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Abstract—Data-driven OPF has been widely studied recently
to satisfy the real-time requirements of applications like economic
dispatch, security analysis, etc. However, traditional data-driven
models are typically trained for a specific system topology. When
the system topology changes, the models must either be retrained
(which demands a substantial amount of training data) or fine-
tuned (which necessitates the selection of an appropriate pre-
trained model). To this end, we propose a two-stage approach
for topology change-aware data-driven OPF. It consists of: 1)
generating data-driven models using a topology transfer frame-
work; and 2) ensembling well-trained models. In Stage 1, GPR
is employed to capture the nonlinear correlation between the
new and predicted OPF data. The new data is obtained by
solving the OPF problem using traditional optimization solvers
under the new topology; the predicted data is obtained by
inputting the same power demand into the data-driven OPF
model trained on one of the historical datasets. This framework
allows us to obtain sample-efficient topology transfer models.
In Stage 2, a dynamic ensemble learning strategy is developed,
where the weights and the topology transfer models that need to
be ensembled are dynamically determined. This strategy allows
us to avoid obtaining biased OPF solutions from sub-models.
Numerical experiments on the modified IEEE 14- and TAS 97-
bus test systems demonstrate that the proposed approach can
obtain optimality-enhanced and equality function-satisfied OPF
solutions as compared to other data-driven approaches.

Index Terms—topology transfer framework, Gaussian process
regression, Optimal power flow, dynamic ensemble learning
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DNN Deep Neural Networks
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GNN Graph Neural Networks

CNN Convolutional Neural Networks

PSCOPF Preventive Security-Constrained Optimal Power
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MDP Markov Decision Process
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GPR Gaussian Process Regression
RBF Radial Basis Function
TTF-OPF Topology Transfer Framework based-OPF
OFE Objective Function Error
PFEE Power Flow Equation Error
MVR Maximum Violation Rate
MVE Mean Violation Error

TSU Time Speed Up

BST Block Spent Time

AQS Average Quantile Score
AWS Average Winkler Score

DSS Deep Statistical Solvers

TCA-GNN Topology Change Aware-GNN
SOCP-OPF Second Order Cone Relaxation for OPF

MPCC Mean Pearson Correlation Coefficient
MMIC Maximal Information Coefficient

RF Regression-Enhanced Random Forests
LMPs Locational Marginal Prices

I. INTRODUCTION

OLVING OFPF is crucial for dispatch, security analysis,

and other applications of the power grid. In the past,
the OPF problem was solved by utilizing the interior-point
method. However, due to the nonconvexity and nonlinearity of
the OPF problem, it is difficult to satisfy the real-time require-
ments of such applications. To accelerate the solving process,
the power grid solves other convex relaxation or linearization
forms of the OPF problem, such as DC-OPF. However, solving
such simplified OPF problems may obtain sub-optimal or
infeasible solutions. Fortunately, with the acquired historical
OPF dataset and advanced data-driven methods, it becomes
possible to obtain an optimality and feasibility-enhanced OPF
solution in real time by shifting the computational burden from
online optimization to offline training.

Nowadays, many data-driven methods have been proposed
to solve the OPF problem. Most of these methods are based
on neural networks such as DNN [1] [2], SELM [3], GNN
[4], and CNN [5]. The existing data-driven OPF methods can
be classified into supervised learning approach, unsupervised
learning approach, and reinforcement learning approach.

For the supervised learning approach, it can be further
classified into regression and classification. Before introducing
the core idea, it should be noted that supervised learning
approach highly rely on the dataset which is constructed by
using traditional solver. Even though the traditional solver may
provide suboptimal OPF solutions when the initialization is
far from the global optimal solution, it is the consensus to
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treat this dataset as the optimal one in the model training.
In addition, most existing methods are training and testing
based on homothetic OPF dataset, which may provide bad
OPF solutions for a practical power grid. In [6], some essential
metrics (load distribution, generators outages, and etc.) are
considered in the dataset construction step to provide non-
homothetic OPF samples, which attract attentions recently.

The core idea behind the regression is to learn the mapping
between the input (particularly the power demand) and the
output (part or whole of the OPF solution). Then, the rest of
the OPF solution can be obtained from the post-processing step
(optional). In [7], two deep neural networks named voltage
magnitude predictor and voltage angle predictor are utilized to
predict the voltage magnitude and voltage angle, respectively.
Then, the remaining OPF solution can be obtained based on
the power flow equation. For the regression approach, because
of the prediction error of the data-driven model, the inequality
constraint of OPF may be violated. To improve the feasibility
of the solution, different methods such as penalty approach
[8] [9], post-processing approach [10] [11], mapping approach
[12], and implicit layer embedded approach [13] [14] [15] are
proposed. See [16] for the recent feasibility-enhanced data-
driven OPF methods. Meanwhile, to alleviate the substantial
computational burden of the training process for large power
systems, feature reduction [17], compact learning [18], and
decentralized (distributed) machine-learning [19] [20] methods
are proposed. See [18] for the recent scalability-adapted data-
driven OPF methods.

The core idea behind the classification is to identify the
active or inactive set (inequality constraint or contingencies).
Then, the OPF solution can be obtained by solving a machine
learning assisted-OPF problem. In [21], the inactive voltage
magnitude and branch flow constraints are identified using
two classification neural networks. In [22], a relevant set is
constructed. Then, this set is used in the intermediate step to
obtain the final solution. In [23], a four-layer neural network
is utilized to predict the binding contingencies vector. Then,
this vector is utilized in the PSCOPF solver to obtain the final
solution.

The core idea behind the unsupervised learning approach
is to train a CGAN based on the dataset composed of feasible
samples. Then feasible OPF solutions with different system
costs can be generated by inputting the power demand and
conditional vector. Additional refinement is also needed to
find the optimal solutions. In [24], a machine learning model
with three neural network components is proposed based on
information theoretic generative adversarial networks. Then,
an iterative update step is utilized to find the solutions that
can minimize the approximated Lagrangian values of the OPF
problem. In [25], the feasibility filter layer, comparison layer,
and gradient-guided layer are embedded into the generative
adversarial networks to improve the quality of generated
solutions.

The core idea behind the reinforcement learning approach
is to let the agent (generally the neural network) interact with
the environment and learn how to achieve the best action
(optimal solutions). In [26], a relaxed Lagrangian function is
utilized as the action-value function. In [27], the power flow

solver and convex safety layer are combined into the actor
to provide safe action (feasible solutions). In [28], the multi-
period OPF problem of the distribution network is formulated
as a MDP first. Then, proximal policy optimization is utilized
to solve the MDP.

Compared to using the interior-point method or solving
the simplified OPF problem, the aforementioned data-driven
OPF methods achieve high computational efficiency. However,
these methods are designed for a specific system configuration,
e.g., a fixed topology. In fact, the transmission lines may be
switched to ensure the economical and reliable dispatch of
the system [29] [30]. That means the aforementioned data-
driven methods may fail to provide a correct and reliable
OPF solution when the system’s topology changes. To address
the topology-change issue, the topology change-aware data-
driven OPF methods are proposed, which can be classified into
prior information embedded learning approach and sample-
efficient learning approach.

Note that the following methods only focus on the phe-
nomenon that the topology changes are caused by the human
operation, which means the topology information is known
and the traditional solver can be directly utilized to obtain
the training samples. Our method also focuses on this phe-
nomenon, and the phenomenon that the contingencies cause
the topology changes is out of the scope of the paper.

The core idea behind the prior information embedded
learning approach is to incorporate the system’s physical
information into the model to guide the model’s training. Once
the topology changes, the model transfer can be achieved by
modifying the parameter matrix and fine-tuning the model.
In [31], the topology label and load data are input to the
CNN to get the OPF solution. In [32], the line admittance
and load data are used to train DNN, which account for
any power network with the same bus, generation, and line
capacity configurations but different topologies. In [33] and
[34], the power flow equations and weighted adjacency matrix
are embedded in the GCNN to extract the topology and
physical features, respectively. It should be noted that some
promising approaches to address the topology change issue
of power flow calculation are proposed in recent year [35]
[36]. Such methods try to learn the power flow mapping for a
specific power grid with various topology, which can be seen
as a potential solution for topology change-aware data-driven
OPFE.

The core idea behind the sample-efficient learning ap-
proach is to make the model quickly adapt to the new topology
by using meta-learning or incorporating the sensitivity infor-
mation into the model. In [37], with the historical dataset under
different topologies, the meta-learning approach is utilized to
find a good initialization weight for DNN. Then, the weight
vector is used to fine-tune the model. In [38], a sensitivity-
informed DNN is proposed, which aims not only to learn the
mapping between the input and OPF solution but also match
the relationship between the input and the Jacobian matrix.

Overall, the traditional data-driven OPF methods can pro-
vide OPF solutions in real time. However, when the system’s
topology changes, existing methods would face a dilemma: ei-
ther retraining [38] or fine-tuning [33] [34] [37] the model. If



SUBMITTED TO IEEE TRANS. POWER SYSTEMS

model retraining is utilized to accommodate this phenomenon,
a large volume of training samples needs to be obtained under
the new topology. Conversely, if model fine-tuning is utilized,
the transfer route (transfer from one of the historical topologies
to the new topology) needs to be determined carefully. An
inappropriate transfer route would make the model provide
sub-optimal OPF solution.

To address this dilemma, we propose a two-stage approach
for topology change-aware data-driven OPF. The key contri-
butions of this paper are summarised as follows:

o New framework (in Stage 1): Propose a topology transfer
framework to enable efficient data-driven model training.
It is achieved by augmenting the predicted OPF solutions
to the input and also designing a specific kernel function
according to the correlation analysis. Such changes can
ensure the transfer framework not only learn the mapping
between the power demand and the OPF solutions but
also capture the nonlinear correlation between the new
and predicted OPF solutions. In addition, any type of
regression model can be utilized in our framework, which
can be flexibly used for the power grid to obtain the OPF
solution under the new topology.

o New ensemble strategy (in Stage 2): On the basis of
Stage 1, develop a dynamic ensemble learning strategy
based on the results of undersampled region identifica-
tion. Even though the ensemble learning method has been
widely utilized in the power system’s application, to best
of our knowledge, it is the first time to utilizing ensemble
learning method in the data-driven OPF. In particular, the
weights are calculated based on each topology transfer
model’s performance on a small validation set. Once the
uncertainty of all the topology transfer model’s output is
larger than the threshold, the weights will be updated.
In addition, the covariance is considered in the variance
functions ensemble, which can improve the accuracy of
the uncertainty quantification.

The rest of the paper is organized as follows: Section II
gives the basic problem description of OPF and two questions
this paper wants to answer. Section III describes the proposed
two-stage approach. Section IV shows the evaluation metrics.
Section V applies the proposed approach to the modified IEEE
14- and TAS 97-bus systems. Section VI draws conclusions.

II. PROBLEM STATEMENT

The OPF problem considering topology changes can be
formulated as follows. Note that, for a practical power grid,
the cost objective is influenced by different factors like line
losses or fuel supplies. Following the existing paper [10] [32],
to simplify the problem, the impact of such factors is ignored
in our paper.

min Z (agvi . (]DCT‘l)2 + Q1,4 PGZ + a()ﬂ)

1€Qaq
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where (la) represents the objective function; Qg,Qp, Qr
are the generator set, bus set and topology set, respectively;
PG;,QG; are the active and reactive power generation at bus
1, respectively; (1b) to (1c) represent the power flow equation;
PD;,QD; are the active and reactive power demand at bus
i, respectively; V', 0 are the voltage magnitude and voltage
angle vector, respectively; A', Z' represents the incidence
matrix and impedance matrix, respectively; [ is the index to
represent the topology number of the system; P;;, Q;; are
active and reactive power flow for branch connected bus i
and bus j, respectively; (1d) to (lg) represent the power,
voltage magnitude, and power flow constraint; Vmin max
are minimum and maximum voltage magnitude for bus i;
PGMn PGMaX are minimum and maximum active power
generation for generator i; QG™™ QG are minimum and
maximum reactive power generation for generator i; PL7**
is the maximum power flow limit for branch 7.

To clarify the problem statement, we define D! =
{(XZ,YZ)} {(X,IC,Y,CZ) Z;l as the historical dataset
obtained under the topology A'. X} € R'*2I¢zl contains the
power demand and Y}! € RY*ClI¢zl+219611=2) contains the
OPF solution such as active power generation, reactive power
generation, voltage magnitude, and voltage angle. n%, . is the
number of training samples and [ € {1,2,---,s — 1}, where
s —1 is the number of historical topologies. |25, ||2¢| are
the number of buses and generators in the system, respectively.

With the acquired historical dataset D!, the data-driven OPF
methods aim to learn the mapping from X' to Y:

Y= (X8 0
where (3! denotes the parameter of the mapping.

A well-trained f!(-) provides OPF solutions in real time
by inputting the current power demand. However, when a
new topology h is occurring, it is necessary to determine
whether model retraining or fine-tuning will be utilized to
accommodate the topology change issue. Two questions can
be answered to make the data-driven OPF methods applicable
to the new topology:

1) How to design a sample-efficient training framework

under the new topology to get topology transfer models?
2) How to avoid artificial transfer route selection to obtain
a “high quality” OPF solution?

III. METHODOLOGY

Before introducing the proposed two-stage approach, we
would like to give some definitions. Throughout this paper,
we define D' and D" as the historical dataset (has enough
samples) and new dataset (has limited samples), respectively;
define f!(-) as the well-trained historical model; define f” (-)
as the new model. In particular, we define fl (X h) as the
predicted OPF solution under the topology A'.
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Fig. 1. Proposed two-stage approach

Fig. 1 provides an overview of the proposed two-stage
approach. Specifically, the subsection III-A introduces Stage
1, which aims to construct a topology transfer framework
by capturing the non-linear correlation between the new and
predicted OPF solutions to answer question 1). On the basis
of Stage 1, subsection III-B introduces Stage 2, which aims
to develop a dynamic ensemble learning strategy to ensemble
the topology transfer models to answer question 2).

A. Topology Transfer Framework based-OPF

Under the limited training sample scenario, it is easy to
come up with the idea that we can learn f” (-) by using an
efficient learning-type method. Since GPR has been proven to
be efficient in the presence of limited training samples, it is
suitable in this scenario, which can be formulated as (3). Note
that all the GPR used in the following are batch-independent
multi-output Gaussian processes.

i (xp) = e (xm)" g 3)

where 8" ~ N (0,%") is the weight vector with Gaussian
prior; X" is the covariance matrix; G (-) is the basis function.

Since for every positive definite covariance function
Ke(-,-), there exists an infinite expansion in terms of basis
functions, an equivalent formulation of (3) is,

X0t AR~ N (0, (0") Ke (XM XM AT)) )

where ¢”, A" are the parameters that need to be estimated,
and Ke (-,-; A") represents the covariance function.

A common choice of covariance function is the RBF, which
can be formulated as,

]_ _
Ke (X X154 = e |5 (L) (47) " (L))
(5)
where b, ¢ < nfy0; X[, = X{' — X[ A = diag (¥");
ayh = [fy{l, .. ,VSHQBH represents the parameter of the RBF.

When the model f" (X hogh, Ah) is well trained, the
posterior distribution at the test input X™ is,

71 (X5 6" AR DY~ N (i () v (X)) (6w)

ph (X7) = Keth - [KeMh] ™yt (6b)
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Fig. 2. The structure of TTF-OPF

var (X*) = (&h)Q . {Ke*"* — Ke*h. [Keh’h]il - Kelr

(6¢)
where 6", A" are well trained parameters; KeZ:C is short for
Ke(XB, X% AM).

Even though the equations (6b) and (6¢) can be used to
obtain the OPF solution and quantify the uncertainty of this
output under the new topology, this model may be over-fitted
and provide sub-optimal OPF solutions under this limited
training sample scenario.

According to Fig. 5 and Table II (refer to the correlation
analysis in section V), one may observe that the new and
predicted OPF solutions show a linear or nonlinear correlation,
which means that the model’s training efficiency can be
enhanced once their correlation is well modeled. In this way,
the modified data-driven model can achieve similar prediction
accuracy with fewer training samples than a single GPR.

Based on this finding, the structure of the proposed frame-
work can be visualized as shown in Fig 2, where the data
acquisition block is utilized to obtain the dataset and the
nonlinear correlation modeling block is utilized to capture the
correlation between the new and predicted OPF solution. Note
that [ can be anyone in the historical set.

Given that our aim is to enable the regression model efficient
training under the limited training sample scenario, the GPR
is utilized to model our framework. The motivation for using
GPR is threefold. First, the data efficiency of GPR has been
proven in many research areas, like robotics, aircraft, etc.
Second, the GPR can not only provide the mean prediction but
can also quantify the uncertainty of such output. It is important
since uncertainty quantification can be used to identify the
undersampled area and can also be used to judge if we can
use the OPF solution obtained from the topology transfer
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model in our further applications. Moreover, the GPR has been
utilized to learn the OPF mapping in [39] [40]. Such successful
implementation motivates us in using GPR under the scenario.

Based on the (3), the mathematical formulation of TTF-OPF
can be derived as follows:

fh,l (Xh,l;IBh’wh,l) _ (Wl (Xh))T whl g fh (Xh;ﬂh)
@)
where X! = (Xh,fl (Xh)) is defined as the augment

input; W~ A () WE(XR) = Ga (X))
G (-) represents the other basis function; f' (X") is short
for f! (X k. ﬁl); ! (~; Bl) represents the well-trained data-
driven model based on the historical dataset D!, and any
regression model can be used for f (-; Bl)

To simplify the derivation, we assume W' (X") and p/!
are independent in the following pages. Define the augmented
dataset as D! = {(X"! Y'")}, and assume the independent
property between the first term and the second term in the right
part of (7), the equivalent formulation of (7) is,

P pa) w7 (B( (X))t (0 R
®)
Ryl = Ke (XP,XE;A2) - Ke (' (XP), ' (X0);AR)
+p- Ke (fl (XY, LX) AlY) + Ke (X, X AR
©)
where the bey, entries of R™" is defined as (9), which aims to
not only learn the mapping between the X" and Y" but also
capture the nonlinear correlation between the fl (X h) and
Y"; Pa = {uﬁ*l,ah’l,Ap,Ah’l,Ah,p} are parameters will
be determined based on the dataset D™!; E(-) is the function
to calculate the expectation of the variable.

Since the kernel function design is also a “hyper-parameter”
[41], the equation (9) is constructed based on the correlation
analysis in Section V. Take the second term as an example,
one may observe that this term will tend towards to 1 when
FH(X]), f (X)) are very close and 5 = 1. In this case,
the new and predicted OPF solutions show a highly linear
relationship, which means that an accurate new OPF solution
can be easily obtained based on the predicted OPF solutions.

Since the effectiveness of using radial basis function to
learn the mapping of OPF problem is proven in [39] [40]
and meanwhile the rational quadratic or matern kernel are
equivalent to the RBF in some setting [42], we choose RBF
to construct the final kernel function (9).

To better understand (7) and interpret why the additional
term can help to achieve efficient training under limited
training samples scenario, suppose the f!(-) and f!(-) are
well-trained based on the dataset D"! and D', respectively.

For a test input X* under the new topology, the joint
distribution can be formulated as,

)~

E (! (Xh))TT
E(Wl (X*))

~hl
C Ky, 7R

Yh
< f'h,l (X*,l)

(10a)

Rh’h

R (10b)

(5]

R*’*
where fh! (X*’l) is short for f™! (X*’l; Pa); Xl =
X, f! (X*)); Pa = {ﬂg’lﬁh’l,f&p,ﬁh’l,f\h,ﬁ} repre-
sents the well-trained parameters.
According to the properties of conditional multivariate nor-

mal distribution, the posterior distribution at the test input X *
is,

ol (X*,I;I’DE> ‘ Dl N (’uh,l (X*,l) varh! (X*,l))
(11a)

/Lh,l (X*»l) — E(Wl (X*)>T . ﬂZ,l —|—R*’h . [Rh,h]*l yh

Linear—Trem

ﬂZ’l}

Nonlinear—Term

e o )

Correction—Term

(11b)

var! (X*’l) _ (a_h,l)Q ) [R’“* _R*h. [Rh,h]—l . R+
(11c)

Compared to (6b), instead of solely getting the OPF predic-
tion from the linear combination of observation data Y, three
items are combined to provide the OPF mean prediction in
(11b). The Nonlinear-Term captures the nonlinear correlation
between the new and predicted OPF solutions to enhance the
prediction accuracy. The role of the Linear-Term is similar to
the (6b). The Correction-Term is used to correct the error by
using the limited training samples.

One thing needs to be declared in (11b): If f* (-) is modeled
by a deterministic regression method, the expectation symbol
can be deleted in this equation, and the W' (+) could be seen
as the nonlinear function of predicted output f (-). However,
if the f! () is modeled by a probabilistic regression method
like GPR, the expectation symbol cannot be deleted directly.
In this scenario, since the RBF is equivalent to the Hermite

polynomials basis function, the term E(Wl ()) is also the

polynomials function of the expectation of f L(.). That means
the interpretation above is also satisfied.

For the variance part, the formulation of (11c) is similar
to (6¢). However, since the correlation is captured by using a
more complicated kernel function, the uncertainty quantifica-
tion could be more accurate than only using a single GPR.

B. Dynamic Ensemble Learning Algorithm

The subsection III-A introduces a TTF-OPF based on the
transfer route from historical topology [ to the new topology h.
Since we assume s — 1 historical topologies with their training
dataset are known, s — 1 TTF-OPF models can be constructed
step by step. However, since the training samples and their
number in each historical dataset are different, the s — 1 TTF-
OPF models may show different performance even when tested
on the same dataset. It means that selecting an appropriate
transfer route is the key step to obtaining “good enough” OPF
solutions. However, since there is no general method to obtain
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Fig. 3. The structure of dynamic ensemble learning strategy

the optimal transfer route, a biased OPF solutions may be
obtained if the transfer route is selected manually.

To address this issue, a dynamic ensemble learning strategy
is proposed in this subsection, which can be visualised as
shown in Fig. 3. In Fig. 3, the index set construction block is
utilized to quantify the uncertainty of each TTF-OPF model’s
output at time ¢ and finally provide the active model set.
Based on this set, the weight determination block is utilized to
calculate the weights of each sub-model, where the validation
dataset in this block is dynamically changed (once the active
model set is empty, the test sample at time ¢ will be solved
using traditional solver and will be added to the validation
dataset). Note that, to control the time costs in this block,
the number of the samples in the validation dataset is set as
a constant. That means, once a test sample is added to the
validation dataset, then the last sample in this dataset will be
removed. Then, the mean and variance construction block is
utilized to obtain the mean, variance, and covariance terms.
Using the output from these three blocks, one can finally
obtain the ensembled model. Note that the trained parameter
Pa is not shown in the following equations.

Following the structure in Fig. 3, the ensemble learning
strategy can be formulated as follows,

fon (5P =" 1) (12)
leg
where ¢ represents the active model set and p”! represents

the weight of each sub-model.

Since the output of each f h:l(.) obeys the Gaussian distribu-
tion, the weighted linear combinations also obey the Gaussian
distribution, which can be formulated as equation (13a).

fen (5™ N'Af(uEn/(;phJ)7varEn (;phJ))

NJEn Y4 thl

leg

vargn (.;ph,l) = (ph,l) ~vart ()

(13a)
(13b)

leg
+ Z ph7l1 . ph’l2 - COV (chl ()7 fh7l2(')) (130)
11712 € gb
li # 12

where (13b) and (13c) represent the mean and variance func-
tion of the ensembled model, respectively; cov (-, -) calculate
the covariance between two random variables.

The model (12) can be regarded as the ensemble of ||¢]]
sub-models, and the idea is consistent with the basic ensemble

learning. However, there are three main differences between
our and the basic ensemble learning methods.

1) The number of ensembled models is fixed for the
basic ensemble learning method. However, the number is
dynamically changed for our method; the set ¢ is defined to
construct the active model set, which is determined based on
the undersampled area identification. In other words, once the
uncertainty quantification of the sub-model is larger than the
pre-defined threshold, then the OPF solution obtained from
this sub-model cannot be utilized.

2) The value of p/! is constant and not changed for the basic
ensemble learning method. However, for our method, the value
of p™! is determined based on the sub-model’s performance
on a small validation dataset, which is dynamically changed.
The reason is easy to understand. When the load condition
changed (e.g. from light load to heavy load), if we still use
fixed weights, the prediction accuracy of the ensembled model
may be compromised.

3) Only the mean prediction is ensembled for the basic
ensemble learning method. However, for our method, the
variance function is also ensembled. Specifically, we do not
assume that the outputs from different TTF-OPF models are
independent, which could provide more accurate uncertainty
quantification results.

Given the three differences, we will show the details of
how to determine ¢, ﬁh’l, and how to ensemble the variance
function.

To determine the set ¢, a threshold T'r is utilized, which
can be formulated as follows,

¢ = {l:varh’l (X*l) <Trlef{l,--- ,3—1}}

To determine the value of p bl we split the dataset D" as
{D} ., D%y}, where the DY . is utilized for model training
and D% | is utilized to validate the performance of each sub-
model. The number of data points in D" can be denoted as
nh = n?min—kn{}al according to the splitting of the dataset. And
in this paper, we set n{;; = 1/5 - n". Then, the three metrics
OFE (), PFEE (-), and MV E (-) are used to calculate the

p!, which can be formulated as,

(14)

NS 1
P = OFE (Dl + PFEE (D},) + MVE (Dl

15)

where the definition of these three metrics can be found in
section IV.

Specifically, the weight of each sub-model needs to be
normalized after all the values of p™' are calculated.

To ensemble the variance function, the equation (13c) can
be utilized. Specifically, since the value of p"! is calculated
based on (15) and var’* (+) can be easily obtained from (11c),
the key step is to calculate the covariance term. In this paper,
since the distribution of f™!(-) can be derived from (11),
the covariance term can be approximated by using sample
covariance, which can be formulated as follows,

2(fme0), — O] [B(F1R0), - a0

NSam — 1

NSam

k=1

(16)



SUBMITTED TO IEEE TRANS. POWER SYSTEMS

where ng,y is the sample number, and Z(-) i 1s the kyy, data
that is sampled from the corresponding distribution.
Combining the (14), (15) and (16), the final ensembled
model can be obtained.
The implementation of the proposed method (including
training procedure and execution procedure) is shown in
Algorithm 1 and Algorithm 2.

Algorithm 1 Implementation of the proposed method (Train-
ing procedure)

Input: Historical topology set {A', A% ..
topology A"
1: Initialize [ < 1
2: repeat
3:  Data acquisition D' + {(X', Y")}
D" {(X"Y")}
. Historical regression model training via (2)
5:  Predicted OPF solutions acquisition f t (X h)
6:  Augmented dataset construction
DM {(XML YY), XM (Xh, Fr(xn
7. Topology transfer model training via (8) and (9)
§:  Final model acquisition f™! (-)
9 I+ Il+1
10: until [ > s —1
Output: Different topology transfer models
{1020 fret ()
Different historical regression models

{fz O, 20, 7f‘s—1(.)}

, A7), New

Algorithm 2 Implementation of the proposed method (Exe-
cution procedure)

Input: Test input X * under the new topology
1: Get {ch (), f2 (), flosm (.)}

get {fl (), f20), -, ft ()} through Algorithm 1
2: Predicted OPF solutions acquisition

and

{f‘] (X*),fZ (X*), 7Jf‘s—l (X*)}
3: Augmented dataset construction
{)(*717)(*,27 . ,X*’S_l}

4: Individual OPF solutions acquisition
{H*J (X*’]) ’M*,2 (X*’Z) ; . 7M*,s—l (X*’S_l)}
5: Variance quantification
{var*’l (X*,I) ’Var*,Z (X*,Z) Lo ,V&I‘*’S*l (X*,sfl)}
6: Active model set construction via (14)
7. if ¢ = () then
8:  Solve this sample via traditional solver and replace the
oldest sample in the validation set
9: else
10:  Calculate the weight for active sub-model via (15)
11:  Calculate the covariance for pairs sub-models via (16)
12:  Obtain the final solutions via (13b) and its variance
quantification via (13c)
13: end if
Output: Final OPF solutions u g, (X *; f)h’l)
Variance quantification varg, (X*;p"!)

IV. EVALUATION METRIC

Seven metrics are designed from two perspectives: mean
prediction evaluation and variance quantification evaluation.
Specifically, the first five metrics are designed to examine the
mean prediction performance, and the last two are designed to
examine the variance quantification performance. Define DX
as the test dataset and n’, as the number of testing samples.

A. Metric for Mean Prediction Performance Validation

1) OFE: This metric OFE (D#.,) examines the optimal-
ity, which can be formulated as,

% % (‘cost (ﬁm) — cost (PGk)‘/cost (PGk)) (17)

T Test k=1

where cost () is the objective function (la); Iga’k,PGk
denotes the estimated and real active power output from the
generation at ky, testing sample, respectively.

2) PFEE: This metric PFEE (DTM) examines the equal-
ity feasibility:

h

1 test
D

N Test k=1

(18)

PF (PAGk,(zék, Vk,ék)‘

where Vk7 ék, PG ks éé 1. denotes the estimated OPF solution
obtained from the method; PF (-, -, -, -) denotes the power flow
equations shown as (1b) to (1c¢).

3) MVR: This metric MV R ( TN) examines the inequal-
ity feasibility:

max {g1 (1/35) y 91 (@) » 91 (V) 70}
{21, 19T} - i (o
(- ¥ 3 s, |
i€{Qp,Qc) k=1
VEUy; = My,; — M VED,; = M™™ — M,; (19¢)

where ¢ (-) denotes the step function.
4) MVE: This metric MV E (D%N) examines the inequal-

ity violation error:
(@) (¥) 0}

max {92 (I/JE‘) , 92

(20a)
{19251, 19c1} - 7l
— &L [ VEUy; - g (VEUL,)
92 (M> = 2 2 [ +VEDy,i-g(VEDy,;)
i€{QE e} k=1 ’ ’
(20b)

5) TSU: This metric T'SU (D/) examines the speedup:

time (Pypower (-))/time (f. (-))

where time (Pypower (+)), time (f« (-)) denote the time cost
to solve the OPF problem by using the traditional solver
(Pypower) and the given method, respectively.

21
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6) BST: This metric BST (D}) examines the time spent
in each block for the dynamic ensemble learning method:

{time (ISC) ,time (WD), time (MVC)} (22)

where ISC, WD, MV C are short for “Index Set Construc-
tion”, “Weight Determination”, and “Mean and Variance Con-
struction”.

B. Metric for Variance Quantification Performance Validation
1) AQS: This metric AQS (D%.,) examines the average
quantile score:

h
1 M Test

Qr (Gr.i» Yr,i)
n%‘est'{”QBH,HQGn}-nT Z Z Z

k=1 ie{Qp,Qq} T=1

(23)
where y € {PG,QG,V,0}; n, denotes the number of
percentile (in this paper n, = 9, from 0.1 quantile to 0.9
quantile); @ (-,-) denotes the 7 quantile score.

2) AWS: This metric AW S (DR, examines the prediction
interval:

IZ
1 n’l]:est

WSa (Uki, Yk,i)
n’}lb“est'{”QB”7”QG”}Z Z

k=1 ie{Qp,Qa}

(24)
where WS, (-,-) denotes the winkler score for « prediction
intervals.

V. NUMERICAL TESTS

In this section, a modified 14- and 97-bus system is utilized
to validate the effectiveness and applicability of the proposed
two-stage approach.

Note that all simulations below are performed using GPy-
Torch on a computer CPU Intel(R) Xeon(R) W-3335 CPU 3.40
GHz, GPU NVIDIA GeForce RTX 3080 Ti, GPU memory
12G, Boost clock speed 1.67 GHz.

A. Numerical Test on the Modified 14-bus System

System Description: The single line diagram is shown in
Fig. 4. The network parameters, topology, and base load values
of each bus are obtained from PyPower.

Data Generation: For the 14-bus system, the load data is
generated based on the load generation part in [43]. Mean-
while, three wind farms are integrated into buses 10, 11,
and 14, respectively. The power output of each wind farm
is generated based on the parameters and Weibull distribution
in [44].

Topology Scenarios Generation: To simulate the phe-
nomenon of topology changes, five topology scenarios are
generated as shown in Table I, where Sw; ; denotes the switch
between bus ¢ and bus j. Topology 2 is set as the new topology,
with only 70 samples obtained. For the testing dataset, 200
instances are involved.

Comparison Methods: The performance of the proposed
framework is compared with six methods, including 1) purely
train the model on the new dataset; 2) transfer learning, which

LEGEND

Line between bus /
and bus &
: Load

Wind Farm

: Generator

Added lines between
bus i and bus &

T_T
=
©
&
T
o

: Switch of the line

Fig. 4. Single line diagram of modified IEEE 14-bus system

TABLE I
DETAILS OF FIVE TOPOLOGIES

Scenarios Active switches Number of training data
Topology 1 Sws, 14, Sw1,12 500
Topology 2 Sws,14 56
TOpOlOgy 3 S’LU8714,SUI1712,S’LU377 500
Topology 4  Sws 14, Swi,12, Sw3,7, Swi g 500
Topology 5 Sws,14, Sws,9 500

is trained on one of the historical datasets and then fine-
tuned on the new dataset; and 3) meta learning [37], which is
trained on the historical dataset to find a good initial weight
vector, then fine-tuning the model based on the new dataset
and weight vector; 4) DSS [35], which aims to learn a solver
that generalizes to a given distribution of one optimization
problem in weak supervised learning manner; 5) TCA-GNN
[48], which aims to achieve fast transferring by using GNN
with Laplace matrix embedded; and 6) SOCP-OPF, which uses
second order cone to relax the nonconvex power flow equation.

1) Correlation analysis: We present some simulation re-
sults on the 14-bus system to visualise the correlation between
the new and predicted OPF solutions. Note that the new and
predicted OPF solutions are obtained under topologies 2 and
5, respectively. By varying the active load on bus 3 and bus
4 and fixing the other parameters, the joint plot for reactive
power generation is shown in Fig. 5. The results in Fig. 5
demonstrate that some of the correlation is linear (left sub-
figure), while others is non-linear (right sub-figure).

To further analyze the correlation between other new and
predicted OPF solutions (e.g., active power), the MPCC and
MMIC are utilized. The correlation coefficients of each type
OPF solution are shown in Table II. The results in Table II
also confirm the findings in the last paragraph.

2) Framework effectiveness validation: Eight cases are pro-
posed to validate the effectiveness of the proposed framework.
The performance comparisons for mean prediction and vari-
ance quantification are shown in Table III and IV, respectively.
In Table IV, the Q in front of the “RF”, “NN”, “NN-Transfer”,
and “Meta Learning” represents the corresponding quantile-
type methods. Note that all the results in Table III and IV are
based on the transfer route from topology 5 to topology 2.

Comparing “GPR” and “TTF-GPR”, one may observe that
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Fig. 5. Correlation analysis between new and predicted OPF solutions for
(left) reactive power generation at bus 3 (right) reactive power generation at
bus 2

TABLE 11
THE MPCC AND MMIC BETWEEN NEW AND PREDICTED OPF SOLUTION

Metric PG QG \%4 o
MPCC 0.9967 0.5663 0.3376 0.9986
MMIC 0.9619 0.7058 0.5948 0.6765

the Optimality (OFE) and the Equality Feasibility (PFEE)
could be improved by applying the proposed framework,
which means the proposed framework could adapt to the
new topology quickly compared to “GPR”. However, the
proposed framework may have a negative impact on Inequality
Feasibility (MVR) and Speedup (TSU). For MVR, about a
4% increase can be obtained because of the prediction error
from the GPR model. However, according to the MVE, one
may observe that a lower value can be obtained by applying
the proposed framework, which means that the 4% increase
in MVR can be accepted. For TSU, the proposed framework
could slow down the inferring process by a factor of about
eight. This is due to the complex kernel in the framework
and the additional time cost from the data-driven model’s
inferring (to obtain the predicted OPF solution). For the
variance quantification validation, one may observe that a solid
improvement to AQS and AWS can be achieved compared to
the GPR, which means the proposed framework could identify
the undersampled area accurately. Meanwhile, the comparisons
between “RF” and “TTF-RF” and between “NN” and “TTF-
NN could also confirm the above findings. We also notice
that the values of TSU for “RF” and “TTF-RF” are close. It
is because “RF” requires much time for inferring compared to
the time cost of applying the proposed framework.
Comparing “NN-Transfer”, “Meta Learning”, “TCA-GNN”
and methods applying the proposed framework, one may
observe that optimality enhanced and tight equality constraints
satisfied OPF results can be obtained from the proposed
framework, which proves that the proposed framework could
adapt to the new topology more quickly than the existing
sample-efficient learning approach. In addition, for variance
quantification validation, one may obtain a more narrow pre-
diction interval by applying the proposed framework, which
means that a more reliable OPF solution can be obtained. Note
that, since the active power generation is calculated based on
the predicted LMPs in “TCA-GNN”, the inequality constraints

TABLE III
PERFORMANCE COMPARISON FOR MEAN PREDICTION (14-BUS SYSTEM)

Method OFE PFEE MVR MVE TSU
GPR 1.57E-02  592E-02 023%  2.65E-02 1777
TTF-GPR 3.25E-03 8.53E-03 4.30%  1.20E-03 209
RF 3.42E-02  1.84E-02 0.14%  3.46E-02 73
TTF-RF 6.41E-03  1.09E-02  6.40%  1.28E-02 62
NN 471E-02  2.62E-02 051%  7.17E-02 3200
TTF-NN 1.41E-02  143E-02 4.00% 3.78E-02 396
NN-Transfer 5.79E-02  294E-02  0.73%  5.33E-02 3000
Meta Learning  1.69E-02  2.16E-02  0.45%  4.09E-02 2666
DSS 1.77E-01  2.55E-01  0.00% 0.00 4
DSS-Sup 1.49E-01  2.66E-01  0.00% 0.00 4
TCA-GNN 8.54E-02  3.55E-02 4.11%  148E-05 600
SOCP-OPF 2.88E-04 1.13E-01 0.00% 0.00 18

for active power will be fully satisfied. Only the voltage
magnitude inequality constraints may be violated, which is
the reason why the MVE value is so small. Even though
the “Meta Learning” method does not require to select the
transfer route, it can be considered as the special “transfer
learning” method which aims to transfer the model from one
“virtual topology” to new topology. Thus, the performance of
this method highly depend on the “virtual transfer route”. In
addition, it has been proved that “Meta Learning” requires a
large number of training samples to achieve satisfying model
performance [33] [47].

Comparing “DSS”, “DSS-Sup” and methods applying the
proposed framework, one may observe that the weak super-
vised learning methods or supervised learning methods fail
to learn an accurate OPF mapping under this limited training
sample scenario. This is mainly because there are so many
parameters that need to be updated for this model, and 500
samples for each historical topology and 56 samples for the
new topology are not enough. The other drawback of the
“DSS” and “DSS-Sup” is long-time model training, which is
also not suitable for real power grids.

Comparing “SOCP-OPF” and methods applying the pro-
posed framework, one may observe that our method can
provide equality constraints enhanced OPF solutions at a faster
pace. The reason is the SOCP-OPF can provide exact OPF
solutions under the radial networks. For the mesh networks,
the estimation error for the voltage angle is large, which leads
to a large PFEE value.

Overall, even though “NN-Transfer’, “Meta Learning”,
“GPR”, “TCA-GNN”, and “NN” could provide the OPF
solution in real time, they may tend to provide sub-optimal
OPF solutions. In contrast, we could offer a “good enough”
OPF solution with acceptable time spent on problem-solving.
Note that the OPF solutions that don’t satisfy the inequality
constraints can be acceptable since the MVE is small for
“TTF-GPR”, “TTF-NN”, and “TTF-RF”. In addition, accurate
variance quantification results can be obtained by applying the
proposed framework, which can help us construct a reliable
ensembled model to obtain optimality and equality feasibility-
enhanced OPF solution.

3) The impact of transfer route selection: To demonstrate
the impact of transfer route selection, the “TTF-GPR” is
chosen. Note that the 500 training samples for each historical
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TABLE IV
PERFORMANCE COMPARISON FOR VARIANCE QUANTIFICATION (14-BUS
SYSTEM)
Method AQS (PG) AWS (PG, 80%PI) AWS (PG, 60%PI)
GPR 8.46E-01 6.08 4.25
TTF-GPR 1.50E-01 1.17 0.72
QRF 2.18E+00 14.01 10.01
TTF-RF 2.53E-01 1.85 1.18
QNN 1.81E+00 9.79 7.94
TTF-NN 3.22E-01 2.67 1.58
QNN-Transfer 2.02E+00 13.58 9.45
QMeta Learning  1.17E+00 10.53 6.84
2.5 T T T T T T T T
1 TTF-GPR-1-2 !
[ TTF-GPR-3-2
[ TTF-GPR-4-2

2r [ TTF-GPR-5-2

== == real value

—
[y
T

Probability Density

0.5

0
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Fig. 6. “TTF-GPR” model’s output comparison for generator 3 at the 50 th
testing sample

dataset are set at the same load conditions in this scenario.
The performance comparison is shown in Table V.

In terms of the mean prediction performance, the “TTF-
GPR” trained on the transfer route from Topology 5 to
Topology 2 can achieve the lowest OFE, PFEE, and MVE
compared with the “TTF-GPR” methods trained on the other
three transfer routes. It is mainly because topology 5 is the
most similar to topology 2 according to the status of switches.
All the results in Table V prove that the performance of
the model may be compromised if it is trained based on an
inappropriate transfer route.

In terms of the variance quantification performance, a
similar finding can be obtained, which supports that selecting
an appropriate transfer route is necessary.

4) Ensemble learning strategy effectiveness validation: We
first plot different “TTF-GPR” model’s output to demonstrate
the necessity of dynamic ensemble learning, which is shown
in Fig. 6. The label “TTF-GPR-x-y” represents the “TTF-
GPR” model trained on the transfer route from topology “x”
to topology “y”. According to Fig. 6, one may observe that
the variance quantification of “TTF-GPR-3-2” is larger than
any other model’s. Thus, the OPF solution obtained from the
“TTF-GPR-3-2” cannot be utilized in the ensemble learning
process; otherwise, the performance of the ensembled model
may be compromised.

Fig. 7. Single line diagram of the modified TAS 97-bus system

To validate the effectiveness of the dynamic ensemble
learning strategy, three cases are proposed. The performance
comparison for different ensembled models is shown in Table
VI. The “average” denotes the average ensemble learning strat-
egy that uses average weights; “portrait divergence” denotes
the weighted ensemble learning strategy where the weights are
determined based on the topology similarity. Specifically, the
details of how to calculate the portrait divergence between two
topologies can be found in [45]. Note that all the ensemble
learning strategies in Table VI are based on “TTF-GPR”. To
calculate the covariance, we set ngq,;, = 5 in this paper.

Comparing the results shown in Table V and VI, one may
observe that the performance of the ensembled model may
outperform that of some “TTF-GPR” models. However, since
the weights of “average” and “portrait divergence” are static,
their performance may be worse than the “TTF-GPR-5-2”
model. For our dynamic ensembled model, it can provide
an optimality-enhanced and equality function-satisfied OPF
solution, which can validate the effectiveness of the proposed
ensemble learning strategy. One thing need to be noticed is
that, due to the additional procedure to calculate the covariance
terms (Mean and Variance Construction block: 0.06s) and to
solve a few testing samples in a traditional solver (Weight
Determination block: 0.30s), the proposed ensemble methods
are slower than the single “TTF-GPR” models.

B. Numerical Test on the Modified TAS 97-bus System

System Description: The single line diagram is shown in
Fig. 7. The network parameters, topology, and half-year’s load
profile of each bus can be obtained in [46].

Topology Scenarios Generation & Data Usage: Eight
topology scenarios are generated, as shown in Table VII. Note
that topology 5 is set as the new topology, and the other seven
topologies are set as the historical. The details of data usage
for each topology are shown in Fig. 8.

1) Framework effectiveness validation: Similar to the mod-
ified 14-bus system, eight cases are proposed to validate the
effectiveness of the proposed framework. Due to the space
limitation, we only show the performance comparison for
mean prediction, as shown in Table VIII. Note that all the
results in Table IV are based on the transfer route from
topology 3 to topology 5. All the results confirm that the
proposed framework can be used to the practical power system.
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TABLE V
PERFORMANCE COMPARISON FOR “TTF-GPR” BASED ON DIFFERENT TRANSFER ROUTES

Transfer From  Transfer To OFE PFEE MVR MVE AQS (PG) AWS (PG, 80%PI) AWS (PG, 60%PI)
Topology 1 Topology 2 4.13E-03  8.88E-03  5.00%  6.17E-03 1.82E-01 1.44E+00 8.70E-01
Topology 3 Topology 2 6.50E-03  9.50E-03  4.50%  6.26E-03 2.53E-01 1.80E+00 1.12E+00
Topology 4 Topology 2 9.50E-03  1.01E-02 4.10% 2.23E-02  5.07E-01 4.01E+00 2.66E+00
Topology 5 Topology 2 3.25E-03  8.53E-03 4.30%  1.20E-03  1.36E-01 9.94E-01 6.45E-01

TABLE VI

PERFORMANCE COMPARISON FOR DIFFERENT ENSEMBLE LEARNING METHOD (14-BUS SYSTEM)

Ensemble Method OFE PFEE MVR MVE TSU BST AQS (PG) AWS (PG, 80%PI)  AWS (PG, 60%PI)
Average 4.80E-03  6.35E-03 3.90%  5.72E-03 169 - 1.98E-01 8.82E-03 4.84E-03
Portrait divergence  4.02E-03  6.44E-03  5.40%  6.12E-03 169 - 2.10E-01 1.01E-02 5.62E-03
Proposed 2.83E-03 5.96E-03 4.10% 3.90E-03 74 {0.29 ,0.30, 0.06} 1.43E-01 6.86E-03 3.54E-03
TABLE VII TABLE VIII
DETAILS OF SEVEN TOPOLOGIES PERFORMANCE COMPARISON FOR MEAN PREDICTION (97-BUS SYSTEM)
Scenarios Active switches Number of training data Method OFE PFEE MVR MVE TSU
Topology 1 Swas1,709, SW377 832 2000 GPR 1.27E-02  4.72E-02 0.99% 1.66E-02 337
Topology 2 Swzr7 832 2500 TTF-GPR 1.46E-03 2.12E-02 0.85% 9.69E-03 138
Swas1,709, SW377,832 RF 347E-02  2.42E-02 1.04%  5.74E-02 39
T 1. B 3 . R K .
opology 3 Swaa,623 3000 TTF-RF 216E-03 2.67E-02 1.06% 201E-02 22
Topology 4 Swas1,709, Sw24,623 1500 NN 4.23E-02  4.67E-02 121%  5.43E-02 2424
Sw202,705 TTF-NN 2.06E-03 2.62E-02 0.70%  4.03E-03 213
Topology 5 Swa4,623, Sw202,705 200 NN-Transfer ~ 1.40E-02  4.79E-02  0.64%  3.22E-02 2024
Topology 6 Swa4,623 3000 Meta Learning  1.08E-02  4.70E-02  0.60%  3.14E-02 1948
Sw451,709, Sw24,623 DSS 3.30E-01  2.52E-01 5.28%  2.42E-01 7
Topol 7 ) ’ 1500
opology Swsrr 832, Swa02,705 DSS-Sup 3.06E-01 4.04E01 7.18% 121E01 7
Topology 8 Sw202,705 1500 TCA-GNN 9.58E-02  4.56E-02 431% 5.84E-05 457
SOCP-OPF 1.92E-04  1.48E+00  0.00% 0.00 10
‘® Dataset horizon
7284 0.06 . : : :
Original dataset ‘ 77777777777777777 GPR TTF-GPR
" LEGEND } ~®—NN = 4= TTE-NN
i IR bty
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} » moie' . !
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Fig. 8. Data usage for different topologies 0.02 A . ,
T
2) Ensemble learning strategy effectiveness validation: 0.01 Tt~ o _
Three cases are proposed to validate the effectiveness of [ S A
the proposed ensemble learning strategy. The performance 0 s l s l s l s |
10 15 20 25 30 35 40 45 50

comparison for mean prediction is shown in Table IX. The
sample number ng,., is set as 5 in this case. All the results
confirm that the proposed ensemble learning strategy can
provide a “good enough” OPF solution with an acceptable
time cost.

C. Discussion

The number of training samples has a large impact on the
proposed framework. Enough training samples may improve
the performance of the topology transfer model but may
require a lot of time to construct the dataset and to train the

# of training samples

Fig. 9. The influence of training samples number for the proposed topology
transfer framework

model. To assess the concept and also quantify the interval of
“limited training sample”, the impact of training samples to
our proposed method is studied.

According to Fig. 9, one may observe that the quantification
interval of “limited training sample” highly depends on the
type of historical model. For example, if we use “GPR” as
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TABLE IX
PERFORMANCE COMPARISON FOR DIFFERENT ENSEMBLE LEARNING METHOD (97-BUS SYSTEM)

Ensemble Method OFE

PFEE MVR MVE TSU BST
Average 1.30E-03 1.97E-02 0.84% 598E-03 127 -
Portrait divergence ~ 2.03E-03  241E-02 0.78%  7.17E-03 127 -
Proposed 1.24E-03 1.90E-02 0.72%  5.82E-03 95 {3.13, 0.60, 0.45}
eeaaxprentt = = TTF-GPR-1-2 1] 1
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Fig. 11. The impact of threshold 7T'r for the proposed dynamic ensemble

Fig. 10. The influence of samples for model training considering different
transfer routes

a historical model to obtain the predicted OPF solution, then
“TTF-GPR” can show satisfying performance with only 20
training samples, and even if we use more training samples, the
performance of “TTF-GPR” may not be improved so much.
However, if we use “NN” as a historical model, 50 training
samples are not enough for the “TTF-NN”.

Meanwhile, we conduct a simulation test on the same
system to study the impact of the transfer route on the quan-
tification interval of “limited training sample”, which can be
visualized as Fig. 10. One may observe that the quantification
interval of “limited training sample” also depends on the
transfer route. For example, 20-50 samples are enough for
model TTF-GPR-3-2 training, but 50 samples are not even
enough for model TTF-GPR-1-2 training.

Even though the quantification interval of “limited training
sample” is difficult to derive from one theory, we found that
20-40 samples are suitable for our method’s training since
almost every sub-model shows good performance compared
to other data-driven methods.

Note that the dimension of the feature vector would also
have an impact on the quantification interval of “limited
training sample”. In this paper, we did not consider the case
of islands or node outages caused by topology changes. Thus,
the quantification interval of “limited training sample” on one
specific system and fixed transfer route will not be influenced
by the complexity of the feature vector.

In addition to finding the quantification interval of “limited
training samples”, we also test the impact of threshold 7' for
the proposed dynamic ensemble learning algorithm. Note that
all the results in Fig. 11 are based on the modified 14-bus

learning algorithm
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Fig. 12. The impact of threshold 7'r for the proposed dynamic ensemble
learning algorithm

system.

According to Fig. 11, one may observe that the larger the
value of the threshold, the less time cost and the higher OFE
for our ensemble model. Meanwhile, it is recommended to set
Tr between 2 and 8, which can balance the time cost and
performance of the ensemble model

The impact of splitting ratio for the ensemble learning
algorithm is also tested, as shown in Fig. 12. Note that all the
results are based on the modified 14-bus system, and 7'r is set
to 2 to balance the time cost and the model’s performance.

According to Fig. 12, one may observe that our ensemble
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learning method is robust towards the hyper-parameter “split-
ting ratio” (between 20% and 70%) compared to the other two
ensemble methods. It is mainly because when the “splitting
ratio” is set to higher than 70%, the number of training samples
cannot support us in training the sub-models well.

D. Future Work

To avoid manually selecting the transfer route, another
promising way is to find the optimal transfer route. Generally,
finding the optimal transfer route requires measuring the
similarity (new and historical topology, new and historical
dataset, etc.) and solving a meaningful optimization problem.
Meanwhile, how to theoretically prove this transfer route is
optimal may also be important. It will be part of our future
work to address this question.

It should be noted that all the simulation results are obtained
based on the homothetic OPF Dataset. However, the “Gener-
ators cost varies” or “Generators outages” [6] may occur in
the real power grid, which can provide non-homothetic OPF
samples. To adapt our method to the non-homothetic scenario,
we will try to combine the proposed method and classification
neural networks in our future work.

According to the simulation results, one may observe that
the feasibility of solutions cannot be guaranteed by the pro-
posed method. It is important to obtain a feasible OPF solution
for a practical power grid. Thus, we will try to combine the
proposed framework and optimization layer to achieve this
goal.

It should be noted that our method belongs to the su-
pervised learning-type method, which highly relies on the
training dataset generation. To alleviate this time-consuming
process, studying how to construct an unsupervised learning
or reinforcement learning model to achieve topology change-
aware OPF problem solving will be part of our future work.

VI. CONCLUSIONS

We propose a two-stage approach to address a dilemma
that the traditional data-driven model will face when the
system’s topology changes. In Stage 1, a topology transfer
framework is proposed, where the correlation between the
new and predicted OPF solutions can be fully captured. In
Stage 2, a dynamic ensemble learning strategy is proposed to
avoid obtaining biased OPF solutions. Numerical experiments
based on the modified IEEE 14-system demonstrate that the
proposed framework can provide an optimality-enhanced and
equality function-satisfied OPF solution compared to the other
data-driven methods like “NN-Transfer” and “Meta Learning”.
Numerical experiments based on the modified TAS 97-bus
systems demonstrate the proposed framework and ensemble
learning strategy can be used in the practical power system.
In addition, we also find that the minimum training sample
requirement for the proposed framework depends on the type
of historical model used.
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