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Abstract: Volumetric reconstruction of a three-dimensional (3D) particle field with high
resolution and low latency is an ambitious and valuable task. As a compact and high-throughput
imaging system, digital holography (DH) encodes the 3D information of a particle volume into a
two-dimensional (2D) interference pattern. In this work, we propose a one-stage network (OSNet)
for 3D particle volumetric reconstruction. Specifically, by a single feed-forward process, OSNet
can retrieve the 3D coordinates of the particles directly from the holograms without a high-fidelity
image reconstruction at each depth slice. Evaluation results from both synthetic and experimental
data confirm the feasibility and robustness of our method under different particle concentrations
and noise levels in terms of detection rate and position accuracy, with improved processing speed.
The additional applications of 3D particle tracking are also investigated, facilitating the analysis
of the dynamic displacements and motions for micro-objects or cells. It can be further extended
to various types of computational imaging problems sharing similar traits.

© 2021 Optical Society of America

1. Introduction

Recent advances in sensor development and three-dimensional (3D) imaging techniques have
attracted significant interest in 3D particle volumetric reconstruction, which has extensive
applications such as fluid analysis [1], chemical engineering [2], biological science [3] and
others. Among these methods, digital holography (DH) is a non-intrusive and label-free method
using a single image acquisition. Without using the lens, the interference pattern between the
reference wave and the object wave through the particle volume is recorded by standard electronic
sensors such as charge-coupled devices (CCDs). Afterwards, by back-propagating the holograms
to a certain distance, the amplitude and phase information of the object optical field can be
retrieved from the complex wave-front, which gives the 3D distribution of particles. Taking
advantage from a simple and compact optical configuration, DH has been applied to characterize
various particle fields such as biological cells [4, 5], spray droplets [6, 7], solid particles [8] and
microplastics [9, 10] . Moreover, the trajectory of 3D particle path can be obtained by positioning
particles detected in consecutive holograms, which forms the basis of holographic particle image
velocimetry (HPIV) in diagnosing 3D particulate flows [11-14].

The traditional framework for extracting the 3D position of particles consists of two stages:
image reconstruction and particle segmentation. The diffracted field is firstly reconstructed by
numerically back-propagating the hologram at successive depth slices. Then, the particles are
sized using advanced localization and segmentation algorithms. For example, the clustering-based
particle detection (CBPD) method performs the K-means clustering to identify the regions of
particles, particle edges and background after getting the reconstructed images at each depth
slice from the hologram [15]. Tian et al. [7] project the minimum intensity location of the
reconstructed planes along the axial direction at the pixel level, which is used as a focus metric to
detect the focal plane of the bubbles. Then the edges of bubbles are further resolved by using
morphological operators on the projection map. Although these previous studies have achieved
significant progress, most of them exhibits poorer z-directional resolution than the transverse



xy-plane precision. The reason behind is the depth-of-focus problem, which is resulted from the
small numerical aperture (NA) from the limited pixel size of sensors [16]. Moreover, especially
in the inline (Gabor) holography set-up, the twin-image and self-interference-related spatial
artefacts hinder the reconstruction of object in-focus with sharp edges and high spatial resolution.
To tackle these problems, Molaei and Sheng [17] developed the correlation-based de-noising
algorithm to clear the background noise and improve the hologram quality. Chen et al. [18]
formed a denser point spread function by a spiral phase plate to enhance hologram reconstruction.
Ren et al. [19,20] combined the advanced data-driven method in auto-focusing and removing the
undesired twin image.

However, the numerical reconstruction process from a captured hologram at consecutive depth
slices is time-consuming and computationally demanding. Besides, the holograms processing
amounted to localization problems, making it less necessary to realize image reconstruction with
high quality. Therefore, some one-stage methods were proposed which skip the 3D reconstruction.
The inverse methods attempt to find the optimal object 3D position that could produce the
recorded interference pattern while satisfying some physical constraints [21]. For example,
Verrier et al. [22] combined the inverse problem with pixel super-resolution to track colloidal
particles in Brownian motion accurately. Mallery and Hong [23] proposed a regularized inverse
method based on the fused lasso to introduce the smoothness and sparsity constraints into
holographic volume reconstruction. However, the iterations in inverse methods still operate with
considerable computation resources and stringent requirements, restricting their use in real-time
applications and complex parametric models with dense particles.

Recently, deep learning techniques have been successfully applied in various tasks [24],
which take advantage of a single feed-forward inference process. The combination of deep
learning and DH has achieved encouraging results [25] in replacing numerical reconstruction
and auto-focusing process [19,26-28], improving holographic image resolution [29], classifying
micro-plastics [9, 10] and depth estimation [30]. However, deep learning is still under-utilized for
3D holographic particle volume imaging, with only a few studies reported [31-35]. Shimobaba et
al. [33] verified the feasibility of using modified U-Net to directly retrieve the particle 3D location
from raw holograms without back-propagation. They represented the particle information by
lateral position map and axial position map. The former denoted the particle’s existence by
binary values, while the latter indicated the depth as a 256-level grayscale image. However,
the network suffers from a low extraction rate and nonphysical outputs. Shao et al. introduced
the hologram formation knowledge into the network, such as maximum phase projections [31]
and minimum intensity projection [32]. Although noticeable improvement has been reported in
detection accuracy, the holograms have to be pre-processed beforehand to obtain the intensity
and phase distribution of the optical field. Moreover, extra post-processing was required to
transfer the network outputs (xy-centroid binary map and depth-encoded grayscale map) into 3D
coordinates of particle, which is not intuitive and increases prediction time.

Therefore, in this work, we proposed a one-stage network (OSNet) for 3D particle volumetric
reconstruction, which outputs the particle 3D location from raw 2D holograms in a single
feed-forward process. Specifically, unlike other learning-based approaches using indirect maps,
the 3D information of particle is represented by the centroid coordinate of the 2D bounding box
in the transverse plane and normalized position along the axial direction, which is straightforward
and avoids complex post-processing. The details of network structure and loss design will be
introduced in Section 2. Then the detailed evaluation results will be presented in Section 3.
Lastly, the conclusion and future work will be summarized in Section 4.
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Fig. 1. The feed-forward inference process of OSNet. The predicted bounding boxes
are rendered on the original hologram (rightmost figure) for better visualization. The
number locating on the top of each bounding box is the normalized depth value for
each particle.

2. Methodology

2.1. Particle characterization in one-stage detection framework

In the previous learning-based methods [31-33], the particle localization problem is considered
as an image generation problem, since the 3D information of the particle volume is mapped to
several two-dimensional images such as lateral and axial position maps. In that way, the additional
post-processing operation is required to extract the 3D particle coordinates from the model output.
Such operations are computationally demanding and time-consuming, which limit their use in
real-time detection tasks. Besides, the target images are usually sparse because of the relatively
small size of the particle centroid representation, which hinders the convergence of training
process and results in making the false positive predictions i.e. the spurious particles [33].

Therefore, inspired by the YOLO framework [36] for object detection in computer vision, we
annotate the 3D information of each particle by a 2D rectangle (bounding box). The central
coordinate of the bounding box is the position of its enclosed particle in xy-plane and each box is
assigned with a normalized depth value. Specifically, as shown from the schematic illustration
of the network prediction process in Fig. 1, the 3D particle information is predicted from the
OSNet by a set of fixed-length vectors [x, y, w, h, o, d]. Each vector represents the bounding
box geometry [x, y, w, k], the objectiveness confidence o~ and the normalized depth prediction d,
respectively. It should be noted that, in order to make the network structure "particle-number
agnostic" i.e. there is no assumption required about the particle number, a common strategy
is to output the fixed number of bounding box proposals from the network [36]. After that,
based on the predicted objectiveness score o, the bounding box proposals with score higher
than the threshold are selected as the final prediction. We suggest that, by migrating the 3D
particle localization problem into bounding box regression problem, the detection accuracy will
be improved with less non-physical output. Moreover, instead of considering the signal spread
over the entire hologram, using the bounding boxes assists in more attention on local patterns
surrounding the particles. This is more suitable for the holographic image processing because
that the fringe patterns around the particles cover the main features for predicting the depth
information. Following this one-stage detection framework, the OSNet directly retrieves the
xy-centroid and depth location of particles from a single feed-forward process, which eschews
the beforehand reconstruction and post-processing operations.
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Fig. 2. OSNet architecture for particle detection which comprises three components:
backbone network, neck network and head network. The number along the arrow
connecting different blocks indicates the size of feature maps.

2.2. Network structure

The overall structure of OSNet is schematised in Fig. 2. The convolution operations in the
convolutional neural network (CNN) provide affine invariant to recognize the contrast and spatially
informative patterns within the hologram. Therefore, the input image is firstly passed through
the backbone network, which comprises loads of convolutional layers to extract semantically
strong features in a pyramid fashion. The representative power of the extracted features could
be enriched by the number of stacked layers and the fusion between the consecutive feature
maps. However, the network needs to consider the memory cost and the computational efficiency
for 3D particle detection in real-time. Thus, the partial-residual unit (PRUnit) as shown in
Fig. 3, is utilized as the major feature extraction blocks used in OSNet. It is adapted from the
CSPNet [37], where the input feature is evenly split into two halves. One part is linked directly to
the end of the stage after a dense block (convolutional layer + batch normalization layer + leaky
ReLU layer). The other part is fed through consecutive dense blocks with a residual connection
and concatenated with the first part. Such a partially processing strategy reduces the memory
traffic and increases the gradient path, preserving feature reuse characteristics without duplicated
gradient calculation. Besides, to avoid the performance degradation related to tiny particles, the
feature map down-sampling is realized by another dense block instead of using the pooling layer.

In particle detection problems, the influence of the particle size needs to be considered. Since
each cell in the feature map from different stages is responsible for a defined region of the input
hologram, the combination of multiple resolution feature maps assists in detecting the particles
with various size range. Thus, the neck network is followed, which aggregates feature maps
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Fig. 3. The structure of the PRUnit in OSNet, which is the fundamental building block
for feature extraction with enhanced learning capability and computational efficiency.

from different backbone stages to detect the components at various scales. The fusion method of
neck network adopts a pyramid hierarchy with a top-down fashion [38], where the features from
the current scale are concatenated with those from the previous scale. Considering the limited
memory source, only the feature maps with size dimension ratio {% %, 3%} to the input image
are taken. Moreover, the lower levels contain less semantic but spatially finer information, which
may be discarded through the long propagation process. Therefore, an additional bottom-up
path is utilised to shorten the information path of those information to the topmost features and
enhance the final prediction of the large particles [39]. After passing through the neck work,
the diverse information from different levels of the backbone network is incorporated, which
strengthens the 3D information prediction of particles at various sizes.

Lastly, the bounding box proposals are predicted by the head network on feature map blocks,
which are received from the neck network at each resolution level. Specifically, in order to
get a more precise and efficient detection for objects of varying sizes, each feature map cell is
responsible for predicting three bounding box proposals with different aspect ratios. Therefore,
the output dimension of the head network is m X n X (3 x 6) for feature map block from neck
network with size m X n, which is achieved by pure convolution operations.

2.3. Loss design

As introduced in Section 2.1, the output bounding box prediction consists of a collection of fixed
length vectors [x, y, w, h, o, d], which represents the bounding box geometry [x, y, w, ], the
objectiveness confidence o~ and the normalized depth prediction d. Therefore, the overall loss
for training the network is divided into three parts: the bounding box regression loss £, the
objectiveness loss L, and the depth regression loss L4. Each loss is designed and calculated
independently. Then they are summed together as the final back-propagation loss for updating
the parameters through the entire network as

L=Lp+Lop;+ Ly (1)

Bounding box regression loss

In terms of bounding box regression, one of the trending evaluation metrics for predicted
bounding box B? = [xP, yP, wP, hP] towards the target ground truth B" = [x’, y', w’, h'] is the



Intersection over Union (IOU) score which is defined as
BP N B!
BP U B!’
where B” N B’ is the intersection area and BP U B’ is the union area of B” and B’ respectively.
However, IOU only considers the overlap extent while neglects the other geometry factors such

as the central point distance and the aspect ratio. In order to address this drawback, the Complete
Intersection over Union (CIOU) is proposed by Zheng et al. [40] as
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where c is the diagonal length of the smallest box enclosed by the union area, v is an estimation
of the aspect ratio consistency and « is the positive trade-off parameter that are defined as
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As shown in Eq. (3), considering the three geometries (the overlap area, the centre point distance
and the aspect ratio consistency) makes the CIOU more convincing to comprehensively evaluate
the bounding box prediction performance. Therefore, the CIOU-based loss is adopted for the
bounding box regression in our method, which is formulated as the mean CIOU value of each
predicted bounding box with its target ground truth subtracted from 1

N
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where N represents the number of bounding boxes that contain particles.

Objectiveness loss

The binary cross-entropy loss is used for objectiveness loss since it could be categorised as a
binary classification problem

N
1 P

Lopj = N_p Z (of log(a'l.p) +(1-0))log(l - o-l.p)) , @)
i=1

where N, represents the total number of bounding box proposals, o € {0, 1} is the ground truth
label (1 for existence and O otherwise), and o ? is the predicted objectiveness confidence ranging
between 0 and 1.

Depth regression loss

The mean squared error (MSE) is utilized for depth estimation
| N
La=5 > lldf =il ®)
i=1

where d? is the predicted depth and d’ is the target ground truth for each bounding box with
object. It should be mentioned that, for bounding box and depth regression loss, only the
predicted bounding boxes with object occurrence (i.e. oP > 0.5) are considered since there is no
information in background bounding boxes.
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Fig. 4. Values of each loss component for the first 50 training epochs. (a) Depth
regression loss. (b) Objectiveness loss. (c) Bounding box regression loss.

3. Experimental results and discussions
3.1. Dataset preparation

In order to verify the feasibility of our method, the synthetic holograms of the particles volume
were generated following the inline DH propagation model introduced in [41]. The recorded
hologram is formed by the interference between the object light E, (x, y) scattered from the
particle field and the undisturbed reference light E, (x, y) passing through the volume, which is
mathematically expressed as

I(x,y) =| Eo(x,y) + E;(x,y) I’= (Eo(x,y) + E» (x,3)) (Eo(x, ) + E, (x,3))",  (9)

where [ is the intensity at each pixel, (x, y) is the pixel coordinate and {-}* denotes the complex
conjugate. Specifically, the particles were assumed to be pure amplitude disks with diameter
ranging from 20 um to 100 um, which randomly distributed in a volume with distance 2 cm ~
4 cm from the hologram plane. The image size was set to 512 x 512 with pixel resolution at
10 um, which was in accordance with the common parameter of commercial image sensors. The
wavelength of illuminating laser source was selected as 4 = 532 nm. The synthetic holograms
were normalized to the intensity range 0-255 in order to simulate the experimental holograms
recorded by commercial CCD cameras.

3.2.  Network training

The synthetic holograms were fed into the network with 3D information as labels for training. There
were 10,000 holograms generated with particles concentration fixed at 1 x 1073 particle/pixel
(ppp)- The depth label has been normalized to [0, 1] in order to keep the network consistency
and be able to generalize to different depth ranges. A typical split ratio of 7:2:1 was followed
for training, validation and testing subsets, respectively. The network was implemented using
Pytorch 1.8.1 and accelerated by NVIDIA Tesla V100 GPU. The Adam optimizer [42] was
adopted with the initial learning rate of 0.01, which benefits in its ability in handling the sparse
gradients and realizing efficient computation. We trained the network for 100 epochs with a
batch size of 64 and cost 4 hours in total. The training losses during the first 50 epochs were
plotted in Fig. 4. As illustrated, all the loss components decreased and converged gradually along
the training process. This indicates that the proposed network is able to continuously update
its parameters and retrieve 3D particle information directly from the raw holograms. Thus, the
feasibility of our model was confirmed.

3.3. Performance evaluation on simulated data

The numerical evaluation for particle detection is commonly established on the extraction
accuracy and the position prediction error. The extraction accuracy was assessed by precision p



Table 1. Evaluation results for particle extraction accuracy metrics and depth prediction
error on test datasets with different particle densities.

Particle density (ppp) | Recall(%) | Precision(%) | Depth error(mm)
1x107* 98.34 99.52 0.17
2x 107 97.30 99.88 0.21
4x107 97.30 98.20 0.31
6x 107 97.47 97.87 0.40
8x 1074 96.92 98.29 0.49
1x1073 95.76 98.59 0.62

and recall r, which are defined as

N,
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where the N; is the number of successfully paired particles, Ny is the number of false detection
proposal and N, is the number of unpaired ground truth (missed detection). The trained network
reported 98.59 % recall and 95.76 % precision on 1000 test holograms with the same particle
density as the training dataset (1 x 1073 ppp). Regarding the position prediction, the average
error was 0.62 mm, which accounted for 3 % of the distribution range along the axial direction
(2cm).

Performance on different particle concentrations

The robustness of our trained model with respect to various particle concentrations was then
analysed on the test datasets with different particle densities ranging from 1 x 107 ppp to
1 x 1073 ppp. Table 1 lists the accuracy metrics values and the mean depth prediction errors for
each test dataset. Fig. 5 shows several selected scatter plots of the predictions and the ground
truth. As demonstrated, the trained network showed the promising performance with above
95.76 % recall and 97.87 % precision at the varying densities. With the same particle density
(1x10™ ppp) and the depth range (2cm) as [33], our method achieved 0.17 mm averaged
positioning error in the axial axis, which is lower than 0.25 mm in their result. It shows that
the attention on local patterns surrounding the particles has contributed to more accurate depth
information retrieval from the hologram. For detection at a high-concentration 3D particle
volume, Shao et al. [31] reported over 97 % detection accuracy at 1 x 1073 ppp. In our method,
a comparable result was obtained with 97.30 %. However, a higher precision 99.88 % was
achieved by the OSNet, which means that there is a 0.12 % false prediction rate compared with
3.0 % in the literature. It indicates that the likelihood of making spurious particle predictions
has been reduced by using the one-stage detection framework. One exemplary output under
the denser condition with visualized bounding box proposals is shown in Fig. 6. As it suggests
from the 3D rendering in Fig. 6(a), the predicted particles were generally in good alignment
with the true distribution even under some conditions with dense spread (Fig. 6(d)). However, in
the situation shown in Fig. 6(c), where the centroids of two particles were relatively close and
there was a heavy disturbance between particle interference patterns, the particle centres may
be hardly resolved. One possible solution we suggest is to introduce extra information such as
multiple viewing angles offered in tomographic inline DH [13,43]. However, such supplementary
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Fig. 6. Exemplary prediction result from the trained network with missed detection
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red dots are missed detection. (b) 2D visualization of bounding box predicted on
holograms. The green boxes indicate the corrected proposed bounding box for true
particles and red boxes are missed bounding box from the ground truth. (c) Missed

detection. (d) Successful detection under dense distribution.



without noise with 30dB noise
Fig. 7. Exemplary holograms without/with Gaussian noise.

Table 2. Evaluation results for particle extraction accuracy metrics and depth prediction
error on test datasets with different noise level added.

Added noise level | Recall(%) | Precision(%) | Depth error(mm)
5dB 98.42 99.28 0.16
10dB 98.81 98.58 0.18
15dB 98.62 98.73 0.25
20dB 98.42 98.11 0.35
25dB 98.62 99.28 0.45
30dB 96.61 98.10 0.55

Performance on different noise levels

In order to verify the robustness of the developed model against the imaging noise, 10 groups of
holograms were synthesized with varying Gaussian noise levels. The added noise was ranging
from 5 dB to 30 dB with particle density 1 x 10~ ppp. Fig.7 shows one example of hologram
with 30 dB noise added, where the interference pattern is disturbed. The accuracy evaluation
metrics and prediction error for each condition are listed in Table.2. Compared with the noise-free
condition, the depth error showed slight increase from 0.16 mm with 5 dB added noise to 0.55 mm
with 30 dB added noise of the entire distribution range (2 cm). It implies the inherent challenge
in retrieving depth information from noise-disturbed interference fringes. However, the detection
accuracy still maintained stable performance with above 96.61 % recall and 98.10 % precision
over the studied range. Therefore, the robustness of the OSNet towards the imaging noise was
verified with an acceptable performance decay in depth positioning accuracy.

Particle tracking performance

The accurate detection of the particle 3D location can be further utilized for particle tracking in
space. To verify its feasibility, the helix movement of single particle in a volume was simulated in
Fig. 8(a) and the hologram was recorded at one frame per movement step. Fig. 8(b) demonstrates
the predicted result from our model, which shows general agreement with the real particle track
in 3D space. For multiple particles tracking, the OSNet also preserved encouraging performance
for particles which move randomly at the same time. Their true trajectories are plotted in Fig. 8(c)
compared with their prediction in Fig. 8(d). The evidence from these evaluations intimates the
extended application of OSNet in 3D particles tracking, which facilitates the analysis of the
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Fig. 8. 3D tracking result demonstration: (a)True trajectory for single particle which
follows a helix curve. (b)Predicted single particle trajectory. (c)True trajectories for
multiple particles with random movement. (d) Predicted multiple particle trajectories.
The colorbar indicates the frame index of particle location, which is regarded as time
step for the movement.

dynamic motions for micro-objects.

3.4. Performance evaluation on experimental data

The captured holograms in [34] were used to verify the feasibility of the OSNet on experimental
data. In the experiment, the particles with a diameter of 50 um were randomly seeded in water to
generate the 3D particle field, which was placed at a distance ranging from 12 mm to 60 mm to
the image sensor. The illuminating laser source used a wavelength of 660 nm and the holograms
were recorded by the CCD with 3.45 um pixel pitch. The pixel number was 1024 x 1024 which
was cropped and scaled into 512 x 512 to match the network input size. The ground truth
measurements were obtained by using regularzied inverse holographic volume reconstruction
(RIHVR) [23], which is based on the traditional deconvolution with high-fidelity performance.
For training the network, 400 randomly cropped holograms with the associated labels were used,
and data augmentation was performed on the fly based on flip and rotation operations.

After training for 300 epochs, the prediction performance of the OSNet on experimental
particle field is shown in Fig. 9. Since the particles were moving randomly within the volume,
the captured holograms contained varying particle concentrations. The Fig. 9 (a)—(d) were the
performance on sparse particle distribution with 22 particles. Most particle predictions were
matched between the traditional deconvolution methods and our proposed model. However,
with the similar reconstruction quality achieved, OSNet only took 21 ms while RIHVR took
17 s based on 300 iterations using the same computing hardware. For holograms with denser
particle distribution (> 50 particles) in Fig. 9 (e)—(h), the misalignment became more obvious
especially along the axial direction. The major reason could be the resolution mismatch between
the two methods. The resolution in traditional deconvolution method depends on the number of
depth slices used in the model. Considering the computational burden and a reasonable inference
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Fig. 9. The comparison of the experimental holograms reconstruction between the
regularzied inverse holographic volume reconstruction (RIHVR) and OSNet. First row
plots (a)—(d) are the comparison on a sparse particle field: (a) Original experimental
recorded hologram. (b) 3D visualization of the reconstructed particle field from RIHVR
(green triangles) and OSNet (red circles). (c) Top view comparison. (d) Side view
comparison. Second row plots (e)—(h) are the comparison on a denser particle field: (e)
Original experimental recorded hologram. (f) 3D visualization of the reconstructed
particle field from RIHVR (green triangles) and the OSNet (red circles). (g) Top view
comparison. (h) Side view comparison.

time, limited number of depth slices were used in the RIHVR that resulted in 1 mm resolution in
this experiment. On the contrary, OSNet directly regressed the normalized depth value, which
eschewed the resolution limitation associated with the number of depth intervals. Moreover,
there were manually adjusted parameters such as the sparsity regularizer used in RIHVR for
particle field reconstruction under different particle densities, while the learned weights used in
OSNet were fixed once trained.

The holograms were recorded consecutively during a time interval in this experiment, thus the
3D particle tracking was performed by OSNet. For clarity, only a subset of the tracked particle
trajectories was plotted in Fig. 10. Since the interference time of the proposed method was 21 ms,
the highest frame rate that could be realized was 47 frame per second. Therefore, the feasibility
of OSNet in providing the real-time particle tracking with an acceptable frame rate has been

verified.
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Fig. 10. Subset of tracked particles. The left figure shows the 157 recorded frame of the
particle field, where the yellow dots indicate the sampled particle centers. The right
figure demonstrates the associated trajectories. The colorbar indicates the frame index
of particle location, which is regarded as the time step for the movement.

4. Conclusion

In this study, the OSNet was proposed in order to replace the reconstruction process in volumetric
particle reconstruction based on DH. By a single feed-forward process, the OSNet is able to extract
the 3D centroids coordinates of particles directly from raw holograms without time-consuming
pre- and/or post-processing operations. Compared with other learning-based methods [31-33],
the competitive results have been obtained both in detection accuracy and depth positioning error.
Furthermore, the robustness of the proposed model against the particle concentration and imaging
noise was also verified. Moreover, the ultimate goal of accurate volumetric reconstruction in 3D
particle tracking was provided by our model, where a high alignment between true trajectories
and predicted tracks was demonstrated. In the end, the feasibility of OSNet on particle field
reconstruction and tracking from experimental holograms has been validated. To our best
knowledge, this is the first attempt to adapt the one-stage object detection framework into a 3D
particle localization problem based on raw holograms with designed modifications. However,
like most learning-based approaches, a group of labelled data is required as the ground truth for
network training, which is labour-intensive and even not applicable in some cases. Thus, the
ongoing work shall be devoted to introducing some physics-aware knowledge in the OSNet as
an attempt to relieve the dependence on a large training datasets and challenge the performance
limitation related to denser particle distribution.
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