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The Kochen–Specker (KS) theorem is a cornerstone result in quantum foundations, establishing that
quantum correlations in Hilbert spaces of dimension d ≥ 3 cannot be explained by (consistent) hidden
variable theories that assign a single deterministic outcome to each measurement. Specifically, there
exist finite sets of vectors in these dimensions such that no non-contextual deterministic ({0, 1})
outcome assignment is possible obeying the rules of exclusivity and completeness—that the sum of
assignments to every set of mutually orthogonal vectors be ≤1 and the sum of value assignments to
any dmutually orthogonal vectors be equal to 1. Another central result in quantum foundations is
Gleason’s theorem that justifies the Born rule as a mathematical consequence of the quantum
formalism. The KS theorem can be seen as a consequence of Gleason’s theorem and the logical
compactness theorem. In a similar vein, Gleason’s theorem also indicates the existence of KS-type
finite vector constructions to rule out other finite-alphabet outcome assignments beyond the {0, 1}
case. Here, we propose a generalisation of the KS theorem that rules out hidden variable theories with
outcome assignments in the set {0, p, 1− p, 1} for p∈ [0, 1/d)∪ (1/d, 1/2]. The case p = 1/2 is especially
physically significant. We show that in this case the result rules out (consistent) hidden variable
theories that are fundamentally binary, i.e., theories where each measurement has fundamentally at
most twooutcomes (in contrast to the singledeterministic outcomepermeasurement ruledout byKS).
We present a device-independent application of this generalised KS theorem by constructing a two-
player non-local game forwhich a perfect quantumwinning strategy exists (a Pseudo-telepathy game)
while no perfect classical strategy exists even if the players are provided with additional no-signaling
resources of PR-box type (with marginals in {0, 1/2, 1}).

One of the most striking features of the quantum world is Contextuality1–4,
the notion that outcomes cannot be assigned to measurements indepen-
dently of the particular contexts in which the measurements are realized.
Simply put, the measurements of quantum observables may not be thought
of as revealing pre-existing properties that are independent of other com-
patible observablesmeasured on the system. This feature has in recent years
gone beyond being a fundamental curiosity and has been established as a
fundamental resource in quantum information processing tasks including
magic state distillation5, measurement-based quantum computation6, semi-
device-independent randomness generation7–11, zero-error information
theory12, non-local pseudo-telepathy games13, as well as most recently in
communication complexity scenarios14.

The phenomenon of contextuality (specifically outcome contextuality)
manifests itself in the form of the famous Kochen–Specker (KS) theorem1.

TheKS theorem states that for every quantum systembelonging to aHilbert
space of dimension greater than two, irrespective of its actual state, a finite
set of measurements exists that does not admit a deterministic non-
contextual outcome assignment. Here, deterministic indicates that the
outcome probabilities only take values in {0, 1}. Non-contextual means that
the assignment is made to the individual projectors, independently of the
context (the other projectors in the measurements) to which they belong.
The KS theorem is also formulated as saying that in Hilbert spaces of
dimension greater than two, there exist finite sets of vectors that are not
{0, 1}-colorable, wherein a {0, 1}-coloring is such a deterministic non-
contextual outcome assignment obeying the natural Kochen-Specker rules
that no pair of orthogonal projectors are both assigned value 1 (exclusivity),
and that one of the projectors is assigned value 1 in every complete basis set
(completeness).

Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong. e-mail: ravi@cs.hku.hk

npj Quantum Information |           (2024) 10:99 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-024-00895-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-024-00895-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-024-00895-w&domain=pdf
http://orcid.org/0000-0001-6829-7531
http://orcid.org/0000-0001-6829-7531
http://orcid.org/0000-0001-6829-7531
http://orcid.org/0000-0001-6829-7531
http://orcid.org/0000-0001-6829-7531
mailto:ravi@cs.hku.hk
www.nature.com/npjqi


The KS theorem itself can be seen as a corollary of the remarkable
Gleason’s theorem15. Simply put, this theoremstates thatwhenone assumes,
in addition to the above non-contextuality, the mathematical structure of
measurements in quantum theory, then one can recover the Born rule for
calculating probabilities16,17. That is, in this case, any assignment of outcome
probabilities to projectors takes the form of applying the Born rule to some
density operator. Gleason’s work was not explicitly aimed at addressing the
hidden variable problem, but was rather directed towards reducing the
axiomatic basis of quantum theory. Nevertheless, the KS theorem that
establishes the specific contradiction between the Born rule and non-
contextual {0, 1}-assignments can be seen as a consequence of Gleason’s
theorem along with a logical compactification argument18,19.

Pitowsky observed the above fact and suggested that it should be
possible to find generalisations of the Kochen-Specker theorem to beyond
{0, 1}-assignments, noting that the “general constructive case is, to the best of
my knowledge, open”18. This paper is therefore propaedeutic to a larger
project exploring such finite outcome alphabet generalisations of the KS
theorem. Specifically here, we consider an interesting case going beyond {0,
1}, namely non-contextual outcome assignments fromO ¼ f0; p; 1� p; 1g
for p ≠ 1/d and 0 ≤ p ≤ 1/2, concentrating on the case d = 3 throughout
(following the original KS paper1). Observe that the d-dimensional maxi-
mally mixed state naturally provides an outcome assignment of 1/d to all
rank-one projectivemeasurements. It is noteworthy that the knownKS sets
admit assignment from the setO (see “Methods” Section “Background on
KS theorem”). It is also noteworthy that as we show, the case p = 1/2 is of
especially important physical significance, being the class of fundamentally
binary outcome assignments, a natural general probabilistic analog of
quantum theory studied in20 (see “Methods” Section “Physical interpreta-
tion of {0,1/2,1}-colorings as fundamentally binary outcome assignments”).
These are hidden variable models which postulate that at a fundamental
level the measurements are binary (at most one of two measurement out-
comes can occur for each measurement), in contrast to the single deter-
ministic outcome assignment ruled out by KS.

In this paper, we establish by an explicit construction, a generalisation
of the KS theorem to rule out non-contextual outcome assignments fromO
to quantumprojectors in three dimensions (d = 3), i.e.,O ¼ f0; p; 1� p; 1g
for p ≤ 1/2, and p ≠ 1/3. Formally, we construct a finite set of vectors
(alternatively, their corresponding rank-one projectors) that do not admit
any outcome assignment from the setO obeying the KS rules that no pair of
orthogonal projections has sum of value assignments exceeding 1, and that
the sum of value assignments to the projectors in every complete mea-
surement is equal to1.At this point it isworth emphasising that the outcome
assignments to the quantum projectors are to be understood as the
assignment of probabilities rather than just labels, i.e., exclusion of every
outcome assignment from O also excludes convex combinations of such
outcome assignments (see “Methods” Section “Physical interpretation of
{0,1/2,1}-colorings as fundamentally binary outcome assignments”).

The traditional KS theorem has found applications in several areas of
quantum information asmentioned earlier. Here, we present an application
of our generalised KS theorem to the construction of two-player pseudo-
telepathy games that admit awinnningquantumstrategy but cannot bewon
by players sharing classical resources even if these are augmented with the
quintessential resource of no-signaling boxes of the type proposed by
Popescu and Rohrlich in ref. 21 (that is, having marginal probabilities
belonging to {0, 1/2, 1}).

The paper is organised as follows.We first introduce some preliminary
notationandelementary concepts, inparticular the representationofKS sets
as graphs, and the notion of {0, 1}-gadgets that were shown to be crucial in
the construction of KS sets in22,23. We then state the central theorem of the
paper establishing a generalisation of the KS theorem toO-valued outcome
assignments, and outline a sketch of its proof, deferring the technical details
to the “Methods” section. We then present the construction of a class of
two-playerPseudo-Telepathygamesusing the central theorem,detailing the
uniqueness of this new class of games and highlighting their application in
developing device-independent protocols for randomness generation

against no-signaling adversaries. We conclude with a discussion on further
possible generalisations of the KS theorem and possible new applications.

KS and Gleason theorems.—A projective measurementM is described
by a setM = {V1,…,Vd} of projectorsVi in a complexHilbert space, that are
orthogonal ViVj = δi,jVi and sum to the identity

P
iVi ¼ 1. Each Vi cor-

responds to a possible outcome i of measurement M and determines the
probability of this outcome when measuring a state ∣ψ

�
through the Born

rule Prψ(i∣M) = 〈ψ∣Vi∣ψ〉. When two physically distinct measurements
M = {V1,…, Vd} andM0 ¼ fV 0

1; . . . ;V
0
dg share a common projector Vi ¼

V 0
i ¼ V it holds that PrψðijMÞ ¼ Prψði0jM0Þ ¼ hψjVjψi. That is, the out-

come probabilities in quantum theory are determined by the individual
projectors alone, independently of the context to which they belong—the
probability assignment is non-contextual.

Toprove theKS theorem1, one usually considers afinite set of rank-one
projectors in a complex Hilbert space of dimension d ≥ 3.We represent the
projectors by the vectors onto which they project and consider a set S ¼
∣v1

�
; . . . ; ∣vn

�� � � Cd for d ≥ 3. Consider any assignment f : S ! f0; 1g
that associates to each ∣vi

�
a probability f ð∣vi

�Þ 2 f0; 1g. To interpret the
f ð∣vi

�Þ as outcome probabilities, they should satisfy the following two
conditions termed as KS rules
1. Exclusivity:

P
∣vi2Of ð∣viÞ≤ 1 for every set O � S of mutually ortho-

gonal vectors,
2. Completeness:

P
∣vi2Bf ð∣viÞ ¼ 1 for every set B � S of d mutually

orthogonal vectors (a basis or complete measurement).

An assignment f : S ! f0; 1g satisfying the KS rules is called a {0, 1}-
coloring.TheKS theoremstates that ford ≥ 3, there existfinite sets of vectors
(called KS sets) that do not admit a {0, 1}-coloring, thus establishing the
impossibility of a non-contextual deterministic outcome assignment. In
their original proof, Kochen and Specker described a set S of 117 vectors in
C31. Finding KS sets in arbitrary dimensions is a well-known hard problem
towards which a huge amount of effort has been expended, in particular
‘records’ of minimal KS systems in different dimensions have been
studied24–27. Theminimal KS set contains 18 vectors in dimension d = 4 due
to Cabello et al.28,29.

The classical Gleason’s theorem15,30–32 implies that in separable Hilbert
spaces of dimension d ≥ 3, a quantum state is completely determined by
only knowing the answers to all of the possible yes/no questions. Consider
the real three-dimensional spaceR3, and suppose that f is a non-negative
function (technically termed a frame function) on the unit sphere with the
property that f ð∣u1

�Þ þ f ð∣u2
�Þ þ f ð∣u3

�Þ is a fixed constant for every set
∣u1

�
; ∣u2

�
; ∣u3

�� �
ofmutually orthogonal vectors (a basis). Then,Gleason’s

theorem assures that f is a quadratic form, i.e., there is a density operator ρ
such that f ð∣uiÞ ¼ hujρjui for every unit vector ∣ui 2 R3. The KS theorem
then arises by a logical compactification argument from Gleason’s theorem
as a consequence of the fact that no density operator exists satisfying the
above and an assignment f ð∣uiÞ ¼ f ð∣viÞ ¼ 1 for two linearly independent
vectors18.

Pitowsky provided a constructive method to prove a central lemma in
the proof of Gleason’s theorem, namely that every non-negative frame
function on the set of vectors (strictly speaking, the rays) inR3 is continuous.
He (along with Hrushovski) used this to prove a generalisation of the KS
theorem in a different direction, that he termed the logical uncertainty
principle18,33,34 (for which we provided a simpler proof in ref. 22). Pitowsky’s
Logical Uncertainty Principle has since been found to be of use in
contextuality-based randomness generation, where it is used in localizing the
value indefiniteness impliedby theKS theorem, i.e., inpinpointing the specific
observables from whose outcomes randomness may be extracted35. Other
attempts at constructive proofs of Gleason’s theorem are also known30–32.

Closely related to the Logical Uncertainty Principle is the notion of a
01-gadget22. This is a set of vectors Sgad � Cd that is {0, 1}-colorable, and
contains two distinguished non-orthogonal vectors ∣v1

�
; ∣v2

� 2 Sgad for
which f ð∣v1

�Þ þ f ð∣v2
�Þ≤ 1 in every {0, 1}-coloring fofSgad . In otherwords,

while a 01-gadgetSgad admits a {0, 1}-coloring, in any such coloring the two
distinguished non-orthogonal vectors cannot both be assigned the value 1
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(as if theywere actually orthogonal). The01-gadgets (alsoknownasbugs36–38

or true-implies-false sets39) have been found to be instrumental in con-
structingproofs of theKochen-Specker theorem, aswell asmore general sets
exhibiting State-Independent Contextuality (SIC)40. In this paper, we make
use of 01-gadgets to construct a different generalisation than Pitwosky’s
logical uncertainty principle, to rule out outcome assignments from a dif-
ferent finite alphabet than {0, 1}.

Results
Our results presented in this work are in two parts. As a fundamental result,
we state and prove the generalised KS theorem. As an application of the
theorem, we then construct a novel class of two-player pseudo-telepathy
games that cannot be won even when the players share the quintessential
non-signaling resource of the PR-box (in general boxes with marginal
probabilities taking values in {0, 1/2, 1}).

Generalisation of the KS theorem
Gleason’s theorem implies that the only consistent (non-contextual)
assignment rule, when one considers all the vectors inR3, is the Born rule.
The theorem also suggests that it should be possible to find finite vector sets
that do not admit non-contextual assignments (colorings) from other finite
alphabets than {0, 1}. In this section, we consider the alphabet O ¼
f0; p; 1� p; 1g for p∈ [0, 1/3)∪ (1/3, 1/2] (as mentioned before, any rank-
one projector set in Cd admits a coloring from the alphabet {0, 1/d, 1} by
virtue of the coloring resulting frommeasurements on themaximallymixed
state 1

d 1). Note that {0, p, 1− p, 1} is to be thought of as a set rather than a
multiset; and in particular any repetitions are to be ignored so that p = 1/2
indicates the set {0, 1/2, 1} rather than the multiset {0, 1/2, 1/2, 1}. Let us
formally define the notion of a O-valued outcome assignment (coloring)
for d = 3.

Definition 1. Let O :¼ f0; p; 1� p; 1g with p ∈ [0, 1/3) ∪ (1/3, 1/2]. An
O-valued non-contextual outcome assignment of a set of vectors S ¼
f∣v1

�
; . . . ; ∣vn

�g � Cd with d = 3 is an assignment g : S ! O that satisfies
the KS rules stated as:
1.

P
∣vi2B0gð∣viÞ≤ 1 for every setB0 � S of mutually orthogonal vectors,

2.
P

∣vi2Bgð∣viÞ ¼ 1 for every set B � S of d = 3 mutually orthogonal
vectors (a basis or complete measurement).

From here on, for ease of exposition, we will state the theorem for the
case of {0, 1/2, 1} colorings, the case of generalO-colorings is explained in
the “Methods” section. Every finite set of vectors that is not {0, 1/2, 1}-
colorable provides a proof of theKS theorem,while not every proof set of the
KS theorem is non-{0, 1/2, 1}-colorable. In fact, it turns out that all of the
knownKS vector sets (to the best of our knowledge) are {0, 1/2, 1}-colorable
(see “Methods” Section “Background on KS theorem”).

Therefore, a finite vector set that is not {0, 1/2, 1}-colorable proves a
stronger statement than the original KS theorem, resulting in a stronger
notion of contextuality than hitherto explored, with concomitant novel
applications as we shall see later. In this section, we state the following
theorem and sketch its proof (see details of proof in “Methods” Section
“Proof of the generalised KS theorem”). As will be seen, some of the steps in
the proof apply to more general finite alphabet outcome assignments than
considered in this paper.

Theorem1. There existfinite vector sets inC3 that donot admitO-valued
outcome assignments.

Sketch of Proof.—The proof has three steps, each involving a gadget (a
finite setof vectors) construction that proves an interesting lemma in its own
right. In the first step, we present a gadgetS1 that proves a lemma ruling out
‘one-value’ for any fixed projector in anyO-valued outcome assignment.

Lemma. Let ∣v1
�
be any fixed vector in C3. There is a finite set of

vectors Sv
1 � C3 with ∣vi 2 Sv such that there does not exist any outcome

assignment f : Sv
1 ! O with f ð∣viÞ ¼ 1.

The first step reduces the problem to the case of outcome assignments
inO n f1g since a finite vector set that does not admit outcome assignments
fromO n f1g can be augmented with finite gadgets proving the Lemma for
each of the vectors in the set. In the second step, we present a gadgetS2 that
admits outcome assignments from O n f1g but such that in any such
assignment it is necessarily the case that d linearly independent vectors are
all assigned value 0. In the third and final step, we present a gadget that
admits outcome assignments from O n f1g but such that in any such
assignment the d linearly independent vectors of the form in step 2 cannot
all be assigned value 0. Taking the union of the finite vector sets from steps 2
and 3, and augmenting themwith a gadget from the Lemma for each of the
vertices in S2 ∪S3 proves the statement. ■.

The above Theorem 1 restricted to the specific case of {0, 1/2, 1}-
assignments carries an additional physical significance arising from con-
siderations of generalised probabilistic theories. Specifically, these corre-
spond to the class of Fundamentally Binary theories— these are consistent
(no-disturbance41) theories in which measurements yielding many out-
comes are constructed by selecting from binary measurements20,42. In other
words, these theories posit that on a fundamental level only measurements
with twooutcomes exist, and scenarioswhere ameasurementhasmore than
two outcomes are achieved by classical post-processing of one ormore two-
outcome measurements.

In ref. 20, the authors showed that in considering Bell non-locality, the
set of fundamentally binary non-signalling correlations does not encompass
the set of quantumnon-local correlations andhence an explanation in terms
of measurements being binary is not feasible for quantum non-locality.
Theories with binary measurements have an interesting property that was
proven by us in ref. 23. Specifically, we characterized the extreme points of
the set of fundamentally binary correlations showing that for every mea-
surement x and every outcome a, it holds that PA∣X(a∣x)∈ {0, 1/2, 1} for
every extremal behaviour fPext

AjXðajxÞg. Seen in this light, a non-{0, 1/2, 1}-
colorable vector set may also be stated as proving a KS-type theorem of the
following form: for every quantum system belonging to a Hilbert space of
dimension greater than two, irrespective of its actual state, a finite set of
measurements exists that does not admit a consistent fundamentally binary
outcome assignment (see “Methods” Section “Physical interpretation of
{0,1/2,1}-colorings as fundamentally binary outcome assignments”). It is an
interesting open question whether further generalisations to outcome
assignments fromdifferent finite alphabet sets has a similar correspondence
with other generalised probabilistic theories42.

Theorem 1 pertaining to the case of {0, 1/2, 1} outcome assignments is
also interesting from a graph-theoretic viewpoint, where it bears a relation
with the stable set problem43,44. A stable set (or independent set) I in a graph
is a subset of the vertex set such that no two vertices in I are adjacent
(connectedby anedge).Determining the size of themaximumstable set (the
independence number α(G)) of a graph is a well-known hard problem, and
can be seen as an optimization over the stable set polytope denoted by
STAB(G) (the convex hull of the incidence vectors of the stable sets of the
graph). Bounds on α(G) are obtained via a linear programming relaxation
known as the fractional stable set polytope FSTAB(G). In this light, Thm. 1
postulates the existence of graphs for which the intersection of FSTAB(G)
with the hyperplanes defined by the particular Completeness (Normal-
ization) conditions for each maximum clique is empty (see “Methods”
Section “Physical Interpretation of {0,1/2,1}-colorings as fundamentally
binary outcome assignment”).

Novel pseudo-telepathy games unwinnable using standard no-
signalling resources
Pseudo-telepathy (PT) games45 are distributed tasks that can be perfectly
achieved with shared quantum—but not classical—information. Specifi-
cally, twodistant partieswhodonot communicate but are allowed to share a
certain entangled quantum state can satisfy a deterministic condition on
their mutual input-output behavior with certainty, where parties without
shared entanglement cannot do so. PT games are interesting from a foun-
dational point of view as a simple ‘all-versus-nothing’ proof of quantum
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non-locality. In recent years, these games have also found applications as
necessary resources in protocols of device-independent randomness
amplification46,47, in demonstrating quantum computational advantage for
shallow circuits48 and in the proof of MIP* = RE49.

An interesting connection between KS vector sets and PT games has
been found13. Specifically, every so-called ‘weak’ KS set leads to a PT game
and everyPTgame inwhich the optimal quantumstrategy uses amaximally
entangled state leads to a KS set. Interestingly, the fact that known KS sets
admit coloring in {0, 1/2, 1} has meant that all known PT games are win-
nable when the classical players are given a specific type of additional no-
signaling resource—viz. a non-local boxwithmarginals in {0, 1/2, 1}.That is,
all known PT games such as the Magic Square game used in the afore-
mentioned applications are winnable when players share a single copy of
such non-local boxes, the paradigmatic example of which is the PR-box21.

Here we present an analogous statement (proof in “Methods” Section
“Application to constructing PT games unwinnable using PR-type boxes”)
showing that our generalisedKS sets also lead toPTgames, but nowwith the
novel property that these games cannot bewon evenwhen the players share
PR-type non-local boxes, where by PR-type behaviour we mean no-
signalling boxes with marginals in {0, 1/2, 1}.

Proposition 1. There exist bipartite Pseudo-telepathy games that cannot
bewonusing classical resources evenwhen supplementedwith a single copy
of PR-type behaviour in every game round.

The above Proposition 1 readily leads to an application in device-
independent cryptographic protocols for quantum random number gen-
eration or key distributionwhere the PTgames give rise toprotocols that are
secure even against a class of no-signaling adversaries who are allowed to
prepare the devices of honest players to obey the input–output behavior of
these non-local boxes. Significant no-go theorems exist for proving security
against general no-signalling adversaries50, it is of interest to see whether
such no-go statements can be overcome by restricting the power of no-
signaling adversaries to an intermediate level above quantum.Other device-
independent consequences of this novel class of Bell inequalities will be
explored in forthcoming work.

Discussion
In this paper, we have studied a generalisation of the fundamental KS
theorem to ruling out (consistent) hidden variable theories with outcome
assignments from other finite alphabets than {0, 1}. While we have pre-
sented one application to constructing bipartite Bell inequalities with novel
device-independent applications, it would be of great interest to explore
other applications to randomness generation, measurement-based quan-
tum computation, and communication complexity scenarios where tradi-
tional KS contextuality has been shown to play a prominent role. The usual
KS sets have thus far been seen tobenecessary in constructingPTgamesand
in identifying channels for which quantum entanglement enhances zero-
error capacity12. There is an interesting possibility that generalised KS sets
could give rise to PT games for which the optimal strategy is achieved by a
non-maximally entangled state, a result thatwould be useful in several areas.

Simple and efficient criteria for identifying KS orthogonality graphs
have been found51. It seems feasible to extend these to criteria for identifying
orthogonality graphs ofmore general KS-type proofs, a task which we defer
for future work. In traditional KS contextuality, records have been achieved
of the minimal number of projectors needed to demonstrate state-
independent and state-dependent52 contextuality in different dimensions.
Such small sized proofs have enabled experimental tests of KS
contextuality53–55.While our proof is constructive and involves a finite set of
vectors, it would be important to reduce the number of projectors to make
the generalised KS theorem amenable to experimental test. It would be thus
very interesting to find the minimal sized KS sets ruling out O-valued
outcome assignments for differentfinite output alphabetsO. The framingof
the theorem presented here in the general context of quantum logic56,57 is
interesting for future work. Finally, variousmeasures to quantify traditional

KS contextuality have been proposed58,59, it would be of interest to quantify
the strongernotionof contextuality capturedby thegeneralisedKS theorem.

Methods
Background on KS theorem
Much of the work on the KS theorem is done in terms of finite simple
graphs, specifically by representing the orthogonality relations in a vector set
S by a graph GS known as the orthogonality graph of S43. In such a graph,
eachvector ∣vi

� 2 S is representedby a vertex viofGS and twovertices v1, v2
in the vertex set VðGSÞ are connected by an edge if the associated vectors
∣v1

�
; ∣v2

�
are orthogonal, i.e., v1 ~ v2 if 〈v1∣v2〉 = 0.

A clique in the graphGS is a subset of verticesQ such that every pair of
vertices inQ is connected by an edge, i.e., v1 ~ v2 for all v1, v2∈Q. It follows
that in the orthogonality graph GS represents a set of mutually orthogonal
vectors inS. IfS � Cd contains a basis setofdmutually orthogonal vectors,
then themaximumclique sizeofGS isd, this is denoted asωðGSÞ ¼ dwhere
ω(G) denotes the clique number of the graph.

The notion of {0, 1}-coloring for the vector setS can be translated into
the problem of coloring the vertices of its orthogonality graphGS such that
vertices connected by an edge cannot both be assigned the color 1 and every
maximum clique has exactly one vertex of color 1.We say that a graphG is
{0, 1}-colorable if there exists an assignment f: V(G)→ {0, 1} such that
1. ∑v∈Qf(v) ≤ 1 for every clique Q ⊂ V(G),
2.

P
v2Qmax

f ðvÞ ¼ 1 for every maximum clique Qmax � VðGÞ.

The KS theorem is then equivalent to the statement that there exist for
any d ≥ 3, finite vector sets S � Cd such that their orthogonality graphGS
does not admit a {0, 1}-coloring.

In a strictly analogousmanner, one can consider thenotionof outcome
assignments fromotherfinite output alphabetsO. Namely,wewill say that a
graph G is O-colorable if there exists an assignment g : VðGÞ ! O
such that
1. ∑v∈Qg(v)≤1 for every clique Q ⊂ V(G),
2. v2Qmax

gðvÞ ¼ 1 for every maximum clique Qmax � VðGÞ.

Our strengthened KS theorem from the main text would then be
equivalent to the statement that there exists for any d ≥ 3 a finite
vector setS � Cd such that its orthogonality graphGS does not admit
a O-coloring.

In their original proof, Kochen and Specker described a set S of 117
vectors inCd dimension d = 31. FindingKS sets in arbitrary dimensions is a
well-known hard problem towards which a huge amount of effort has been
expended, in particular ‘records’ of minimal KS systems in different
dimensions have been studied24–27. The minimal KS set contains 18 vectors
in dimension d = 4 due to Cabello et al.28,29.

Intriguingly, it turns out that all of the knownKS sets (to the best of our
knowledge) admit a {0, 1/2, 1}-coloring. Some of thewell-knownKS sets are
shown in Fig. 1a–c together with a possible {0, 1/2, 1}-coloring. Even if
perchance it were to turn out that a knownKS set existed that did not admit
any {0, 1/2, 1}-coloring, it would still be of great interest to develop novel
techniques to find KS sets that do not admit outcome assignments from
other finite alphabets.

Physical Interpretation of {0, 1/2, 1}-colorings as fundamentally
binary outcome assignments
In this section, we describe an intriguing interpretation of {0, 1/2, 1}-col-
orings in terms of a particular interesting class of generalised probabilistic
theorems called “Fundamentally Binary Theories”20. This line of inquiry
follows a huge research effort devoted to understanding physical and
information-theoretic principles that enforce the quantum formalism. A
natural class of alternatives to quantum theory are the Fundamentally
Binary theories - these are no-signalling theories in which measurements
yielding many outcomes are constructed by selecting from binary mea-
surements. In other words, these theories posit that on a fundamental level
only measurements with two outcomes exist, and scenarios where a
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measurement has more than two outcomes are achieved by classical post-
processing of one or more two-outcome measurements. Fundamentally
binary correlations are characterised as the convex hull of all consistent
behaviours {PA∣X(a∣x)} obeying the constraint that for all measurements x, it
holds that PA∣X(a∣x) = 0 for all but (at most) two outcomes a.

Consider an orthogonality graph G with a set of maximum cliques
(contexts) C ¼ fC1; . . . ;Ckg where each clique Ci if of size ω(G) = d (cor-
responding to a complete projectivemeasurement).Abehaviour (akaboxor
correlation) {PA∣X(a∣x)} is a set of conditional probability distributions with
input x∈ {C1, …, Ck} and output a∈ {1, …, d}. A behaviour is said to be
compatible with an orthogonality graph G if it is a family of normalized
probability distributions such that for each c∈ {C1, …, Ck}, there is a cor-
responding probability distribution in this family. A behaviour is said to be
consistent (or non-disturbing) if for all pairs C1, C2 it holds that

PAjXða ¼ sjx ¼ C1Þ ¼ PAjXða ¼ sjx ¼ C2Þ 8s 2 C1 \ C2: ð1Þ

In otherwords, the probability of the particularmeasurement outcome
is independent of which context it is measured in. A consistent behaviour is
said to be fundamentally binary if it belongs to the convex hull of consistent
boxes {PA∣X(a∣x)} for which for all measurements x, it holds that
PA∣X(a∣x) = 0 for all but (at most) two outcomes a, together with any box
obtainedby local classical post-processingof suchboxes.That is, atmost two
outcomes in each measurement have non-zero probabilities (that sum to
unity) and the remaining outcomes have probability 0.

In23, building on a graph-theoretic result for the so-called fractional
stable set polytope (FSTAB(G)) for a graph G by Nemhauser and Trotter60

and Balinski61, we provided a characterization of the extremal points of the
convex polytope of Fundamentally Binary correlations.

Fact 1. (23). Let fPext
AjXðajxÞg be an extremal behaviour in the set of funda-

mentally binary correlations. Then for every measurement x and every
outcome a it holds that Pext

AjXðajxÞ 2 f0; 1=2; 1g.
In light of Fact 1, our main theorem can also be stated as a general-

isation of the KS in the following way: for every quantum system belonging
to a Hilbert space of dimension greater than two, irrespective of its actual
state, afinite set ofmeasurements exists that does not admit a fundamentally
binary outcome assignment. The reason being that if a non-{0, 1/2, 1}-
colorable vector set admits a fundamentally binary outcome assignment

(even one that is not extremal), then the corresponding behaviour

{PA∣X(a∣x)} is necessarily convex decomposable as fPAjXðajxÞg ¼P
iqiP

ext;ðiÞ;
AjX ðajxÞ for some qi ≥ 0, ∑iqi = 1 and extremal behaviours

fPext;ðiÞ
AjX ðajxÞg. However, as we have seen, for any extremal behaviour, the

probabilities necessarily take values in {0, 1/2, 1} which would provide a {0,
1/2, 1}-coloring for the vector set, giving a contradiction. Therefore, it fol-
lows that the set of Fundamentally Binary correlations for a non-{0, 1/2, 1}-
colorable set is empty, giving rise to aKS-type theorem(recall that in the case
of the non-{0, 1}-colorable vector sets proving the original KS theorem, it is
the polytope of classical behaviors obtained as the convex hull of determi-
nistic {0, 1} behaviors that is empty).

Proof of the generalised KS theorem
In thisAppendix,weprovide a proof of themain theorem,namely that there
exist finite vector sets in C3 that do not admit any O-valued outcome
assignment, whereO ¼ f0; p; 1� p; 1g with p ≠ 1/3. Our proof strategy is
as follows. The proof consists of three steps.

In the first step, we provide a construction to rule out any one-valued
vectors in the O-coloring. That is, we show that if for a finite vector set
S ¼ f∣v1

�
; . . . ; ∣vn

�g and a coloring f : S ! O it holds that f ð∣v1
�Þ ¼ 1

then there exists set Sv1
1 such that augmenting f to S ∪Sv1 leads to a

contradiction. In other words, the finite vector set
S ∪Sv1

1 ∪Sv2
1 ∪ . . . ∪Svn

1 can only admitO-valued outcome assignments
f for which f ð∣vi

�Þ≠ 1 for all ∣vi
� 2 S. We therefore reduce the problem to

proving the existence of a finite vector set S that does not admit an
outcome assignment inO n f1g.

In the next steps, we go about constructing such a setS. In the second
step, we present a simple small vector set S2 (consisting of 9 vectors in
three dimensions) that has the property that in any O n f1g-outcome
assignment f it holds that a triple ð∣v1

�
; ∣v2

�
; ∣v3

�Þ of linearly independent
vectors (to be specific, one of twelve triples related by a symmetry trans-
formation) are all assigned value 0, i.e., f ð∣v1

�Þ ¼ f ð∣v2
�Þ ¼ f ð∣v3

�Þ ¼ 0.
In the third step, we present another gadget, a vector set S3 that includes
the vectors ∣v1

�
; ∣v2

�
; ∣v3

�
. The gadget S3 has the property that no out-

come assignment f : S3 ! O n f1g exists such that
f ð∣v1

�Þ ¼ f ð∣v2
�Þ ¼ f ð∣v3

�Þ ¼ 0. In other words, the conjunction of (the
finite vector sets from) the three steps gives a vector set that does not admit
O-valued outcome assignments.

{0,1/2,1} {0,1/2,1}

’ 33 vector KS set
{0,1/2,1}

Cabello’s 

Fig. 1 | Some well-known Kochen-Specker sets are shown along with a possible
outcome assignment from the set {0, 1/2, 1} obeying the KS rules of exclusivity
and completeness. a Kochen and Specker’s original 117 vector set1 in dimension
three is shown. A valid {0, 1/2, 1}-coloring is indicated with red vertices being
assigned value 1/2 and black vertices being assigned value 0. It can be readily checked
that the sumof value assignments in everymaximumclique (triangle) is 1.bPeres' 33

vector KS set in dimension three is shown. A valid {0, 1/2, 1}-coloring is indicated
with red vertices being assigned value 1/2 and black vertices being assigned value 0.
c Cabello’s 18 vector KS set28,29 is shown as a hypergraph with hyperedges denoting
maximum cliques of size four. A valid {0, 1/2, 1}-coloring is indicated with red
vertices being assigned value 1/2 and black vertices being assigned value 0. It can be
readily checked that the sum of value assignments in every maximum clique is 1.
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Ruling out one-valued projectors in finite outcomeassignments. We
first address the question of reducing the case of O-valued assignments
to O n f1g-assignments. That is, we show a construction that allows to
rule out f ð∣viÞ ¼ 1 for any fixed vector ∣vi. While we will present this
Lemma in the context ofO-valued assignments it will be apparent from
the proof that the statement can be extended to arbitrary assignments
from a finite set {p1, p2,…, pn, 1}. The proof of the Lemma builds upon22

where we provided a simple proof of an extended KS theorem (logical
indeterminacy principle) first proposed by Pitowsky and Hrushovski in
ref. 18,33.

Fact 2. (18,22,33). Let ∣v1
�
and ∣v2

�
be any two non-orthogonal vectors inCd

with d ≥ 3. Then there is a finite set of vectors Sv1;v2LIP � Cd with ∣v1
�
; ∣v2

� 2
Sv1 ;v2LIP such that for any [0, 1]-assignment f: S→ [0, 1], it holds that if
f ð∣v1

�Þ ¼ 1 then 0 < f ð∣v2
�Þ < 1.

The explicit construction of Sv1;v2LIP proving Fact 2 for arbitrary ∣v1
�
and

∣v2
�
was shown by us in ref. 22 (in fact a slightly stronger statement was

shown namely that f ð∣v1
�Þ; f ð∣v2

�Þ 2 f0; 1g if and only if
f ð∣v1

�Þ ¼ f ð∣v2
�Þ ¼ 0). For completeness, we illustrate the central aspects

of the proofs through Fig. 2a, b. The construction in Fig. 2a shows a gadget
with the property that in any [0, 1] assignment, one cannot have both end
vertices taking value 1, i.e., f(v1) = f(v2) = 1 is disallowed. While the con-
struction is shown in Fig. 2a for ∣〈v2∣v1〉∣ = 1/2, the construction for general
∣v1

�
; ∣v2

�
follows a similar ‘gadget-within-gadget’ construction and can be

seen in ref. 22. The construction in Fig. 2b shows a gadget with the property
that in any [0, 1] assignment, if one end vertex takes value 1 then the other
cannotbedeterministic, i.e., if f(v1) = 1 then0 < f(v2) < 1.Note that the above
Fact 2 is concerned with general probabilistic assignments (from [0, 1] and
obeying theKS rules) which contains the specificO-valued assignments as a
special case.

Fact 2 states that for any two non-orthogonal vectors ∣v1
�
; ∣v2

�
there is

a finite set Sv1 ;v2LIP such that in all probabilistic assignments f : Sv1;v2LIP ! ½0; 1�
it holds that if f ð∣v1

�Þ ¼ 1 then 0 < f ð∣v2
�Þ < 1. Therefore, if for any fixed

vector ∣v1
�
it happens to be the case that f ð∣v1

�Þ ¼ 1 then by adding the set
Sv1 ;v2LIP for any other fixed vector ∣v2

�
we can ensure that 0 < f ð∣v2

�Þ < 1 for
that probabilistic outcome assignment f. We will treat the construction of
the set Sv1 ;v2LIP in Fact 2 as a building block to prove the following Lemma.

Lemma1. Let ∣v1
�
be any fixed vector inCd withd ≥ 3. There is a finite set

of vectors Sv1
1 � Cd with ∣v1

� 2 Sv1
1 such that there does not exist any

outcome assignment f : Sv1
1 ! O with f ð∣v1

�Þ ¼ 1.

ProofThe proof goes through the orthogonality graph shown in the Fig. 3.
In the graph, a directed dotted edge such as between v1 and v3 denotes the
gadget constructed in Fig. 2b. Unlike the usual edge in an orthogonality
graph, this dotted edge denotes the fact that when the specific endpoint v1
takes value 1 then the other endpoint v3 of the edge necessarily takes a value
in (0, 1) (that is 0 < f(v3) < 1) for any [0, 1]-assignment f. The corresponding
orthogonal representation is given for the instance ∣v1

� ¼ ð1; 0; 0ÞT . It
follows that a corresponding orthogonal representation exists for any fixed
vector inC3 through an appropriate unitary transformation. The vector set
Sv1
1 is composed of the vectors ∣v1

�
; ∣v2

�
; . . . ; ∣v6

�
along with the vectors in

the sets Sv1 ;v3LIP , Sv1 ;v5LIP and Sv1 ;v6LIP .

Fig. 2 | The gadgets to prove Fact 2 are shown above. a Consider any assignment f:
S→ [0, 1] for the set of (non-normalised represented by ~v) vectors S defined as follows
and represented by the orthogonality relations in the graph (a). ~v1

�
∣ ¼ ð� ffiffiffi

2
p

;�1; 1Þ,
~v2
�

∣ ¼ ð ffiffiffi
2

p
; 1; 1Þ, ~v3

�
∣ ¼ ð0; 1; 1Þ, ~v4

�
∣ ¼ ð�2

ffiffiffi
2

p
; 1;�3Þ, ~v5

�
∣ ¼ ð0;�1; 1Þ,

~v6
�

∣ ¼ ð2 ffiffiffi
2

p
;�1;�3Þ, ~v7

�
∣ ¼ ð1; 0; 0Þ, ~v8

�
∣ ¼ ð1; 2 ffiffiffi

2
p

; 0Þ, ~v9
�

∣ ¼ ð0; ffiffiffi
3

p
;�1Þ,

~v10
�

∣ ¼ ð�2
ffiffiffi
2

p
; 1;

ffiffiffi
3

p Þ, ~v11
�

∣ ¼ ð0; ffiffiffi
3

p
; 1Þ, ~v12

�
∣ ¼ ð2 ffiffiffi

2
p

;�1;
ffiffiffi
3

p Þ,
~v13
�

∣ ¼ ð ffiffiffi
2

p
; 1;

ffiffiffi
3

p Þ, ~v14
�

∣ ¼ ð� ffiffiffi
2

p
;�1;

ffiffiffi
3

p Þ. It is readily checked that in any prob-
abilistic assignment f : S→ [0, 1] it cannot be the case that both f ð∣v1

�Þ ¼ 1 and
f ð∣v2

�Þ ¼ 1. While this construction is shown for the specific case ∣〈v2∣v1〉∣ = 1/2 it
readily extends to arbitrary ∣v1

�
; ∣v2

� 2 C3 through a repeated “gadget-within-gadget”
construction as shown in ref. 22. Gadgets of this type (for general overlap 〈v1∣v2〉)

forbidding assignments of value 1 to v1, v2 are denoted by a dashed edge between v1 and
v2. bConsider any assignment f : S0 ! ½0; 1� for the set of (non-normalised) vectors S0

defined as follows and represented by the orthogonality relations in the graph (b).
~v1
�

∣ ¼ ð� ffiffiffi
2

p
;�1; 1Þ, ~v2

�
∣ ¼ ð ffiffiffi

2
p

; 1; 1Þ, ~v15
�

∣ ¼ ð�1;
ffiffiffi
2

p
; 0Þ, ~v16

�
∣ ¼ ð ffiffiffi

2
p

; 1;�3Þ.
In this figure, the dashed edges denote gadgets of the type in graph a i.e., such that
f ðv1Þ ¼ 1

� � ! f ðv2Þ≠ 1
� �

and f ðv1Þ ¼ 1
� � ! f ðv16Þ≠1

� �
in any [0, 1]-outcome

assignment. Since f ðv1Þ ¼ 1
� � ! f ðv15Þ ¼ 0

� �
it follows that f ðv1Þ ¼ 1

� � !
0 < f ðv2Þ < 1
� �

since f ðv2Þ ¼ 0
� �

would imply f ðv16Þ ¼ 1
� �

to satisfy the KS com-
pleteness condition. Gadgets of this type (having the property that
f ðv1Þ ¼ 1

� � ! 0 < f ðv2Þ < 1
� �

) are denoted by a dotted directed edge between v1
and v2.

v1

v3

v2

v4

v5 v6

Fig. 3 | The gadget to prove Lemma 1 is shown. In the figure, dotted directed edges
denote the gadgets from Fig. 2b. Consider the vector set Sv1

1 in the figure defined as
v1
�

∣ ¼ ð1; 0; 0Þ, v2
�

∣ ¼ ð0; 0; 1Þ, v3
�

∣ ¼ ð1= ffiffiffi
2

p Þð1; 1; 0Þ, v4
�

∣ ¼ ð1= ffiffiffi
2

p Þð�1; 1; 0Þ,
v5
�

∣ ¼ ð1= ffiffiffi
6

p Þð1; 1; 2Þ, v6
�

∣ ¼ ð1= ffiffiffi
3

p Þð1; 1;�1Þ. Now consider any assignment f :
Sv1 ! f0; p; 1� p; 1gwith p≤1/2 and p≠ 1/3. Then if f(v1) = 1 it holds that 0 < f(v3) <
1, 0 < f(v5) < 1 and 0 < f(v6) < 1 (by the property of the dotted edges) in addition to
f(v2) = 0 (by the KS exclusivity). The KS completeness condition gives f(v3) = f(v5)+
f(v6) which in conjunctionwith the above gives f(v3) > f(v5) and f(v3) > f(v6). For p≤1/
2 the above conditions can only be met when f(v3) = 1 − p, f(v5) = f(v6) = p which
however gives p = 1/3 which is excluded. Therefore no outcome assignment f to the
set O exists for the set Sv1

1 obeying f(v1) = 1.
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Now suppose there exists an outcome assignment f : Sv1
1 ! O with

f ð∣v1
�Þ ¼ 1. From the property stated in Lemma 1, it follows that

0 < f ð∣v3
�Þ < 1, 0 < f ð∣v5

�Þ < 1 and 0 < f ð∣v6
�Þ < 1. And from the KS rules of

exclusivity and completeness it follows that f ð∣v2
�Þ ¼ 0, f ð∣v3

�Þ þ f ð∣v4
�Þ ¼

1 and f ð∣v4
�Þ þ f ð∣v5

�Þ þ f ð∣v6
�Þ ¼ 1. Therefore, we obtain that f ð∣v3

�Þ ¼
f ð∣v5

�Þ þ f ð∣v6
�Þ with 0<f ð∣v6

�Þ<1 so that f ð∣v3
�Þ>f ð∣v5

�Þ. We also have
f ð∣v3

�Þ ¼ f ð∣v5
�Þ þ f ð∣v6

�Þ with 0 < f ð∣v5
�Þ < 1 so that f ð∣v3

�Þ > f ð∣v6
�Þ.

And since f takes values in {0, p, 1− p, 1} we have that for p ≤ 1/2 the above
conditions can only be met when f ð∣v3

�Þ ¼ 1� p; f ð∣v5
�Þ ¼ f ð∣v6

�Þ ¼ p.
However since f ð∣v3

�Þ ¼ f ð∣v5
�Þ þ f ð∣v6

�Þ this gives p = 1/3 which is
excluded. Therefore, no outcome assignment exists such that f : Sv1

1 ! O
and f(v1) = 1 proving the statement. We note that when consideringCd for
d > 3, the setSv

1 is simplymodified as in traditional KS proofs by the addition
of the computational basis vectors (0, 0, 0, 1, 0,…, 0)T,…, (0, 0, 0, 0,…, 0, 1)T.
In any assignment with f ð∣v1

�Þ ¼ 1 these additional vectors are all assigned
value 0 so that the above argument directly extends.□

Assigning 0s to d linearly independent vectors. As explained, in the
first step we have reduced the problem to proving the existence of a finite
vector set S that does not admit an outcome assignment in O n f1g.
Toward this end, in this subsection, we present a simple gadget that has
the property that in any outcome assignment f in the setO n f1g it holds
that a triple ð∣v1

�
; ∣v2

�
; ∣v3

�Þ of linearly independent vectors (to be spe-
cific, one of twelve triples related by a symmetry transformation) are all
assigned value 0, i.e., f ð∣v1

�Þ ¼ f ð∣v2
�Þ ¼ f ð∣v3

�Þ ¼ 0. Formally we
consider the following set of vectors S2 in three dimensions represented
by the orthogonality graph in Fig. 4.

u1
�

∣ ¼ ð1; 0; 0Þ; u2
�

∣ ¼ ð0; cos θ1; sin θ1Þ; u3
�

∣ ¼ ð0;� sin θ1; cos θ1Þ
u4
�

∣ ¼ ð0; 1; 0Þ; u5
�

∣ ¼ ðcos θ2; 0; sin θ2Þ; u6
�

∣ ¼ ð� sin θ2; 0; cos θ2Þ
u7
�

∣ ¼ ð0; 0; 1Þ; u8
�

∣ ¼ ðcos θ3; sin θ3; 0Þ; u9
�

∣ ¼ ð� sin θ3; cos θ3; 0Þ:
ð2Þ

For simplicity we may take θ1 = θ2 = θ3 = θ = π/3, say. Consider any
outcome assignment to this set S2 in O n f1g, i.e., f : S2 ! f0; p; 1� pg
with p ≤ 1/2, p ≠ 1/3. Since each row as well as the first column corresponds
to abasis in threedimensions, it follows that to complywith theKS rules, one

vector fromeach rowaswell as thefirst columnmust necessarily be assigned
value 0with the other vectors being assigned values p, 1− p. That is, it holds
that in any assignment f : S2 ! f0; p; 1� pg, we must have f ð∣u1

�Þ ¼
0 ^ f ð∣u5

�Þ ¼ 0 _ f ð∣u6
�Þ ¼ 0

	 
 ^ f ð∣u8
�Þ ¼ 0 _ f ð∣u9

�Þ ¼ 0
	 


or per-
mutations thereof. Tobe precise, it holds that one of 12 linearly independent
triples (listed below Fig. 4) has the property that all vectors in the triple are
assigned value 0 in any outcome assignment from the setO n f1g.

Assignments that set d linearly independent vectors to zero are
identically zero. In this subsection, we build on Step 2 to construct the
finite vector set that does not admit an outcome assignment inO n f1g. In
conjunction with the Step 1 (by augmenting with finite vector sets ruling
out value 1 for each of the vertices), this set will prove the KS theorem for
O-valued outcome assignments.

Our construction in this case is shown in Fig. 5a. Consider the set of
vectors S3 in dimension three and their orthogonality graph shown in the
figure and any outcome assignment f : S3 ! O n f1g with the property
that either (i) f(w1) = f(w2) = f(w3) = 0 or (ii) f ðw1Þ ¼ f ðw0

2Þ ¼ f ðw3Þ ¼ 0.
Here ∣w1

� ¼ ð1; 0; 0ÞT , ∣w2

� ¼ ðcos θ; sin θ; 0ÞT , ∣w3

� ¼ ðcos θ; 0; sin θÞT
and ∣w0

2

� ¼ ð� sin θ; cos θ; 0ÞT with θ = π/3. We recognize these vectors as
the triples ð∣u1

�
; ∣u8

�
; ∣u5

�Þ and ð∣u1
�
; ∣u9

�
; ∣u5

�Þ from Step 2.
Firstly, we note that an orthogonal representation inR3 exists for the

graph in Fig. 5a (and consequently its induced subgraph in Fig. 5b).Namely,
we fix ∣w1

� ¼ ð1; 0; 0ÞT , ∣w2

� ¼ ðcos θ; sin θ; 0ÞT�
, ∣w3

� ¼ ðcos θ;
0; sin θÞT and ∣w0

2

� ¼ ð� sin θ; cos θ; 0ÞT with θ = π/3. We first construct

the set Sð1Þ
3 consisting of the following set of vectors

∣w4

� ¼ ð0; cos ϕ1; sinϕ1 Þ
T , ∣w5

� ¼ ð0;� sin ϕ1; cos ϕ1ÞT , ∣w6

� ¼
ð0; cos ϕ2; sin ϕ2ÞT , ∣w7

� ¼ ð0;� sin ϕ2; cos ϕ2ÞT , ∣w8

� ¼ ∣w2

�
× ∣w4

�
,

∣w9

� ¼ ∣w2

�
× ∣w6

�
, ∣w10

� ¼ ∣w3

�
× ∣w5

�
, ∣w11

� ¼ ∣w3

�
× ∣w7

�
, ∣w12

� ¼
∣w4

�
× ∣w8

�
, ∣w13

� ¼ ∣w6

�
× ∣w9

�
, ∣w14

� ¼ ∣w5

�
× ∣w10

�
, ∣w15

�
¼ ∣w7

�
× ∣w11

�
, ∣w34

� ¼ ∣w3

�
× ∣w13

�
. Here × denotes the usual vector

cross product. We set θ = π/3 and choose parameters ϕ1, ϕ2 to enforce the
remaining orthogonality constraints: 〈w8∣w9〉 = 0, 〈w10∣w11〉 = 0 and
〈w13∣w3〉 = 0. The parameters ϕ1, ϕ2 are obtained analytically as the arc-
tangents of the roots of algebraic equations of degree 4, to avoid clutter we
give their numerical valuesϕ1 ≈ 5.7036 andϕ2 ≈ 3.5065.Wenowproceed to
show that no outcome assignment f : S3 ! O n f1g exists, i.e., any such
assignment leads to a contradiction with the KS rules of exclusivity and
completeness. It is easy to see that in case (i) when we have
f(w1) = f(w2) = f(w3) = 0 then it is necessarily the case that
f(w12) = f(w14) = f(w13) = f(w15) = 0 (these follow from the KS completeness
rule). Now, since f(w3) = f(w13) = 0 it follows that completeness rule for the
basis (w3,w13,w34) cannot be satisfied, yielding a contradiction.Therefore in

this case the contradiction is already reached from the subset Sð1Þ
3 repre-

sented by the orthogonality graph in Fig. 5b. In our search over non-
isomorphic graphs, this was the smallest graph that we found with the
property required, namely that setting three linearly independent vectors to
0 yields a contradictionwith theKS rules of exclusivity and completeness for
an outcome assignment inO n f1g.

We proceed to show the vectors representing the remaining vertices in

the graph.Namely,we construct the setSð2Þ
3 consisting of the following set of

vectors: ∣w0
2

� ¼ ð� sin θ; cos θ; 0ÞT , ∣w16

� ¼ ð0; cos ϕ3; sin ϕ3ÞT ,
∣~w17

� ¼ ð0;� sin ϕ3; cos ϕ3ÞT , ∣w18

� ¼ ð0; cos ϕ4; sin ϕ4ÞT , ∣w19

� ¼ ð0;
� sin ϕ4; cos ϕ4ÞT , ∣w20

� ¼ ∣w12

�
× ∣w18

�
, ∣w21

� ¼ ∣w18

�
× ∣w20

�
, ∣w22

� ¼
∣w14

�
× ∣w17

�
, ∣w23

� ¼ ∣w17

�
× ∣w22

�
, ∣w24

� ¼ ∣w12

�
× ∣w20

�
, ∣w25

� ¼
∣w14

�
× ∣w22

�
, ∣w26

� ¼ ∣w16

�
× ∣w24

�
, ∣w27

� ¼ ∣w19

�
× ∣w25

�
, ∣w28

� ¼
ðcos θ5 cos ϕ5; cos θ5 sin ϕ5; sin θ5ÞT , ∣w29

� ¼ ∣w27

�
× ∣w28

�
, ∣w30

� ¼
∣w28

�
× ∣w29

�
, ∣w31

� ¼ ∣w26

�
× ∣w28

�
, ∣w32

� ¼ ∣w27

�
× ∣w29

�
, ∣w33

� ¼
∣w9

�
× ∣w30

�
, and ∣w35

� ¼ ∣w2

�
× ∣w0

2

�
. Having fixed θ = π/3, we choose the

parameters ϕ3, ϕ4, ϕ5, θ5 to satisfy the remaining orthogonality constraints,
namely 〈w24∣w16〉 = 0, 〈w19∣w25〉 = 0, 〈w26∣w28〉 = 0, 〈w9∣w30〉 = 0. Again the

u1

u4 u7

u2 u3

u5

u6

u8

u9

Fig. 4 | In the figure is presented a simple gadget that achieves the property stated
in Step 2 of the proof. Namely, consider the following vector set S2 represented by
the orthogonality graph in the figure: u1

�
∣ ¼ ð1; 0; 0Þ, u2

�
∣ ¼ ð0; cos θ1; sin θ1Þ,

u3
�

∣ ¼ ð0;� sin θ1; cos θ1Þ, u4
�

∣ ¼ ð0; 1; 0Þ, u5
�

∣ ¼ ðcos θ2; 0; sin θ2Þ, u6
�

∣ ¼
ð� sin θ2; 0; cos θ2Þ, u7

�
∣ ¼ ð0; 0; 1Þ, u8

�
∣ ¼ ðcos θ3; sin θ3; 0Þ, u9

�
∣ ¼ ð� sin θ3; cos θ3; 0Þ.

For simplicity we take θ1 = θ2 = θ3 = θ = π/3. Consider any assignment f : S2 !
f0; p; 1� pg with p ≤ 1/2 and p ≠ 1/3. To obey the KS completeness condition, it
readily follows that we must have three linearly independent vectors in the set that
are assigned value 0. To be specific, any assignment fmust necessarily obey one of the
following twelve possibilities: (i) f(u1) = f(u5) = f(u8) = 0, (ii) f(u1) = f(u5) = f(u9) = 0,
(iii) f(u1) = f(u6) = f(u8) = 0, (iv) f(u1) = f(u6) = f(u9) = 0, (v) f(u4) = f(u2) = f(u9) = 0,
(vi) f(u4) = f(u2) = f(u8) = 0, (vii) f(u4) = f(u3) = f(u9) = 0, (viii) f(u4) = f(u3) = f(u8) =
0, (ix) f(u7) = f(u2) = f(u6) = 0, (x) f(u7) = f(u2) = f(u5) = 0, (xi) f(u7) = f(u3) = f(u6) =
0 or (xii) f(u7) = f(u3) = f(u5) = 0.
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anglesϕ3,ϕ4,ϕ5, θ5 are obtainedanalytically as the arctangentsof the rootsof
algebraic equations of high degree, to avoid clutter we present their
numerical values: θ5 = 0, ϕ3 ≈ 5.0234, ϕ4 ≈ 0.5886 and ϕ5 ≈ 2.1829. An
alternative approach to obtain a perhaps less unwieldy representation is to
postulate a triple of real variables (xi, yi, zi) for each vertex wi, express the
constraints using polynomial equalities, namely x2i þ y2i þ z2i ¼ 1 and
xixj+ yiyj+ zizj = 0 for every pair of adjacent vertices wi ~wj, and solving
the constraint system over the reals.

Now, we proceed to show that no outcome assignment f : S3 !
O n f1g exists obeying the case (ii) when we have
f ðw1Þ ¼ f ðw0

2Þ ¼ f ðw3Þ ¼ 0. Again, applying the KS rules of exclusivity
and completeness, we obtain in this case that f(w14) = f(w15) = 0 and either
f(w8) = f(w13) = 0 or f(w9) = f(w12) = 0. When f(w13) = 0 as we have already
seen we reach a contradiction for the basis (w3, w13, w34). In the case when
f(w9) = f(w12) = 0, we obtain again by KS completeness that
f(w21) = f(w26) = f(w27) = f(w23) = 0 which finally gives f(w30) = 0. Now,
since f(w30) = f(w9) = 0 it follows that the completeness rule for the basis
(w30, w9, w33) cannot be satisfied, yielding a contradiction.

Thecontradiction for the triples ð∣u1
�
; ∣u9

�
; ∣u6

�Þ and ð∣u1
�
; ∣u8

�
; ∣u6

�Þ
can be achieved by a strictly analogous construction by considering the set
Uu1

π=2∣vi for ∣vi 2 S3, i.e., by considering the vectors in the setS3 rotatedbyπ/

2 about the axis ∣u1
� ¼ ð1; 0; 0ÞT . We denote this set as Uu1

π=2S3.
The contradiction for the triples ð∣u4

�
; ∣u9

�
; ∣u2

�Þ, ð∣u4
�
; ∣u8

�
; ∣u2

�Þ,
ð∣u4

�
; ∣u9

�
; ∣u3

�Þ and ð∣u4
�
; ∣u8

�
; ∣u3

�Þ can be achieved by an analogous
construction considering the set Uu7

π=2∣vi for ∣vi 2 S3

S
Uu1

π=2S3, i.e., by

considering the vectors in the setS3

S
Uu1

π=2S3 rotated by π/2 about the axis

∣u7
� ¼ ð0; 0; 1ÞT . We denote this set as Uu7

π=2 S3

S
Uu1

π=2S3

� �
.

Finally, the contradiction for the triples ð∣u7
�
; ∣u3

�
; ∣u6

�Þ,
ð∣u7

�
; ∣u2

�
; ∣u6

�Þ, ð∣u7
�
; ∣u3

�
; ∣u5

�Þ and ð∣u7
�
; ∣u2

�
; ∣u5

�Þ can be achieved
by an analogous construction considering the set Uu4

π=2∣vi for

∣vi 2 S3

S
Uu1

π=2S3, i.e., by considering the vectors in the set S3

S
Uu1

π=2S3

rotated by π/2 about the axis ∣u4
� ¼ ð0; 1; 0ÞT . We denote this set as

Uu4
π=2 S3

S
Uu1

π=2S3

� �
. The proof of the main theorem is completed by

taking the union of these sets Sf :¼ S3

S
Uu1

π=2S3

� �S
Uu7

π=2

S3

S
Uu1

π=2S3

� �S
Uu4

π=2 S3

S
Uu1

π=2S3

� �
along with the set Sv

1 for each of

the vectors ∣vi 2 Sf .

Application to constructing PT games unwinnable using PR-
type boxes
In this subsection, we will consider bipartite Bell inequalities or two-player
non-local games that test for quantum non-locality rather than the single
system quantum contextuality considered in the rest of the Appendix.
Consider a bipartite Bell scenario in which two (non-communicating)
players, Alice and Bob, choose measurement settings x∈X and y∈Y
respectively, and obtain corresponding outcomes a∈A and b∈ B respec-
tively. Let {PA,B∣X,Y(a, b∣x, y)} denote the corresponding input-output
behavior (the set of conditional probabilities of outputs given inputs)
observed by the players. The winning probability ω(G) in a general two-
player non-local game G takes the form

ωðGÞ :¼
X

x2X
; y2Y

X

a2A
; b2B

πX;Y ðx; yÞVða; b; x; yÞPA;BjX;Y ða; bjx; yÞ;
ð3Þ

where πX,Y(x, y) denotes the distribution of inputs, V(a, b, x, y)∈ {0, 1} is a
predicate that denotes the winning condition (the condition that inputs and
outputs should satisfy to win the game) and ωc(G) denotes the maximum
value achieved by classical (local hidden variable) strategies for the gameG.
A gameG is said to be a Pseudo-telepathy (PT) game if it allows for a perfect

Fig. 5 | Gadget graphs for establishing Step 3 in the proof of the generalised KS
theorem. a In the figure on the left is presented a gadget that achieves the property
stated in Step 3, namely that any assignment from O n f1g that sets either of two
triples ð∣w1

�
; ∣w2

�
; ∣w3

�Þ or ð∣w1

�
; ∣w0

2

�
; ∣w3

�Þ to 0 leads to a contradiction. b In the

figure on the right is presented the smallest gadget (a subgraph of the graph on the
left) with the property that any assignment f: V(G)→ {0, 1/2, 1} satisfying
f(w1) = f(w2) = f(w3) = 0 leads to a contradiction, namely that the completeness rule
for the basis (w3, w13, w0) cannot be satisfied.
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quantum strategy, i.e., if a quantum behavior fPðQÞ
A;BjX;Y ða; bjx; yÞg exists to

allow Alice and Bob to win every round ofG. Specifically, we have thatV(a,

b, x, y) = 1 for all (a, b, x, y) such that PðQÞ
A;BjX;Y ða; bjx; yÞ≠0. Equivalently we

have that the quantum winning probability is ωq(G) = 1 while no perfect
classical strategy exists to allow theplayers towin every round, i.e.,ωc(G) < 1.
QuantumPTgames are qualitatively different than statistical proofs of non-
locality such as the CHSH game, and have been found to play a crucial role
in the proofs of some fundamental results such as the quantum
computational advantage for shallow circuits48 andMIP* = RE49. Formally,
we have

Definition2. (13). Let ∣ψ
� 2 H1 �H2 be a pure state. APseudo-Telepathy

(PT) game with respect to ∣ψ
�
is a pair (X, Y) where X(Y) is a set of

orthonormal bases of H1ðH2Þ such that the following holds. Let h be the
function onX ×Y defined as follows: h(x, y) is the set of pairs ð∣v1

�
; ∣v2

�Þ 2
x × y for which 〈ψ∣v1, v2〉 ≠ 0. Then we have that for every classical strategy
—pair of deterministic functions (c1, c2) where c1(c2) is defined onX(Y) and
c1(x)∈ x (similarly c2(y)∈ y)—there must exist specific bases (x*,
y*)∈X ×Y such that (c1(x

*), c2(y
*))∉ h(x*, y*).

In otherwords in the definition, we postulate the function h on pairs of
measurement bases which pinpoints for each input pair x, y the set of
outcomes a = v1, b = v2 that occur with non-zero probability in the optimal
quantum strategy. As stated earlier, this set of outcomes defines thewinning
condition in the game, i.e., V(a, b, x, y) = 1 for all (a, b, x, y) such that
PðQÞ
A;BjX;Y ða; bjx; yÞ≠ 0. Then the game is PT if every classical strategy fails to

satisfy the winning condition for at least one input pair (x*, y*). That is, a
classical strategy—which is defined by a pair of local deterministic assign-
ments c1 and c2 that pick out a singlemeasurement outcomes c1(x) and c2(y)
for each input pair (x, y)—necessarily achieves PA,B∣X,Y(a, b∣x*, y*) = 0 for all
(a, b) for which V(a, b, x*, y*) = 1.

It is well-known since13 that every KS vector set in dimension d can
be used to construct a PT game for which the optimal winning strategy
uses a maximally entangled state of local dimension d. However, known
PT games such as the Magic Square game9 can be won when classical
players additionally share a specific type of non-signalling behaviour
known as the Popescu–Rohrlich box21. The PR box is defined for X =
Y = A = B = {0, 1} and is characterised by the property that it satisfies a⊕
b = 1/2 and has uniformmarginals, i.e., PA∣X(a∣x) = PB∣Y(b∣y) = 1/2 for all
a, b, x, y.

In this subsection, we show that our generalized KS sets for {0, 1/2, 1}-
colorings can be used to construct PT games with the novel property that
they cannot be won even when classical players additionally have access to
the resource of a (single copy of) PR-type behaviour in every game round.
Specifically, we consider the sets GKS that prove the main theorem with
measurement bases completed, i.e., every set ofmutually orthogonal vectors
is completed to be part of a complete basis of dmutually orthogonal vectors
(a complete measurement) by augmenting the set GKS with appropriate
vectors. It follows that the addition of vectors preserves the property of the
set of being non-{0, 1/2, 1}-colorable (since the underlying set already
possesses this property).

Formally, we present the proof of the following Proposition from the
main text.

Proposition. Let H1 ¼ H2 ¼ C3 and let ∣ϕ
�
denote the maximally

entangled state in H1 �H2, i.e., ∣ϕ
�
:¼ 1ffiffi

3
p ∣00i þ ∣11i þ ∣22ið Þ. Let

GKS � C3 denote the generalized KS set from Theorem 1 for the case
O ¼ f0; 1=2; 1g with all measurement bases completed. Let us define

X ¼ Y :¼ z � GKS∣z is an orthonormal basis of C3� �
: ð4Þ

Then ðX; �YÞ is a PT game GGKS with respect to ∣ϕ
�
with the property that

GGKS cannot be won even when classical players additionally have access to
the resource of a single copy of a PR-type behaviour in every game round.

Proof. The proof follows straightforwardly from the standard construc-
tion of PT games usingKS sets and from the property of the setGKS that it
does not admit a {0, 1/2, 1}-outcome assignment.We first observe that the
set of classical behaviours is a polytope defined as the convex hull of
deterministic behaviours, i.e. with PA∣X(a∣x)∈ {0, 1} and
PBjY ðbjyÞ

� 2 f0; 1g. The set of strategies supplemented with PR-type
behaviours is also a polytope defined as the convex hull of deterministic
behaviours and the extremal non-local non-signalling behaviours with
marginals PA∣X(a∣x), PB∣Y(b∣y)∈ {0, 1/2, 1}.

Now suppose by contradiction that a perfect strategy exists for classical
players supplemented with a non-local box with marginals in {0, 1/2, 1} for
the game GGKS. Since the winning probability of the game is linear in
PA∣B∣X,Y(a, b∣x, y) the optimal winning probability must be achievable by an
extremal behaviour in this polytope, i.e., with Popt

AjXðajxÞ; Popt
BjY ðbjyÞ 2

f0; 1=2; 1g. The crucial observation is that such a strategydefines a {0, 1/2, 1}-
coloring for the set GKSmeasured by each player.

To see this, define functions fA : GKS→ {0, 1/2, 1} by f Að∣viÞ ¼
Popt
AjXð∣vijxÞ and fA: GKS→ {0, 1/2, 1} by f Bð∣viÞ ¼ Popt

BjY ð∣vijyÞ. For the
maximally entangled state ∣ϕ

�
we see that

hϕjv; �v0i ¼ 1ffiffiffi
3

p
X
k

hkjvihkj�v0i ¼ 1ffiffiffi
3

p hvjv0i: ð5Þ

So that P(Q)(a, b∣x, y) = 0 for every pair of measurements x, y and
orthogonal vectors a ¼ ∣vi; b ¼ ∣v0i. From the above, by considering x =
y =m, we see thatP(Q)(a, b∣x =m, y =m) = 0whenevera ≠ b giving fA = fB = :
f. Furthermore, we have that for every x∈X it holds that

P
∣vi2xf ð∣viÞ ¼ 1.

Since every set ofmutually orthogonal vectorshasbeenaugmented to forma
complete basis, the above implies that f: GKS→ {0, 1/2, 1} obeys the
Kochen-Specker rules and forms a valid {0, 1/2, 1}-outcome assignment of
GKS, which is a contradiction.Therefore, ðX; �YÞ is aPTgamewith respect to
the maximally entangled state with the requisite property.□
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