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Accurate extraction of urban impervious surface (UIS) is essential for urban planning and environmental
monitoring. However, multispectral remote sensing data for UIS extraction suffers from the inter-class
spectral confusions, e.g. UIS and bare soil, and intra-class variations of sub-class UIS. Hyperspectral
and full/dual-polarization synthetic aperture radar (full/dual PolSAR) data provide opportunities for
reducing such confusions and have potential for fine UIS mapping, i.e., roads, buildings, and grounds.
In this study, we first investigated the hyperspectral data (Gaofen-5) capability to reduce the intra/
inter-class misclassification in comparison with multispectral data (Landsat-8). Then, we explored con-
tributions of synergistically using full and dual PolSAR (ALOS-2 and Sentinel-1) with hyperspectral and
multispectral data using optical-SAR sparse representation classification (OSSRC). Results showed that
both the hyperspectral and the SAR polarization features helped better delineation between UIS and bare
soil, and sub-class UIS (roads and buildings). The relative contribution of PolSAR was higher in multispec-
tral data than in hyperspectral data, with full PolSAR contributed significantly. The combined hyperspec-
tral and full PolSAR data using OSSRC delivered the best result, with an overall accuracy higher than 90%.
The results indicate the promising capability of synergizing hyperspectral and full/dual PolSAR data for
improving UIS extraction from advanced satellite data.
� 2022 National Authority of Remote Sensing & Space Science. Published by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Urban impervious surface (UIS) is related to manmade materi-
als (asphalt, concrete and brick) that are impermeable while the
fine UIS is related to sub-types/class UIS, including the roads,
buildings and grounds with different social attributes and physical
appearance, which demonstrates not only environmental but also
social significance (Weng, 2012). Multispectral datasets are effi-
cient for UIS mapping but bare its limitation in inter/intra-class
spectral confusion, (UIS and bare soil, asphalt roads and composite
tar roofs) (Weng, 2012) and mixed pixels problems. Spectral mix-
ture analysis (Wu and Murray, 2003; Yang and He, 2017) was usu-
ally used in medium UIS extraction but usually led to overestimate
UIS in low-density urban areas and underestimate them in high-
density urban areas. Higher spatial or spectral resolution are
potential for sub-class UIS extraction. Pixel-based (Lu and Weng,
2009), object-based (Hu and Weng, 2011), and hybrid methods
(Lu et al., 2011) were employed in high-resolution UIS mapping.
However, there is tradeoff between spatial and spectral resolution
and no single sensor possesses the optimal spatial and spectral res-
olution (Al-Wassai and Kalyankar, 2013). Hyperspectral data with
high spectral dimension shows effectiveness in land cover classifi-
cation (Xu et al., 2019; Zhang et al., 2019). Hyperion showed better
discrimination ability in additional bands in mid-infrared region
(Weng et al., 2008), reduce UIS, soil, and vegetation confusion
but has limited data coverage (Tang and Xu, 2017). As an emerging
hyperspectral satellite, Gaofen-5 (GF-5) (Liu et al., 2019) showed
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great potential in UIS mapping with spatial resolution of 30 m and
330 spectral bands.

In tropical and subtropical areas, optical datasets suffer contam-
ination from cloudy weather. Synthetic aperture radar (SAR), with
all-day and all-weather working capability, can be a great supple-
ment in the cloud-prone tropical and temperate regions
(Steinhausen et al., 2018; Mercier et al., 2019; Ling et al., 2021).
Multiband, multi-temporal, multi-angle and multi-polarization
SAR images (Gamba and Dell’Acqua, 2003; Ratha et al., 2020) were
utilized for urban extraction, which demonstrated the feasibility
and improvements for human settlement extraction. Polarimetric
SAR (PolSAR) (Zhang et al., 2018) and Interferometric SAR (InSAR)
(Jiang et al., 2009) were also used for UIS extraction, but the results
suffered from vegetation and UIS confusion. The integration of SAR
and optical data helped to reduce the confusion between the bright
UIS, bare soil and dark UIS (Zhang et al., 2014; Lin et al., 2020). The
integration methods for land cover classification usually included
the support vector machine (SVM) (Sukawattanavijit et al., 2017),
random forests (RF) (Lin et al., 2020), sparse representation-
based classification (SRC) (Lin et al., 2019) and deep learning
(Zhang et al., 2019), which showed improved performance com-
pared with the single data source. Previous studies also indicated
the improvement of inter-class separation using radar and optical
data (Sun et al., 2019; Sun et al., 2019; Shao et al., 2016) and sub-
class discrimination (Lin et al., 2019). There was also a limitation of
scattering confusion between dark UIS and bare soil, and intrinsic
shadows and layovers when combining SAR and optical data (Guo
et al., 2014).

The integration of hyperspectral and PolSAR data for land cover
classification is potential but challenging due to their different
imaging geometries and relatively lower data availability.
Improved accuracy was shown when combined PolSAR and hyper-
spectral images (Shokrollahi and Ebadi, 2016; Hu et al., 2019), and
few studies were conducted to combine them in the problem of
inter/intra-class discrimination. The potential and contribution
for higher spectral and polarization characteristics, together with
their combination for UIS extraction remain unknown.

In this study, two objectives are to: (1) investigate capability of
hyperspectral data in reducing the inter/intra-class confusions;
and (2) evaluate the effectiveness and contributions of synergistic
use of hyperspectral and PolSAR data for UIS extraction. We devel-
oped a methodological framework of jointly using hyperspectral
data and SAR data with the proposed Optical-SAR sparse
representation-based classification (OSSRC), and compared the
results with the state-of-the-art machine learning algorithms.
Then we evaluated the contributions of the synergistic use of
hyperspectral and PolSAR data compared to multispectral and Pol-
SAR data using the statistical test. This paper is organized as fol-
lows: We first introduced the study area and dataset. Then data
preprocessing, classification methods, and sample selection and
experiment design were explained in the methodology. The results
included the spectral analysis of the hyperspectral data, and the
accuracy of the UIS extraction results. Finally, we discussed and
concluded the performance of hyperspectral and PolSAR data com-
bination for UIS extraction.
Table 1
Data Information of GF-5, Landsat-8 and Sentinel-1.

Sensors Date Bands

GF-5 VNIR 2018.10.05 150
SWIR 2018.10.05 180

Landsat-8 OLI 2018.10.03 7
Sentinel-1 C band 2018.10.09 2
ALOS-2 P band 2017.01.11 4
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2. Study area and dataset

Two study areas include Kwai Tsing (Case 1) in Hong Kong and
Lo Wu (Case 2) in Shenzhen (Fig. 1 and Fig. 2). Hong Kong is highly
urbanized and the UIS are concentrated and intensive. Kwai Tsing
container terminals is the important container logistics processing
center, ranking no.8 around the world, which represents coastal
area. To the north of Hong Kong, Shenzhen has been rapidly urban-
ized since 1978 (Yuan et al., 2010). Lo Wu was one of the earliest
development zones in Shenzhen, which represents the urbanized
area.

The multisource data information is listed in Table 1. GF-5
Advanced Hyperspectral Imager was used with visible and near-
infrared reflectance (VNIR) and shortwave infrared reflectance
(SWIR). The nearest date cloudless Landsat-8 OLS/TIRS collection
1 level-1 product was used for comparison. The VV and VH dual
polarization backscattering coefficient of Sentinel-1 ground range
detection level 1 product with IW mode was collected. GF-5,
Landsat-8 and Sentinel-1 are within 7-day duration, which ensures
better comparison with similar phenological situation, seasonal
variety and atmospheric condition. The matching full-
polarization ALOS-2 was obtained in 2017 for its low data avail-
ability. We assume the land cover changes within 2017 and 2018
are insignificant, which is a simplification for combine different
data sources. The L-band ALOS-2/PALSAR stripmap high sensitive
mode data was used with HH, HV, VV, VH full-polarimetric mode.
3. Methodology

The overall framework for combining hyperspectral and PolSAR
data for impervious surfaces classification is as Fig. 3. The multi-
source data included hyperspectral data and PolSAR data. After
data preprocessing, the hyperspectral data and PolSAR data were
registered to generate the multisource data stack. OSSRC was used
to fuse and classify the results by constructing the joint optical and
SAR dictionary. Three machine learning methods were used for
comparison, including the feedforward fully connected neural net-
work (FCNN) (Glorot and Bengio, 2010), RF (Breiman, 2001) and
SVM (Cristianini and Shawe-Taylor, 2000). 10-fold cross-
validation strategy was used for the results validation and statisti-
cal test.
3.1. Preprocessing for multisource data

First, GF-5 was orthorectified using rational polynomial coeffi-
cient (RPC) and the DEM of Aster GDEM V2 (Tachikawa et al.,
2011) with ground control points’ RMSE of 0.5270. Then, we
defined the bad bands referring to (Wan et al., 2020): no data in
the whole images: SWIR: 43–50, 96–112; strip band with large
noise: SWIR: 42, 51–53, 113–115, 171–180. The final bad band is
SWIR: 42–53, 96–115, 171–180.

After that, we conducted radiometric calibration, transferred
the DN value to radiance in the unit of lW/(cm2 * sr * nm) and
ran the fast line-of-sight atmospheric analysis of spectral
Wavelength
(nm)

Spatial Res (m)

390-1028 30
1004-2428
443,482.6,561.3,654.6,864.6,1609,2201 30
VV and VH 10
VV, HH, VH, HV 3.21 m/2.86 m



Fig. 1. Study area and multisource data coverage.

Fig. 2. Study area of Kwai Tsing and LoWu. Gaofen-5 RGB composite: 638.3980 nm, 548.4660 nm, 471.4250 nm. Landsat-8: 654.6 nm, 561.3 nm, 482.6 nm. ALOS-2: T22, T33,
T11 coherence matrix. Sentinel-1: VH, VV, VH terrain-flattened gamma naught.
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hypercubes (FLAASH) (Abreu & Anderson, 1996) using the ENVI
5.3. We used the tropical atmospheric model and 1135 nm for
Water Absorption Feature and urban aerosol model. Landsat-8
used the same parameters as GF-5 to get the surface reflectance,
ensuring similar atmospheric setting.

Sentinel-1 was preprocessed using the Sentinel Toolbox (Veci
et al., 2014): apply orbit file, thermal noise removal, radiometric
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calibration, radiometric terrain flattening (reducing the terrain
effects of the mountain) and terrain correction. Sentinel-1
terrain-flattened gamma naught co of VV and VH were used
(Small, 2011). ALOS-2 conducted the radiometric calibration, box
car filter to generate the T coherence matrix, and terrain correction.
The T matrix is diagonal symmetry matrix as equation (1), includ-
ing T11, T12, T13, T22, T23 and T33.



Fig. 3. Flowchart of synergizing hyperspectral and PolSAR data for UIS extraction.
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T ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

264
375 ð1Þ

Landsat-8 worked as the base map for its well georegistration.
GF-5, Sentinel-1 and ALOS-2 were registered to Landsat-8, resam-
pled using the bilinear interpolation with resolution of 30 m, under
the projected coordinate of WGS 84, UTM 50N for the later classi-
fication process.
3.2. Optical-SAR sparse representation for UIS extraction

Optical-SAR sparse representation-based classification (OSSRC)
modified from SRC (Wright et al., 2009; Mairal et al., 2014) was
used for the pixel-based UIS extraction, which was chosen to test
its ability to extract sub-type UIS. Though mixed pixels exist, the
morphological features can help to determine the sub-type UIS
(Weng, 2012). Hyperspectral and polarization features give higher
opportunity for fine UIS discrimination. Assuming that machine
learning algorithms can handle the high dimension features, fea-
ture selection is not included in this study. The classification pro-
cess combined optical and SAR data at the feature level (Zhang
and Ru, 2018). The classifiers learned from the concatenated opti-
cal and SAR features at the pixel dimension and compared the per-
formance with using single optical features alone. SRC has been
usually combined with other components for image classification,
for example, multiple ensembles (Cao et al., 2016) or multi-
temporal features (Li et al., 2016), while the joint optical and SAR
multisource dictionary was used in this study. OSSRC supposed
the training samples are overcomplete and well represents the
study area, then the testing samples can be linearly represented
by the training samples. Supposed there are C class, a total of

n ¼ PC
i ni; i ¼ 1;2; � � � ;C samples. The optical and SAR training

samples are combined together to build a joint two-dimensional
optical and SAR dictionary X as in equation (2), one dimension rep-
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resents the multisource data while the other dimension represents
the multiclass samples.

X ¼ XOptical

XSARð Þ

� �
¼ x1; x2; � � � ; xC½ � 2 Rm�n ð2Þ

XOptical indicates the hyperspectral/multispectral features. XSAR

denotes dual/full PolSAR. So the testing samples y can be repre-
sented as,

y ¼ Xaþ n ð3Þ

where n is the noise. We used l1 norm to solve the situation with the
least angle regression algorithms (Efron et al., 2004), so the coeffi-
cient a can be calculated as,

ba ¼ argminky� Xak22 þ kkak1s:t: kak1 � k ð4Þ
k is 0.15 in this study, which limits the number of non-zeros

coefficients. With the sparse coefficient a, the label of the class
can be computed by the largest response (largest coefficient) of
the corresponding class as in equation (5), which is a simplification
for the minimum residuals in (Lin et al., 2019) and requires less
computation time:

class yð Þ ¼ argmax
c¼1;2;���;C

ac ð5Þ

SVM (Cristianini and Shawe-Taylor, 2000), RF (Breiman, 2001)
and FCNN (Glorot and Bengio, 2010; He et al., 2015) were used
for comparison. RF is an ensemble method that uses the bootstrap
aggregation (bagging) to build decision trees from the concate-
nated optical and SAR features for classification and 200 trees are
used in this study. SVM creates a hyperplane to separate the con-
catenated optical and SAR features into different classes. The FCNN
is constructed with a fully connected layer to learn the concate-
nated optical and SAR features, followed by a ReLU activation func-
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tion, a fully connected layer and a Softmax function for classifica-
tion. The classification processes were conducted on Matlab 2021b.

3.3. Sample selection scheme and experimental design

Cluster sampling schema (McCoy, 2005) were used to collect
homogeneous and contiguous samples referring to the high-
resolution google earth images. A two-level class scheme was cho-
sen: vegetation: vegetation (VEG) and grassland (GRASS); UIS:
building (BUL), road (ROAD), ground (GROUND), other UIS
(OTHER); bare land (BAR); and water: water (WAT) and pond
(POND). Kwai Tsing contains a total of 2422 samples, with 330
BAR, 442 BUL, 224 GRASS, 201 GROUND, 203 OTHERS, 527 ROADS,
244 VEG and 251 WAT. The containers samples of Kwai Tsing con-
tainer terminals were chosen for it demonstrated different social
and physical properties. Lo Wu had the additional 217 PONDS,
together with 357 BAR, 492 BUL, 276 GRASS, 251 GROUND, 476
ROAD, 247 VEG and 253 WAT, altogether 2569 samples.

The datasets were divided into 6 groups to: explore the effec-
tiveness of optical data (multispectral and hyperspectral data
alone) for UIS extraction, and explore the effectiveness of combin-
ing optical (multispectral and hyperspectral data) and PolSAR (dual
and full PolSAR) for UIS extraction, i.e., (1) Landsat 8 alone (g-L8; 2)
GF-5 alone (g-GF5; 3) Landsat 8 and Sentinel-1 (g-L8-S1; 4) GF-5
and Sentinel-1 (g-GF5-S1; 5) Landsat 8 and ALOS-2 (g-L8-ALOS2;
6) GF-5 and ALOS-2 (g-GF5-ALOS2). Confusion matrix, overall
accuracy and kappa coefficient (Fitzgerald and Lees, 1994) were
calculated for accuracy analysis.

We designed the experiment to test whether classification
result of hyperspectral features was better than multispectral fea-
tures and how much contributions of PolSAR were. 10-fold cross
validation together with nonparametric Friedman test (Demsar,
2006) were used to evaluate the result. The groups worked as
the treatment factors while the study cases and the classifiers were
the blocking factors. The classification accuracy worked as the
repeated observation. Under the null hypothesis, it supposed that
the comparative treatments (6 groups) are equivalent so their
accuracy ranks are also equal. Supposed that there are i ¼ 1; � � � ; k
algorithms on j = 1,. . .,N data sets, rji represents the rank of i algo-

rithm on j data set, Rj ¼ 1
N

P
jr

j
i. The Freidman statistics obeys the v2

F

distribution with k-1 freedom.

v2
F ¼ 12N

k kþ 1ð Þ
X
j

R2
j �

k kþ 1ð Þ2
4

" #
ð6Þ

If the null hypothesis is rejected, the post-hoc test will further
process. Tukey test (Hochberg and Tamhane., 1987) is used and
two groups are significantly different from each other when the
corresponding average differs.
4. Results

4.1. Spectral analysis of GF-5 and Landsat-8

4.1.1. Spectral characteristics of optical data
The spectrum of GF-5 was consecutive covering from 390 nm to

2428 nm (Fig. 4). Landsat-8 was coarse, separated, and in different
intervals (Fig. 4 bold black line). The spectrum of GF-5 and Landsat-
8 showed similar trend in different classes. The surface reflectance
of Landsat-8 was lower than the GF-5, but it had variance in differ-
ent bands and classes. The spectral characteristics of BUL, ROAD,
GROUND were very similar in both GF-5 and Landsat-8. Actually,
the materials of these three sub-class UIS were usually asphalt
and cement, showing similarities in the whole spectrum. The spec-
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trum of BAR was similar with BUL, ROAD, GROUND and OTHER in
VNIR, while in SWIR, it was more similar with GROUND. BAR
showed high reflectance from 730 nm to 1300 nm. In this respect,
the misclassification between BAR and UIS was not as significant as
in the sub-class UIS, i.e., BUL and ROAD. In addition, GF-5 showed
its great potential in sub-class discrimination, i.e., VEG and GRASS,
WAT and POND.

4.1.2. Spectral comparison between hyperspectral and multispectral
features

Consistent centre wavelength of reflectance of GF-5 and
Landsat-8 were compared (Table 2 and Fig. 5). Overall, the consis-
tency between GF-5 and Landsat-8 was 0.9316, with R-squared of
0.9590. The two sensors worked in 2-day gap, which reduced the
phenological variance. The variance came from the sensor charac-
teristics and flight time. The flight time of Landsat-8 was GMT
2:46:5 while GF-5 was GMT 5:40:38, which had three hours lag
between morning and mid-afternoon. It was reasonable that the
light was more intensive in mid-afternoon in GF-5. When it comes
to the class-specific consistency, it showed that the two datasets
were consistent in BAR, VEG, GRASS, WAT and POND, with R-
square higher than 0.9. Whereas, variance shown in the sub-class
UIS including BUL, ROAD, and GROUND. In medium resolution
dataset, the mixed pixel problem existed between sub-class UIS,
which led to the diversity and inconsistency between two datasets.
As mentioned above, the sub-class UIS confusion may be higher
than the UIS-bare land confusion.

4.2. Accuracy of UIS extraction

4.2.1. Accuracy assessment of UIS extraction using different machine
learning methods

The 10-fold cross validation averaged classification results were
shown in Fig. 6 and in Table 3. Both the OSSRC and the FCNN
showed higher accuracy, followed by RF, and SVM, but FCNN
required a much longer computation time. Generally, different
classifiers all performed the best in the GF-5 groups, i.e., g-GF5-
ALOS2, g-GF5-S1, and g-GF5. In Case 1, OSSRC and FCNN outper-
formed in road extraction, but FCNN had some false alarms in
the bare land in the mountains (Fig. 7). RF and SVM tended to mis-
classify the BAR as ROAD. For Case 2, OSSRC and FCNN had good
performance in the intra-class discrimination of WAT and POND
while RF and SVM doesn’t. But FCNN did not keep the good shape
in the river classification.

4.2.2. Improvements of UIS extraction from hyperspectral and
polarimetric features

Overall, g-GF5-ALOS2 using OSSRC obtained the highest overall
accuracy and kappa coefficient, followed by g-GF5-S1, g-GF5, g-L8-
ALOS2, g-L8-S1, and g-L8. g-L8 classification results had more
noises than the other groups (Fig. 8). SAR backscattering coefficient
greatly reduced the noise. The containers were near the pier, which
were made of aluminum alloy, steel and etc., showing diverse
reflection. Dense urbanized area contains large portions of mixed
pixels with spectral and double bounce mixing (Fig. 9). The spectral
confusions can be significantly reduced when SAR is added.

The road pattern was discriminated more clearly in g-GF5-S1
and g-GF5-ALOS2 (Fig. 10). The third row shows bare land discrim-
ination has greatly improved with hyperspectral features. Quanti-
tative analysis of case 1 was conducted (Table 4 and Table 5). g-L8
showed that 26 BUL were misclassified as BAR. Sub-class UIS anal-
ysis showed 62, 26, 11 BUL were misclassified with ROAD,
GROUND, and OTHER respectively. With Sentinel-1/ALOS-2 sup-
plement, the BUL to BAR misclassification reduced to 21/17. The
sub-class UIS misclassifications of ROAD, GROUND, and OTHER
were declined to 33, 21, 6 respectively when ALOS-2 integrated.



Fig. 4. Surface reflectance of GF-5 and Landsat-8.

Table 2
Class-specific relationship between GF-5 and Landsat-8.

R2 BAR BUL GROUND ROAD OTHER GRASS VEG WAT POND All

GF5-L8 0.9345 0.6264 0.7530 0.6250 0.3829 0.9892 0.9957 0.9802 0.9154 0.9573
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Fig. 5. Surface reflectance relationship between GF-5 and Landsat-8. (a) All class; (b) Per class.

Fig. 6. Mean overall accuracy using different data groups. (a): Case 1, (b): Case 2.
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Fig. 7. Classification results of different classifiers in two cases (Case 1: a-d; Case 2: e-h). (a&e). SVM, (b&f). RF, (e&g). FCNN, (d&h). OSSRC.

Table 3
Averaged classification results of different classifiers.

SVM RF FCNN OSSRC

Group OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

Case 1 GF-5 76.43 0.7225 80.38 0.7702 87.81 0.8576 89.64 0.8793
GF5-S1 78.11 0.7429 80.92 0.7765 89.97 0.8828 89.80 0.8811
GF5-ALOS2 80.14 0.7669 82.57 0.7958 88.40 0.8645 90.30 0.8870
L8 71.14 0.6606 73.33 0.6880 75.81 0.7169 72.17 0.6761
L8-S1 72.99 0.6837 74.36 0.6999 76.72 0.7279 72.34 0.6778
L8-ALOS2 78.53 0.7490 78.70 0.7509 79.94 0.7659 79.15 0.7571

Case 2 GF-5 84.31 0.8178 86.30 0.8409 91.67 0.9023 92.99 0.9187
GF5-S1 85.87 0.8358 87.23 0.8518 91.66 0.9020 92.95 0.9182
GF5-ALOS2 86.76 0.8462 87.74 0.8576 91.99 0.9060 94.12 0.9318
L8 80.49 0.7733 82.40 0.7956 81.91 0.7873 80.69 0.7761
L8-S1 82.48 0.7962 84.47 0.8196 84.14 0.8136 82.83 0.8008
L8-ALOS2 84.81 0.8233 84.81 0.8233 85.75 0.8328 85.99 0.8374
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But Sentinel-1 cannot contribute much to the results. Comparing to
g-L8, the hyperspectral features of g-GF5 also improved the mis-
classification in g-L8-S1. When both features were used, in g-
GF5-S1/GF5-ALOS2, major improvements came in the sub-class
UIS discrimination, the BUL to ROAD, GROUND, and OTHER mis-
classification were reduced to 22/19, 10/6, 3/1. The combination
of hyperspectral features and full PolSAR demonstrated the best
results, yielding overall accuracy higher than 90%.

4.2.3. Friedman significant test
Pair-wise Friedman test calculated the p-value of different

groups (Table 6). The classification result of hyperspectral data
was significantly different from multispectral data with p-value
smaller than 0.001. In addition, the contribution of dual and full
PolSAR in multispectral data was significant with p-value smaller
than 0.001. Whereas, the contribution of SAR in hyperspectral data
was not so significant as in multispectral data. Still, we can observe
full PolSAR significantly improve the GF-5 while the dual PolSAR
doesn’t. The average accuracy improvement in g-GF5-S1 is slight
comparing with g-GF5.
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5. Discussion

The sub-class UIS in urban environment are diverse and compli-
cated, showing different material, conductivity and shape. This
study categorized the sub-class UIS into roads, buildings, grounds,
and other UIS according to their social attributes and physical mor-
phology. The sub-class UIS reflection in different data sets are dif-
ferent. The BIS and DIS in optical datasets may not correspond to
‘‘bright” or ‘‘dark” SAR datasets. As a result, the social entity of cat-
egorization of sub-class UIS is a better choice for multi-modality
UIS mapping.

The hyperspectral and PolSAR data showed the capability for
pixel-level sub-class UIS mapping. The inter-class confusion of bare
land and UIS was not the major problem, instead, sub-class UIS
confusion came to the front. The hyperspectral improvements lied
in the extended spectrum, for example, the bare soil was similar
with buildings, roads, grounds in VNIR, while in SWIR, it was sim-
ilar with grounds. Sub-class UIS classification was trivial in med-
ium resolution data mapping, not only for the mixed pixels
problem, but also the similar materials of different sub-class UIS.



Fig. 9. Classification result of Case 2 using OSSRC. (a). g-L8. (b). g-L8-S1. (c). g-L8-ALOS2. (d). g-GF5. (e). g-GF5-S1. (f). g-GF5-ALOS2.

Fig. 8. Classification result of Case 1 using OSSRC. (a). g-L8. (b). g-L8-S1. (c). g-L8-ALOS2. (d). g-GF5. (e). g-GF5-S1. (f). g-GF5-ALOS2.
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Fig. 10. Classification comparison among different groups.

Table 4
Confusion matrix of GF-5 groups using OSSRC in Case 1.

GF5-ALOS2 Ground Truth
Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total
BAR 232 9 10 7 1 4 1 0 264
BUL 7 320 0 6 1 19 0 0 353
GRASS 4 1 169 2 0 2 1 0 179
GROUND 7 7 1 130 0 15 1 0 161
OTHER 0 1 0 0 162 0 0 0 163
ROAD 11 24 4 21 5 351 5 0 421
VEG 0 0 3 1 0 3 188 0 195
WAT 0 0 0 0 0 0 0 201 201
Total 261 362 187 167 169 394 196 201 1937

GF5-S1 Ground Truth
Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total
BAR 229 7 13 6 2 6 1 0 264
BUL 9 308 1 10 3 22 0 0 353
GRASS 6 2 169 0 0 0 2 0 179
GROUND 8 10 2 123 1 15 2 0 161
OTHER 0 0 0 0 163 0 0 0 163
ROAD 18 23 3 14 1 356 6 0 421
VEG 0 0 4 0 0 3 188 0 195
WAT 0 0 0 0 0 0 0 201 201
Total 270 350 192 153 170 402 199 201 1937

GF5 Ground Truth
Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total
BAR 228 7 11 6 2 8 2 0 264
BUL 9 314 1 8 1 20 0 0 353
GRASS 6 3 166 1 0 1 2 0 179
GROUND 8 6 5 126 0 15 1 0 161
OTHER 0 0 0 0 163 0 0 0 163
ROAD 15 19 2 18 2 356 9 0 421
VEG 0 0 6 0 0 2 187 0 195
WAT 0 0 0 0 0 0 0 201 201
Total 266 349 191 159 168 402 201 201 1937

Y. Lin, H. Zhang, G. Li et al. Egypt. J. Remote Sensing Space Sci. 25 (2022) 1045–1056

1054



Table 5
Confusion matrix of Landsat 8 groups using OSSRC in Case 1.

L8-ALOS2 Ground Truth

Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total

BAR 196 10 16 16 2 16 8 0 264
BUL 17 276 0 21 6 33 0 0 353
GRASS 13 1 152 0 0 6 7 0 179
GROUND 22 22 1 77 0 36 3 0 161
OTHER 0 2 0 0 157 4 0 0 163
ROAD 15 51 9 25 11 298 12 0 421
VEG 2 0 9 3 0 3 178 0 195
WAT 0 0 0 0 0 1 0 200 201
Total 265 362 187 142 176 397 208 200 1937

L8-S1 Ground Truth
Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total
BAR 174 25 20 12 5 17 10 1 264
BUL 21 222 0 28 8 72 2 0 353
GRASS 13 1 146 3 0 6 10 0 179
GROUND 18 35 6 65 3 32 2 0 161
OTHER 2 5 0 1 148 7 0 0 163
ROAD 18 65 9 31 11 278 6 3 421
VEG 5 4 13 2 0 0 171 0 195
WAT 0 0 0 0 0 2 0 199 201
Total 251 357 194 142 175 414 201 203 1937

L8 Ground Truth
Class BAR BUL GRASS GROUND OTHER ROAD VEG WAT Total
BAR 182 19 20 7 4 25 7 0 264
BUL 26 225 1 26 11 62 2 0 353
GRASS 13 0 146 6 0 5 9 0 179
GROUND 17 21 7 78 3 33 2 0 161
OTHER 5 9 0 3 136 10 0 0 163
ROAD 23 60 11 40 8 268 11 0 421
VEG 4 2 10 2 0 7 170 0 195
WAT 0 0 0 0 0 0 0 201 201
Total 270 336 195 162 162 410 201 201 1937

Table 6
Friedman significant test for different groups in diagonal symmetry. (S1: Sentinel-1, L8: Landsat 8).

p GF5-ALOS2 GF5-S1 GF5 L8-ALOS2 L8-S1 L8

GF5-ALOS2 – – 0.0002*** – – –
GF5-S1 – – 0.0462* – – –
GF5 0.0002*** 0.0462* – – – 4.15E-23***
L8-ALOS2 – – – – – 2.16E-17***
L8-S1 – – – – – 0.0002***
L8 – – 4.15E-23*** 2.16E-17*** 0.0002*** –
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SAR polarization backscattering coefficient also contributed to
intra/inter-class discrimination. The improvements for multispec-
tral data were higher than hyperspectral data. The result showed
that the linear classifier with g-GF5-ALOS2 performed the best in
terms of the accuracy and the computation time. Compared with
two SAR features, the high dimension spectral features outweighed
the results. Still, the VV/VH polarization demonstrated its advan-
tages. VV backscattering intensity was higher in the building areas
than the road, which can help the sub-class UIS discrimination.
6. Conclusion

We statistically quantified the contribution of synergizing
hyperspectral and polarimetric features to UIS extraction. Hyper-
spectral and SAR polarization features significantly improve the
UIS mapping to reduce inter-class (UIS and bare land) and intra-
class (sub-class UIS, e.g., building and road) confusions. Overall,
the PolSAR improvement in multispectral data is higher than in
the hyperspectral data. In multispectral data, both full and dual
PolSAR improve the UIS extraction and the improvements from full
1055
PolSAR are much larger than dual PolSAR. In hyperspectral data,
the improvements from full PolSAR are significant while it is not
so significant from dual PolSAR, the results of which may be the
unbalanced feature dimension from optical and SAR data. Specifi-
cally, OSSRC outperforms SVM, RF and FCNN in hyperspectral data
and full PolSAR combination, which is applicable for fine UIS
extraction. The proposed integration of hyperspectral and PolSAR
data will improve the accuracy of UIS monitoring and environmen-
tal analysis.
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