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A Two-Stage Approach for Topology

Change-Aware Data-Driven OPF
Yixiong Jia, Xian Wu, Zhifang Yang, Yi Wang

Abstract—Data-driven OPF has been widely studied recently
to satisfy the real-time requirements of applications like economic
dispatch, security analysis, etc. However, traditional data-driven
models are typically trained for a specific system topology. When
the system topology changes, the models must either be retrained
(which demands a substantial amount of training data) or fine-
tuned (which necessitates the selection of an appropriate pre-
trained model). To this end, we propose a two-stage approach
for topology change-aware data-driven OPF. It consists of: 1)
generating data-driven models using a topology transfer frame-
work; and 2) ensembling well-trained models. In Stage 1, GPR
is employed to capture the nonlinear correlation between the
new and predicted OPF data. The new data is obtained by
solving the OPF problem using traditional optimization solvers
under the new topology; the predicted data is obtained by
inputting the same power demand into the data-driven OPF
model trained on one of the historical datasets. This framework
allows us to obtain sample-efficient topology transfer models.
In Stage 2, a dynamic ensemble learning strategy is developed,
where the weights and the topology transfer models that need to
be ensembled are dynamically determined. This strategy allows
us to avoid obtaining biased OPF solutions from sub-models.
Numerical experiments on the modified IEEE 14- and TAS 97-
bus test systems demonstrate that the proposed approach can
obtain optimality-enhanced and equality function-satisfied OPF
solutions as compared to other data-driven approaches.

Index Terms—topology transfer framework, Gaussian process
regression, Optimal power flow, dynamic ensemble learning

ACRONYM LIST

OPF Optimal Power Flow

DC-OPF Direct-Current Optimal Power Flow

DNN Deep Neural Networks

SELM Stacked Extreme Learning Machines

GNN Graph Neural Networks

CNN Convolutional Neural Networks

PSCOPF Preventive Security-Constrained Optimal Power

Flow

CGAN Conditional Generative Adversarial Network

MDP Markov Decision Process

GCNN Graph Convolutional Neural Network
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GPR Gaussian Process Regression

RBF Radial Basis Function

TTF-OPF Topology Transfer Framework based-OPF

OFE Objective Function Error

PFEE Power Flow Equation Error

MVR Maximum Violation Rate

MVE Mean Violation Error

TSU Time Speed Up

BST Block Spent Time

AQS Average Quantile Score

AWS Average Winkler Score

DSS Deep Statistical Solvers

TCA-GNN Topology Change Aware-GNN

SOCP-OPF Second Order Cone Relaxation for OPF

MPCC Mean Pearson Correlation Coefficient

MMIC Maximal Information Coefficient

RF Regression-Enhanced Random Forests

LMPs Locational Marginal Prices

I. INTRODUCTION

S
OLVING OPF is crucial for dispatch, security analysis,

and other applications of the power grid. In the past,

the OPF problem was solved by utilizing the interior-point

method. However, due to the nonconvexity and nonlinearity of

the OPF problem, it is difficult to satisfy the real-time require-

ments of such applications. To accelerate the solving process,

the power grid solves other convex relaxation or linearization

forms of the OPF problem, such as DC-OPF. However, solving

such simplified OPF problems may obtain sub-optimal or

infeasible solutions. Fortunately, with the acquired historical

OPF dataset and advanced data-driven methods, it becomes

possible to obtain an optimality and feasibility-enhanced OPF

solution in real time by shifting the computational burden from

online optimization to offline training.

Nowadays, many data-driven methods have been proposed

to solve the OPF problem. Most of these methods are based

on neural networks such as DNN [1] [2], SELM [3], GNN

[4], and CNN [5]. The existing data-driven OPF methods can

be classified into supervised learning approach, unsupervised

learning approach, and reinforcement learning approach.

For the supervised learning approach, it can be further

classified into regression and classification. Before introducing

the core idea, it should be noted that supervised learning

approach highly rely on the dataset which is constructed by

using traditional solver. Even though the traditional solver may

provide suboptimal OPF solutions when the initialization is

far from the global optimal solution, it is the consensus to
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treat this dataset as the optimal one in the model training.

In addition, most existing methods are training and testing

based on homothetic OPF dataset, which may provide bad

OPF solutions for a practical power grid. In [6], some essential

metrics (load distribution, generators outages, and etc.) are

considered in the dataset construction step to provide non-

homothetic OPF samples, which attract attentions recently.

The core idea behind the regression is to learn the mapping

between the input (particularly the power demand) and the

output (part or whole of the OPF solution). Then, the rest of

the OPF solution can be obtained from the post-processing step

(optional). In [7], two deep neural networks named voltage

magnitude predictor and voltage angle predictor are utilized to

predict the voltage magnitude and voltage angle, respectively.

Then, the remaining OPF solution can be obtained based on

the power flow equation. For the regression approach, because

of the prediction error of the data-driven model, the inequality

constraint of OPF may be violated. To improve the feasibility

of the solution, different methods such as penalty approach

[8] [9], post-processing approach [10] [11], mapping approach

[12], and implicit layer embedded approach [13] [14] [15] are

proposed. See [16] for the recent feasibility-enhanced data-

driven OPF methods. Meanwhile, to alleviate the substantial

computational burden of the training process for large power

systems, feature reduction [17], compact learning [18], and

decentralized (distributed) machine-learning [19] [20] methods

are proposed. See [18] for the recent scalability-adapted data-

driven OPF methods.

The core idea behind the classification is to identify the

active or inactive set (inequality constraint or contingencies).

Then, the OPF solution can be obtained by solving a machine

learning assisted-OPF problem. In [21], the inactive voltage

magnitude and branch flow constraints are identified using

two classification neural networks. In [22], a relevant set is

constructed. Then, this set is used in the intermediate step to

obtain the final solution. In [23], a four-layer neural network

is utilized to predict the binding contingencies vector. Then,

this vector is utilized in the PSCOPF solver to obtain the final

solution.

The core idea behind the unsupervised learning approach

is to train a CGAN based on the dataset composed of feasible

samples. Then feasible OPF solutions with different system

costs can be generated by inputting the power demand and

conditional vector. Additional refinement is also needed to

find the optimal solutions. In [24], a machine learning model

with three neural network components is proposed based on

information theoretic generative adversarial networks. Then,

an iterative update step is utilized to find the solutions that

can minimize the approximated Lagrangian values of the OPF

problem. In [25], the feasibility filter layer, comparison layer,

and gradient-guided layer are embedded into the generative

adversarial networks to improve the quality of generated

solutions.

The core idea behind the reinforcement learning approach

is to let the agent (generally the neural network) interact with

the environment and learn how to achieve the best action

(optimal solutions). In [26], a relaxed Lagrangian function is

utilized as the action-value function. In [27], the power flow

solver and convex safety layer are combined into the actor

to provide safe action (feasible solutions). In [28], the multi-

period OPF problem of the distribution network is formulated

as a MDP first. Then, proximal policy optimization is utilized

to solve the MDP.

Compared to using the interior-point method or solving

the simplified OPF problem, the aforementioned data-driven

OPF methods achieve high computational efficiency. However,

these methods are designed for a specific system configuration,

e.g., a fixed topology. In fact, the transmission lines may be

switched to ensure the economical and reliable dispatch of

the system [29] [30]. That means the aforementioned data-

driven methods may fail to provide a correct and reliable

OPF solution when the system’s topology changes. To address

the topology-change issue, the topology change-aware data-

driven OPF methods are proposed, which can be classified into

prior information embedded learning approach and sample-

efficient learning approach.

Note that the following methods only focus on the phe-

nomenon that the topology changes are caused by the human

operation, which means the topology information is known

and the traditional solver can be directly utilized to obtain

the training samples. Our method also focuses on this phe-

nomenon, and the phenomenon that the contingencies cause

the topology changes is out of the scope of the paper.

The core idea behind the prior information embedded

learning approach is to incorporate the system’s physical

information into the model to guide the model’s training. Once

the topology changes, the model transfer can be achieved by

modifying the parameter matrix and fine-tuning the model.

In [31], the topology label and load data are input to the

CNN to get the OPF solution. In [32], the line admittance

and load data are used to train DNN, which account for

any power network with the same bus, generation, and line

capacity configurations but different topologies. In [33] and

[34], the power flow equations and weighted adjacency matrix

are embedded in the GCNN to extract the topology and

physical features, respectively. It should be noted that some

promising approaches to address the topology change issue

of power flow calculation are proposed in recent year [35]

[36]. Such methods try to learn the power flow mapping for a

specific power grid with various topology, which can be seen

as a potential solution for topology change-aware data-driven

OPF.

The core idea behind the sample-efficient learning ap-

proach is to make the model quickly adapt to the new topology

by using meta-learning or incorporating the sensitivity infor-

mation into the model. In [37], with the historical dataset under

different topologies, the meta-learning approach is utilized to

find a good initialization weight for DNN. Then, the weight

vector is used to fine-tune the model. In [38], a sensitivity-

informed DNN is proposed, which aims not only to learn the

mapping between the input and OPF solution but also match

the relationship between the input and the Jacobian matrix.

Overall, the traditional data-driven OPF methods can pro-

vide OPF solutions in real time. However, when the system’s

topology changes, existing methods would face a dilemma: ei-

ther retraining [38] or fine-tuning [33] [34] [37] the model. If
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model retraining is utilized to accommodate this phenomenon,

a large volume of training samples needs to be obtained under

the new topology. Conversely, if model fine-tuning is utilized,

the transfer route (transfer from one of the historical topologies

to the new topology) needs to be determined carefully. An

inappropriate transfer route would make the model provide

sub-optimal OPF solution.

To address this dilemma, we propose a two-stage approach

for topology change-aware data-driven OPF. The key contri-

butions of this paper are summarised as follows:

• New framework (in Stage 1): Propose a topology transfer

framework to enable efficient data-driven model training.

It is achieved by augmenting the predicted OPF solutions

to the input and also designing a specific kernel function

according to the correlation analysis. Such changes can

ensure the transfer framework not only learn the mapping

between the power demand and the OPF solutions but

also capture the nonlinear correlation between the new

and predicted OPF solutions. In addition, any type of

regression model can be utilized in our framework, which

can be flexibly used for the power grid to obtain the OPF

solution under the new topology.

• New ensemble strategy (in Stage 2): On the basis of

Stage 1, develop a dynamic ensemble learning strategy

based on the results of undersampled region identifica-

tion. Even though the ensemble learning method has been

widely utilized in the power system’s application, to best

of our knowledge, it is the first time to utilizing ensemble

learning method in the data-driven OPF. In particular, the

weights are calculated based on each topology transfer

model’s performance on a small validation set. Once the

uncertainty of all the topology transfer model’s output is

larger than the threshold, the weights will be updated.

In addition, the covariance is considered in the variance

functions ensemble, which can improve the accuracy of

the uncertainty quantification.

The rest of the paper is organized as follows: Section II

gives the basic problem description of OPF and two questions

this paper wants to answer. Section III describes the proposed

two-stage approach. Section IV shows the evaluation metrics.

Section V applies the proposed approach to the modified IEEE

14- and TAS 97-bus systems. Section VI draws conclusions.

II. PROBLEM STATEMENT

The OPF problem considering topology changes can be

formulated as follows. Note that, for a practical power grid,

the cost objective is influenced by different factors like line

losses or fuel supplies. Following the existing paper [10] [32],

to simplify the problem, the impact of such factors is ignored

in our paper.

min
∑

i∈ΩG

(
a2,i · (PGi)

2
+ a1,i · PGi + a0,i

)
(1a)

PGi−PDi =
∑

j∈i

Pij

(
V ,θ,Al,Zl

)
, ∀i ∈ ΩB , l ∈ ΩT (1b)

QGi −QDi =
∑

j∈i

Qij

(
V ,θ,Al,Zl

)
, ∀i ∈ ΩB , l ∈ ΩT (1c)

PGmin
i ≤ PGi ≤ PGmax

i , ∀i ∈ ΩG (1d)

QGmin
i ≤ QGi ≤ QGmax

i , ∀i ∈ ΩG (1e)

V min
i ≤ Vi ≤ V max

i , ∀i ∈ ΩB (1f)
√
P 2
ij +Q2

ij ≤ PLmax
ij , ∀i, j ∈ ΩB (1g)

where (1a) represents the objective function; ΩG,ΩB ,ΩT

are the generator set, bus set and topology set, respectively;

PGi, QGi are the active and reactive power generation at bus

i, respectively; (1b) to (1c) represent the power flow equation;

PDi, QDi are the active and reactive power demand at bus

i, respectively; V ,θ are the voltage magnitude and voltage

angle vector, respectively; Al,Zl represents the incidence

matrix and impedance matrix, respectively; l is the index to

represent the topology number of the system; Pij , Qij are

active and reactive power flow for branch connected bus i

and bus j, respectively; (1d) to (1g) represent the power,

voltage magnitude, and power flow constraint; V min
i , V max

i

are minimum and maximum voltage magnitude for bus i;

PGmin
i , PGmax

i are minimum and maximum active power

generation for generator i; QGmin
i , QGmax

i are minimum and

maximum reactive power generation for generator i; PLmax
ij

is the maximum power flow limit for branch ij.

To clarify the problem statement, we define Dl ={(
X l,Y l

)}
=

{(
X l

k,Y
l
k

)}nl

Train

k=1
as the historical dataset

obtained under the topology Al. X l
k ∈ R

1×2‖ΩB‖ contains the

power demand and Y l
k ∈ R

1×(2‖ΩB‖+2‖ΩG‖−2) contains the

OPF solution such as active power generation, reactive power

generation, voltage magnitude, and voltage angle. nl
Train is the

number of training samples and l ∈ {1, 2, · · · , s− 1}, where

s− 1 is the number of historical topologies. ‖ΩB‖, ‖ΩG‖ are

the number of buses and generators in the system, respectively.

With the acquired historical dataset Dl, the data-driven OPF

methods aim to learn the mapping from X l to Y l:

Y l = f l
(
X l;βl

)
(2)

where βl denotes the parameter of the mapping.

A well-trained f l (·) provides OPF solutions in real time

by inputting the current power demand. However, when a

new topology h is occurring, it is necessary to determine

whether model retraining or fine-tuning will be utilized to

accommodate the topology change issue. Two questions can

be answered to make the data-driven OPF methods applicable

to the new topology:

1) How to design a sample-efficient training framework

under the new topology to get topology transfer models?

2) How to avoid artificial transfer route selection to obtain

a “high quality” OPF solution?

III. METHODOLOGY

Before introducing the proposed two-stage approach, we

would like to give some definitions. Throughout this paper,

we define Dl and Dh as the historical dataset (has enough

samples) and new dataset (has limited samples), respectively;

define f̂ l (·) as the well-trained historical model; define fh (·)
as the new model. In particular, we define f̂ l

(
Xh

)
as the

predicted OPF solution under the topology Al.
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Fig. 1. Proposed two-stage approach

Fig. 1 provides an overview of the proposed two-stage

approach. Specifically, the subsection III-A introduces Stage

1, which aims to construct a topology transfer framework

by capturing the non-linear correlation between the new and

predicted OPF solutions to answer question 1). On the basis

of Stage 1, subsection III-B introduces Stage 2, which aims

to develop a dynamic ensemble learning strategy to ensemble

the topology transfer models to answer question 2).

A. Topology Transfer Framework based-OPF

Under the limited training sample scenario, it is easy to

come up with the idea that we can learn fh (·) by using an

efficient learning-type method. Since GPR has been proven to

be efficient in the presence of limited training samples, it is

suitable in this scenario, which can be formulated as (3). Note

that all the GPR used in the following are batch-independent

multi-output Gaussian processes.

fh
(
Xh;βh

)
= G1

(
Xh

)T
· βh (3)

where βh ∼ N
(
0,Σh

)
is the weight vector with Gaussian

prior; Σh is the covariance matrix; G1 (·) is the basis function.

Since for every positive definite covariance function

Ke (·, ·), there exists an infinite expansion in terms of basis

functions, an equivalent formulation of (3) is,

fh
(
Xh;σh,Λh

)
∼ N

(
0,
(
σh

)2
·Ke

(
Xh,Xh;Λh

))
(4)

where σh,Λh are the parameters that need to be estimated,

and Ke
(
·, ·;Λh

)
represents the covariance function.

A common choice of covariance function is the RBF, which

can be formulated as,

Ke
(
Xh

b ,X
h
c ;Λ

h
)
= exp

[
−
1

2

(
Xh

b−c

) (
Λ

h
)−1 (

Xh
b−c

)T ]

(5)

where b, c ≤ nh
Train; Xh

b−c = Xh
b −Xh

c ; Λh = diag
(
γh

)
;

γh =
[
γh
1 , · · · , γ

h
2‖ΩB‖

]
represents the parameter of the RBF.

When the model fh
(
Xh;σh,Λh

)
is well trained, the

posterior distribution at the test input X∗ is,

fh
(
X∗; σ̂h, Λ̂h

)∣∣∣Dh ∼ N
(
µh (X∗) , varh (X∗)

)
(6a)

µh (X∗) = Ke∗,h ·
[
Keh,h

]−1
· Y h (6b)

Fig. 2. The structure of TTF-OPF

varh (X∗) =
(
σ̂h

)2
·
[
Ke∗,∗ −Ke∗,h ·

[
Keh,h

]−1
·Keh,∗

]

(6c)

where σ̂h, Λ̂h are well trained parameters; KeB,C is short for

Ke
(
XB ,XC ; Λ̂h

)
.

Even though the equations (6b) and (6c) can be used to

obtain the OPF solution and quantify the uncertainty of this

output under the new topology, this model may be over-fitted

and provide sub-optimal OPF solutions under this limited

training sample scenario.

According to Fig. 5 and Table II (refer to the correlation

analysis in section V), one may observe that the new and

predicted OPF solutions show a linear or nonlinear correlation,

which means that the model’s training efficiency can be

enhanced once their correlation is well modeled. In this way,

the modified data-driven model can achieve similar prediction

accuracy with fewer training samples than a single GPR.

Based on this finding, the structure of the proposed frame-

work can be visualized as shown in Fig 2, where the data

acquisition block is utilized to obtain the dataset and the

nonlinear correlation modeling block is utilized to capture the

correlation between the new and predicted OPF solution. Note

that l can be anyone in the historical set.

Given that our aim is to enable the regression model efficient

training under the limited training sample scenario, the GPR

is utilized to model our framework. The motivation for using

GPR is threefold. First, the data efficiency of GPR has been

proven in many research areas, like robotics, aircraft, etc.

Second, the GPR can not only provide the mean prediction but

can also quantify the uncertainty of such output. It is important

since uncertainty quantification can be used to identify the

undersampled area and can also be used to judge if we can

use the OPF solution obtained from the topology transfer
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model in our further applications. Moreover, the GPR has been

utilized to learn the OPF mapping in [39] [40]. Such successful

implementation motivates us in using GPR under the scenario.

Based on the (3), the mathematical formulation of TTF-OPF

can be derived as follows:

fh,l
(
Xh,l;βh,ωh,l

)
=

(
Ŵ l

(
Xh

))T

· ωh,l + fh
(
Xh;βh

)

(7)

where Xh,l =
(
Xh, f̂ l

(
Xh

))
is defined as the augment

input; ωh,l ∼ N
(
µh,l

ω ,Σh,l
)
; Ŵ l

(
Xh

)
= G2

(
f̂ l

(
Xh

))
;

G2(·) represents the other basis function; f̂ l
(
Xh

)
is short

for f l
(
Xh; β̂l

)
; f l

(
·; β̂l

)
represents the well-trained data-

driven model based on the historical dataset Dl, and any

regression model can be used for f l
(
·; β̂l

)
.

To simplify the derivation, we assume Ŵ l
(
Xh

)
and µh,l

ω

are independent in the following pages. Define the augmented

dataset as D̄h,l =
{(

Xh,l,Y h
)}

, and assume the independent

property between the first term and the second term in the right

part of (7), the equivalent formulation of (7) is,

fh,l
(
Xh,l;Pa

)
∼ N

(
E

(
Ŵ l

(
Xh

))T

· µh,l
ω ,

(
σh,l

)2
·Rh,h

)

(8)

R
h,h
b,c = Ke

(
Xh

b ,X
h
c ;Λ

ρ
)
·Ke

(
f̂ l

(
Xh

b

)
, f̂ l

(
Xh

c

)
;Λh,l

)

+ρ ·Ke
(
f̂ l

(
Xh

b

)
, f̂ l

(
Xh

c

)
;Λh,l

)
+Ke

(
Xh

b ,X
h
c ;Λ

h
)

(9)

where the bcth entries of Rh,h is defined as (9), which aims to

not only learn the mapping between the Xh and Y h but also

capture the nonlinear correlation between the f̂ l
(
Xh

)
and

Y h; Pa =
{
µh,l

ω , σh,l,Λρ,Λh,l,Λh, ρ
}

are parameters will

be determined based on the dataset D̄h,l; E(·) is the function

to calculate the expectation of the variable.

Since the kernel function design is also a “hyper-parameter”

[41], the equation (9) is constructed based on the correlation

analysis in Section V. Take the second term as an example,

one may observe that this term will tend towards to 1 when

f̂ l
(
Xh

b

)
, f̂ l

(
Xh

c

)
are very close and ρ̂ = 1. In this case,

the new and predicted OPF solutions show a highly linear

relationship, which means that an accurate new OPF solution

can be easily obtained based on the predicted OPF solutions.

Since the effectiveness of using radial basis function to

learn the mapping of OPF problem is proven in [39] [40]

and meanwhile the rational quadratic or matern kernel are

equivalent to the RBF in some setting [42], we choose RBF

to construct the final kernel function (9).

To better understand (7) and interpret why the additional

term can help to achieve efficient training under limited

training samples scenario, suppose the fh,l (·) and f l (·) are

well-trained based on the dataset D̄h,l and Dl, respectively.

For a test input X∗ under the new topology, the joint

distribution can be formulated as,

(
Y h

f̂h,l
(
X∗,l

)
)
∼ N







E

(
Ŵ l

(
Xh

))T

E

(
Ŵ l (X∗)

)T


 · µ̂h,l

ω ,R




(10a)

R =

[
Rh,h Rh,∗

R∗,h R∗,∗

]
(10b)

where f̂h,l
(
X∗,l

)
is short for fh,l

(
X∗,l; P̂ a

)
; X∗,l =(

X∗, f̂ l (X∗)
)

; P̂ a =
{
µ̂h,l

ω , σ̂h,l, Λ̂ρ, Λ̂h,l, Λ̂h, ρ̂
}

repre-

sents the well-trained parameters.

According to the properties of conditional multivariate nor-

mal distribution, the posterior distribution at the test input X∗

is,

fh,l
(
X∗,l; P̂ a

)∣∣∣ D̄h,l ∼ N
(
µh,l

(
X∗,l

)
, varh,l

(
X∗,l

))

(11a)

µh,l
(
X∗,l

)
= E

(
Ŵ l (X∗)

)T

· µ̂h,l
ω

︸ ︷︷ ︸
Nonlinear−Term

+R∗,h ·
[
Rh,h

]−1
· Y h

︸ ︷︷ ︸
Linear−Trem

−R∗,h ·
[
Rh,h

]−1
·

[
E

(
Ŵ l

(
Xh

))T

· µ̂h,l
ω

]

︸ ︷︷ ︸
Correction−Term

(11b)

varh,l
(
X∗,l

)
=

(
σ̂h,l

)2
·
[
R∗,∗ −R∗,h ·

[
Rh,h

]−1
·Rh,∗

]

(11c)

Compared to (6b), instead of solely getting the OPF predic-

tion from the linear combination of observation data Y h, three

items are combined to provide the OPF mean prediction in

(11b). The Nonlinear-Term captures the nonlinear correlation

between the new and predicted OPF solutions to enhance the

prediction accuracy. The role of the Linear-Term is similar to

the (6b). The Correction-Term is used to correct the error by

using the limited training samples.

One thing needs to be declared in (11b): If f̂ l (·) is modeled

by a deterministic regression method, the expectation symbol

can be deleted in this equation, and the Ŵ l (·) could be seen

as the nonlinear function of predicted output f̂ l (·). However,

if the f̂ l (·) is modeled by a probabilistic regression method

like GPR, the expectation symbol cannot be deleted directly.

In this scenario, since the RBF is equivalent to the Hermite

polynomials basis function, the term E

(
Ŵ l (·)

)
is also the

polynomials function of the expectation of f̂ l (·). That means

the interpretation above is also satisfied.

For the variance part, the formulation of (11c) is similar

to (6c). However, since the correlation is captured by using a

more complicated kernel function, the uncertainty quantifica-

tion could be more accurate than only using a single GPR.

B. Dynamic Ensemble Learning Algorithm

The subsection III-A introduces a TTF-OPF based on the

transfer route from historical topology l to the new topology h.

Since we assume s−1 historical topologies with their training

dataset are known, s−1 TTF-OPF models can be constructed

step by step. However, since the training samples and their

number in each historical dataset are different, the s−1 TTF-

OPF models may show different performance even when tested

on the same dataset. It means that selecting an appropriate

transfer route is the key step to obtaining “good enough” OPF

solutions. However, since there is no general method to obtain
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Fig. 3. The structure of dynamic ensemble learning strategy

the optimal transfer route, a biased OPF solutions may be

obtained if the transfer route is selected manually.

To address this issue, a dynamic ensemble learning strategy

is proposed in this subsection, which can be visualised as

shown in Fig. 3. In Fig. 3, the index set construction block is

utilized to quantify the uncertainty of each TTF-OPF model’s

output at time t and finally provide the active model set.

Based on this set, the weight determination block is utilized to

calculate the weights of each sub-model, where the validation

dataset in this block is dynamically changed (once the active

model set is empty, the test sample at time t will be solved

using traditional solver and will be added to the validation

dataset). Note that, to control the time costs in this block,

the number of the samples in the validation dataset is set as

a constant. That means, once a test sample is added to the

validation dataset, then the last sample in this dataset will be

removed. Then, the mean and variance construction block is

utilized to obtain the mean, variance, and covariance terms.

Using the output from these three blocks, one can finally

obtain the ensembled model. Note that the trained parameter

P̂ a is not shown in the following equations.

Following the structure in Fig. 3, the ensemble learning

strategy can be formulated as follows,

fEn

(
·; ph,l

)
=

∑

l∈φ

p̂h,l · f̂h,l(·) (12)

where φ represents the active model set and ph,l represents

the weight of each sub-model.

Since the output of each f̂h,l(·) obeys the Gaussian distribu-

tion, the weighted linear combinations also obey the Gaussian

distribution, which can be formulated as equation (13a).

fEn

(
·; ph,l

)
∼ N

(
µEn

(
·; ph,l

)
, varEn

(
·; ph,l

))
(13a)

µEn

(
·; ph,l

)
=

∑

l∈φ

ph,l · µh,l (·) (13b)

varEn

(
·; ph,l

)
=

∑
l∈φ

(
ph,l

)2
· varh,l (·)

+
∑

l1, l2 ∈ φ

l1 6= l2

ph,l1 · ph,l2 · cov
(
f̂h,l1(·), f̂h,l2(·)

)
(13c)

where (13b) and (13c) represent the mean and variance func-

tion of the ensembled model, respectively; cov (·, ·) calculate

the covariance between two random variables.

The model (12) can be regarded as the ensemble of ‖φ‖
sub-models, and the idea is consistent with the basic ensemble

learning. However, there are three main differences between

our and the basic ensemble learning methods.

1) The number of ensembled models is fixed for the

basic ensemble learning method. However, the number is

dynamically changed for our method; the set φ is defined to

construct the active model set, which is determined based on

the undersampled area identification. In other words, once the

uncertainty quantification of the sub-model is larger than the

pre-defined threshold, then the OPF solution obtained from

this sub-model cannot be utilized.

2) The value of ph,l is constant and not changed for the basic

ensemble learning method. However, for our method, the value

of ph,l is determined based on the sub-model’s performance

on a small validation dataset, which is dynamically changed.

The reason is easy to understand. When the load condition

changed (e.g. from light load to heavy load), if we still use

fixed weights, the prediction accuracy of the ensembled model

may be compromised.

3) Only the mean prediction is ensembled for the basic

ensemble learning method. However, for our method, the

variance function is also ensembled. Specifically, we do not

assume that the outputs from different TTF-OPF models are

independent, which could provide more accurate uncertainty

quantification results.

Given the three differences, we will show the details of

how to determine φ, p̂h,l, and how to ensemble the variance

function.

To determine the set φ, a threshold Tr is utilized, which

can be formulated as follows,

φ =
{
l : varh,l

(
X∗,l

)
≤ Tr, l ∈ {1, · · · , s− 1}

}
(14)

To determine the value of ph,l, we split the dataset Dh as{
Dh

Train,D
h
Val

}
, where the Dh

Train is utilized for model training

and Dh
Val is utilized to validate the performance of each sub-

model. The number of data points in Dh can be denoted as

nh = nh
Train+nh

Val according to the splitting of the dataset. And

in this paper, we set nh
Val = 1/5 · nh. Then, the three metrics

OFE (·), PFEE (·), and MVE (·) are used to calculate the

ph,l, which can be formulated as,

p̂h,l =
1

OFE
(
Dh

Val

)
+ PFEE

(
Dh

Val

)
+MVE

(
Dh

Val

) (15)

where the definition of these three metrics can be found in

section IV.

Specifically, the weight of each sub-model needs to be

normalized after all the values of p̂h,l are calculated.

To ensemble the variance function, the equation (13c) can

be utilized. Specifically, since the value of p̂h,l is calculated

based on (15) and varh,l (·) can be easily obtained from (11c),

the key step is to calculate the covariance term. In this paper,

since the distribution of f̂h,l(·) can be derived from (11),

the covariance term can be approximated by using sample

covariance, which can be formulated as follows,

nSam∑
k=1

[
Ξ
(
f̂h,l1(·)

)
k
− µh,l1 (·)

] [
Ξ
(
f̂h,l2(·)

)
k
− µh,l2 (·)

]

nSam − 1
(16)
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where nSam is the sample number, and Ξ(·)k is the kth data

that is sampled from the corresponding distribution.

Combining the (14), (15) and (16), the final ensembled

model can be obtained.

The implementation of the proposed method (including

training procedure and execution procedure) is shown in

Algorithm 1 and Algorithm 2.

Algorithm 1 Implementation of the proposed method (Train-

ing procedure)

Input: Historical topology set
{
A1,A2, · · · ,As−1

}
, New

topology Ah

1: Initialize l← 1
2: repeat

3: Data acquisition Dl ←
{(

X l,Y l
)}

Dh ←
{(

Xh,Y h
)}

4: Historical regression model training via (2)

5: Predicted OPF solutions acquisition f̂ l
(
Xh

)

6: Augmented dataset construction

D̄
h,l
←

{(
Xh,l,Y h

)}
, Xh,l ←

(
Xh, f̂ l

(
Xh

))

7: Topology transfer model training via (8) and (9)

8: Final model acquisition f̂h,l (·)
9: l← l + 1

10: until l > s− 1
Output: Different topology transfer models{

f̂h,1 (·) , f̂h,2 (·) , · · · , f̂h,s−1 (·)
}

Different historical regression models{
f̂ 1 (·) , f̂ 2 (·) , · · · , f̂s−1 (·)

}

Algorithm 2 Implementation of the proposed method (Exe-

cution procedure)

Input: Test input X∗ under the new topology

1: Get
{
f̂h,1 (·) , f̂h,2 (·) , · · · , f̂h,s−1 (·)

}
and

get
{
f̂ 1 (·) , f̂ 2 (·) , · · · , f̂s−1 (·)

}
through Algorithm 1

2: Predicted OPF solutions acquisition{
f̂ 1 (X∗) , f̂ 2 (X∗) , · · · , f̂s−1 (X∗)

}

3: Augmented dataset construction{
X∗,1,X∗,2, · · · ,X∗,s−1

}

4: Individual OPF solutions acquisition{
µ∗,1

(
X∗,1

)
, µ∗,2

(
X∗,2

)
, · · · , µ∗,s−1

(
X∗,s−1

)}

5: Variance quantification{
var∗,1

(
X∗,1

)
, var∗,2

(
X∗,2

)
, · · · , var∗,s−1

(
X∗,s−1

)}

6: Active model set construction via (14)

7: if φ = ∅ then

8: Solve this sample via traditional solver and replace the

oldest sample in the validation set

9: else

10: Calculate the weight for active sub-model via (15)

11: Calculate the covariance for pairs sub-models via (16)

12: Obtain the final solutions via (13b) and its variance

quantification via (13c)

13: end if

Output: Final OPF solutions µEn

(
X∗; p̂h,l

)

Variance quantification varEn

(
X∗; p̂h,l

)

IV. EVALUATION METRIC

Seven metrics are designed from two perspectives: mean

prediction evaluation and variance quantification evaluation.

Specifically, the first five metrics are designed to examine the

mean prediction performance, and the last two are designed to

examine the variance quantification performance. Define Dh
Test

as the test dataset and nh
Test as the number of testing samples.

A. Metric for Mean Prediction Performance Validation

1) OFE: This metric OFE
(
Dh

Test

)
examines the optimal-

ity, which can be formulated as,

1

nh
Test

nh

Test∑

k=1

(∣∣∣cost
(
P̂Gk

)
− cost (PGk)

∣∣∣
/
cost (PGk)

)
(17)

where cost (·) is the objective function (1a); P̂Gk,PGk

denotes the estimated and real active power output from the

generation at kth testing sample, respectively.

2) PFEE: This metric PFEE
(
Dh

Test

)
examines the equal-

ity feasibility:

1

nh
Test

nh

test∑

k=1

∣∣∣PF
(
P̂Gk, Q̂Gk, V̂k, θ̂k

)∣∣∣ (18)

where V̂k, θ̂k, P̂Gk, Q̂Gk denotes the estimated OPF solution

obtained from the method; PF (·, ·, ·, ·) denotes the power flow

equations shown as (1b) to (1c).

3) MVR: This metric MVR
(
Dh

Test

)
examines the inequal-

ity feasibility:

max
{
g1

(
P̂G

)
, g1

(
Q̂G

)
, g1

(
V̂
)
, 0
}

{‖ΩB‖ , ‖ΩG‖} · nh
Test

(19a)

g1

(
M̂

)
=

∑

i∈{ΩB ,ΩG}

nh

Test∑

k=1

[
g (V EUk,i)
+g (V EDk,i)

]
(19b)

V EUk,i = M̂k,i −Mmax
i , V EDk,i = Mmin

i − M̂k,i (19c)

where g (·) denotes the step function.

4) MVE: This metric MVE
(
Dh

Test

)
examines the inequal-

ity violation error:

max
{
g2

(
P̂G

)
, g2

(
Q̂G

)
, g2

(
V̂
)
, 0
}

{‖ΩB‖ , ‖ΩG‖} · nh
Test

(20a)

g2

(
M̂

)
=

∑

i∈{ΩB ,ΩG}

nh

Test∑

k=1

[
V EUk,i · g (V EUk,i)
+V EDk,i · g (V EDk,i)

]

(20b)

5) TSU: This metric TSU
(
Dh

Test

)
examines the speedup:

time (Pypower (·))/time (f∗ (·)) (21)

where time (Pypower (·)), time (f∗ (·)) denote the time cost

to solve the OPF problem by using the traditional solver

(Pypower) and the given method, respectively.
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6) BST: This metric BST
(
Dh

Test

)
examines the time spent

in each block for the dynamic ensemble learning method:

{time (ISC) , time (WD) , time (MVC)} (22)

where ISC,WD,MV C are short for “Index Set Construc-

tion”, “Weight Determination”, and “Mean and Variance Con-

struction”.

B. Metric for Variance Quantification Performance Validation

1) AQS: This metric AQS
(
Dh

Test

)
examines the average

quantile score:

1

nh
Test · {‖ΩB‖ , ‖ΩG‖} · nτ

nh

Test∑

k=1

∑

i∈{ΩB ,ΩG}

nτ∑

τ=1

Qτ (ŷk,i,yk,i)

(23)

where y ∈ {PG,QG,V ,θ}; nτ denotes the number of

percentile (in this paper nτ = 9, from 0.1 quantile to 0.9

quantile); Qτ (·, ·) denotes the τ quantile score.

2) AWS: This metric AWS
(
Dh

Test

)
examines the prediction

interval:

1

nh
Test · {‖ΩB‖ , ‖ΩG‖}

nh

Test∑

k=1

∑

i∈{ΩB ,ΩG}

WSα (ŷk,i,yk,i)

(24)

where WSα (·, ·) denotes the winkler score for α prediction

intervals.

V. NUMERICAL TESTS

In this section, a modified 14- and 97-bus system is utilized

to validate the effectiveness and applicability of the proposed

two-stage approach.

Note that all simulations below are performed using GPy-

Torch on a computer CPU Intel(R) Xeon(R) W-3335 CPU 3.40

GHz, GPU NVIDIA GeForce RTX 3080 Ti, GPU memory

12G, Boost clock speed 1.67 GHz.

A. Numerical Test on the Modified 14-bus System

System Description: The single line diagram is shown in

Fig. 4. The network parameters, topology, and base load values

of each bus are obtained from PyPower.

Data Generation: For the 14-bus system, the load data is

generated based on the load generation part in [43]. Mean-

while, three wind farms are integrated into buses 10, 11,

and 14, respectively. The power output of each wind farm

is generated based on the parameters and Weibull distribution

in [44].

Topology Scenarios Generation: To simulate the phe-

nomenon of topology changes, five topology scenarios are

generated as shown in Table I, where Swi,j denotes the switch

between bus i and bus j. Topology 2 is set as the new topology,

with only 70 samples obtained. For the testing dataset, 200

instances are involved.

Comparison Methods: The performance of the proposed

framework is compared with six methods, including 1) purely

train the model on the new dataset; 2) transfer learning, which

7
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 i  k 

: Switch of the line 

Fig. 4. Single line diagram of modified IEEE 14-bus system

TABLE I
DETAILS OF FIVE TOPOLOGIES

Scenarios Active switches Number of training data

Topology 1 Sw8,14, Sw1,12 500
Topology 2 Sw8,14 56
Topology 3 Sw8,14, Sw1,12, Sw3,7 500
Topology 4 Sw8,14, Sw1,12, Sw3,7, Sw1,8 500
Topology 5 Sw8,14, Sw8,9 500

is trained on one of the historical datasets and then fine-

tuned on the new dataset; and 3) meta learning [37], which is

trained on the historical dataset to find a good initial weight

vector, then fine-tuning the model based on the new dataset

and weight vector; 4) DSS [35], which aims to learn a solver

that generalizes to a given distribution of one optimization

problem in weak supervised learning manner; 5) TCA-GNN

[48], which aims to achieve fast transferring by using GNN

with Laplace matrix embedded; and 6) SOCP-OPF, which uses

second order cone to relax the nonconvex power flow equation.

1) Correlation analysis: We present some simulation re-

sults on the 14-bus system to visualise the correlation between

the new and predicted OPF solutions. Note that the new and

predicted OPF solutions are obtained under topologies 2 and

5, respectively. By varying the active load on bus 3 and bus

4 and fixing the other parameters, the joint plot for reactive

power generation is shown in Fig. 5. The results in Fig. 5

demonstrate that some of the correlation is linear (left sub-

figure), while others is non-linear (right sub-figure).

To further analyze the correlation between other new and

predicted OPF solutions (e.g., active power), the MPCC and

MMIC are utilized. The correlation coefficients of each type

OPF solution are shown in Table II. The results in Table II

also confirm the findings in the last paragraph.

2) Framework effectiveness validation: Eight cases are pro-

posed to validate the effectiveness of the proposed framework.

The performance comparisons for mean prediction and vari-

ance quantification are shown in Table III and IV, respectively.

In Table IV, the Q in front of the “RF”, “NN”, “NN-Transfer”,

and “Meta Learning” represents the corresponding quantile-

type methods. Note that all the results in Table III and IV are

based on the transfer route from topology 5 to topology 2.

Comparing “GPR” and “TTF-GPR”, one may observe that
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Fig. 5. Correlation analysis between new and predicted OPF solutions for
(left) reactive power generation at bus 3 (right) reactive power generation at
bus 2

TABLE II
THE MPCC AND MMIC BETWEEN NEW AND PREDICTED OPF SOLUTION

Metric PG QG V θ

MPCC 0.9967 0.5663 0.3376 0.9986
MMIC 0.9619 0.7058 0.5948 0.6765

the Optimality (OFE) and the Equality Feasibility (PFEE)

could be improved by applying the proposed framework,

which means the proposed framework could adapt to the

new topology quickly compared to “GPR”. However, the

proposed framework may have a negative impact on Inequality

Feasibility (MVR) and Speedup (TSU). For MVR, about a

4% increase can be obtained because of the prediction error

from the GPR model. However, according to the MVE, one

may observe that a lower value can be obtained by applying

the proposed framework, which means that the 4% increase

in MVR can be accepted. For TSU, the proposed framework

could slow down the inferring process by a factor of about

eight. This is due to the complex kernel in the framework

and the additional time cost from the data-driven model’s

inferring (to obtain the predicted OPF solution). For the

variance quantification validation, one may observe that a solid

improvement to AQS and AWS can be achieved compared to

the GPR, which means the proposed framework could identify

the undersampled area accurately. Meanwhile, the comparisons

between “RF” and “TTF-RF” and between “NN” and “TTF-

NN” could also confirm the above findings. We also notice

that the values of TSU for “RF” and “TTF-RF” are close. It

is because “RF” requires much time for inferring compared to

the time cost of applying the proposed framework.

Comparing “NN-Transfer”, “Meta Learning”, “TCA-GNN”

and methods applying the proposed framework, one may

observe that optimality enhanced and tight equality constraints

satisfied OPF results can be obtained from the proposed

framework, which proves that the proposed framework could

adapt to the new topology more quickly than the existing

sample-efficient learning approach. In addition, for variance

quantification validation, one may obtain a more narrow pre-

diction interval by applying the proposed framework, which

means that a more reliable OPF solution can be obtained. Note

that, since the active power generation is calculated based on

the predicted LMPs in “TCA-GNN”, the inequality constraints

TABLE III
PERFORMANCE COMPARISON FOR MEAN PREDICTION (14-BUS SYSTEM)

Method OFE PFEE MVR MVE TSU

GPR 1.57E-02 5.92E-02 0.23% 2.65E-02 1777
TTF-GPR 3.25E-03 8.53E-03 4.30% 1.20E-03 209

RF 3.42E-02 1.84E-02 0.14% 3.46E-02 73
TTF-RF 6.41E-03 1.09E-02 6.40% 1.28E-02 62

NN 4.71E-02 2.62E-02 0.51% 7.17E-02 3200
TTF-NN 1.41E-02 1.43E-02 4.00% 3.78E-02 396

NN-Transfer 5.79E-02 2.94E-02 0.73% 5.33E-02 3000
Meta Learning 1.69E-02 2.16E-02 0.45% 4.09E-02 2666

DSS 1.77E-01 2.55E-01 0.00% 0.00 4
DSS-Sup 1.49E-01 2.66E-01 0.00% 0.00 4

TCA-GNN 8.54E-02 3.55E-02 4.11% 1.48E-05 600
SOCP-OPF 2.88E-04 1.13E-01 0.00% 0.00 18

for active power will be fully satisfied. Only the voltage

magnitude inequality constraints may be violated, which is

the reason why the MVE value is so small. Even though

the “Meta Learning” method does not require to select the

transfer route, it can be considered as the special “transfer

learning” method which aims to transfer the model from one

“virtual topology” to new topology. Thus, the performance of

this method highly depend on the “virtual transfer route”. In

addition, it has been proved that “Meta Learning” requires a

large number of training samples to achieve satisfying model

performance [33] [47].

Comparing “DSS”, “DSS-Sup” and methods applying the

proposed framework, one may observe that the weak super-

vised learning methods or supervised learning methods fail

to learn an accurate OPF mapping under this limited training

sample scenario. This is mainly because there are so many

parameters that need to be updated for this model, and 500

samples for each historical topology and 56 samples for the

new topology are not enough. The other drawback of the

“DSS” and “DSS-Sup” is long-time model training, which is

also not suitable for real power grids.

Comparing “SOCP-OPF” and methods applying the pro-

posed framework, one may observe that our method can

provide equality constraints enhanced OPF solutions at a faster

pace. The reason is the SOCP-OPF can provide exact OPF

solutions under the radial networks. For the mesh networks,

the estimation error for the voltage angle is large, which leads

to a large PFEE value.

Overall, even though “NN-Transfer”, “Meta Learning”,

“GPR”, “TCA-GNN”, and “NN” could provide the OPF

solution in real time, they may tend to provide sub-optimal

OPF solutions. In contrast, we could offer a “good enough”

OPF solution with acceptable time spent on problem-solving.

Note that the OPF solutions that don’t satisfy the inequality

constraints can be acceptable since the MVE is small for

“TTF-GPR”, “TTF-NN”, and “TTF-RF”. In addition, accurate

variance quantification results can be obtained by applying the

proposed framework, which can help us construct a reliable

ensembled model to obtain optimality and equality feasibility-

enhanced OPF solution.

3) The impact of transfer route selection: To demonstrate

the impact of transfer route selection, the “TTF-GPR” is

chosen. Note that the 500 training samples for each historical
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TABLE IV
PERFORMANCE COMPARISON FOR VARIANCE QUANTIFICATION (14-BUS

SYSTEM)

Method AQS (PG) AWS (PG, 80%PI) AWS (PG, 60%PI)

GPR 8.46E-01 6.08 4.25
TTF-GPR 1.50E-01 1.17 0.72

QRF 2.18E+00 14.01 10.01
TTF-RF 2.53E-01 1.85 1.18

QNN 1.81E+00 9.79 7.94
TTF-NN 3.22E-01 2.67 1.58

QNN-Transfer 2.02E+00 13.58 9.45
QMeta Learning 1.17E+00 10.53 6.84

Fig. 6. “TTF-GPR” model’s output comparison for generator 3 at the 50 th

testing sample

dataset are set at the same load conditions in this scenario.

The performance comparison is shown in Table V.

In terms of the mean prediction performance, the “TTF-

GPR” trained on the transfer route from Topology 5 to

Topology 2 can achieve the lowest OFE, PFEE, and MVE

compared with the “TTF-GPR” methods trained on the other

three transfer routes. It is mainly because topology 5 is the

most similar to topology 2 according to the status of switches.

All the results in Table V prove that the performance of

the model may be compromised if it is trained based on an

inappropriate transfer route.

In terms of the variance quantification performance, a

similar finding can be obtained, which supports that selecting

an appropriate transfer route is necessary.

4) Ensemble learning strategy effectiveness validation: We

first plot different “TTF-GPR” model’s output to demonstrate

the necessity of dynamic ensemble learning, which is shown

in Fig. 6. The label “TTF-GPR-x-y” represents the “TTF-

GPR” model trained on the transfer route from topology “x”

to topology “y”. According to Fig. 6, one may observe that

the variance quantification of “TTF-GPR-3-2” is larger than

any other model’s. Thus, the OPF solution obtained from the

“TTF-GPR-3-2” cannot be utilized in the ensemble learning

process; otherwise, the performance of the ensembled model

may be compromised.
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Fig. 7. Single line diagram of the modified TAS 97-bus system

To validate the effectiveness of the dynamic ensemble

learning strategy, three cases are proposed. The performance

comparison for different ensembled models is shown in Table

VI. The “average” denotes the average ensemble learning strat-

egy that uses average weights; “portrait divergence” denotes

the weighted ensemble learning strategy where the weights are

determined based on the topology similarity. Specifically, the

details of how to calculate the portrait divergence between two

topologies can be found in [45]. Note that all the ensemble

learning strategies in Table VI are based on “TTF-GPR”. To

calculate the covariance, we set nSam = 5 in this paper.

Comparing the results shown in Table V and VI, one may

observe that the performance of the ensembled model may

outperform that of some “TTF-GPR” models. However, since

the weights of “average” and “portrait divergence” are static,

their performance may be worse than the “TTF-GPR-5-2”

model. For our dynamic ensembled model, it can provide

an optimality-enhanced and equality function-satisfied OPF

solution, which can validate the effectiveness of the proposed

ensemble learning strategy. One thing need to be noticed is

that, due to the additional procedure to calculate the covariance

terms (Mean and Variance Construction block: 0.06s) and to

solve a few testing samples in a traditional solver (Weight

Determination block: 0.30s), the proposed ensemble methods

are slower than the single “TTF-GPR” models.

B. Numerical Test on the Modified TAS 97-bus System

System Description: The single line diagram is shown in

Fig. 7. The network parameters, topology, and half-year’s load

profile of each bus can be obtained in [46].

Topology Scenarios Generation & Data Usage: Eight

topology scenarios are generated, as shown in Table VII. Note

that topology 5 is set as the new topology, and the other seven

topologies are set as the historical. The details of data usage

for each topology are shown in Fig. 8.

1) Framework effectiveness validation: Similar to the mod-

ified 14-bus system, eight cases are proposed to validate the

effectiveness of the proposed framework. Due to the space

limitation, we only show the performance comparison for

mean prediction, as shown in Table VIII. Note that all the

results in Table IV are based on the transfer route from

topology 3 to topology 5. All the results confirm that the

proposed framework can be used to the practical power system.
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TABLE V
PERFORMANCE COMPARISON FOR “TTF-GPR” BASED ON DIFFERENT TRANSFER ROUTES

Transfer From Transfer To OFE PFEE MVR MVE AQS (PG) AWS (PG, 80%PI) AWS (PG, 60%PI)

Topology 1 Topology 2 4.13E-03 8.88E-03 5.00% 6.17E-03 1.82E-01 1.44E+00 8.70E-01
Topology 3 Topology 2 6.50E-03 9.50E-03 4.50% 6.26E-03 2.53E-01 1.80E+00 1.12E+00
Topology 4 Topology 2 9.50E-03 1.01E-02 4.10% 2.23E-02 5.07E-01 4.01E+00 2.66E+00
Topology 5 Topology 2 3.25E-03 8.53E-03 4.30% 1.20E-03 1.36E-01 9.94E-01 6.45E-01

TABLE VI
PERFORMANCE COMPARISON FOR DIFFERENT ENSEMBLE LEARNING METHOD (14-BUS SYSTEM)

Ensemble Method OFE PFEE MVR MVE TSU BST AQS (PG) AWS (PG, 80%PI) AWS (PG, 60%PI)

Average 4.80E-03 6.35E-03 3.90% 5.72E-03 169 - 1.98E-01 8.82E-03 4.84E-03
Portrait divergence 4.02E-03 6.44E-03 5.40% 6.12E-03 169 - 2.10E-01 1.01E-02 5.62E-03

Proposed 2.83E-03 5.96E-03 4.10% 3.90E-03 74 {0.29 ,0.30, 0.06} 1.43E-01 6.86E-03 3.54E-03

TABLE VII
DETAILS OF SEVEN TOPOLOGIES

Scenarios Active switches Number of training data

Topology 1 Sw451,709, Sw377,832 2000
Topology 2 Sw377,832 2500

Topology 3
Sw451,709, Sw377,832

Sw24,623

3000

Topology 4
Sw451,709, Sw24,623

Sw202,705

1500

Topology 5 Sw24,623, Sw202,705 200
Topology 6 Sw24,623 3000

Topology 7
Sw451,709, Sw24,623

Sw377,832, Sw202,705

1500

Topology 8 Sw202,705 1500

7284

Time horizon

Dataset horizon

Original dataset

Dataset � �1
D

Dataset � �2
D

Dataset � �3
D

Dataset � �4
D

� �6
DDataset

� �7
DDataset

� �8
DDataset

LEGEND

:Training dataset for 

different historical model

:Training dataset for TTF 

model

:Testing dataset for TTF 

model

:Validation dataset for 

TTF model

Fig. 8. Data usage for different topologies

2) Ensemble learning strategy effectiveness validation:

Three cases are proposed to validate the effectiveness of

the proposed ensemble learning strategy. The performance

comparison for mean prediction is shown in Table IX. The

sample number nSam is set as 5 in this case. All the results

confirm that the proposed ensemble learning strategy can

provide a “good enough” OPF solution with an acceptable

time cost.

C. Discussion

The number of training samples has a large impact on the

proposed framework. Enough training samples may improve

the performance of the topology transfer model but may

require a lot of time to construct the dataset and to train the

TABLE VIII
PERFORMANCE COMPARISON FOR MEAN PREDICTION (97-BUS SYSTEM)

Method OFE PFEE MVR MVE TSU

GPR 1.27E-02 4.72E-02 0.99% 1.66E-02 337
TTF-GPR 1.46E-03 2.12E-02 0.85% 9.69E-03 138

RF 3.47E-02 2.42E-02 1.04% 5.74E-02 39
TTF-RF 2.16E-03 2.67E-02 1.06% 2.01E-02 22

NN 4.23E-02 4.67E-02 1.21% 5.43E-02 2424
TTF-NN 2.06E-03 2.62E-02 0.70% 4.03E-03 213

NN-Transfer 1.40E-02 4.79E-02 0.64% 3.22E-02 2024
Meta Learning 1.08E-02 4.70E-02 0.60% 3.14E-02 1948

DSS 3.30E-01 2.52E-01 5.28% 2.42E-01 7
DSS-Sup 3.06E-01 4.04E-01 7.18% 1.21E-01 7

TCA-GNN 9.58E-02 4.56E-02 4.31% 5.84E-05 457
SOCP-OPF 1.92E-04 1.48E+00 0.00% 0.00 10

TTF-GPR

TTF-NN

TTF-RF

Fig. 9. The influence of training samples number for the proposed topology
transfer framework

model. To assess the concept and also quantify the interval of

“limited training sample”, the impact of training samples to

our proposed method is studied.

According to Fig. 9, one may observe that the quantification

interval of “limited training sample” highly depends on the

type of historical model. For example, if we use “GPR” as
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TABLE IX
PERFORMANCE COMPARISON FOR DIFFERENT ENSEMBLE LEARNING METHOD (97-BUS SYSTEM)

Ensemble Method OFE PFEE MVR MVE TSU BST

Average 1.30E-03 1.97E-02 0.84% 5.98E-03 127 -
Portrait divergence 2.03E-03 2.41E-02 0.78% 7.17E-03 127 -

Proposed 1.24E-03 1.90E-02 0.72% 5.82E-03 95 {3.13, 0.60, 0.45}

Fig. 10. The influence of samples for model training considering different
transfer routes

a historical model to obtain the predicted OPF solution, then

“TTF-GPR” can show satisfying performance with only 20

training samples, and even if we use more training samples, the

performance of “TTF-GPR” may not be improved so much.

However, if we use “NN” as a historical model, 50 training

samples are not enough for the “TTF-NN”.

Meanwhile, we conduct a simulation test on the same

system to study the impact of the transfer route on the quan-

tification interval of “limited training sample”, which can be

visualized as Fig. 10. One may observe that the quantification

interval of “limited training sample” also depends on the

transfer route. For example, 20-50 samples are enough for

model TTF-GPR-3-2 training, but 50 samples are not even

enough for model TTF-GPR-1-2 training.

Even though the quantification interval of “limited training

sample” is difficult to derive from one theory, we found that

20-40 samples are suitable for our method’s training since

almost every sub-model shows good performance compared

to other data-driven methods.

Note that the dimension of the feature vector would also

have an impact on the quantification interval of “limited

training sample”. In this paper, we did not consider the case

of islands or node outages caused by topology changes. Thus,

the quantification interval of “limited training sample” on one

specific system and fixed transfer route will not be influenced

by the complexity of the feature vector.

In addition to finding the quantification interval of “limited

training samples”, we also test the impact of threshold Tr for

the proposed dynamic ensemble learning algorithm. Note that

all the results in Fig. 11 are based on the modified 14-bus

Fig. 11. The impact of threshold Tr for the proposed dynamic ensemble
learning algorithm

Fig. 12. The impact of threshold Tr for the proposed dynamic ensemble
learning algorithm

system.

According to Fig. 11, one may observe that the larger the

value of the threshold, the less time cost and the higher OFE

for our ensemble model. Meanwhile, it is recommended to set

Tr between 2 and 8, which can balance the time cost and

performance of the ensemble model

The impact of splitting ratio for the ensemble learning

algorithm is also tested, as shown in Fig. 12. Note that all the

results are based on the modified 14-bus system, and Tr is set

to 2 to balance the time cost and the model’s performance.

According to Fig. 12, one may observe that our ensemble
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learning method is robust towards the hyper-parameter “split-

ting ratio” (between 20% and 70%) compared to the other two

ensemble methods. It is mainly because when the “splitting

ratio” is set to higher than 70%, the number of training samples

cannot support us in training the sub-models well.

D. Future Work

To avoid manually selecting the transfer route, another

promising way is to find the optimal transfer route. Generally,

finding the optimal transfer route requires measuring the

similarity (new and historical topology, new and historical

dataset, etc.) and solving a meaningful optimization problem.

Meanwhile, how to theoretically prove this transfer route is

optimal may also be important. It will be part of our future

work to address this question.

It should be noted that all the simulation results are obtained

based on the homothetic OPF Dataset. However, the “Gener-

ators cost varies” or “Generators outages” [6] may occur in

the real power grid, which can provide non-homothetic OPF

samples. To adapt our method to the non-homothetic scenario,

we will try to combine the proposed method and classification

neural networks in our future work.

According to the simulation results, one may observe that

the feasibility of solutions cannot be guaranteed by the pro-

posed method. It is important to obtain a feasible OPF solution

for a practical power grid. Thus, we will try to combine the

proposed framework and optimization layer to achieve this

goal.

It should be noted that our method belongs to the su-

pervised learning-type method, which highly relies on the

training dataset generation. To alleviate this time-consuming

process, studying how to construct an unsupervised learning

or reinforcement learning model to achieve topology change-

aware OPF problem solving will be part of our future work.

VI. CONCLUSIONS

We propose a two-stage approach to address a dilemma

that the traditional data-driven model will face when the

system’s topology changes. In Stage 1, a topology transfer

framework is proposed, where the correlation between the

new and predicted OPF solutions can be fully captured. In

Stage 2, a dynamic ensemble learning strategy is proposed to

avoid obtaining biased OPF solutions. Numerical experiments

based on the modified IEEE 14-system demonstrate that the

proposed framework can provide an optimality-enhanced and

equality function-satisfied OPF solution compared to the other

data-driven methods like “NN-Transfer” and “Meta Learning”.

Numerical experiments based on the modified TAS 97-bus

systems demonstrate the proposed framework and ensemble

learning strategy can be used in the practical power system.

In addition, we also find that the minimum training sample

requirement for the proposed framework depends on the type

of historical model used.
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