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Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about 
the precise nature of the immune dysregulation underlying the development of the disease.
Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high- 
resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 
patients with other neurological diseases (n = 48 057).
Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the 
upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor 
Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory 
and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a 
systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression 
quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral 
control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely 
reflect genetic effects on RNA splicing and cell-type specific gene expression respectively.
Collectively, our study suggests that alterations in viral control mechanisms might be important in the development 
of multiple sclerosis.
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Introduction
Multiple sclerosis is a chronic autoimmune disease of the CNS 
which is pathologically characterized by patchy inflammatory 
demyelination and progressive neurodegeneration. Genome-wide 
association studies (GWAS) have identified over 200 susceptibility 
variants, the majority of which map to regulatory regions markedly 
enriched for genes with immunological functions,1 collectively 
suggesting a role for dysregulation in immune cell pathways in 
disease susceptibility. To date though, the analysis of circulating 
peripheral immune cells has provided limited insights into the 
aetiology of multiple sclerosis. Given the immune privilege of 
the CNS, we reasoned that the immune cells in the CSF are likely 
to be enriched for cells of relevance to multiple sclerosis and might 
therefore provide novel insights that might otherwise be obscured 
by non-multiple sclerosis relevant parts of the circulating immune 
system.

Abnormalities in the CSF, including an elevated lymphocyte 
count and the presence of oligoclonal immunoglobulin bands indi
cative of chronic immune activation, are hallmark features of the 
disease and are used to aid diagnosis.2 Immunophenotyping of 
CSF cells using flow cytometry has shown that patients with 
multiple sclerosis have increased proportions of B and plasma 
cells and decreased proportions of monocytes compared to healthy 
individuals or individuals with other neurological diseases.3,4

Furthermore, it has also been shown that cells within the CSF 
of multiple sclerosis patients are predominantly of a memory 
phenotype and have a more activated profile.4 Single-cell RNA 
sequencing (scRNA-seq) studies have corroborated these early 
findings and also refined specific CD4+ T cell subsets that have 
increased frequencies in patients with multiple sclerosis 
including T regulatory cells and T follicular helper cells, and 
have further proposed novel cell subtypes as potential key 
players in multiple sclerosis pathogenesis which require further 
investigation.5-8 However, these studies have lacked the power to 
explore the effects of known multiple sclerosis susceptibility var
iants in the CSF.

Here we use scRNA-seq to provide a high-resolution examin
ation of CSF cell expression in 81 samples collected from patients 
with multiple sclerosis (n = 33) and from patients with other neuro
logical conditions (n = 48). Following cell type annotation, we iden
tified several cell-type-specific regulatory programs that correlated 
with disease status. Furthermore, we also undertook the first 
CSF-based single-cell expression quantitative trait loci (eQTL) ana
lysis, which identified eQTL effects for two multiple sclerosis sus
ceptibility variants in CD8+ T cells, the risk allele rs10271373_A 
increasing expression of the zinc finger CCCH-type antiviral protein 
1 (ZC3HAV1) and rs1059091_A reducing the expression of 
interferon-induced transmembrane protein 2 (IFITM2). Overall, 
our observations suggest a possible dysregulation in the control 
of viral responses in multiple sclerosis patients.

Materials and methods
Patient recruitment

Our study was approved by the National Research Ethics 
Committee (Service South Central—Berkshire; 15/SC/0087) and all 
study subjects gave valid fully informed written consent. In total, 
88 subjects were recruited from the Cambridge University 
Hospital (Addenbrooke’s) neurosciences department. Patients 
were recruited from amongst those attending the department for 
a lumbar puncture as part of the investigation and treatment of 
their neurological condition. For seven of the recruited patients 
(three multiple sclerosis; two ideopathic intracranial hypertension; 
one non-inflammatory neurological disease; and one other inflam
matory neurological disease), the CSF sample was unusable for 
technical reasons. Multiple sclerosis was diagnosed in line with 
standard clinical criteria.9 All but two of our multiple sclerosis pa
tients were newly diagnosed and therefore not on disease modify
ing treatment at the time of sampling. The two multiple sclerosis 
patients with an established diagnosis were both on treatment 
with natalizumab (Tysabri®). Disease activity in multiple sclerosis 
was determined by the primary clinical team on the basis of clinical 
and radiological features; the disease being judged to be inactive, 
active or highly active. Supplementary Table 1 shows the demo
graphics, clinical and laboratory hospital measured CSF features 
for the 81 study subjects with RNA sequencing data that passed 
quality control and were included in the analysis. In the UK, lumbar 
puncture is not routinely performed in the investigation of sus
pected multiple sclerosis and therefore tends to be employed in 
the context of less typical cases. This selection of subjects for the in
vestigation likely explains the older than average age at diagnosis 
of our multiple sclerosis cases, and the absence of the usual excess 
of females. The other inflammatory neurological diseases (OIND) 
include chronic inflammatory demyelinating polyneuropathy, 
neurosarcoidosis and transverse myelitis, while the non- 
inflammatory neurological diseases (NIND) include cerebrovascu
lar disease, functional neurological disorder, low-grade glioma, 
migraine, myelopathy, neuropathy, seizure, trigeminal neuralgia 
and ideopathic intracranial hypertension (IIH)—the later were con
sidered as a separate group as their CSF would not be expected to 
differ from normality other than in terms of pressure.

Cell isolation and single cell library generation

All samples reached the lab within 1 hour of collection and were ei
ther processed immediately or frozen for later pooling. To each 
sample an equivalent volume of X-VIVOTM 10 Serum-free 
Hematopoietic Cell Medium (Lonza) was added to maintain cell via
bility. Owing to the low concentration of cells in the CSF, each sam
ple was first concentrated by centrifugation at 300g for 10 min, the 
supernatant removed leaving approximately a 200 μl volume. 
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A manual cell count was completed on the concentrated sample 
using a Neubauer haemocytometer and cell viability assessed using 
Trypan Blue exclusion dye. The cell suspension was then centri
fuged at 300g for another 10 min to further concentrate the sample 
to a final volume of 32 μl ready to be loaded onto a 10x Chromium 
Single Cell Controller using the Chromium Single Cell Gene 
Expression 3′ v2 kit (10x Genomics). Sequencing was completed 
on an Illumina HiSeq 4000 at the Cancer Research Institute, 
Cambridge University sequencing hub using locally optimized pro
tocols and settings.

Genotype imputation

All 81 donors were genotyped using the Illumina Global Screening 
Array. Imputation was performed against the Haplotype 
Reference Consortium (HRC)10 data using EAGLE2 through the 
Sanger Imputation server (https://imputation.sanger.ac.uk). 
Genotypes were converted to hard call binary plink format using 
GenotypeHarmonizer,11 before performing eQTL mapping. During 
the conversion we removed genotype calls with a posterior prob
ability below 0.4, single nucleotide polymorphisms with a MACH 
R2 < 0.6 and/or a Hardy–Weinberg equilibrium below 1.0 ×10−4.

Sequencing data preprocessing

The raw scRNA-seq reads in FASTQ format from each sequencing 
run were processed using Cell Ranger v3.1 (10x Genomics) 
and aligned to the human genome (Homo_sapiens.GRCh38.dna. 
primary_assembly.fa) using the default Cell Ranger settings and an
notated using Homo_sapiens.GRCh38.93.filtered.gtf. Cells were 
called using both Cell Ranger and emptyDrops,12 with the union 
of cells called used for all downstream analysis. Among the 71 se
quencing runs, five of these sequencing runs were multiplexed 
with two to four donors per run, in total 15 donors were included 
in multiplexed runs. To demultiplex these runs, we first used 
cellSNP v0.1.713 to genotype each cell, followed by Vireo v0.2.114

to assign cells to each multiplexed individual based on known gen
otypes. We used two separate strategies to detect doublets. First, for 
each multiplexed sequencing run, Vireo14 identifies the cross- 
donor doublets through their mixed genotypes. Second, we also 
detected cross-cell type doublets from the transcriptome profiles 
on each sequencing run by a consensus method combining 
doubletFinder15 and Scrublet.16

Cell type annotation

The raw count matrix was corrected for ambient RNA using 
the soupX tool17 in R using standard settings. Count matrix nor
malization and log-transformation, clustering and cell type an
notation were performed using the package scanpy18 in 
Python. Batch effects were reduced by using the BBKNN tool.19

Clusters were annotated to cell types according to known ca
nonical marker genes. A sequential clustering method was 
then used for finer annotation of larger clusters. Clusters where 
there were markers from multiple lineages indicating contamin
ation, markers of dividing cells, low unique molecular identifier 
(UMI) counts or high mitochondrial percentage were all re
moved prior to downstream analysis. Cell types were annotated 
to the finest achievable level. Related clusters were later com
bined into a higher level annotation that we used for down
stream analysis that required a larger number of cells for each 
analysis. Differential cell type composition between groups 
was analysed using the DCATS R package (v0.99.7).

Factor decomposition using multi-omics factor 
analysis

Multi-omics factor analysis (MOFA+)20 was applied to the normal
ized counts of highly-variable genes provided with cell type labels 
and set to learn 30 factors. Gene enrichment analysis was per
formed as implemented in the MOFA2 R package using the C5 
ontology gene sets from the MSIGDB database.21,22 Factor weights 
and the DoRothEA database of transcription factor targets23 were 
then used to identify transcription factor regulons enriched in 
each factor. Factor weights for transcription factor targets were ag
gregated per factor and per transcription factor, which can be re
presented as a matrix product of factor weights and binary 
transcription factor—gene target relations. In order to test for the 
significance of the associations, for each MOFA+ factor and tran
scription factor, the same number of targets was sampled random
ly 10 000 times in order to calculate an empirical P-value.

Viral genome alignment

In this study, we performed a cell-resolution viral genome align
ment. First, we compiled a list of 833 viral sequences, containing 
762 viruses collected from VirTect,24 and seven other viruses and 
64 consensus sequences of human endogenous retroviruses 
(HERVs) collected by Vargiu et al.25 Then for each of our 
scRNA-seq batches, we extracted the reads that were uncounted 
or unmapped for the human transcriptome in the CellRanger step 
by using ‘samtools view possorted_genome_bam.bam | grep -v ‘xf: 
i:25’>xf_non25.sam’. Next, we aligned these reads to the 833 viral 
sequences via STARsolo26 using CellRanger’s bam file as input 
and assigned each read to a specific cell using the cell-associated 
barcode list for each sample (see the ‘Sequencing data preproces
sing’ section) as a whitelist. A cell-by-virus UMI count matrix is re
turned and by concatenating all batches we can perform 
downstream analysis. For reproducibility and public reuse, we 
have packaged all these analysis steps at https://github.com/ 
huangyh09/ViralScan. To compare the donor-level prevalence be
tween multiple sclerosis and non-multiple sclerosis samples, we 
performed a logistic regression to test if the coefficient of ‘is_MS’ 
is significantly non-zero with a model: Virus_present ∼ is_MS 
+total_UMIs+intercept. To compare the cell-level prevalence be
tween multiple sclerosis and non-multiple sclerosis samples, we 
performed a linear regression to test if the coefficient of ‘is_MS’ is 
significantly non-zero with a model: viral_proportion ∼ is_MS 
+total_UMIs_log+total_cells_log+intercept.

Expression quantitative trait loci mapping

For eQTL mapping, we followed the best practices for single-cell 
eQTL mapping outlined by Cuomo et al.27 Specifically, we did single 
cell-based normalization using sctransform28 and afterwards mean 
aggregated the cells to donor level gene-expression. The eQTLs 
were mapped per cell type using a linear mixed model implemen
ted in LIMIX v2 (https://github.com/limix/limix). As outlined in 
Cuomo et al.,27 we leveraged two random effects, one to account 
for population structure and one for donor wise read-depth (en
coded as 1/n reads per donor). In the analysis of each cell type, do
nors with fewer than two cells of that type were dropped, making 
the number of donors, and therefore power, different per cell 
type. Owing to the limited sample size of our study, we chose to 
only map eQTLs for protein coding genes that had non-zero expres
sion in at least 10% of the donors and chose to filter SNPs on a minor 
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allele frequency of 10% and used a cis-eQTL window of 100 kb either 
side of the gene.

Multiple testing correction was performed as in Cuomo et al.27

Specifically, we used 1000 permutations per QTL, and first correct 
per gene for testing multiple variants per gene followed by two dif
ferent approaches to correct for the number of genes per eQTL map. 
For genes included in the eQTLGen29 set, we applied the conditional 
false discovery rate (cFDR) approach (conditioning on the eQTLGen 
summary statistics); for the remaining genes, we used the Storey Q 
value approach. FDR was controlled at FDR 10% and cFDR 10%. 
Effects were considered to be replicated in other tissues when the 
direction of effect was concordant and there was nominal statistic
al significance in the second tissue.

For fine-mapping, we applied SusieR v0.11.9230 using the default 
settings in each cell type separately following the guidelines pro
vided by the authors. We annotated the eQTL signals based on fine- 
mapping results and specifically annotated signals overlapping 
with multiple sclerosis GWAS variants.

Detection of allele specific expression

To perform cell type-specific allele specific expression (ASE), we 
first genotyped each individual cell with cellsnp-lite v1.2.013 and ag
gregated expression data for each cell type to generate pseudo-bulk 
level data. We focused on the 8046 SNPs across 512 cis-genes of mul
tiple sclerosis disease variants. Where there were multiple coding 
SNPs in a gene, we only considered the one with the maximum 
number of donors with both heterozygous genotypes and 
scRNA-seq data for that gene. Then for each SNP in each cell type, 
we use all informative donors to perform a beta-binomial regres
sion with AOD R package (v1.3.1) and test if the mean allele fre
quency is 0.5, equivalent to testing if the intercept of the 
regression is 0. The P-value calculated with the Wald test is 
obtained.

Analysis of splicing and transcript usage

We first simplified the transcript annotation of the gene ZC3HAV1 
into two major transcripts with distinct exons in the 3′ end. Then 
using BRIE v2.2.031 we quantified the transcript compatible counts 
for each individual cell with brie-count using default parameters. 
A beta-binomial regression (from AOD R package) was used to cal
culate the P-value to test if there is a genetic effect on the propor
tion of transcript usage.

Results
The cellular architecture of CSF

We undertook single-cell transcriptome profiling of CSF cells from 
33 multiple sclerosis patients and 48 with other neurological condi
tions using the 10x Genomics 3′ v2 platform (Fig. 1A and 
Supplementary Table 1). Following quality control, doublet removal 
and computational adjustment of ambient RNA (see the ‘Materials 
and methods’ section), a total of 96 732 cells were available for 
downstream analysis. On average, we captured 1194 quality control 
(qc)-passing cells per patient (range 21–10 491 cells per patient; 
Supplementary Table 2); 48 675 cells from patients with multiple 
sclerosis, 18 524 from patients with OIND, 13 847 from patients 
with NIND and 15 686 from patients with IIH.

Through dimensionality reduction, iterative unsupervised clus
tering and inspection of canonical marker gene expression, we an
notated cells into 13 major immune populations which were used 

for all downstream analysis (Fig. 1B; see the ‘Materials and meth
ods’ section). Most of our multiple sclerosis patients (n = 31) were 
treatment-naïve, the other two patients receiving treatment with 
Tysabri, a monoclonal antibody against α4-integrin which reduces 
the migration of leucocytes through the blood–brain barrier.32

This treatment is known to alter cell type composition in the 
CSF7; therefore, the Tysabri-treated patients were excluded from 
the cell type proportion analysis. Comparison of the immune cell 
type proportions between disease groups was concordant with pre
vious findings,3-7 with multiple sclerosis patients having an over
representation of plasma cells, and an underrepresentation of 
monocytes and macrophages in comparison to patients with IIH 
and NIND (Fig. 1C and D). An increase in B cells and T regulatory 
cells was also seen in multiple sclerosis patients when compared 
to IIH and NIND but not OIND patients. Next, we assessed the rela
tionship between cell type proportions within multiple sclerosis 
patients based on the clinical annotations of these samples 
(Fig. 1D). B and plasma cells were enriched in oligoclonal-positive 
multiple sclerosis patients and those with active disease. 
Whereas the Tysabri-treated patients showed a reduction of CD4+ 
T cell and B cell proportion when compared to treatment-naïve 
multiple sclerosis patients, correlating with previous findings of 
altered immune cell composition in the CSF of Tysabri-treated 
patients.7 A high proportion of macrophage-like cells characterized 
by very low expression of the long non-coding genes MALAT1 and 
NEAT1 was also observed in the Tysabri-treated multiple sclerosis 
patients (Fig. 1D). Published data would suggest that this popula
tion could be immunosuppressive as knockdown of MALAT1 
has been shown to reduce inflammatory injury following lung 
transplant through inhibiting the neutrophil infiltration and 
activation,33 while NEAT1 knockdown was shown to lead to in
creased viral loads.34

Our higher resolution annotation identified many of the known 
low frequency cell subsets, including AXL+ dendritic cells, ACY3+  
dendritic cells and SPP1+ macrophages (Supplementary Figs 1 and 
2), and further identified a less well defined rare population of 
CD8+ T cells expressing cytotoxic markers (GZMA, GZMK) and 
characterized by upregulation of the co-stimulatory marker CD27, 
upregulation of inhibitory receptors (HAVCR2, TIGIT) and downre
gulation of chemokines (CCL4, CCL5). This uncommon cell subtype 
was enriched in multiple sclerosis patients (Supplementary Fig. 3), 
however given the low frequency of these cells additional data 
will be required to confirm these initial findings. The patient 
specific high resolution cell type proportions are provided in 
Supplementary Table 2.

Differential regulation of inflammatory and type I 
IFN gene expression programs in multiple sclerosis

Next, we set out to characterize cell type-specific differences in 
function between multiple sclerosis cases and controls as reflected 
in gene expression. Given the limited power of conventional cell 
type-specific differential expression analysis of individuals we ap
plied MOFA+20,35 to increase statistical power. This approach iden
tifies sets of co-regulated genes (factors) that contribute 
substantially to gene expression variation within different cell 
types (Fig. 2A and Supplementary Table 3; see the ‘Materials and 
methods’ section). MOFA+ identified nine major factors, of which 
we focused on the 14 factor-cell type pairs that explained at least 
1% of the variance in expression, and tested these for association 
with multiple sclerosis using the IIH patients as controls (see the 
‘Materials and methods’ section). At a FDR of <10%, using linear 
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regression and permutation-based statistics, we identified three 
multiple sclerosis-associated factors: factor 9 in CD4+ T cells, factor 
3 in macrophages and factor 7 in macrophages and dendritic cells 
(Fig. 2B), the top-weighted genes for each factor are shown in 
Fig. 2C. To annotate these factors, we considered two complemen
tary strategies. First, we performed a gene set enrichment analysis 
(GSEA) for each factor, weighting genes by the absolute value of 
their factor weights. Second, we searched for transcription factors 
(TFs) with regulons significantly enriched for genes with high factor 
weights (Fig. 2D), hypothesizing that these TFs might drive the 
co-regulated expression.36

The most statistically significant association with disease was 
observed for factor 9 in CD4+ T cells (P = 0.007; permutation test at 
the donor level), where patients with multiple sclerosis had re
duced expression compared to IIH (Fig. 2E). The genes with the 
highest weights for this factor, including CCL5, LGALS1, S100A11, 
GZMA and GZMK (Fig. 2C), are characteristic of tissue-resident cyto
toxic T effector memory cells6,37 and overlap with a previously de
scribed CD4+ T effector memory population re-expressing CD45RA 
(TEMRA).38 For this factor, GSEA shows significant enrichment for 
genes involved in the regulation of homotypic cell-cell adhesion 
(GO: 0034110; Fig. 2D). In T cells, homotypic cell interactions lead 

Figure 1 Study overview and characterization of cellular architecture of CSF. (A) Illustration of the experimental design and sampling scheme, in which 
droplet-based single cell sequencing was performed in 33 multiple sclerosis patents and 48 controls using the 10x Chromium Single Cell 3′ Solution V2. 
(B) Uniform manifold approximation and projection (UMAP) representation of single-cell transcriptomes of 96 732 CSF cells collected from all 81 donors, 
with the colours denoting the major cell types defined by iterative clustering and the expression of canonical marker genes. (C) Cell type proportions in 
three groups of cells across samples [T/natural killer (NK) at the top, B/plasma in the middle and monocytes/dendritic cells (DCs) at the bottom], ordered 
by sample group [multiple sclerosis (MS), other inflammatory neurological disease (OIND), non-inflammatory neurological disease (NIND) and ideo
pathic intracranial hypertension (IIH)]. Vertical bars correspond to individual samples. White indicates missing information (no cells of that type 
sampled in that individual). The colours correspond to the major cell types identified in C. (D) Differential cell abundance in pairwise comparisons be
tween: MS versus non-MS; MS versus IIH; MS versus NIND; MS versus OIND; NIND versus IIH; OIND versus IIH; oligoclonal positive MS versus oligoclo
nal negative MS; active MS versus inactive MS; Tysabri-treated MS versus non-treated MS; female MS versus male MS patients. Dot colour denotes 
effect size estimates and dot size denotes the significance of the respective comparison. DC = dendritic cell; cDC1 = myeloid/conventional DC1; 
cDC2 = myeloid/conventional DC2; pDC = plasmacytoid DC; SNP = single nucleotide polymorphism.
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to the release of IL4, IL-10 and TGFβ and the generation of suppres
sor T cells, providing a negative feedback mechanism that controls 
immune responses.39 Several TFs involved in attenuating inflam
matory and anti-viral responses have regulons overlapping with 
the genes showing the highest absolute weightings for factor 9 
(Fig. 2D), including BCL11B,40,41 REL,42 IKZF343 and IRF3/IRF7.44

The genes with the highest absolute value of weighing for factor 7 
are characteristic of anti-inflammatory M2 macrophages, including 

CREM,45 FTH146 and NR4A2,47 and show reduced expression in mul
tiple sclerosis. For factor 3, the genes with the highest absolute va
lue weightings were upregulated in multiple sclerosis in 
macrophages and include a range of HLA genes and showed GSEA 
for antigen processing and presentation of peptide or poly
saccharide antigen via MHC class II (GO:0002504) (Fig. 2D) as well 
as significant overlap with the regulon of VENTX which is involved 
in macrophage differentiation and pro-inflammatory activity.48

Figure 2 Differential activity of gene expression programmes in multiple sclerosis versus controls. (A) Illustration of the cell-type aware group-matrix 
factorization considered using multi-omics factor analysis (MOFA+). Expression profiles for different cell types are factorized into factors (Z) and weight 
matrices (W), respectively. (B) Gene expression variance explained by individual factors across cell types (R2) (left) and association with disease groups 
[multiple sclerosis versus ideopathic intracranial hypertension (IIH); linear model] (right). This analysis identifies factor 3 as primarily capturing 
disease-associated variation in macrophages, factor 7 as explaining variation in cDC2 and macrophages and factor 9 as explaining variation in 
CD4+ T cells. (C) Top gene loadings of the three disease-associated factors. (D) Left: Gene set enrichment based on factor loadings for the corresponding 
factors as in C. Right: A complementary strategy for factor annotations based on enrichments with known transcription factor targets. (E) Analysis of 
factor relevance across cells. Top: Factor activity across cells on the global uniform manifold approximation and projection (UMAP) representation col
oured by the factor value weight; bottom: violin plots showing factor values averaged per donor show disease association for individual cell types. 
DC = dendritic cell; cDC1 = myeloid/conventional DC1; cDC2 = myeloid/conventional DC2; pDC = plasmacytoid DC; IIH = ideopathic intracranial hyper
tension; MHC = major histocompatibility complex; MS = multiple sclerosis; NK = natural killer cell; NIND = non-inflammatory neurological disease; 
OIND = other inflammatory neurological disease.
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The regulons from TFs IRF5 and ETV7, which are involved in type I 
IFN response regulation and are associated with M1 macrophage 
polarization,49,50 showed significant overlap for factor 3.

Alignment of viral genomes is not enriched in 
patients with multiple sclerosis

Viruses, particularly the Epstein–Barr virus (EBV), have long been 
implicated in the pathogenesis of multiple sclerosis,51 and in com
parison to healthy individuals the CSF from patients with multiple 
sclerosis more frequently contains polyspecific immunoglobulins 
directed against a range of common viral agents; the so-called 
Measles Rubella Zoster reaction.52 It therefore seemed logical to 
examine whether there was evidence of viral genomes in our CSF 
samples. To do this, we aligned the scRNA-seq reads that were ei
ther unmapped to the human transcriptome or were within unan
notated regions in our data to 833 viral genomes and calculated the 
virus-specific UMI count per cell. We detected alignment (defined 
by at least one UMI detected across any cell type) for 78 of these viral 
genomes (Fig. 3A). The proportion of cells containing at least one 
viral UMI of any viral sequence showed no statistically significant 
difference between participants with multiple sclerosis compared 
to those without multiple sclerosis (Fig. 3B). Focusing on the 
specific viral genomes that were prevalent in more than 5% of ei
ther the multiple sclerosis or non-multiple sclerosis cohort 
(Supplementary Table 4 and Supplementary Fig. 4), the vast major
ity of these 65 well-represented viruses belong to the human en
dogenous retrovirus (HERV) family, transposable elements 
derived from retroviral integration into the human genome.53

Sequences of retroviral origin are considered to constitute up to 
8% of the human genome.54 Despite being viewed as of little func
tional importance, HERVs are widely expressed in normal tissue 
particularly in the brain and testis55 and implicated in diseases in
cluding multiple sclerosis.56 While we observed an increased 
prevalence of a few HERVs in multiple sclerosis patients 
(Supplementary Table 4), this increase was not statistically signifi
cant (FDR > 10%). Outside of HERVs, the only other viruses that we 
identified in more than 5% of either the multiple sclerosis or non- 
multiple sclerosis cohort were the human herpesvirus 1, 2, 6A 
and 6B, human papillomavirus 71 and Abelson murine leukemia 
virus. While these were all more prevalent in multiple sclerosis, 
again this increase was not statistically significant 
(Supplementary Fig. 4 and Supplementary Table 4).

Expression quantitative trait loci mapping in CSF 
cell types

To determine the impact of genetic variation on gene expression 
in the annotated cell types, we also completed array-based 
genome-wide genotyping of all individuals included in the 
study. Following imputation using the Haplotype Reference 
Consortium10 and quality control, we retained 9 149 816 common 
germline variants (minor allele frequency > 10% and MACH R2: 
0.6; see the ‘Materials and methods’ section; Supplementary Fig. 
5). We completed a genome-wide survey of eQTLs to uncover if 
there were any novel findings within cells isolated from the CSF. 
To do this, we applied the single-cell eQTL calling workflow pro
posed by Cuomo et al.27 Briefly, this approach maps cis-eQTLs in in
dividual cell types by aggregating expression profiles at a donor 
level (considering between 6594 and 12 305 protein-coding genes 
per cell type and variants within 100 kb of each considered gene; 
see the ‘Materials and methods’ section). In CD4+ and CD8+ T cells, 

the most abundant cell types, we found 437 and 252 genes with a 
cis-eQTL, respectively, while for B cells, an uncommon cell type in 
the CSF, we only identified 25 such effects (Supplementary Tables 
5 and 6). As the power for eQTL discovery is affected by the number 
of cells and individuals assayed, these results were not unexpected.

To assess the validity of our CSF eQTL signals, we sought to rep
licate these associations in relevant published cell-type specific 
single-cell57 and bulk RNA-peripheral blood mononuclear cell58 ex
pression studies. As the cell types, genes and variants tested were 
not the same across these studies, we established the rate at which 
our CSF eQTLs were reported as eQTLs in either of these studies,57,58

with eQTLs considered to be confirmed if there was the same direc
tion of effect at nominal significance (P < 0.05). Overall, 68%–100% of 
the CSF eQTLs we identified were confirmed in either of the pub
lished datasets (Fig. 4A and Supplementary Table 6). The highest 
replication rates were seen in T and natural killer cells (>82%), 
whereas cells derived from the myeloid lineage had a slightly lower 
replication rate (ranging from 69% to 79%), with the lowest replica
tion seen for eQTLs in B cells (68%). Next, we looked for concordance 
of eQTL signals between CSF cell types (see the ‘Materials and 
methods’ section) and found that confirmation rates between cell 
types found in the CSF within our study ranged from 52% in B cells 
to 84% in CD4+ T regulatory cells (Supplementary Table 6). Given 
that eQTL effects are known to be influenced by the cell state and 
environment, we would not have expected complete concordance 
between blood and CSF or across the different cell types. In sum
mary, the replication rate gives confidence that the eQTL signals 
described are genuine, despite the moderate sample size of our 
study.

Next, we used fine-mapping to investigate the relationship be
tween the eQTL identified and the 200 multiple sclerosis suscepti
bility variants identified from GWAS.1 Using SusieR,30 we 
identified credible sets of causal variants for 416 of the 749 
cis-eQTLs (Supplementary Table 7; see the ‘Materials and methods’ 
section); these sets contained a median of 21 variants per eQTL 
(ranging from 1 to 336). Of these 416 fine-mapped cis-eQTLs, 17 
mapped within 100 kb of a known multiple sclerosis risk factor. In 
three instances, the credible set for the eQTL included the known 
multiple sclerosis susceptibility variants: rs3764021 for the expres
sion of CLECL1 in macrophages; rs1059091 for the expression of 
IFITM2 in CD8+ T cells; and rs10271373 for the expression of 
ZC3HAV1 in CD8+ T cells (Fig. 4B). We further investigated whether 
there was correlation of the fine-mapped eQTLs with genetic var
iants that have recently been described as associated with multiple 
sclerosis progression.59 Of the 12 progression variants, none 
mapped to within 100 kb of a fine-mapped cis-eQTL. This is perhaps 
not surprising, as enrichment analysis suggests the variants asso
ciated with progression are enriched in or near genes highly ex
pressed in the brain which are not well captured in cells of the CSF.

Allele-specific expression is consistent with 
expression quantitative trait loci mapping

To complement the eQTL analysis and increase our power to iden
tify further cis-eQTL effects that are correlated with multiple scler
osis susceptibility or progression we completed an ASE analysis. No 
informative SNPs mapped close to the variants associated with 
multiple sclerosis progression [with linkage disequilibrium (LD) 
R2 > 0.15]; however, informative SNPs were available in 254 of the 
genes mapping close to multiple sclerosis susceptibility variants 
(with LD R2 > 0.15). Statistically significant evidence of ASE was 
seen for 40 of these genes in at least one cell type (Wald test in 
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Figure 3 Viral transcript expression in the CSF. (A) Uniform manifold approximation and projection (UMAP) plots colour-coded for the total unique 
molecular identifier (UMI) counts per cell for sequence reads mapped to any of the 833 viral sequences analysed. Left: UMAP plot for the 48 675 cells 
from multiple sclerosis patients; right: UMAP plot for the 48 057 cells from all non-multiple sclerosis patients. (B) Proportion of cells that contain at 
least one viral UMI in multiple sclerosis patients versus controls, no statistically significant difference was found between the groups (P > 0.05). 
MS = multiple sclerosis.

Figure 4 Genetic effects on gene expression and co-localization with multiple sclerosis variants. (A) Number of genes with a cis-expression quantita
tive trait loci (eQTL) detected across 11 cell types (blue bar). For genes that could be probed for replication (see the ‘Materials and methods’ section), the 
number of eQTLs that were consistent (orange bar) or discordant (grey bar) with previous studies in either peripheral blood mononuclear cells58 or cell 
type specific single cell data57 is indicated. Values above the bar denote the replication rates. (B) Scatter plot of gene expression, stratified for eQTL vari
ant status, for the three genes with a cell-type-specific cis-eQTL fine mapped to established multiple sclerosis susceptibility variants. (C) Heatmap in
dicating allele-specific expression of the minor allele for the 26 single nucleotide polymorphisms (SNPs) in high linkage disequilibrium (LD) with 
multiple sclerosis-associated variants in different cell types with red indicating higher expression of the minor allele. The number of donors with het
erozygous genotypes is indicated next to the gene name. White indicates a missing value where the gene was expressed <2 heterozygous donors. 
Single asterisk = false discovery rate (FDR) < 0.01; two asterisks = FDR < 0.0001 (Wald test, beta-binomial regression). (D) Top: Expression scatter plot 
showing the proportion of the long and short ZC3HAV1 transcripts according to rs10271373 genotype; bottom: graphical representation of the two 
main ZC3HAV1 transcripts. DC = dendritic cell; cDC2 = myeloid/conventional DC2; pDC = plasmacytoid DC; GWAS = genome-wide association study; 
NK = natural killer cell.
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beta-binomial regression; FDR < 0.01; Supplementary Table 8), 
including 26 genes that have ASE in at least one cell type other 
than CD4+ T cells (Fig. 4C). Interestingly, in keeping with the eQTL 
analysis, we found evidence of ASE for both ZC3HAV1 and IFITM2. 
In both genes the multiple sclerosis associated SNPs are located 
within transcribed regions of the gene [3′ untranslated region 
(UTR) and missense variant, respectively] and so were directly as
sessable for ASE. For ZC3HAV1, while the most statistically signifi
cant effect was seen in CD8+ T cells (correlating with the eQTL 
analysis), ASE was detected across most cell types with the same 
direction of effect. Meanwhile the ASE for rs1059091 in IFITM2 
was strongest in CD8+ T cells but also evident in CD4+ T cells alone, 
suggesting that the effects observed may be specific to these cell 
types. This aligns with publicly available data in peripheral blood 
mononuclear cells which demonstrate this SNP as an eQTL for 
IFITM2 in CD8+ naïve T cells.60

Interestingly, we noted that the pattern of extensive ASE within 
ZC3HAV1 was specifically localized to the 3′UTR of the longer 
ZC3HAV1 transcript (ENST00000464606.5), which contains the mul
tiple sclerosis-associated SNP rs10271373 as well as seven other 
SNPs in high linkage disequilibrium which all showed ASE. 
Alternative polyadenylation of ZC3HAV1 results in multiple iso
forms differing at the 3′ end of the gene. To further characterize 
whether the observed ZC3HAV1 eQTL was a splice variant we 
used the BRIE software31 to quantify the proportion of the captured 
isoforms of ZC3HAV1 (ENST00000464606.5/ENST00000680309.1 ver
sus ENST00000471652.1). This analysis revealed that the eQTL 
influence of rs10271373 was mediated almost exclusively through 
an effect on the longer transcripts (ENST00000464606.5/ 
ENST00000680309.1), which includes three additional exons (exon 
10–12) and an alternate 3′UTR (Fig. 4D). The proportion of the longer 
transcript is significantly decreased from 91.3% in homozygotes for 
the multiple sclerosis risk allele to 73.8% in homozygotes for the 
protective allele (P < 1 ×10−16, Wald test in beta-binomial regres
sion). The transcript usage does not differ between multiple scler
osis and non-multiple sclerosis samples in any cell type (P = 0.42).

Discussion
Here we report the results from our comprehensive single-cell reso
lution analysis of CSF from patients with multiple sclerosis and 
other neurological diseases. Our analysis confirms the well- 
established cellular composition of CSF in patients with multiple 
sclerosis and highlights inflammatory responses altered in mul
tiple sclerosis. We further describe the first single-cell eQTL ana
lysis of CSF and identify two eQTLs in CD8+ T cells correlated 
with multiple sclerosis susceptibility, both in genes related to con
trolling viral responses—ZC3HAV1 and IFITM2.

Our eQTL analysis indicates that the multiple sclerosis suscep
tibility variant rs10271373 influences the expression of ZC3HAV1 
in CD8+ T cells, a gene with four isoforms,61 two of which, ZAP-L 
and ZAP-S,62 are suggested to be important in resistance to particu
lar viruses.62-65 This eQTL effect appears to be driven by an under
lying splicing QTL, with increased usage of the ZAP-L isoform 
in individuals that carry the multiple sclerosis risk allele 
(rs10271373_A). This longer isoform has an extended C-terminal 
region which contains a poly (ADP ribose) polymerase (PARP)-like 
domain62 and contains a CaaX prenylation motif. Farnesyl modifi
cation of the cysteine residue of this motif enhances the antiviral 
activity through altering the subcellular location of ZAP-L to the 
endocytic and lysosomal compartments for viral interaction.66

Interestingly, this isoform is known to be under positive selection62

and contains EBV miRNA binding sites within its 3′UTR.67 We fur
ther identified a second eQTL that fine-mapped to a multiple scler
osis susceptibility variant (rs1059091) for another antiviral gene, 
IFITM2, where reduced expression of the gene in CD8+ T cells was 
observed in individuals carrying the risk allele (rs1059091_A), sup
porting a previous finding that observed this eQTL in CD8+ naïve 
T cells only,60 suggesting this eQTL is likely to be cell-type specific. 
IFITM2 is believed to inhibit viral entry, likely through effects on the 
endocytic pathway68 and has also been implicated in Th2 T cell dif
ferentiation.69 Given the location of IFITM2 within the IFITM cluster 
on chromosome 11, along with transcript-specific genotypic effects 
of rs1059091 on IFITM2 expression in response to particular viral 
strains,70 further investigation is warranted to investigate this com
plex regulatory region.

Given the likely importance of viral infection in the pathogen
esis of multiple sclerosis,51 especially the role of EBV,71 it seemed lo
gical to check our samples for the presence of viruses. While we did 
not identify an enrichment of any one virus in the CSF of patients 
with multiple sclerosis, patients with multiple sclerosis did have 
an increased proportion of a rare CD8+ T cell population where 
the top defining markers, including the inhibitory receptors 
HAVCR2 and TIGIT, overlap previously described viral specific 
exhausted-like CD8+ cells,72,73 which are known to arise following 
chronic antigenic stimulation.74 The expression of HAVCR2 and 
TIGIT in CD8+ T cells however is also present on several other 
CD8+ T cell phenotypes, including activated cells,75 and tissue resi
dent memory cells.76 Given that exhausted T cells77 and CD8+ tis
sue resident memory cells7,8,78 have all been implicated in 
multiple sclerosis, careful phenotyping of this cell population at 
the epigenetic and protein level will be essential to establish the 
function of these cells and in turn the mechanism by which they 
may be of relevance in the disease process.

Using a MOFA approach, we identified several factors showing 
altered expression in multiple sclerosis. The most statistically sig
nificant being the decreased activity of genes controlling anti- 
inflammatory and anti-viral type I IFN responses in the T cells. 
The genes with the highest MOFA weighting for this factor also 
overlap with those characterizing tissue-resident cytotoxic T cell 
effector memory6,37 or TEMRA cells.38 This finding is consistent 
with previous work, emphasizing the importance in multiple scler
osis of specific T helper cell subsets,79 alongside the protective ef
fects of type I IFNs in CNS autoimmunity and the known benefit 
of using the type I IFN—IFNβ—as a treatment in multiple sclerosis.80

Whether our observation that these genes show reduced expres
sion in multiple sclerosis reflects a depletion of a specific cell subset 
or rather reflects a shift in function across a wider range of CD4+ 
T cells remains to be established. The limited ability to resolve 
cell subtypes in unstimulated CD4+ T single-cell data is well estab
lished.81 While reference sets have proven useful in partially over
coming this issue,82 development of disease-relevant reference 
sets will be required to allow meaningful cross-study comparisons 
of disease-specific effects within T cell subtypes.

As well as changes in T cells we also identified two disease- 
relevant MOFA factors in the macrophage population, one related 
to anti-inflammatory M2 polarization and the other related to anti
gen presentation. Macrophages have been shown to be of import
ance in the mouse model of multiple sclerosis—experimental 
autoimmune encephalomyelitis83—human multiple sclerosis 
pathology,84 disease progression,85 remyelination86 and in the 
neuro-inflammation present in many degenerative neurological 
diseases.87 Our MOFA data indicate that in multiple sclerosis there 
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is reduced polarization towards the M2 phenotype and increased 
expression of the machinery of antigen presentation, likely indicat
ing that the MOFA has identified factors indicative of an altered 
phenotypic cell state in multiple sclerosis.

Given the extreme functional plasticity of immune cells in re
sponse to environmental stimuli, it is difficult to disentangle 
whether the phenotypes we have captured represent the cause or 
the consequence of disease. However, our single cell analysis has 
identified genes and pathways critical in both adaptive and innate 
immune cells, emphasizing the importance of both arms of the im
mune system in multiple sclerosis. Furthermore, our finding that 
the multiple sclerosis susceptibility variants rs10271373 and 
rs1059091 are eQTLs for antiviral genes in CSF CD8+ T cells supports 
the hypothesis that dysregulation in viral control mechanisms is 
involved in the development of multiple sclerosis.

Data availability
These data have been deposited in the European Genome- 
phenome Archive (EGA), which is hosted by the EBI and the CRG, 
under accession number EGAS00001007478. For reproducibility, 
the data preprocessing scripts and analysis notebooks can be found 
at https://github.com/huangyh09/MSclerosisSrc. For the eQTL ana
lysis, we used the standard pipeline at: https://github.com/single- 
cell-genetics/limix_qtl.
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