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• A framework was developed for 
spatially explicit downscaling and pro
jecting population distributions. 

• The accuracy of the downscaled popu
lation was improved compared with 
other datasets. 

• The population projections align with 
the spatial patterns of urbanization. 

• The work provides a foundation for 
studies on long-term socio-environ
mental interactions.  
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A B S T R A C T   

Spatially explicit population data is critical to investigating human-nature interactions, identifying at-risk pop
ulations, and informing sustainable management and policy decisions. Most long-term global population data 
have three main limitations: 1) they were estimated with simple scaling or trend extrapolation methods which 
are not able to capture detailed population variation spatially and temporally; 2) the rate of urbanization and the 
spatial patterns of settlement changes were not fully considered; and 3) the spatial resolution is generally coarse. 
To address these limitations, we proposed a framework for large-scale spatially explicit downscaling of pop
ulations from census data and projecting future population distributions under different Shared Socio-economic 
Pathways (SSP) scenarios with the consideration of distinctive changes in urban extent. We downscaled urban 
and rural population separately and considered urban spatial sprawl in downscaling and projection. Treating 
urban and rural populations as distinct but interconnected entities, we constructed a random forest model to 
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downscale historical populations and designed a gravity-based population potential model to project future 
population changes at the grid level. This work built a new capacity for understanding spatially explicit de
mographic change with a combination of temporal, spatial, and SSP scenario dimensions, paving the way for 
cross-disciplinary studies on long-term socio-environmental interactions.   

1. Introduction 

The quantitiy, distribution and demographics of the human popu
lation are critical components in understanding human-environment 
connections, identifying vulnerable populations, and guiding sustain
able management and policy-making (e.g., Jones et al., 2008; Marzi 
et al., 2021; Wesolowski et al., 2014). Temporal changes in population 
size and distribution, especially in regions undergoing rapid expansion 
and urban development, have notable ecological and socio-economic 
consequences. For example, the distribution and growth of human 
populations have played a significant role in generating substantial 
greenhouse gas emissions, exacerbating air pollution, and increasing 
resource consumption (Akhmat et al., 2014; Rosa and Dietz, 2012; 
Müller et al., 2022; Hu et al., 2021). Rapid population increase may 
threaten protected areas, sensitive habitats, biodiversity, and poses 
challenges to urban planning and management, as well as the gover
nance of environmental issues within cities (Li et al., 2019; Tatem et al., 
2012; Wesolowski et al., 2012; Xu et al., 2020). Therefore, long-term 
spatially explicit gridded population modeling is in demand and of 
growing importance in global change and vulnerability assessment, 
sustainable development, or resource management. 

Several methods have been developed and applied to generate long- 
term gridded population maps by spatially downscaling population 
projections to the grid cell level using the national-level Shared Socio- 
economic Pathways (SSP) projections as boundary conditions. These 
methods include simple proportional scaling techniques (Boke-Olén 
et al., 2017; Gaffin et al., 2004; Gao, 2017), machine learning methods 
(Chen et al., 2020; Wang et al., 2022), and gravity-based approaches 
(Grübler et al., 2007; Jones and O'Neill, 2016; Reimann et al., 2021). 
The simple proportional scaling is efficient and transparent but inflex
ible. The approach has been criticized for leading to exaggerated pop
ulation counts in densely populated regions, since the percent of 
allocated population change in each cell are held constant according to 
the base-year population distribution (van Vuuren et al., 2010). Machine 
learning methods can find important connections between various input 
datasets, but they often come with rigid assumptions about the stability 
and covariability of sets of variables that are scaled down at the same 
time. These methods are not very adaptable in describing the differences 
in spatial pattern changes among different scenarios in a qualitative 
way. Neither proportional scaling nor machine learning approaches 
applied so far have fully considered the dynamic urbanization rate and 
spatial changes in settlement patterns, making the future population 
distribution and densities among areas questionable especially when 
cities outgrow current admin units. 

The gravity-based approach used by Jones and O'Neill (2016, Na
tional Center for Atmospheric Research, NCAR) (also used in (Zoraghein 
and O'Neill, 2020a, 2020b)) can effectively capture the urbanization 
rate change and urban expansion patterns. The model calculates popu
lation potentials based on proximity to certain characteristics and allo
cates urban and rural population changes separately to the responding 
urban or rural pixels. In this case, accurate information on the dynamics 
of the urban extent is crucial for the gravity-based population model to 
better separately simulate the rural and urban population size and dis
tribution. Traditional gravity models determine urban or rural extents 
based on population density and continuity with completely urban or 
rural cells to assign projected national total urban/rural population. 
However, urban extent extracted based on population density is not 
globally consistent due to the significant variability in urban forms 
among and within countries (Taubenböck et al., 2022), and fails to 

capture the urban expansion when population density decrease. In this 
regard, this study adopted and improved the gravity-based approach 
from Jones and O'Neill (2013, 2016) to project the distribution of future 
population by using more accurate urban extents derived from remote 
sensing data to capture distinct physical changes in spatial development 
patterns and to better separately simulating the rural and urban popu
lation size and distribution. 

The base year population distribution is another crucial component 
for accurately projecting future gridded populations. Great efforts and 
significant strides have been made to model the spatial distribution of 
the current population using different approaches at varying levels of 
complexity. Common methods range from simple areal weighting 
techniques to more complex data-intensive dasymetric mapping ap
proaches (Leyk et al., 2019; Sapena et al., 2022). Simple areal weighting 
techniques uniformly redistribute data from the source unit into target 
grid cells and do not require ancillary data (Goodchild and Lam, 1980; 
Mennis and Hultgren, 2006). The approach is computationally efficient 
and simple in generating globally consistent population distribution 
maps (for example, the Gridded Population of the World (GPW), (Tobler 
et al., 1997)). However, it cannot capture fine-scale information, 
particularly in regions with large census units. The data-intensive 
dasymetric mapping approaches delineate heterogeneous distributions 
of the population by incorporating ancillary data with finer spatial scale 
than the input population data, including land use/land cover and 
nighttime light (NTL), as modeling variables to develop weighting 
schemes for population redistribution (Boke-Olén et al., 2017; Chen 
et al., 2020; Weber et al., 2018). Many well-known globally gridded 
population datasets, for example, LandScan (Dobson et al., 2000), 
Global Rural-Urban Mapping Project (GRUMP) (Balk et al., 2006), and 
WorldPop (Stevens et al., 2015), were produced using the dasymetric 
mapping approaches. Although these datasets can successfully capature 
spatial details of population, they usually over-allocate population in 
low-density population areas and under-allocate population in high- 
density areas (e.g., urban areas). This is particularly the case in re
gions where the urban and rural populations are greatly different (Cockx 
and Canters, 2015; Gaughan et al., 2016; Mennis and Hultgren, 2006). 

In this study, we incorporate a physical urban boundary dataset (Li 
et al., 2020) to downscale the historical administrative population (i.e., 
for the year 2000) by using a random forest-based dasymetric mapping 
approach. We adopt an SSPs consistent global impervious surface area 
dataset (He et al., 2023) to allocate the population changes from 
national-level SSP projections to the grid cell level by using the gravity- 
based population downscaling model. Furthermore, we aim to produce 
high-resolution population projections (30 arc sec, approximately 1 km) 
for the years from 2020 to 2100 that are consistent with the Shared 
Socio-economic Pathways (SSPs). The objective of this study is not solely 
to generate a reliable and operational dataset but, more importantly, to 
demonstrate a framework for spatially explicit downscaling and pro
jecting population for over an extended period, which can be utilized in 
future applications for scenario-driven events. 

2. Methodology and data 

2.1. General framework 

We proposed an explicit spatiotemporal downscaling and projection 
framework to map population dynamics from the years 2000 to 2100 
under different SSPs, including urban and rural populations. Our 
framework involves four key procedures: 1) data preparation, which 
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included the collection and preprocessing of census and projected 
population-related data, and spatially ancillary data (e.g., land cover, 
topography, the world settlement footprint, and urban extent time series 
data product); 2) population downscaling, which fittted a Random Forest 
(RF) model for producing the dasymetric population maps for years with 
observations; 3) projection of population, which developed a gravity- 
based population downscaling model to project population maps for 
five SSPs, and 4) accuracy assessment, which evaluated the accuracy of 
the downscaled and projected population using census population data. 
The methodological framework of this study is depicted in Fig. 1. Sub
sequent sections will delve into the specifics of each procedure. 

2.2. Data preparation 

A total of thirteen types of datasets were employed to fit the RF 
model for population downscaling, build a gravity-based population 
downscaling model for future population projection, and assess the ac
curacy of modeling results (Table 1). The acquisition and preprocessing 
of these datasets are elaborated upon in the following section. 

The population data including total, urban, and rural population for 
2000 and 2010 in China were collected from the fifth and Sixth National 
Population Census of Mainland China (available from http://www.stats. 
gov.cn/sj/pcsj/, accessed on 20 September 2023). We excluded the 
provinces (i.e., Hong Kong, Macao, and Taiwan) with unique political 
and economic status in this study. We utilized the census data at the 
county level with 2751 units (corresponding to level 3 of the Global 
Administrative Unit Layer as defined by the Food and Agriculture Or
ganization) to train the RF model, while data at the township level 
(corresponding to level 4 of the Global Administrative Unit Layer) were 
used to assess the accuracy of the resulting population map (Gaughan 
et al., 2016; Ye et al., 2019). For each SSP, the total population data 
(from SSP Database, https://tntcat.iiasa.ac.at/SspDb/, accessed on 25 
September 2023) and the urbanization level (i.e., urban share, the 
percent of the urban population available from Chen et al., 2022), were 
used as quantitative constraints for future population distribution pro
jections. The population datasets from UNPD (United Nations, Depart
ment of Economic and Social Afairs, Population Division, available from 
https://population.un.org/wup/, accessed on 25 September 2023) in 
2000 and 2010 were adapted to adjust China's population data, making 
the historical data consistent with the SSPs projections. 

Eight types of spatially ancillary data were collected to fit the RF 
model and build the gravity-based population downscaling model, 
including land cover, the gridded urban extent, nighttime lights, 
building height, roads, world database of protected areas (WDPA), 
topography (elevation and slope), and climate (monthly temperature 
and precipitation) data. The land cover data, particularly the categories 

related human activities, had strong relationship with the population 
distribution (Tatem et al., 2007). We collected land cover products in 
raster layers from the ESA (European Space Agency) CCI (Climate 
Change Initiative), including sub-categories of agriculture, forest, 
grassland, wetland, settlement, and other. The urban extent, nighttime 
lights, and building height are very useful for accurately estimating 
population size and distribution, especially in regions with dense pop
ulation (Jia et al., 2014; Wang et al., 2016). The gridded urban extents 
(2000, 2010) used here were generated by Li et al. (2020) based on an 
automatic delineation framework by using 30 m global artificial 
impervious area data (Gong et al., 2020), providing the physical 
boundaries of urban regions. Specifically, The inner non-urban areas 
from the impervious area data were filled using a kernel density esti
mation approach and cellular-automata-based urban growth model. The 
urban fringe areas were dilated and eroded using a morphological 
approach. The urban extent time series data (Li et al., 2020; He et al., 
2023) were also used to separate the urban and rural populations for 
both RF population downscaling and Gravity population projections. 
The future gridded urban extents (2020− 2100) in this study were pro
duced using a global dataset of gridded artificial impervious area under 
SSPs (He et al., 2023), according to the automatic delineation frame
work developed by Li et al. (2020). The nighttime light rasters for 2000 
and 2010 were collected from the National Oceanic and Atmospheric 
Administration's National Centers for Environmental Information 
(available from https://ngdc.noaa.gov/eog/dmsp/download_radcal.ht 
ml, accessed on 26 September 2023). We also collected vector data, 
the roads, as ancillary data. The distance to roads and the road density 
were calculated based on the Global Roads Open Access Dataset 
(available from http://sedac.ciesin.columbia.edu/data/set/groads- 
global-roads-open-access-v1, accessed on 25 September 2023). 
Furthermore, the climate and topography also affect human settlement 
patterns to some extent, which may directly relate to the population 
distribution (Stevens et al., 2015). We generated the elevation and slope 
data from the Digital Elevation Model (DEM) dataset (30-m spatial 
resolution, available from https://gdex.cr.usgs.gov/gdex/, accessed on 
26 September 2023). We downloaded the temperature (◦C) and pre
cipitation (mm) raster data from WorldClim 2.0 Beta version 1 (Fick and 
Hijmans, 2017) with a 30 arc-second spatial resolution. These data de
pict climate data averaged monthly during the period from 1970 to 
2000. Additionally, We obtained the settlement footprint data (10-m 
spatial resolution, Marconcini et al., 2020) to constrain the historical 
population extent. The class-based data for both vector and raster data 
(e.g., individual land cover types, water bodies, presence or absence of 
protected areas, etc.) are transformed into binary masks, resulting in 
binary covariates. Using these masks, a distance-to-class raster is 
computed for each dataset. We resampled all the raster layers to 1-km 

Fig. 1. The framework of downscaling and projection of population, including 1) data preparation, 2) base-year population downscaling, 3) population projection 
under SSPs, and 4) accuracy assessment. UN: the United Nations datasets; SSPs: Shared Socioeconomic Pathways; pop: population; RF: random forest. 
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resolution using the bilinear interpolation method. 

2.3. Dasymetric urban and rural population mapping 

Dasymetric population mapping is one kind of areal interpolation 
method that seeks to refine population to a finer resolution using 
auxiliary data with better resolution (Eicher and Brewer, 2001; Mennis, 
2009). The fundamental concept involves generating a weight layer 
(typically gridded), which dictates how census population data can be 
disaggregated and assigned to finer grid cells within the census unit. A 
dasymetric population density map can be produced as follows: 

Popi =
Pop

∑n
i=1Wi

×Wi (1)  

where Popi is the predicted population of the ith grid cell, Wi is the 
population-distribution weight for the ith grid cell, n is the number of 
grid cells within administrative area (i.e., county here), and Pop is total 
population within the administrative area. 

We used a non-parametric method, Random Forest (RF) (Breiman, 
2001; Liaw and Wiener, 2002), to generate the population-distribution 
weight layer and thus downscaled the population at 2000 year to a 1- 
km pixel level as the base-year population. We also downscaled the 
2010 population, working with the 2000 population together, to esti
mate future projection parameters for next section. We masked unin
habited areas based on the settlement footprint dataset and incorporated 
a global urban boundary dataset by Li et al. (2020) to assign the urban 
and rural population separately. Specifically, the 1-km gridded cova
riates raster layers (e.g., elevation, slope, nighttime light, distance to 
road, and distance to each landcover type) were first aggregated to 
administrative regions and subsequently associated with the logarithm 
of the total administrative census population to train the RF model. 
Secondly, the well-trained RF model were applied to calculate the 
population distribution weight for each 1-km gridded cell using the 
same covariates raster layers. The resulting weight layer was used to 
determine the regions with the highest probability of experiencing 
population changes in the future. Then, the weights were converted to 

urban region and rural region weights according to the urban and rural 
extent data, where each cell is defined as rural or urban. Finally, the 
urban and rural weights were used to disaggregate the census urban and 
rural populations at the administrative level into separate 1-km pixels 
(Fig. 2). 

2.4. Gravity-based population downscaling model and SSP projections 

The Shared Socioeconomic Pathways (SSP) project socio-economic 
global changes up to the year 2100. To do so, they apply five de
mographic scenarios: 1) sustainability, 2) middle of the road, 3) regional 
rivalry, 4) inequality, and 5) fossil-fueled development (O'Neill et al., 
2017). SSPs have been widely used to project future income inequalities, 
greenhouse gas concentrations, climate change, and urban expansion. 

In this study, we generated scenario-specific spatial projections (at 1- 
km resolution) for each SSP by refining the changes of national urban 
and rural population projections. These spatial projections were pro
duced using a gravity-based model to capture the spatial change patterns 
outlined by each SSP. The process involves (a) estimating the model 
parameters using historical population distributions to reflect specific 
patterns of spatial change, (b) choosing parameters that are regionally 
representative for each SSP, and (c) implementing the allocating pro
cedure of population change for each SSP. Further details regarding the 
model and parameterization processes are provided below. 

To downscale projected changes in national urban and rural popu
lation, we used the NCAR gravity-based population downscaling method 
(Jones and O'Neill, 2016), where population potential is considered as a 
distance-weighted measure of the population within a specific range 
surrounding each grid cell. We improved the NCAR approach by using 
more accurate series of urban extents derived from remote sensing data 
to capture distinct physical changes in spatial development patterns to 
better separately simulating the rural and urban population size and 
distribution. Starting from the gridded base-year population (i.e., the 
downscaled 2000 population in the previous section), the model in
cludes five basic steps (Fig. 3): (1) Caculation of an urban population 
potential weight layer; (2) Calculation of a rural population potential 
weight layer; (3) Allocation of the projected changes of the national 

Table 1 
Data used for Random Forest-based population downscaling, Gravity-based population projection, and accuracy assessment.  

Name Resolution Temporal 
domain 

Type Source Usage 

Census (county-level and 
township-level urban and 
rural population) 

– 2000, 2010 Text & 
Vector 

The fifth and sixth census 
(NBSC, 2002, 2012) 
http://www.stats.gov.cn/sj/pcsj/ 

Population downscaling and 
Accuracy assessment 

The United Nations country- 
level urban/rural 
population 

– 1950–2050 Text UNPD https://population.un.org/wup/Download/Files/ 
WUP2018-F05-Total_Population.xls 

Population projection 

SSPs population projections Country-level 2020–2100 Text SSP Database https://tntcat.iiasa.ac.at/SspDb/ Population projection 
SSPs urban share Country-level 2020–2100 Text (Chen et al., 2022) Population projection 
Global gridded Urban extent 

(historical + under 5 SSPs) 
~ 1 km 2000–2100 Raster (Li et al., 2020; He et al., 2023) Population downscaling 

(historical) & Population 
projection (5 SSPs) 

The World Settlement 
Footprint 

10 m 2015 Raster (Marconcini et al., 2020) Population downscaling 

Nightlights 30″ (~900 m) 2000–2011 Raster DMSP-OLS Stable Nightlights v4, 2015; inter-calibrated, 
2016; US NOAA National Geophysical Data Center; https:// 
ngdc.noaa.gov/eog/dmsp/download_radcal.html 

Population downscaling 

Building height ~ 500 m 2015 Raster (Zhou et al., 2022) Population downscaling 
Global Roads – – Vector Global Roads Open Access Data Set, Version 1 (gROADSv1): 

http://sedac.ciesin.columbia.edu/data/set/groads-global- 
roads-open-access-v1 

Population downscaling 

Global Land Cover ~ 300 m 
(9 arc-seconds) 

2000–2015 Raster ESA CCI Land Cover https://www.esa-landcover-cci.org/ Population downscaling 

World Database of Protected 
Areas (WDPA) 

Comparable to 
30″ (~900 m) 

1819–2017 Vector UNEP-WCMC and IUCN Population downscaling & 
Population projection 

Global Topography (elevation 
and slope) 

3″ (~90 m) ~2000 Raster http://www.viewfinderpanoramas.org/dem3.html Population downscaling & 
Population projection 

Monthly temperature and 
precipitation 

30″ (~900 m) 1970–2000 Raster WorldClim 2.0 Population downscaling  
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urban population to grid cells in proportion to the corresponding urban 
potentials; (4) Allocation of the projected changes of the national rural 
population to grid cells in proportion to the corresponding rural po
tential; and (5) Redefinition of the population as urban or rural based on 
the next-decade urban boundary. In this way, the increased urban 
population is allocated to a cell with a rural population where the cell is 

redefined as urban at the projection year. These procedures are subse
quently reiterated for each 10-year time span. 

The population potential weight is developed to distribute projected 
population changes according to the Eq. (2) (step 4). These data were 
calculated separately for the urban and rural areas. The population 
potential weight layers for both the urban and rural are calculated using 

Fig. 2. Flowchart of downscaling urban and rural populations from census units to grid cells using Random Forest and Dasymetric model.  

Fig. 3. The flowchart of downscaling the projected changes of national population to grid cells using the gravity-based population downscaling model.  
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the continuous total population distribution, however, the values of a 
population parameter (α) and a distance-decay parameter (β) used in Eq. 
(2) for urban and rural populations exhibit variation, capturing the 
diverse spatial change patterns. 

vi = li
∑m

j=1
Pα

j e− βdij (2)  

where vi represents the potential for cell i, li represents the human 
habitable portion for cell i, j represents an index of the m cells within a 
25 km window (according to the Zoraghein and O'Neill (2020a, 2020b)) 
around cell i, Pj represents the population count within cell j, d repre
sents the geographic distance between cells i and j, and α and β are 
parameters. li is calculated according to topography, protection regions, 
and land use (details see Jones and O'Neill (2016)). 

The α and β parameters are flexible parameters that can be set to 
reflect the historical observation or future assumptions of population 
change patterns. Generally, the parameter β influences the extent to 
which populations spread or sprawl over time, whereas the α determines 
the degree to which populations consolidate over time (Jones and 
O'Neill, 2016). To estimate the α and β parameters of the urban and rural 
for the model that reflect the observed patterns of historical spatial 
change, we calibrated the model using the observed changes in the 
urban/rural downscaled population distributions from 2000 to 2010. 
For each SSP, we adjusted the urban and rural α and β parameters to 
align with the SSP assumptions regarding spatial development, as out
lined in the framework in Zoraghein and O'Neill (2020a, 2020b). The 
parameters dictate how the population distribution changes over time, 
influencing whether it tends towards sprawl or concentration; however, 
the national urbanization rate and total population change are pre
scribed by the SSPs (Chen et al., 2022; Jiang and O'Neill, 2017). Addi
tionally, we allocated population loss in proportion to the inverse values 
of the population potentials which are derived based on a period of 
population gain (Jones and O'Neill, 2016). 

2.5. Accuracy assessment 

In this study, we took the mainland of China as a case study to 
demonstrate our newly generated framework of the spatially explicit 
downscaling and projection of population. We tested the accuracy of the 
downscaled population (i.e., 2000-year population) using township- 
level census population of the year 2000. ‘Township’ is in China the 
fifth level of the administrative division below the district/county. It 
includes three types: 1) subdistrict (Jiedao), mainly located in the urban 
centers and the entire population is defined urban. 2) town, where 
population can be classified urban or rural. 3) country (Xiang), where the 
population is usually classified rural. 

We tested the accuracy for the highly urbanized townships (subdis
trict), the rural regions (country), and all regions, respectively. We also 
compared our downscaled dataset with the four most used global 
datasets (i.e., Worldpop, available from https://www.worldpop.org/da 
tacatalog/; GWP, available from http://sedac.ciesin.columbia.edu/da 
ta/collection/gpw-v4; LandScan, available from https://landscan.ornl. 
gov/; and GRUMP, available from https://sedac.ciesin.columbia.edu/ 
data/collection/grump-v1). We evaluated the accuracy of the pro
jected population using the county-level census population in 2010 and 
the province-level census population in 2020. Two metrics, specifically 
root mean square error (RMSE) and mean absolute deviation (MAE), 
were chosen to assess and contrast the errors present in different pop
ulation datasets. 

2.6. Uncertainty analysis 

Future projections naturally contain uncertainties. To account for 
these, we analyzed the variation in population projections across 
different SSPs by changing of parameters (α and β). We sampled the 
parameters from uniform distributions around the reference values 
specific to each scenario (alpha = [− 2.0, 2.0] and beta = [− 0.5, 2.0] 
(Zoraghein and O'Neill, 2020b)), and simultaneously varied instead 
altering one parameter each time (Saltelli et al., 2019). We calculated 
the average population density across populated cells. We also calcu
lated the spatial distribution of the coefficient of variation to identify 
areas that exhibits the highest degree of uncertainty. 

3. Results 

3.1. Base-year population downscaling 

A gridded population dataset at ~1 km (0.00833 decimal degrees) 
resolution for the year 2000 was constructed for China. Two versions 
were generated: one where the total population was adjusted to match 
UNPD national estimates (UNPD 2018), and another where no adjust
ments were made (Fig. 5a, used for accuracy assessment). Fig. 4a shows 
the validation results of the RF fit between the modeled total population 
counts to the original census counts at the township level for the year 
2000. The validation analysis shows that our downscaled population, 
where each data point represents a township, achieves a high accuracy. 
It correlates to the reported population with an R2 of 0.83 at a multi
plication factor of 1 (Fig. 4a). Furthermore, we compared our down
scaled population with four other gridded population datasets 
(WorldPop, GPW, LandScan, and GRUMP). For those townships, the R2 

of our downscaled dataset is also comparable to or higher than that of 
other datasets where WorldPop has an R2 of 0.81, GPW has an R2 of 
0.77, LandScan has an R2 of 0.73, and GRUMP has an R2 of 0.63. The 
Root-mean-square error (RMSE) of our downscaled population (16002) 
when compared to the observed values is smaller than all of the four 
other datasets (WorldPop 17994, GWP 31067, LandScan 20926, 
GRUMP 24940) in 2000. The small RMSE and the large R2 illustrate that 
our downscaled population achieved better overall accuracies than the 
other four datasets. 

We evaluated and compared the accuracy of the five datasets in 2000 
for the highly urbanized townships and the townships in the rural re
gions, respectively (Fig. 4a). Among the five datasets, our dataset has 
values similar to or slightly higher than that of other datasets. Generally, 
GPW overestimates the population in both, urban and rural areas, 
whereas LandScan and GRUMP underestimated the population. The 
WorldPop overestimates the rural population, but still features higher 
accuracy (R2 = 0.81) than other data sets, but it underestimates the 
urban population where accuracy levels are lower (R2 = 0.68) (Fig. 4a). 
We also compared the population density distribution between the 
prediction and the observation for the five datasets and found a very 
good performance for all of the datasets at medium population densities. 
However, this goes with increasing errors at both very low and very high 
population densities across the majority of the databases (Fig. 4b). At 
very high population regions, there is a notable tendency for the 
observed data to be underestimated, suggesting that the modeling pro
cess allocated insufficient individuals to densely populated urban cen
ters and instead spread estimations towards less densely populated 
regions. Compared with the other modeled population datasets, our 
predictions had less deviation from census data, at both low and high 
population densities. Our resulting population map depicted higher 
population densities in urban regions and lower densities in rural re
gions than other population maps, which is in line with the results in 
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Fig. 4. Compared to the GPW and GRUMP, our result is also smoother 
(Fig. 5). 

3.2. SSPs population projection 

We calculated the urban and rural parameters (α and β) in the 
gravity-based population downscaling model using historical pop
ulations for the years 2000 and 2010. The populations in 2000 and 2010 
were generated using the RF-based dasymetric mapping approach (refer 
to base-year population downscaling). For urban parameters, both α and 
β are negative, which implies the population is expanding outward from 
the exsiting population center (i.e., near the urban boundary develop
ment). In contrast, if both rural parameters are positive, reflecting a 
concentrated population growth pattern where individuals tend to 
cluster around areas with high population densities. 

We conducted model validation by modeling the 2010 and 2020 
populations based on the calibrated parameters (α and β) from the his
torical observation period 2000–2010. Fig. 6 displays validation results 
by comparing the modeled populations to the observed populations for 
total, urban, and rural populations in both 2010 and 2020. The results 
demonstrate that the model performs more effectively for urban pop
ulations in contrast to rural populations, with optimal performance 
observed for total populations, as evidenced by R2 and the MAE. 

We generated a gridded population dataset at 1-km (0.00833 deci
mal degrees) resolution from 2010 to 2100 for China using an improved 
gravity model. Fig. 7 (a) and 8 (a) present the future projections for the 
years 2050 and 2100 for SSP2, respectively. The trends under the other 
SSPs (supplement Fig. S1) are consistent with SSP2 in that the popula
tion would rise until reaching a certain value with considerable urban 
sprawl and subsequently population would decrease untill 2100. Our 
projected populations align with both the national population pro
jections (Samir and Lutz, 2017) and urbanization forecasts (Chen et al., 
2022), incorporating qualitative assumptions regarding the spatial 
patterns outlined in each SSP (O'Neill et al., 2017). We compared the 
differences between five SSPs by subtracting the SSP2 population from 
other SSPs and normalizing the results for the years 2050 and 2100 
(Fig. 7 (b-e), 8 (b-e)). In SSP1, the country experienced a rapid process of 
urbanization, with urbanization rates of around 85 % (2100), coupled 
with a decline in population during the latter half of the century, leading 
to the formation of high-density, compact urban settlements. In SSP2, 
urbanization proceeds at a less rapid pace, and spatial development 
exhibits a slightly higher level of concentration compared to historical 
patterns. SSP3 is characterized by low urbanization rates and less pop
ulation decrease, resulting in sprawling development. SSP4 has most 
population decrease in this scenario (as opposed to less in SSP3), and 
spatial development exhibits a mild degree of concentration. SSP5 

Fig. 4. Accuracy assessment of downscaled population for the year 2000, and its comparison with four well-known global gridded population datasets. (a) Scatter 
plots between the modeled total, urban, and rural population counts and the corresponding original census counts at township level; (b) scatter plots between the 
modeled total, urban, and rural population density on a log10-log10 scale and the corresponding original census density at township level. The smoothed trend line, 
indicating the overall pattern, is derived through LOESS estimation (Cleveland et al., 1992). 
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Fig. 5. Downscaled population per cell (1 km) for the year 2000 in mainland China, our result (a) and its comparison with the other four datasets (Worldpop (b), 
GPW (c), LandScan (d), and GRUMP (e)). 

W. Xu et al.                                                                                                                                                                                                                                      



Science of the Total Environment 941 (2024) 173623

9

exhibits urbanization levels akin to SSP1, but has considerable urban 
sprawl. 

3.3. Uncertainty analysis 

The uncertainties analysis involving variations in input parameters 
per SSP reveals that the populated cells changes with different input 
parameters and population density depends on populated cells, which 
signifies uncertainty within the scenarios (Fig. 9a). The scenarios exhibit 
significant divergence from each other. The uncertainty ranges 
regarding the extent of population densities are largest in SSP5 for both 
temporal projections for the years 2050 and 2100. Uncertainty is posi
tively skewed in SSP1 and SSP5, and negatively skewed in SSP3 and 
SSP4, with high outliers existing in SSP5. Negative skewness of popu
lation density is associated with the unpopulated areas that can newly 
populated. The increase in average density does not follow a linear trend 
with population counts, as populated cells that are less desirable are 
tend to be eliminated. 

The spatial distribution of coefficient of variation in population 
density across the simulation results indicates generally low uncertainty 
(<0.1) in urban centers such as Beijing, and in regions where the like
lihood of changes is minimal (Fig. 9b). The coefficient is zero in 

Fig. 6. Scatter plots of the total, urban, and rural population counts between 
the projected population unit counts at county unit in 2010 (a), and at the 
province unit in 2020 (b), compared to the corresponding original census 
counts at the same unit level and time. MAE: Mean Absolute Deviation. 

Fig. 7. Projected population per cell (1 km) under SSP 2 (a), and a selected set of the normalized population difference grids SSP 1 - SSP 2 (b), SSP 3 - SSP 2 (c), SSP 4 
- SSP 2 (d), SSP 5- SSP 2 (e) in six sample regions (Guangzhou, Beijing, Shanghai, Ürümchi, Harbin, and rural region in Hubei) in 2050. The larger number of the 
normalized population difference represents higher population than SSP2. 
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unpopulated areas in any simulation. Uncertainty is high at urban 
boundaries with higher allocation possibilities. The greatest un
certainties are found in SSP5, where population sprawl opens up 
numerous possibilities. There are clear uncertainty hotspots. The un
certainty hotspots share the characteristic of initially having low pop
ulation numbers but being more appealing or attractive. 

4. Discussion 

Dasymetric mapping technique relies on the statistical relationships 
between population from source units and the aggregated ancillary in
formation to generate a finer-scale predictive weighting layer to redis
tribute population from coarser source units to finer target units (Eicher 
and Brewer, 2001; Mennis, 2009). The population density range in the 

Fig. 8. Projected population per cell (1 km) under SSP 2 (a), and a selected set of the normalized population difference grids SSP 1 - SSP 2 (b), SSP 3 - SSP 2 (c), SSP 4 
- SSP 2 (d), SSP 5- SSP 2 (e) in six sample regions (Guangzhou, Beijing, Shanghai, Ürümchi, Harbin, and rural region in Hubei) in 2100. The larger number of the 
normalized population difference represents higher population than SSP2. 

Fig. 9. Uncertainties due to model parameters. (a) Uncertainty analysis of uncertainty distributions on average population density across populated cells for the year 
2100, plotted as violin plots. The height of the plots represents the ranges of uncertainty (bandwidths). The violin plots depict the distributions of results, where 
positive skewness is indicated by fat bottom ends, and negative skewness is indicated by fat upper ends. The horizontal lines within the violin plots display the mean 
value along with its standard deviation (mean ± sd). The points in each plot provide the mean value of the distribution. (b) Spatial coefficient of variation (CV) on 
population density in 2100 for SSP5. 
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target unit varies from that of the source due to the changes in scales, 
and the imposed bimodality in population density between urban and 
rural regions at the finer scale distribution might not exist at the source 
scale distribution, resulting in over-allocation of rural populations and 
under-allocation of urban populations in some regions (Sinha et al., 
2019). The statistical approach (Random Forest) assigns non-zero pop
ulation to all land grid cells leading to the misallocation of the popula
tion to uninhabited regions (Leyk et al., 2019). In this study, our 
approach masked uninhabited areas based on the settlement footprint 
dataset and incorporated a global urban boundary dataset by Li et al. 
(2020) to allocate the urban and rural population separately, and thus 
reduce the misallocation among uninhabited, urban, and rural areas. 
The under-estimation of the population in urban regions and over- 
estimation in rural regions in the other datasets were reduced in our 
downscaled base-year population. 

Our future population distribution projection approach incorporates 
an SSP-consistent global urban extent dataset under the Coupled Model 
Intercomparison Project 6, to address the misdivision of future urban 
extent based on population densities. Our projected distribution results 
show that urban population densities decreased from 2000 to 2020. This 
suggests that the urban land expansion rate is higher than or equal to 
that of population growth, which is supported by many studies (Angel 
et al., 2010; Marshall, 2007; Su et al., 2017). Over the past decades, 
China has witnessed unparalleled urbanization characterized by a sig
nificant surge in urban population and rapid, extensive expansion of 
urban land (Taubenböck et al., 2012; Shuqing et al., 2015; Zhao et al., 
2015). Studies have found that many Chinese cities have shown a trend 
of urban land expanding at a faster pace than population growth (Su 
et al., 2017; Zhao et al., 2015). It has also been reported that the average 
urban population density across 284 Chinese cities decreased from 
11,073 to 9381 people per square kilometer over a five-year period 
(2006–2011) (Su et al., 2017). Our modeling results illustrated that the 
decline would continue to the end of the 21st century due to the com
bined effect of urban land expansion and population decline. Declining 
population densities and urban sprawl have been discussed as an 

ecological challenge with respect to land consumption, mobility 
behavior, building energy use, among many other things (e.g. Glaeser, 
2010; Güneralp et al., 2017; Taubenböck, 2021), but also in terms of 
social impacts (e.g. Salvati et al., 2018; Sapena et al., 2021). Accord
ingly, this spatial population projection is an important anchor point for 
matching planning visions with the here projected scenarios. It may 
support better informed or at least more conscious decision-making for 
balancing settlement demands with social, ecological and economic 
developments. 

Inherent uncertainty exists in all population projections, especially 
when focusing on smaller, more specific geographic areas. As the 
geographic unit decreases in size, the task of accurately forecasting the 
population becomes progressively more difficult. What's more, this un
certainty is propagated further in the projections from the base year. The 
purpose of developing the SSPs was to organize uncertainty regarding 
future socio-economic development trends in a systematic manner. 
Although uncertainty surrounds which SSP trajectory the future might 
adopt, if any, uncertainty also exists within each SSP and within the 
methodologies utilized to explore them. Model outputs are contingent 
upon the model structure, parameters, and inputs, which may not 
necessarily be logically true (Merkle et al., 2022; Rounsevell et al., 
2021). To reduce uncertainty regarding parameter configurations, we 
calibrate parameters from historic observations. However, it is limited 
by the fact that the model reproduces spatial patterns in future scenarios 
mirroring those observed in the past period, in our case this is the decade 
from 2000 to 2010. In this regard, the parameters used for future sce
narios were adjusted based on the SSP assumptions about spatial 
development instead of the parameters from historic observations. This 
enables future projections to diverge from historical trends, aligning 
with the scenarios outlined in the SSP narratives. Our work is also 
limited to the inconsistency in input data. The remote-sensing-based 
physical urban boundaries may not be fully consistent with the official 
urban boundaries. Besides, although our urban extent time series 
considered climate change, we did not directly account for climate 
change's impacts on population distribution when implementing the 

Fig. 10. Comparison of our projections with existing related datasets in three representable sample regions (large city, Shanghai; small city, Ürümqi; and rural region 
in Hubei). Figures a (this study), b (Wang et al., 2022), and c (Jones and O'Neill, 2016; Gao 2020), are modeled population maps. Figure d is the comparison of 
urbanization rate among these three datasets in 2100. 
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human habitable level in our projection process. 
In this study, we compare our analysis with existing related datasets. 

These include projection datasets from Jones and O'Neill (2016) 
(Figs. 10 (c) and 11 (c)) and Wang et al. (2022) (Figs. 10 (b) and 11 (b)). 
The dataset from Jone & O'Neil was produced at a 0.125-degree grid 
resolution for the globe from 2000 to 2100 by using a gravity-based 
population downscaling model. Gao (2020) then downscaled the data
set from 0.125 degrees to a 1 km grid using a simple proportional scaling 
method based on the historical population distribution. Wang et al. 
(2022) generated a global population distribution dataset from 2020 to 
2100 using a random forest model following the static relationships 
between census data and covariates. However, this method cannot 
flexibly account for the SSPs assumptions in spatial development pat
terns. Beyond this, it fails to take the changes in the urbanization rate 
into account. Figs. 10 and 11 show that our dataset seems to better fit 
with the urbanization rate and the spatial distribution. This is due to the 
fact that our results are consistent with the assumptions of the SSPs. And, 
our results reveal the smoother spatial change in population compared 
to the dataset that was produced by Jones & O'Neil in 2000 and further 
downscaled by Gao in 2020. 

Gridded population estimates with spatial detail have consistently 
demonstrated their utility for planning purposes. Our generated long- 
term population dataset at 1 km resolution can be directly integrated 
with multiple various scenario-driven events or environmental datasets 
(e.g., flooding, air pollutants, etc.) at comparable spatial resolutions. 
Our dataset separates the urban and rural sights and considers the dis
tribution of population changes instead of directly projecting the future 
population distribution. Thus, the impact of urban environmental 
change, including e.g. those of habitat loss, human health, environment 
management, disaster prevention, public area planning, and spatial 
evaluation of populations at risk can be modeled (Laaidi et al., 2012; Lin 
et al., 2015). The projected population distribution can be leveraged for 
long-range urban and infrastructure planning, as well as scientific 
modeling to anticipate land use changes. Applications of our model 
encompass integrating various scenario-driven events to generate a 
spectrum of spatially detailed population forecasts for suitability 
modeling, urban planning and planning consequence assessment, 

disaster mitigation and assisstance, and spatially evaluating populations 
at risk. 

5. Conclusions 

In this study, we proposed a framework for spatially explicit down
scaling and projecting population distributions by accounting for the 
distinct urban extent dynamics (i.e., urban expansion). We used a 
random forest-based dasymetric mapping approach to separately 
disaggregate county-level urban and rural populations at 1 km resolu
tion for historical population distribution (i.e., for the year 2000 in this 
study) according to a physical urban boundary product. Using the dis
aggregated historical population distribution as base-year distribution, 
we used an improved gravity-based population downscaling model that 
directly incorporates urban expansion patterns to allocate the popula
tion changes from national-level SSP projections to the grid cell level. 
Based on this framework, we produced a gridded population dataset at 
1-km resolution for China from the year 2000 to 2100, including the 
urban and rural populations. The insufficient allocation of the popula
tion in urban areas, the excessive allocation in rural areas, and the 
misallocation to uninhabited areas in other published datasets were 
mitigated in our historical population map. Our scenario projections are 
consistent with the urbanization rate and portray the spatial population 
dynamics indicated by each of the SSP narratives, in line with urban 
spatial development patterns. This work provides a framework for 
population downscaling and projection in other countries. The datasets 
were produced with spatially and temporally consistent methods and 
inputs, and can be helpful for long-term socioeconomic studies. 
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