
Concurrent Hoxa9/β-catenin deletion disrupts HSC
quiescence and induces replication stress and DNA
damage accumulation
We next sought to functionally investigate the effect of β-cat-
enin/Hoxa9 coinactivation on quiescent state of HSCs, which
greatly aids their ability to preserve their genomic integrity and
that of all future downstream lineages. LSKs were isolated from
single and dKO transplanted mice 2 weeks after deletion and
stained with the proliferation marker Ki67 and the DNA content
dye Hoechst 33342 to examine their quiescent vs proliferation
status. As a control, WT mice were treated with the thymidylate
synthase inhibitor, fluorouracil (5-FU), known to induce replica-
tion stress resulting in the exit of HSCs from quiescence and
entry into cell activation programs.42 Similarly, dKO LSKs dis-
played a marked reduction in the frequency of cells within the
G0 subset or Ki67

– fraction and a concomitant increase in Ki67+

fraction compared with WT or single Hoxa9/β-catenin KO
(Figure 2A-C; supplemental Figure 2A). To further confirm the
increase in the fraction of actively cycling LSKs, in vivo BrdU
incorporation analysis was performed. Consistent with Ki67
staining, dKO LSKs exhibited a significantly greater frequency
of BrdU+ cells than WT or single β-catenin/Hoxa9 KO
(Figure 2D; supplemental Figure 2B). Together, these findings
indicate that although the complementary functions between
β-catenin and Hoxa9 are capable of resiliently preserving HSC
functionality upon its single KO, their combined inactivation
drive HSCs out from their quiescent state into active cycling.

Effective and faithful DNA replication is fundamental for
genomic integrity and cell cycle progression, which is particu-
larly important after HSCs exit from quiescence. In order to
functionally investigate whether DNA replication dynamics
were indeed altered upon inactivation of β-catenin/Hoxa9 as
suggested by the RNA-sequencing analyses, HSPCs isolated
from primary mice that received transplant were pulse-labeled
with nucleotide analogues (CldU and IdU), and DNA fibers
were spread to monitor replication fork progression at the
single-molecule level (supplemental Figure 2C-D). Combined
inactivation of β-catenin and Hoxa9 significantly compromised
the speed of replication forks evident by reduced fork track
length in dKO cells compared with WT or single KO cells
(Figure 2E-F; supplemental Figure 2E). Consistent with their
heightened levels of replication stress, dKO HSPCs displayed
asymmetrical progression of sister forks from recently fired ori-
gins and an overall higher frequency of stalled forks in the
population of events (Figure 2G-H; supplemental Figure 2F-H).
Moreover, dKO HSPCs displayed an accumulation of γH2AX
foci indicative of double-strand breaks and fork collapse
LYNCH et al
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Figure 1. Coinactivation of Hoxa9/β-catenin induces severe HSC defects. (A) Schematic representation of experimental procedures. Absolute number of HSPC pop-
ulations (B) and percentage CD45.2+ donor cells (C) from indicated mice at 12 week time point (at least n = 3 mice/group). Floxed allele deletion was achieved by intra-
peritoneal injection of tamoxifen for 5 consecutive days. β-cateninfl/fl mice treated with corn oil (vehicle) served as WT control as indicated. (D) LTC-IC frequency from HSPCs as
indicated. Enrichment in stem related gene sets (E) and gene ontology analysis (F) of LSKs isolated from mice that received transplant. All data represent mean ± standard
error of the mean (SEM). P values calculated by t test. *P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001; NS, P > .05.
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Figure 2. Disruption of stem cell quiescence and DNA replication dynamics by concurrent Hoxa9/β-catenin deletion. (A) Representative fluorescence-activated cell
sorting plots of Ki67 and Hoechst 33342 staining of LSKs isolated from indicated mice. (B) Percentage of LSKs in G0 cell cycle phase. Percentage Ki67+ (C) and BrdU+ (D) LSKs
(n = 3 mice per group). (E) CldU track length of DNA fibers from HSPCs isolated from indicated mice. (F) Representative images of replication fork lengths. Scale bar, 10 μm. (G)
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shown (n = 3; data is shown in supplemental Figure 2). Immunofluorescent images (I) and focus counts (J) of ƳH2AX staining on HSPCs isolated from indicated mice. Several
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*P ≤ .05; **P ≤ .01; ***P ≤ .001; ****P ≤ .0001; NS, P > .05.
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(Figure 2I-J; supplemental Figure 2I). Together, these results
are consistent with a novel function of β-catenin/Hoxa9 in pro-
tecting HSPCs from replication stress resulting in replication
fork stalling, accumulating DNA damage, and functional decline
of HSCs.

Prmt1 KO phenocopies the severe hematopoietic,
quiescent, DNA replication and damage defects
associated with β-catenin/Hoxa9 KO
To identify key downstream players that mediate the dKO
phenotype, further investigation of gene set enrichment analysis
of RNA-sequencing data generated from dKO LSKs revealed a
significant negative enrichment in arginine histone methylation
(Figure 3A). Protein arginine methyltransferase 1 (PRMT1) is the
predominant epigenetic enzyme that catalyzes the asymmetric
1590 18 APRIL 2024 | VOLUME 143, NUMBER 16
dimethylation of arginine, and its overexpression has been impli-
cated in numerous solid and hematological cancers leading to
significant clinical interest in developing PRMT-targeted thera-
peutics.34,43,44 Further evaluation of Prmt1 in dKO LSKs revealed a
substantial reduction in Prmt1 expression compared with single
KO LSKs (Figure 3B; supplemental Figure 3A). CUT&RUN
sequencing revealed co-occupancy of HOXA9 and β-CATENIN at
Prmt1 transcription start site (Figure 3C). At the same time, ATAC-
sequencing analysis revealed reduced chromatin accessibility at
the Prmt1 promoter region in dKO LSKs (Figure 3D), consistent
with epigenetic downregulation of Prmt1 expression upon coin-
activation of β-catenin/Hoxa9. To further investigate the role of
Prmt1 in hematopoietic development, we generated a novel
Prmt1 KO model in which Prmt1 can be conditionally inactivated
in HSCs upon tamoxifen treatment. Deletion of Prmt1 alone
LYNCH et al
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phenocopied the β-catenin/Hoxa9 dKO, resulting in severe
reductions in long-term HSC, short-term HSC, and downstream
progenitor populations at all analyzed time points (Figure 3E-H;
supplemental Figure 3B-F). Both in vitro clonogenic assays and
LTC-IC assays demonstrated functional decline of HSPCs with
impaired colony forming ability and significantly reduced fre-
quency of LTC-IC (supplemental Figure 3G; Figure 3I). KO of
Prmt1 resulted in severe stem cell defects as evidenced by the
inability of Prmt1 KO cells to engraft and reconstitute in secondary
recipient mice (supplemental Figure 3H).

Importantly, Prmt1-deficient LSKs displayed features of hemato-
poietic and replication stress, consistent with the observed
β-catenin/Hoxa9 (dKO) phenotypes. These included a diminishing
G0 (quiescent) fraction (Figure 4A-B) and corresponding increases
in Ki67+ (Figure 4C) and BrdU+ (Figure 4D; supplemental
Figure 4A) fractions. Perturbations in replication dynamics were
evidenced by reduced replication fork speed (Figure 4E-F;
supplemental Figure 4B) and stability (Figure 4G-H; supplemental
В-CATENIN/HOXA9/PRMT1 AXIS REGULATES HSC FUNCTIONS
Figure 4C-D), leading to the accumulation of DNA breaks
(increased γH2AX foci; Figure 4I,J; supplemental Figure 4E).
These findings consistently suggest that Prmt1 may serve as a
functional downstream mediator of the β-catenin/Hoxa9 com-
plementary signaling axis that preserves DNA replication
dynamics and long-term self-renewal potential that underpin stem
cell functionality.
Prmt1 KO replicates the transcriptomic and
epigenetic alterations induced by dKO
Further comparison of the DEGs revealed a striking correlation
between β-catenin/Hoxa9 and Prmt1-regulated targets in LSKs,
in which >50% of β-catenin/Hoxa9 targets were also identified as
Prmt1 targets, with ~90% of their common targets regulated in
the same direction, consistently suggesting Prmt1 as a key
transcriptional mediator for β-catenin/Hoxa9 in HSCs (Figure 5A).
In addition to the expected negative enrichment in histone
arginine methylation, Prmt1 KO replicated the pathways
18 APRIL 2024 | VOLUME 143, NUMBER 16 1591
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deregulated in dKO LSKs including abnormal cell cycle, DNA
replication, DNA repair (GO: pathway), and chromosomal insta-
bility (GO: mouse phenotype) (supplemental Figure 5A). Gene
set enrichment analysis of Prmt1 KO LSKs also revealed enrich-
ment in stem cell differentiation pathways and positive enrich-
ment in genes normally downregulated in HSCs (Figure 5B),
although it can be possible that this reduction in stemness occurs
as a consequence of dysfunctional DNA replication and repair
rather than direct regulation of stemness-related genes.

We then focused our analysis to identify possible transcriptomic
alterations that may underpin the observed perturbations to
replication dynamics and genomic stability. ATAC- and RNA-
1592 18 APRIL 2024 | VOLUME 143, NUMBER 16
sequencing analyzes revealed that both dKO and Prmt1 KO
LSKs were characterized by significant deficiencies in both
chromatin accessibility and expression of molecules involved in
DNA replication and repair compared with WT and single KOs
(Figure 5C-F; supplemental Figure 5B-C). Of note, numerous
members of the minichromosome maintenance complex
(MCM2-7) which binds and licenses origins of replication
essential for HSC functionality,11 were among the targets cor-
egulated by β-catenin/Hoxa9 and Prmt1 including Mcm2,
Mcm3, Mcm4, Mcm5, and Mcm7. Additionally, targets such as
Fancd2, Brca1, and Pcna play a dual role in canonical
HR-mediated repair of stalled forks and replication stress
tolerance reflecting the extensive crosstalk between the
LYNCH et al
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processes of DNA replication and repair. These findings indi-
cate that Prmt1 functions as a pivotal target for the convergence
of the β-catenin and Hoxa9 compensatory pathways to maintain
an adequate repertoire of replication and repair factors
required for protection against the detrimental effects of repli-
cation stress after HSCs exit from quiescence.
4

Prmt1 rescues both cellular and molecular defects
of β-catenin/Hoxa9 KO HSPCs
To further interrogate the integral downstream role of Prmt1 in
the β-catenin/Hoxa9 signaling axis, we performed ectopic
expression of PRMT1 in dKO HSPCs (supplemental Figure 6A).
Figure 5. Prmt1 KO replicates the transcriptomic alterations induced by dKO. (A) O
Prmt1 KO LSKs. Heatmap illustrating the log2fold suppression of DNA replication gene
Prmt1fl/fl and β-cateninfl/fl mice treated with corn oil (vehicle) served as WT control for Prm
in gene expression (P adjusted ≤ .05). (E) Profile plots of ATAC-seq data (RPKM-norm
accessibility at Mcm5, Mcm2, and Pold3 loci. WT control represents BL6 mice treated w

1594 18 APRIL 2024 | VOLUME 143, NUMBER 16
Functional assays demonstrated that PRMT1 could significantly
rescue the colony forming ability of dKO LSK cells (Figure 6A)
and markedly restore the frequency of LTC-IC (Figure 6B). In
addition, dKO HSPCs transduced with WT but not catalytically
dead mutant of PRMT1 (Mut) displayed a significantly reduced
shift in BrdU incorporation and maintained a profile highly
reflective of WT HSPCs, whereas the expression of WT PRMT1
in WT HSPCs did not significantly alter the fraction of BrdU+

cells (Figure 6C; supplemental Figure 6B). Importantly, ectopic
expression of WT PRMT1 also protected against perturbations
to replication dynamics seen in dKO HSPCs transduced with
empty vector or PRMT1 Mut. Replication track length in dKO
HSPCs was fully restored by expression of WT but not PRMT1
verlap of DEGs from Prmt1 KO and dKO LSKs. (B) Gene set enrichment analysis of
s (C) and DNA repair genes (D) in single and dKO LSKs compared with WT LSKs.
t1 KO and Hoxa9/β-catenin KO, respectively. Asterisks (*) indicate significant change
alized) around peak center of DNA replication and repair genes. (F) Chromatin
ith corn oil (vehicle).
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Mut (Figure 6D-E; supplemental Figure 6C). Similarly, sister fork
progression and the frequency of stalled forks in dKO HSPCs
were rescued to levels observed in control HSPCs when WT,
but not PRMT1 Mut, was ectopically expressed (Figure 6F-G;
supplemental Figure 6D-E). Intriguingly, similar to the results
from BrdU studies above, overexpression of WT PRMT1 in WT
HSPCs did not confer a replicative advantage because no
increase in fork speed and no alteration in bidirectional fork
symmetry was observed, suggesting that PRMT1 functions in a
protective manner to safeguard against replication stress rather
than conferring a generalized proliferative or replicative
advantage (supplemental Figure 6F-G). Correspondingly,
PRMT1 protected against the accumulation of ƳH2AX foci
induced by β-catenin/Hoxa9 coinactivation in HSPCs
(Figure 6H-I; supplemental Figure 6H).

At the gene expression level, we also demonstrated that
enforced expression of WT PRMT1 could restore all the major
transcriptomic alterations in the dKO. In addition to stem
related gene sets (Figure 6J), PRMT1 also rescued gene
expression programs for DNA replication and repair processes
including those associated with DNA helicase activity,
methylation-dependent protein binding (GO: Molecular Func-
tion), and DNA replication and repair (GO: Biological Process)
(Figure 6K-L; supplemental Figure 6I-J). In contrast, genes
В-CATENIN/HOXA9/PRMT1 AXIS REGULATES HSC FUNCTIONS
upregulated upon expression of PRMT1 Mut were not associ-
ated with any of these functions or processes (supplemental
Figure 6K). Together, these functional and transcriptomic data
indicate that Prmt1 regulates DNA replication dynamics,
genomic integrity, and gene expression programs of HSPCs,
thereby preserving stem cell functionality.
Discussion
The maintenance of quiescence and replication potential are 2
paradoxical requirements of HSCs that underpin their func-
tionally distinctive dormant and active states, imperative to the
lifetime supply of hematopoietic cells. In this study, we depict
novel functions of the β-catenin/Hoxa9/Prmt1 axis that robustly
preserves HSC functionality by protecting both stem cell
quiescence and DNA replication dynamics. We propose that
the complementary regulation17,26 and functions between
β-catenin and Hoxa9 can provide a resilient safeguard mecha-
nism to protect HSCs against suppression of either single factor
(Figure 7, top panel). Only coinactivation of β-catenin and
Hoxa9 drives HSCs out of their quiescent state into active
cycling (Figure 7, bottom panel). Upon their exit from quies-
cence, accurate genome duplication that requires the orches-
trated activation and maintenance of replication forks
emanating from thousands of origins of replication during
18 APRIL 2024 | VOLUME 143, NUMBER 16 1595
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S-phase of the cell cycle then immediately becomes one of the
most important challenges faced by aHSCs.6,45 Perturbations to
normal replication fork progression due to exogenous and
endogenous stress such as DNA lesions, insufficient nucleo-
tides, chemical compounds, or a shortage of replication factors
lead to fork stalling.46,47 Sustained replication stress or the
inability to resolve replication obstacles can result in fork
collapse, via fork inactivation or endonucleolytic cleavage
leading to double-strand breaks.48 Here, we show that the
shortage of replication factors such as Mcm2, Mcm3, Mcm4,
Mcm5, Mcm7, Cdc7, Fancd2, and Brca1 as a result of Prmt1
downregulation in the β-catenin/Hoxa9 dKO directly impedes
replication fork speed and stability, ultimately resulting in an
accumulation of double-strand breaks and functional decline of
the stem cell population (Figure 7, bottom panel). Indeed, old
cycling HSCs in mice were shown to have heightened levels of
replication stress associated with cell cycle defects, chromo-
some breaks, and altered DNA replication fork dynamics, which
have been attributed to decreased expression of key replication
factors such as MCM helicase components.3,11 The sponta-
neous recombination events and genomic instability induced
by perturbations to replication dynamics are associated with
many pathological conditions. For example, homozygous
inactivation of any member of the Fanconi anemia replication
factors leads to the pediatric syndrome, Fanconi anemia, char-
acterized by progressive bone marrow failure, chromosomal
instability, and high cancer predisposition.49,50

Increasing evidence has revealed that protein arginine methyl-
ation plays critical roles in regulating DNA damage response
including methylation of canonical DDR molecules such as
MRE11, USP11, BRCA1, and 53BP1.44,51-54 At the same time,
1596 18 APRIL 2024 | VOLUME 143, NUMBER 16
Prmt1 mediated H4R3 methylation has been correlated with
active transcription,55-57 and our preliminary unpublished
CUT&RUN sequencing data also showing potential direct binding
of PRMT1 to key DNA replication/repair loci raise a possibility of
transcriptional regulation of DNA replication/repair pathways by
PRMT1. Here, we reveal a novel role of Prmt1 as a key, albeit
likely not the only, mediator of β-catenin and Hoxa9 functions to
preserve stem cell quiescence and DNA replication dynamics, in
part, by maintaining adequate expression of DNA replication and
repair factors at a transcriptional level, thereby, alleviating DNA
damage accumulation and preserving HSC integrity (Figure 7).
Given the importance of quiescence and replication dynamics in
maintaining stem cell functionality, it is not surprising that HSCs
have developed intricate cross talk and compensatory signaling
pathways to protect such critical cellular processes in the events
of genetic and/or epigenetic inactivation of either of the key
players. Our finding of novel functions of the β-catenin/Hoxa9/
Prmt1 axis in safeguarding both stem cell quiescence and DNA
replication fork processivity also provide support for a continuum
model to enable dynamic switching between qHSC and aHSC
states.4,58,59 Given that this study was conducted solely using
mouse models, further future studies in human HSCs will be
required to confirm our findings, although previous studies have
shown highly conserved hematopoietic functions of Hoxa9 and
β-catenin in both mouse and human.20,23,60-62 While the proto-
oncogenic and generally undruggable natures of transcription
factors make β-catenin and Hoxa9 challenging targets, identifi-
cation of Prmt1 with tractable enzymatic activity as a key mediator
in safeguarding HSC functionality provides a novel avenue for
therapeutic intervention.63 Since many of these molecules are
also frequently hijacked during malignant transformation and
responsible for treatment resistance,19,23,64 a deeper
LYNCH et al
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understanding of their roles in maintaining stem cell functions will
also aid in the development of antileukemia targeted therapies.
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