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Deep neural networks (DNNs) have beenwidely deployed in software to address various tasks (e.g., autonomous
driving, medical diagnosis). However, they can also produce incorrect behaviors that result in financial losses
and even threaten human safety. To reveal and repair incorrect behaviors in DNNs, developers often collect
rich, unlabeled datasets from the natural world and label them to test DNN models. However, properly labeling
a large number of datasets is a highly expensive and time-consuming task.

To address the above-mentioned problem, we propose neuron sensitivity-guided test case selection (NSS),
which can reduce the labeling time by selecting valuable test cases from unlabeled datasets. NSS leverages the
information of the internal neuron induced by the test cases to select valuable test cases, which have high
confidence in causing the model to behave incorrectly. We evaluated NSS with four widely used datasets and
four well-designed DNN models compared to the state-of-the-art (SOTA) baseline methods. The results show
that NSS performs well in assessing the probability of failure triggering in test cases and in the improvement
capabilities of the model. Specifically, compared to the baseline approaches, NSS achieves a higher fault
detection rate (e.g., when selecting 5% of the test cases from the unlabeled dataset in the MNIST and LeNet1
experiment, NSS can obtain an 81.8% fault detection rate, which is a 20% increase compared with SOTA
baseline strategies).
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1 Introduction
Deep neural networks (DNNs) have become an increasingly important part of various tasks and
are widely used to address a range of tasks, including autonomous driving [6], medical diagnosis [4],
and machine translation [50].The significant performance of DNN-driven software has substantially
changed our daily lives. However, it has also brought attention to the quality and reliability of such
DNN-driven software. Like conventional software, DNN-driven software is vulnerable to defects
that can result in financial losses and threaten human safety [1]. So, there is an urgent need to
develop and apply effective quality assurance techniques to DNN-driven software to ensure its
reliability and safety.

However, ensuring the quality of DNN-driven software is a complex issue, due to the differences
between DNN models and conventional software systems [12, 13, 44]. Unlike traditional software
systems that rely on developers’ manual construction of logic flow, DNNs are constructed based on a
data-driven programming paradigm [12, 13]. Thus, sufficient test data is critical to detect and repair
incorrect behaviors of DNN-driven software [2, 5, 13, 27, 32, 70], which requires DNN developers
to collect a significant amount of data from various scenarios and to hire a large workforce to label
it, which is a highly expensive and time-consuming task.

Under this situation, identifying and selecting the most valuable and representative data, which
will be misclassified by DNN-driven software, becomes critical for improving the effectiveness
and efficiency of quality assurance tasks for DNN-driven software [12, 13, 19, 22, 32]. Inspired by
the success of code coverage criteria in conventional software programs, prior researchers believe
that test cases with higher neuron coverage result in higher adequacy and better quality of DNN
testing. Then they proposed using neuron coverage to measure the adequacy of DNN testing [14,
36, 44]. For example, DeepXplore proposed neuron activation coverage (NAC) that partitions
neuron activation values into two ranges based on the threshold : , each representing a state in the
DNN. NAC-guided test case selection1 will calculate the coverage of each test case in DNN and
then select tests that obtain the highest coverage in DNN, i.e., cover more state of neurons in DNN.
Based on these coverage criteria, researchers have proposed coverage-guided test case selection
methods [12, 14, 22, 36, 44, 63] to identify valuable tests (i.e., fault-inducing inputs that DNNs will
misclassify) from candidate datasets. However, the effectiveness of these methods has been called
into question by several studies [17, 31, 65], which have revealed that increased neuron coverage
does not correlate with a higher fault detection rate (FDR, defined as the ratio of misclassified
cases among selected cases). This suggests that tests selected by neuron-coverage-guided methods
may not be as valuable as initially thought. Furthermore, similar to conventional code coverage,
neuron coverage also incurs a high overhead in the collection process, making it challenging to
apply to large-scale models [48] and datasets [10].

To address these problems, recent researchers have proposed uncertainty-based prioritization
techniques that prioritize test cases based on some rules applied to the final layer outputs of DNNs
[12, 13, 32]. These techniques prioritize test cases with a high probability of detecting incorrect
behaviors in DNNs, effectively collecting valuable test cases from a large unlabeled dataset. However,

1DeepGini provides the NAC-guided test case selection in Keras.
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Fig. 1. Neuron sensitivity is measured by the difference between the neuron activation values within the
network, when the inputs are clean and mutated samples, respectively.

these prioritization techniques typically rely on the final layer outputs, which may not accurately
reflect the internal neuron behaviors of the DNN and limit the visibility for the DNN developer [3,
42, 43] since focusing on the final layer cannot perceive the global information of the DNN. In many
cases, DNN developers need to understand the internal logic of the DNN model and identify the
root cause of incorrect behavior [33, 55, 61] to effectively optimize and debug DNN-driven software
[52, 63]. Therefore, we believe that there is a need for a prioritization technique that utilizes DNN
internal neuron information to help DNN developers efficiently debug incorrect behaviors.

To utilize internal neuron information with prioritization techniques, one way is to extend
existing prioritization techniques, e.g., DeepGini [12], Cross Entropy-based Sampling (CES)
[32], and Adaptive Test Selection (ATS) [13], which use the output of the final layer to calculate
its metrics, to use the output of the internal neurons for prioritization directly. For example,
DeepGini uses the Gini index of the output distribution produced by the DNN to prioritize test
cases. An intuitive extension could involve calculating the Gini index, not just for the final output
distribution, but for the outputs of internal neurons as well, and then integrating these values into
the prioritization process. This approach could provide a more comprehensive view of the DNN’s
behavior and potentially reveal faults that are not evident from the final output distribution alone
[21, 61]. However, this was found to be impractical (see Section 3.1) because the output of internal
neurons does not carry the same semantic information as the output of the final layer, which
corresponds to the confidence of each class. Therefore, a thoughtful reworking of the prioritization
algorithm would require a meaningful incorporation of internal neuron information.

To address this challenge, we propose neuron sensitivity-guided test case selection (NSS),
which is inspired by the concept of neuron sensitivity [21, 61, 66] in the DNN. As shown in Figure 1,
neuron sensitivity is a measure of how the output of a neuron changes with a small variation in its
input. It is often related to the neuron’s activation and is critical in understanding the neuron’s
response to different inputs [45, 66]. Specifically, we observe that a test case with high sensitivity
values for a neuron is more likely to cause the model to produce incorrect behavior. To prioritize
test cases with neuron sensitivity, we propose a novel test case’s neuron sensitivity score
(TNSScore), which represents the sum of a test case’s neuron sensitivity values across all neurons

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 188. Publication date: September 2024.



188:4 D. Huang et al.

in the DNN. A test case with a higher TNSScore means that it has a higher confidence in detecting
incorrect behavior in DNN. However, since DNNs can have millions of neurons, calculating the
TNSScore for all neurons can be computationally expensive. To address this issue and improve
efficiency, we propose Sensitive Neuron Identifier that detects sensitive neurons in the DNN using
a subset of the unlabeled dataset. Different from directly calculating TNSScore for all neurons in
DNN, our approach leverages a novel algorithm (detailed in Section 3.3) that selects a representative
subset of the dataset to accurately identify sensitive neurons, significantly reducing the computation
time required. By identifying the sensitive neurons, we can reduce the computation time required
to calculate the TNSScore, as we only need to calculate the TNSScore for the sensitive neurons.
Thus, our approach enables the effective and efficient detection of valuable test cases with high
confidence in detecting incorrect behavior in DNNs.

To validate the effectiveness of NSS, we conduct experiments with four well-designed DNN
models across four widely used datasets. We also use seven widely used data mutation strategies to
generate unlabeled candidate datasets in our experiments. The experiment results demonstrate that
NSS performs well in the test case selection tasks. Specifically, compared to baseline approaches,
NSS obtains a higher FDR. For example, when selecting a 5% test case from the unlabeled dataset
in the MNIST and LeNet1 and Fashion and ResNet20 combination, NSS can obtain 81.8% and 89.4%
FDR, which increases FDR from 61.8% to 81.8% for MNIST and LeNet1 combination. Using the
selected test cases to retrain models can increase accuracy more than baselines. For example, when
we finetune the MNIST and LeNet1 and Fashion and ResNet20 combination with 5% test cases, they
can increase 9.01% and 6.79% accuracy, which is higher than baseline approaches.

In summary, we make the following contributions:

—We define the TNSScore, which can measure the confidence of a test case being misclassified
by the DNN model. Then, we propose NSS, which can select valuable test cases from unlabeled
datasets.

—We conducted extensive experiments to investigate the performance of NSS. The results show
that NSS can significantly outperform other test selection methods and efficiently enhance
the DNN model.

2 Background
2.1 Neural Network
In our work, we focus on DNNs for classification, which can be presented as a complicated function
5 : X → Y that maps an input G ∈ X to a label ~ ∈ Y. Unlike traditional software, programmed
with deterministic algorithms by developers, DNNs are defined by the training data, along with the
network structures. Generally speaking, a DNN model consists of an input layer, an output layer,
and at least one hidden layer. Each neuron in each layer is intertwined with neurons in other layers,
and the output of each neuron is the weighted sum of the outputs of all neurons in the previous
layer. Then a nonlinear activation function (e.g., tanh, sigmoid, and ReLU) is applied. To accomplish
a specified task (e.g., image classification), a model with a predefined structure often needs to be
trained on a labeled dataset by solving the following optimization problem:

minE(L(5 (G), ~)),

where L is a loss function measuring the difference between the model output 5 (G) and the
ground-truth label ~. Cross-entropy loss is normally applied for classification-oriented tasks, which
is used to minimize the expected loss of the model on the training set and is usually achieved by
stochastic gradient descent. However, due to the imbalance of training data, noisy labels, overfit-
ting, and under-trained processes, DNNs also have some defects (e.g., an incorrect prediction for
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fault-inducing inputs). Therefore, how to fully test a DNN model becomes an important topic,
especially when it is applied in some security-critical fields (e.g., autonomous driving).

2.2 Neuron Sensitivity
2.2.1 Definition. As shown in Figure 1, neuron sensitivity in the artificial intelligence community

is used to quantify the change of neuron values when the input contains perturbation [61, 66].
Formally, the neuron sensitivity ( (#8 , (G, G ′)) of a neuron #8 in a DNN model on a set of dual pairs
(G, G ′) is defined as the average !1 norm of the differences between the outputs of neurons in the
pairs of inputs, normalized by the dimension of the neuron output vector, i.e.,

( (#8 , (G, G ′)) = |#8 (G) − #8 (G ′) | ,

where #8 (G) is the output of neuron #8 on input G , |·| denotes the norm !1 and the G ′ is mutated
by G with DNN developers specified mutation strategies (e.g., rotation, shear, blur).

2.2.2 Neuron Sensitivity-Guided Fault Detection for DNNs. In the literature, several neuron
sensitivity-guided fault detection for DNNs have been proposed to detect adversarial samples [53,
66], backdoor triggers [21, 61], and out-of-distribution samples [60] in DNNs. For example, ANP
[61] analyzes internal neuron sensitivity based on the perturbation to analyze whether the neuron is
backdoor-related. FMP [21] further utilizes feature map level sensitivity to detect backdoor feature
maps in DNNs, which obtains the state-of-the-art (SOTA) performance in backdoor defense.

2.3 Test Case Selection from Candidate Dataset
We introduce three types of test case selection strategies that are used to select valuable tests in the
candidate dataset, i.e., neuron-coverage-guided [14, 36, 44, 63], surprise-adequacy (SA)-guided
[22, 24], and uncertainty-guided test case selection [12, 13, 59].

2.3.1 Neuron-Coverage-Guided Test Case Selection. Inspired by traditional code coverage criteria,
several neuron-coverage-guided test case selection methods have been proposed to select valuable
tests from candidate datasets to accelerate the testing process [14, 36, 44, 63]. For example, NAC-
[44] and K-multisection neuron coverage (KMNC)-guided test case selection [36] are pivotal
in this landscape, where NAC considers a neuron covered if its activation is higher than a certain
threshold. KMNC divides the activation range of each neuron into k segments, and a segment is
deemed covered if the test case activations fall within it. These neuron-coverage-guided selection
strategies are based on the premise that increasing the diversity of neuron activation patterns can
expose more potential faults within the DNN. By prioritizing test cases that cover more unique
neuron activation states or segments, developers can more effectively explore the behavior space of
the model, potentially leading to the identification of faults or unexpected behaviors not captured
through traditional testing methods.

2.3.2 SA-Guided Test Case Selection. SA-guided test case selection leverages the novelty or
unexpectedness of inputs, identifying test cases that diverge significantly in their activation patterns
from what the model has previously learned. This divergence is quantified through metrics such as
likelihood-based SA (LSA) [22] and distance-based SA (DSA) [22], aiming to prioritize inputs
that could reveal unforeseen behaviors or vulnerabilities in the DNN. Techniques like multimodal
LSA (MLSA) [24] andmultimodalMahalanobis-distance-based SA (MMDSA) [23] offer refined
approaches by considering the multimodal distribution of training data, thereby improving the
model’s exposure to a wider range of diverse and potentially challenging inputs. These methods
are crucial for uncovering hidden flaws in the model by focusing on test cases that are most likely
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Fig. 2. Overview of NSS’s workflow.

to cause the DNN to behave in unexpected ways, thereby enhancing the robustness and reliability
of DNN applications.

2.3.3 Uncertainty-Guided Test Case Selection. Focused on quantifying the model’s confidence
in its predictions, uncertainty-guided strategies [12, 13, 59] employ metrics like Vanilla Softmax,
Softmax Entropy, prediction-confidence score (PCS), and Monte-Carlo (MC) Dropout to rank
test inputs. These metrics assess the uncertainty or confidence level associated with each prediction,
targeting inputs where the DNN’s output suggests a higher probability of misclassification. For
example, the SOTA approach, DeepGini [12], prioritizes test inputs by measuring the DNN’s
confidence in classifying each test input. More specifically, the test inputs that are predicted with
more similar probabilities for all classes are prioritized higher. By prioritizing inputs with higher
uncertainty, this approach aims to uncover inputs that are most informative for model improvement,
particularly useful in active learning [13] to select data points that could significantly enhance the
model’s accuracy upon retraining.

3 Methodology
The overview of NSS’s workflow is shown in Figure 2, which mainly includes two stages: (1) detect
sensitive neurons based on neuron sensitivity and (2) test case selection from the unlabeled dataset
(i.e., prioritize test case by TNSScore, which is defined in Section 3.2). Specifically, during the testing
process (Section 3.3), NSS first feeds the unlabeled candidate dataset into Sensitive Neuron Identifier
to detect sensitive neurons in the DNN model, which can reduce computational expense, and then
reports sensitive neurons to DNN developers. Then the unlabeled candidate dataset will be fed
into the model to calculate the Metric Score on the sensitive neurons, i.e., the TNSScore. Next, NSS
prioritizes test cases based on their TNSScore (Section 3.4). Finally, the cases with high scores will
be selected by NSS.

For ease of discussion, this section defines the following notations for DNNs and neurons: 5 is a
DNN, and there are = neurons (i.e., {#8 }=1 ) in the model. The 8th neuron in the DNN is denoted as #8 .
#8 (G) denotes the output of the corresponding neuron when the network input is G . The mutation
case G ′ is generated by benign mutation strategies2 such as rotation, blur, and scale, which are
widely used for data mutation during the deep learning testing process [13, 37, 54] (see Section 4.1.2).

3.1 Problem When Using Prioritization in Internal Neuron Output
Recently, uncertainty-guided prioritization strategies have been widely used in test case selection
in DNN models. However, these strategies rely on the final layer outputs, which may not accurately
reflect the internal neuron behaviors of the DNN and limit the visibility of the DNN developers
[12, 13, 32] since focusing on the final layer cannot perceive the global information of the DNN.
2Benign mutation in image augmentation typically refers to a minor or harmless change introduced during the augmentation
process, where benign mutation could include minor alterations such as rotation, translation, scaling, and cropping.
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Table 1. Comparison of FDR Using Internal Gini Prioritization versus RS for MNIST Dataset with LeNet1
and LeNet5 Models

Dataset-Model Strategy Select 5% Select 10% Select 15% Select 20%
Test Case Test Case Test Case Test Case

MNIST-LeNet1 Internal Gini 18.6% 18.4% 19.5% 20.4%
Random 21.3% 21.3% 21.3% 21.3%

MNIST-LeNet5 Internal Gini 15.0% 14.8% 16.3% 16.7%
Random 18.8% 18.8% 18.7% 18.7%

RS, random selection.

This limitation may prevent developers from detecting incorrect behaviors in the internal neuron
behaviors in DNNs [21, 40, 61, 66, 68]. To address these problems, there are two intuitive internal
neuron-related prioritization strategies to utilize internal neuron information for test case selection.
The first method is to extend existing prioritization techniques, such as the Gini metric [12], to use
the internal neuron output for prioritization directly (internal Gini). In this section, we conduct
a case study to illustrate the challenge of this approach. Specifically, we evaluate the FDR of the
internal Gini under the MNIST dataset and LeNet1 and LeNet5 models. We calculate the Gini values
of the last encoder layer of the LeNet1 and LeNet5 models and, based on the Gini value for each
test, select the top 5%, 10%, 15%, and 20% tests from the candidate dataset. The evaluation results
are shown in Table 1. We can observe that selecting 5% of test cases from the MNIST and LeNet1
and MNIST and LeNet5 combinations yields only 18.6% and 15.0% FDR, respectively, which is
even lower than random selection (RS) (randomly selecting 5%, 10%, 15%, and 20% tests from
the candidate dataset). As the test case selection ratio increases, the FDR similarly remains low or
even below RS, indicating challenges when directly applying the Gini metric to internal neuron
outputs. The second method involves previously established neuron-coverage-guided test case
selection (e.g., NAC-, KMNC-, and NPC-guided test case selection) [14, 36, 44, 63]. However, as
indicated by prior studies [17, 31, 63, 65], neuron coverage does not correlate with FDR, meaning
that higher neuron coverage does not guarantee higher FDR. Given the constraints of current test
case selection methods, including those that utilize the Gini metric on neuron outputs and neuron-
coverage-guided strategies, there is a motivation to develop more sophisticated prioritization
techniques, which would leverage detailed internal neuron information to significantly enhance
the effectiveness of test case selection in DNNs.

3.2 TNSScore
Neuron sensitivity provides valuable information on the behavior of neurons within a DNN model
and helps assess the reliability of a neuron [66]. To better prioritize test cases based on their impact
on the DNN, we propose the TNSScore. The TNSScore measures the model’s sensitivity to a given
test case and helps evaluate the likelihood of the test case being misclassified. Formally, given a test
case G and a set of internal neurons {#8 }=1 in a DNN, the TNSScore of the test case G is defined as

)#((2>A4G =

=∑
8=1

|#8 (G) − #8 (G ′) | =
=∑
8=1

( (#8 , (G, G ′)) .

To calculate the TNSScore, NSS first feeds the candidate test cases into the DNN to obtain the
activation values for each neuron. Next, a benign mutation strategy (e.g., rotation, blur, scale) is
applied to each test case to generate a mutated version G ′. Finally, NSS calculates the difference
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Algorithm 1: Sensitive Neuron Identifier
Input: 5 : DNN model function
X: Set of original test cases
: : Percentage of neurons to identify as sensitive
�4=86="DC0C8>=: Set of benign mutation strategies
Output: SN : Indices of identified sensitive neurons

1 Function Identifier(5 ,X, :):
2 Initialize #(!8BC = [0] ∗ = #Neuron Sensitivity List for = neurons
3 XBD1 = RandomSample(X, 10%) #Select 10% subset of X
4 for G ∈ XBD1 do
5 Randomly select a mutation"DC0C8>= from �4=86="DC0C8>=;
6 G ′ = "DC0C8>=(G);
7 Calculate activation values {#8 (G)}=8=1 for 5 (G)
8 Calculate activation values {#8 (G ′)}=8=1 for 5 (G ′)
9 for 8 ∈ [1, . . . , =] do
10 Update sensitivity: #(!8BC [8]+ = |#8 (G ′) − #8 (G) |

11 Identify top :% sensitive neurons: SN = argsort(#(!8BC) [−:% · = :]
12 return SN

between the activation values of each neuron for the original and mutated test case and uses this
information to obtain the TNSScore for each test case. This metric allows developers to prioritize
test cases based on their TNSScore values. Our experiments have shown that test cases with higher
TNSScore are more likely to detect incorrect behavior in the DNN model.

3.3 Sensitive Neuron Identifier
Intuitively, prioritizing test cases based on the TNSScore value in all neurons is convincing. However,
we notice that in the DNN model, the number of internal neurons is enormous. For example, the
VGG16 model has 35,749,834 neurons, and the ResNet20 model, widely used in deep learning tasks,
has 543,754 neurons, so calculating the TNSScore value in all neurons is unrealistic because it is a
highly expensive and time-consuming task.

To address this problem, we propose Sensitive Neuron Identifier (Identifier), which is designed to
identify a subset3 of the most sensitive neurons in a given DNN. Using these neurons to calculate
TNSScore can reduce the calculation time in the process. The detailed implementation of the
Sensitive Neuron Identifier is provided in Algorithm 1. Specifically, given a dataset of input samples,
we randomly produce a set of samples from the dataset (line 3). Next, we compute the sensitivity of
neurons to the selected sample pairs and record the most sensitive neurons to each pair (lines 4–10).
Finally, we select the neurons found to be sensitive in most sample pairs as the final result (line 11).

3.4 Prioritizing Test Case by Neuron Sensitivity
The testing and repair processes for DNN-driven systems are heavily dependent on manually
labeled data. While it is often straightforward to accumulate a vast quantity of unlabeled data, the
manual labeling process is considerably more costly. This issue is particularly pronounced for data

3Sensitive Neuron Identifier detects sensitive neurons with a 10% subset dataset then the Cohen’s kappa coefficients of
sensitive neuron list are all above 0.95 for five different evaluation results.
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Algorithm 2: NSS Test Case Selection
Input: G ∈ X: original test cases; : : Percentage of sensitive neuron detected by Sensitive

Neuron Identifier; # : The number of test cases to be selected by NSS.
output :X∫ : selected test cases

1 Function NSS (5 ,X, :, # ):
2 All_TNSScore = []
3 SN = Identifier(5 ,X, :)
4 for G ∈ X do
5 TNSScore = 0
6 Randomly select a mutation"DC0C8>= from �4=86="DC0C8>=;
7 G ′ = "DC0C8>=(G);
8 {#8 (G)}=8=1 ← 5 (G)’s activation values
9 {#8 (G ′)}=8=1 ← 5 (G ′)’s activation values

10 for 8 ∈ SN do
11 TNSScore+= |#8 (G ′) − #8 (G) |
12 All_TNSScore.append(TNSScore)
13 X∫ = X[0A6B>AC (All_TNSScore) [−# :]]
14 return X∫

that require specialized expertise for labeling, such as medical datasets, making it impractical to
label all collected data without discrimination. Therefore, the selective identification of test cases
becomes crucial, allowing for the prioritization of valuable data and thereby reducing labeling costs.

To select test cases with a high FDR, we propose a neuron sensitivity-guided test case selection.
Algorithm 2 shows the workflow of our selection. It first utilizes Sensitive Neuron Identifier to
detect sensitive neurons in DNN (line 3). Then it computes the TNSScore in the sensitive neuron
between each original test case G and its corresponding mutation case G ′ (lines 4–12). Then the test
case will be prioritized by their score, i.e., the test cases with a higher score will be selected by NSS
(lines 13).

Example. Here, we use a simplified example to illustrate howNSS selects test cases from unlabeled
datasets. Specifically, assume that we have six different test cases G1, G2, G3, G4, G5, and G6 and the
DNN has three sensitive neurons #1, #2, and #3. We first use benign mutations (e.g., rotation,
blur, scale) on the test cases to generate their corresponding mutation cases G ′1, G

′
2, G
′
3, G
′
4, G
′
5, and

G ′6. Then we feed these cases into the model to obtain the neurons’ activation output and neuron
sensitivity. According to the value of ( in Table 2, we can prioritize the tests as G1, G3, G4, G5, G6,
and G2. Therefore, the DNN is most sensitive to G1’s changes, which may be due to the DNN’s lack
of sufficient background knowledge of G1 and needs G1-related knowledge to improve the DNN.
While for G2, the DNN’s neuron will not be affected by G2’s mutation change, which indicates that
the DNN model has sufficient knowledge about G2, so that G2 is not a valuable case for the DNN
now (i.e., using G2 to repair the DNN will not change the DNN’s parameter).

4 Evaluation
We evaluate NSS and answer the following questions:

—RQ1 (Sensitivity): What is the correlation between TNSScore and model performance?
—RQ2 (Selection): How effective and efficient is NSS?
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Table 2. An Example to Show How NSS Prioritize Test Cases

Tests G, G ′ #1 (G), #1 (G ′), (1 #2 (G), #2 (G ′), (2 #3 (G), #3 (G ′), (3 (

G1, G
′
1 0.4, 0.3, 0.1 0.5, 0.4, 0.1 0.6, 0.4, 0.2 0.4

G2, G
′
2 0.2, 0.2, 0 0.4, 0.4, 0 0.2, 0.2, 0 0

G3, G
′
3 0.4, 0.3, 0.1 0.5, 0.3, 0.2 0.3, 0.3, 0 0.3

G4, G
′
4 0.8, 0.7, 0.1 0.5, 0.45, 0.05 0.7, 0.6, 0.1 0.25

G5, G
′
5 0.5, 0.4, 0.1 0.3, 0.2, 0.1 0.4, 0.35, 0.05 0.2

G6, G
′
6 0.3, 0.25, 0.05 0.6, 0.55, 0.05 0.4, 0.4, 0 0.1

Table 3. Datasets and DNNs for Evaluating NSS, Which Covers the Complete Set of Datasets
Evaluated by Baselines

Dataset DNN Model Neurons Layers Original Accuracy (%)

MNIST [11] LeNet-1 (L-1) [28] 3,350 5 89.50
LeNet-5 (L-5) [28] 44,426 7 91.79

CIFAR-10 [25] ResNet-20 (R-20) [18] 543,754 20 86.07
VGG-16 (V-16) [48] 35,749,834 21 82.52

Fashion [62] LeNet-1 (L-1) [28] 3,350 5 78.99
ResNet-20 (R-20) [18] 543,754 20 86.12

SVHN [41] LeNet-5 (L-5) [28] 44,426 7 84.17
VGG-16 (V-16) [48] 35,749,834 21 92.02

—RQ3 (Sample Size): How does the sample size of the sensitive neurons affect NSS’s effective-
ness?

—RQ4 (Layer Selection): How does the selected layer affect NSS’s effectiveness?
—RQ5 (BenignMutation): How does the BenignMutation affect NSS’s effectiveness?

4.1 Experiment Setup
Our evaluation was done on a GPU server with 21-core CPUs and 4 NVIDIA RTX 2080Ti graphics
cards.

4.1.1 Datasets and Models. We adopt four widely used image classification benchmark datasets
for the evaluation (i.e., MNIST [11], Fashion MNIST [62], SVHN [41], and CIFAR10 [25]), which
are most commonly used datasets in deep learning testing [12, 14, 17, 20, 22, 29, 36, 44, 54, 56, 64].
Table 3 presents the details of the datasets and models. The MNIST [11] dataset is a large collection
of handwritten digits. It contains a training set of 60,000 examples and a test set of 10,000 examples.
The CIFAR-10 [25] dataset consists of 60,000 32 × 32 color images in 10 classes, with 6,000 images
per class. Fashion [62] is a dataset of Zalando’s article images—consisting of a training set of 60,000
examples and a test set of 10,000 examples. SVHN [41] is a real-world image dataset that can be seen
as similar to MNIST (e.g., the images are of small cropped digits). The models we evaluated include
LeNet [28], VGG [48], and ResNet [18], which are also commonly used in deep learning testing
tasks [12, 14, 17, 20, 22, 29, 36, 44, 54, 56, 64]. For each dataset, we follow the setup of DeepGini
[12] and ATS [13] by selecting two different DNN models. While well-trained DNNs achieve
high accuracy on original test sets [49], this leads to a lack of fault-inducing inputs necessary for
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Table 4. Transformations and Parameters Used in Our
Experiments for Generating Unlabeled Test Cases

Transformations Parameters Parameter Ranges

Shift (BG , B~) [0.05, 0.15]
Rotation @ (346A44) [5, 25]
Scale A (A0C8>) [0.8,1.2]
Shear B (0=6;4) [15, 30]

Contrast U (608=) [0.5,1.5]
Brightness V (180B) [0.5,1.5]

Blur :B (:4A=4;B8I4) [2,7]

These mutation strategies are used for unlabeled candidate dataset
generation and BenignMutation.

evaluation, leading to significantly lower FDR, making it challenging to evaluate the performance
of the testing approach effectively. To address this issue, DeepGini utilizes adversarial tests for
evaluation, where DNNs have low accuracy for adversarial tests. However, as mentioned in several
studies [26, 31, 39, 43, 47], adversarial tests may not accurately represent data encountered in real-
world scenarios. ATS tackles this problem by employing large parameters with benign mutations.
Nevertheless, we observe that excessively increasing the parameter strengths can cause the mutated
image to lose essential information present in the original image, potentially compromising the
evaluation’s validity. To address this issue, we follow the practice of Arachne [49] and BET [57]
and use under-trained DNNs for evaluation. By employing under-trained DNNs, we ensure that the
dataset contains sufficient misclassified samples, enabling a more comprehensive and meaningful
assessment of the testing methods.

4.1.2 Benign Test Case Generation. We follow the prior benign data simulation [13, 37, 54]
strategies to generate realistic unlabeled datasets. Specifically, we use seven widely used benign
mutations (i.e., shift, rotation, scale, shear, contrast, brightness, and blur) to generate the test case
with its original label. The parameters of the mutation are shown in Table 4. We do not choose
adversarial attack (e.g., FGSM, PGD, and BIM) to generate test cases because these data cannot
represent the data collected from the real-world scenario and can lead to unreliable conclusions
[26, 31, 39, 43, 47]. During test case generation, we randomly select one benign data augmentation
from our seven augmentations to mutate a test case with its original label for each test data in the
dataset. When the original test size is 10,000, we will generate test cases of the same size. We show
one example for each dataset to illustrate the mutated examples with each mutation strategy in
Figure 3.

4.1.3 Test Case Selection. Multiple test case selections have been proposed by recent works (e.g.,
neuron-coverage-guided [14, 36, 44, 54, 63], uncertainty-guided [12, 13, 46, 58], robust-guided [7,
38, 56], SA-guided [22]). Among these, robustness-guided selection methods have been extensively
discussed [7, 26, 31, 38, 39, 43, 47, 56, 67], with a particular focus on balancing model accuracy and
robustness. These studies indicate that while strategies like RobOT [56] and PACE [7] enhance
robustness, they might compromise accuracy. Consequently, we will exclude these robustness-
oriented methods from our baseline strategies. To compare NSS with neuron-coverage-guided test
case selection, we compare NSS with the most famous metric, i.e., NAC [44] and KMNC [36] that
was proposed by DeepXplore [44] and DeepGauge [36]. Besides, we also compare NSS with NPC,
the SOTA neuron-coverage-guided test case selection proposed by Xie et al. [63], which is used to
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Fig. 3. Examples of unlabeled candidate dataset generated by our seven mutation strategies. The first column
is original images. Then from left to right partitions are generated by shift, rotation, scale, shear, contrast,
brightness, and blur mutations.

evaluate the covered path in DNN decision flow. To compare NSS with uncertainty-guided test
case selection, we compare NSS with PRIMA [58], ATS [13], DeepGini [12], Vanilla Softmax [59],
and MC Dropout [59], where Vanilla Softmax and MC Droput were proposed by Weiss and Tonella
[59], and these strategies obtain SOTA performances compared with other uncertainty-guided
test case selection methods (e.g., PCS and Entropy), so that we do not evaluate NSS with these
sub-optimal methods. To compare NSS with SA-guided test case selection methods, we compare
NSS with DSA [22] and LSA [22], these methods also illustrate SOTA performances compared
with other SA methods, e.g., MDSA, MLSA, and MMDSA [24]. Finally, we also use RS as a natural
baseline, which can help us assess whether a selection method is effective.

The parameters of the selection strategies are shown in Table 5. Specifically, we set the threshold
of NAC as 0.5 following the previous studies [12, 44, 63]. For KMNC, we follow the configuration of
Ma et al. [36] and set the k value as 1,000. For NPC, we follow the configuration of reference [63]
and set U to 0.7. For DSA and LSA, we follow the configuration of Kim et al. [22] and set the upper
bound (D1) as 2,000 and 2.0, respectively. We also set the number of buckets = as 1,000. For PRIMA
[58], we set the number of model mutants< to be 100 and the percentage of neurons/weights
selected G to be 10 for model mutation. For MC Dropout, we follow the configuration of Weiss and
Tonella [59] and use a very large number of samples (200) based on the recommendation. Other
uncertainty strategies such as DeepGini do not require hyperparameters.

4.2 What Is the Correlation between TNSScore and Model Accuracy?
To evaluate the correlation between TNSScore and model accuracy, we use the eight dataset-model
combinations in Table 3 to calculate the TNSScore. For the BenignMutation function, we use seven
different mutation strategies (i.e., shift, rotation, scale, shear, contrast, brightness, and blur) and
then with different mutation strategies randomly selected from the parameter ranges in Table 4
to calculate each unlabeled data sample’s TNSScore. The distribution of model accuracy under
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Table 5. The Parameter Configuration of Test Case Selection

Criteria Parameters Parameter Config

Random - -
NAC t (threshold) 0.5
KMNC k (k-bins) 1,000
NPC U , V , : 0.7, 0.6, 1
DSA =,D? 1,000, 2.0
LSA =,D? 1,000, 2,000
PRIMA <,G 100, 10
Softmax None None
Dropout Sample 200
Gini None None
ATS None None
NSS k (percentage of sensitive neuron) 10 (%)

Config, configuration.

Fig. 4. Accuracy distribution under different TNSScore partitions, where from the left to right the TNSScore
will increase.

different TNSScore with eight combinations of models and datasets is illustrated in Figure 4, where
we first partition the dataset into ten partitions based on their TNSScore and then calculate the
accuracy for each partition. We can observe that for each different model and dataset combination,
all of them have the same trend, i.e., lower TNSScore will have higher accuracy, which means that
TNSScore can be a representation of the test cases’ confidence for correct prediction.

Correlation Analysis. To illustrate the correlation of TNSScore and model accuracy for the input
tests, we provide the Pearson and Spearman correlation analysis in Table 6 based on the TNSScore
and model accuracy for the tests in different partitions in Figure 4. Notably, all the model and
dataset combinations exhibit correlation scores lower than −0.921, indicating a strong negative
correlation between TNSScore and model accuracy. This suggests that as the TNSScore increases,
the model accuracy tends to decrease, and vice versa. For example, the SVHN dataset combined
with the VGG-16 model architecture shows a Pearson correlation score of −0.921, highlighting a
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Table 6. Correlation Analysis of TNSScore and DNN Accuracy

Dataset MNIST Fashion CIFAR10 SVHN
Model L-1 L-5 L-1 R-20 V-16 R-20 L-5 V-16

Pearson −0.993 −0.939 −0.975 −0.963 −0.950 −0.972 −0.952 −0.921
Spearman −1.000 −0.927 −1.000 −1.000 −0.988 −1.000 −0.988 −1.000

We provide Pearson and Spearman analysis for Figure 4. L, LeNet; R, ResNet; V, VGG.

significant inverse linear relationship. Similarly, the MNIST and LeNet-5 combination achieves a
Spearman correlation score of −0.927.

Answer to RQ1: TNSScore is strongly negatively correlated with model accuracy for input tests.
For example, the Pearson and Spearman correlation score of MNIST and LeNet1 obtains −0.993
and −1.000 for TNSScore and accuracy.

4.3 How Effective and Efficient Is NSS?
4.3.1 Fault Detection. Similar to traditional software testing [15, 30, 69], test case selection tries

to find valuable test cases from a large pool of candidate unlabeled test set, which can reduce the
cost of manual labeling time once the labeling resource is limited. For a given selection method, if
a selected test set can trigger more faults means that it could reveal more defects in the software.
In this article, we follow the definition of ATS [13] to utilize FDR as our fault detection metric to
measure the effectiveness of NSS’s test case selection method. Specifically, the FDR is defined as
follows:

��'(- ) =
|-FA>=6 |
|- | ,

where |- | denotes the size of the selected test cases and |-FA>=6 | is the number of test cases
misclassified by DNN.

The evaluation results are shown in Table 7, where we compared the FDR of NSS and our
baselines at different test case selection rates (5%, 10%, 15%, and 20%). We can observe that first
neuron-coverage-guided test case selection methods (i.e., NAC, KMNC, and NPC) have lower
performance in fault detecting. Sometimes their FDRs are very similar to RS results, which indicates
that neuron coverage is not a proper metric for guided test case selection, which is consistent with
previous research [12, 13, 17, 31, 58, 59]. Second, we also compare NSS with SA-guided test case
selection methods in Table 7, where we can observe that compared with DSA and LSA, NSS still
obtains SOTA performance in all experiments. For example, when we select 5% test cases from
the candidate dataset in MNIST and LeNet1 combination, NSS obtains 81.8% FDR while DSA and
LSA only obtain 22.2% and 43.6% FDR, respectively. We can also observe that SA-guided test case
selection methods are even lower than uncertainty-guided methods in all experiments in Table 7,
which is consistent with previous study of Gao et al. [13] and Weiss and Tonella [59].

Finally, we can also observe that although uncertainty-guided test case selection methods obtain
SOTA performance compared with neuron-coverage-guided methods, they are still less effective
compared with NSS. For example, we can observe that although DeepGini has a higher FDR
compared with neuron-coverage-guided selection methods (e.g., DeepGini obtains 61.8% FDR
in MNIST and LeNet1 combination when we select 5% tests in candidate dataset, while neuron-
coverage-guided selection only obtains 42.2% FDR, respectively), it is still lower than NSS (e.g.,
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Table 7. FDR of NSS and Baselines

Dataset (DNN) Select 5% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 81.8 22.6 42.2 20.2 22.2 43.6 64.7 60.5 62.0 61.8 58.7 21.3
MNIST (L-5) 81.8 18.4 25.8 21.6 22.6 37.1 54.2 55.7 57.8 58.2 60.2 18.8
Fashion (L-1) 70.2 32.7 35.9 31.0 31.1 40.5 50.3 58.2 55.3 57.8 53.3 31.2
Fashion (R-20) 89.4 21.1 23.7 30.5 24.1 43.2 54.8 70.3 68.2 55.0 40.3 26.3
SVHN (L-5) 52.7 29.1 28.8 31.0 31.1 41.7 60.1 53.5 54.7 53.2 47.8 28.8
SVHN (V-16) 77.3 21.5 16.2 18.9 24.5 36.4 51.9 59.7 56.3 53.0 55.3 16.0
CIFAR-10 (V-16) 68.6 28.4 16.4 30.6 43.6 40.3 60.5 62.5 59.7 60.2 62.1 30.9
CIFAR-10 (R-20) 71.4 28.2 24.6 26.0 27.4 38.9 48.3 60.8 55.2 50.4 50.2 28.8

Dataset (DNN) Select 10% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 70.6 20.8 38.7 20.2 22.5 40.1 55.6 53.6 55.9 55.7 54.3 21.3
MNIST (L-5) 67.7 18.1 20.8 20.0 21.3 34.7 50.1 49.9 51.3 50.5 52.3 18.8
Fashion (L-1) 65.0 30.9 35.9 31.0 31.0 36.3 43.5 52.4 51.3 48.2 48.7 31.0
Fashion (R-20) 80.7 20.5 22.0 28.4 27.1 38.8 45.3 63.7 60.5 48.7 35.2 26.2
SVHN (L-5) 52.5 29.1 27.2 31.0 31.1 36.0 53.7 48.5 48.7 47.3 42.1 29.1
SVHN (V-16) 63.8 19.6 16.2 17.1 23.4 33.5 44.7 54.6 51.3 43.1 48.7 16.0
CIFAR-10 (V-16) 64.8 29.4 17.4 30.3 43.3 37.2 53.6 55.3 56.2 56.2 56.3 30.8
CIFAR-10 (R-20) 62.8 25.8 21.8 28.7 27.4 35.8 42.1 53.1 48.2 45.0 47.1 28.9

Dataset (DNN) Select 15% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 58.3 21.6 35.3 20.6 23.6 37.8 47.2 50.2 51.3 50.1 47.6 21.3
MNIST (L-5) 56.7 18.5 19.3 19.3 21.0 31.5 43.2 44.2 46.7 46.2 40.2 18.7
Fashion (L-1) 59.6 30.5 34.2 31.0 31.0 33.2 40.5 48.3 45.4 44.4 45.1 31.2
Fashion (R-20) 70.5 21.1 22.2 27.3 27.8 34.9 41.7 58.2 50.9 47.2 30.3 26.2
SVHN (L-5) 51.4 29.1 27.5 30.9 31.0 32.5 48.3 45.3 42.9 41.3 38.9 28.9
SVHN (V-16) 54.3 18.6 15.5 17.0 23.5 31.1 41.8 58.2 44.6 34.7 43.2 15.9
CIFAR-10 (V-16) 63.4 27.0 17.7 30.6 42.8 34.4 48.6 48.7 52.6 51.9 50.5 30.8
CIFAR-10 (R-20) 56.7 25.6 21.5 28.8 27.2 33.9 49.7 46.9 42.7 40.6 42.7 28.9

Dataset (DNN) Select 20% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 53.3 22.0 35.7 20.9 23.5 35.6 40.3 45.2 45.8 45.4 41.5 21.3
MNIST (L-5) 50.8 18.4 19.4 19.1 20.8 29.9 37.7 40.2 41.3 42.3 37.1 18.7
Fashion (L-1 57.3 30.3 34.6 31.1 31.0 30.7 37.9 42.9 40.2 39.4 40.1 31.3
Fashion (R-20) 62.0 21.4 22.8 26.7 27.6 31.3 36.5 50.7 43.6 42.7 28.5 26.2
SVHN (L-5) 51.1 29.1 28.3 30.9 31.0 29.8 43.7 40.3 39.5 35.4 33.1 28.9
SVHN (V-16) 43.3 18.2 15.6 16.6 23.1 30.2 38.6 52.1 40.2 28.9 40.1 15.9
CIFAR-10 (V-16) 60.7 29.8 18.3 30.7 42.3 31.8 43.9 43.9 49.2 48.5 46.1 30.8
CIFAR-10 (R-20) 54.1 26.4 20.7 28.5 26.4 30.6 44.1 41.8 38.6 35.4 36.9 28.9

We use green color to highlight the maximum FDR. Dropout, MC Droput; L, LeNet; R, ResNet; Softmax, Vanilla Softmax; V, VGG.

when selecting 20% of the test samples, NSS increases FDR by 20% points compared with DeepGini
in the most advantageous combination Fashion and ResNet20, even the lowest improvement is an
FDR gain of 6.15% in MNIST and LeNet1). We can also observe that other uncertainty-guided test
case selection methods such as PRIMA [58], Vanilla Softamax Weiss and Tonella [59], MC Dropout
[59], and ATS Gao et al. [13] have same trend in our experiments, i.e., they are more effective
compared with neuron-coverage-guided test case selection methods while less effective compared
with NSS.

The primary reason behind the lower FDR of uncertainty-guided selection methods lies in
their prioritization criteria, i.e., higher uncertainty with a greater likelihood of incorrect predic-
tions. This assumption leads to the uncertainty-guided selection methods trying to select tests
with higher uncertainty since they believe that these cases are more prone to prediction errors.
However, this strategy inadvertently neglects test cases that, despite being classified with high
confidence by the DNN, are still incorrect. These overlooked cases often involve inputs that have
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been manipulated to exploit the model’s vulnerabilities, such as adversarial examples [16, 38] or
inputs containing backdoor triggers [21, 55, 61], which can activate specific, sensitive internal
neurons without necessarily reflecting uncertainty in the final layer’s outputs. In contrast, NSS
overcomes this limitation by conducting a more nuanced analysis of test case behavior at the
internal neurons. By examining how test cases influence the activation of these neurons, NSS is
capable of identifying potentially misleading inputs that might be confidently misclassified by
the DNN.

Answer to RQ2.1: Test cases selected by NSS have higher FDR compared with baseline strategies
in most of the experiments. For example, when we select 5% tests from the MNIST and LeNet1
combination, NSS obtains an 81.8% FDR while baselines only obtain a 64.7% FDR.

4.3.2 Fault Detection Diversity. As mentioned by ATS [13], faults in deep learning testing share
similarities with traditional software testing [8, 9]. In both domains, fault-inducing inputs tend
to be very dense and located close to one another, which means that two faults may reflect the
same defect in DNN. To analyze the model more comprehensively, we hope the test selection
methods cannot only detect more faults but also detect more diverse faults efficiently. We leverage
the concept of fault type introduced in [13], which is defined as

�0D;C_)~?4 (G) = (!014; (G)∗ → !014; (G)),

where !014; (G)∗ denotes the ground-truth label and !014; (G) denotes the DNN prediction. For
a typical classification dataset with 10 different categories, the number of possible fault types is
10 × 9 = 90. As the candidate test cases to be selected may not introduce all types of errors, we
use the ratio of area under the curve (RAUC) following previous study [13, 58] to measure the
diversity of each selection methods.

The evaluation results of fault diversity with the percentage of selected cases increasing from
1% to 20% are shown in Figure 5, where we can observe that NSS achieved SOTA fault diversity
compared to RS and baseline methods under most of the dataset and model combinations when we
select more than about 13% of the candidate samples, the curve of NSS is always higher than other
methods. We also calculated the RAUC when we selected 20% tests from the candidate dataset to
show more accurately the ability of different methods to find diverse errors, as listed in Table 8. We
can observe that first, the RAUC of neuron-coverage-guided test case selection is close and even
sometimes lower than RS’s results, which is consistent with previous study [13, 63]. For example,
in the MNIST and LeNet1 combination, only KMNC obtained SOTA RAUC (i.e., 81.48%) compared
with RS (i.e., 74.01%), while for the MNIST and LeNet5 combination, NAC, KMNC, and NPC have
lower RAUC compared with RS. Then, we can also observe that the RAUC of NSS is still higher
than DSA and LSA. For example, in the MNIST and LeNet1 combination, NSS obtains 88.99% RAUC,
while DSA and LSA only obtain 59.77% and 62.68% RAUC, respectively. One reason is that the DSA
and LSA have lower FDR compared with NSS when we select 20% tests. For example, when we
select 20% tests in MNIST and LeNet combination, NSS obtains 53.3% FDR while DSA and LSA only
obtain 23.5% and 35.6% FDR. Then, we can also observe that NSS also has a higher RAUC compared
with uncertainty-guided baselines (i.e., DeepGini, ATS, Vanilla Softmax, MC Dropout, and PRIMA).
For example, in MNIST and LeNet1 combination, the RAUC of uncertainty-guided baselines only
obtains 84.55% (i.e., PRIMA [58]) while NSS obtains 88.99%. Finally, we can also observe that NSS
obtains SOTA performance in other combinations in Table 8, which further illustrates NSS’s fault
detection effectiveness.
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Fig. 5. The cumulative sum of the fault types coverage rate of our method and baseline selection methods.

Answer to RQ2.2: NSS can detect more diverse error-inducing inputs/tests compared with
baselines. For example, when we select 20% tests for MNIST and LeNet1 combination, NSS
obtains 88.99% RAUC while baselines only obtain 85.00% RAUC.

4.3.3 Average Percentage of Fault Detection (APFD). In software testing, the APFD metric
serves as a pivotal benchmark for assessing the efficiency of test case prioritization strategies.
The APFD value is calculated using the following formula:

�%�� = 1 −
∑=

8=1)�8

= ×< + 1
2=
,
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Table 8. The RAUC of Fault Type Coverage Rate Plots When Selecting 20% Test Cases

Dataset MNIST Fashion CIFAR10 SVHN
Model L-1 L-5 L-1 R-20 V-16 R-20 L-5 V-16

NAC 57.36 55.49 54.12 46.71 58.81 65.53 69.75 47.15
KMNC 81.48 55.86 81.57 52.63 65.39 64.71 88.35 47.98
NPC 50.68 61.29 52.78 63.15 62.07 65.07 65.61 49.84
DSA 59.77 56.46 60.72 70.45 77.03 68.27 63.83 67.02
LSA 62.68 57.56 64.41 71.9 72.94 67.44 74.24 72.37
Gini 85.00 85.33 82.96 62.28 62.23 78.53 91.54 88.47
ATS 84.48 83.98 81.57 62.28 63.48 75.42 80.96 85.69
Vanilla Softmax 83.76 81.67 78.91 59.23 60.18 72.47 90.61 84.61
MC Dropout 83.54 80.89 77.91 59.23 61.46 65.71 80.39 83.09
PRIMA 84.55 83.1 79.36 60.08 58.96 73.82 91.22 85.73
RS 74.01 65.37 70.04 71.59 74.15 72.66 90.02 74.62
NSS 88.99 91.55 85.11 72.06 77.26 86.11 98.16 89.08

L, LeNet; R, ResNet; V, VGG. We use green color to highlight the original accuracy.

Table 9. Evaluation Results of APFD for NSS and Baselines

Dataset (DNN) NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 99.18 45.73 41.86 45.27 90.68 88.43 89.25 98.22 97.43 98.23 98.48 53.27
MNIST (L-5) 98.84 43.87 39.85 42.95 84.92 80.56 92.53 97.49 97.58 98.17 98.29 49.83
Fashion (L-1 87.15 43.42 59.21 50.14 75.29 60.82 70.24 86.47 86.43 86.72 86.97 48.29
Fashion (R-20) 86.42 41.35 40.97 50.09 74.82 57.93 74.23 83.29 84.95 83.51 84.72 47.13
SVHN (L-5) 96.24 32.75 38.27 39.64 64.37 55.14 74.94 91.37 92.42 95.92 95.83 50.84
SVHN (V-16) 89.06 35.91 42.01 45.38 69.83 58.72 72.81 88.15 84.26 88.01 88.24 47.28
CIFAR-10 (V-16) 85.95 49.25 50.28 50.22 60.01 58.25 78.29 75.92 74.37 83.84 83.95 49.52
CIFAR-10 (R-20) 99.87 47.39 50.65 49.73 55.72 48.27 82.73 90.28 91.73 95.58 96.26 50.17

L, LeNet; R, ResNet; V, VGG. We use green color to highlight the original accuracy.

where = represents the total number of test cases, < is the number of faults detected, and )�8
denotes the position of the first test case that reveals the 8th fault, indexed from 1. This equation
effectively measures the test suite’s ability to detect faults early, with a higher APFD value indicating
superior test prioritization by allowing earlier detection of faults, thus optimizing testing efforts
and resources.

To illustrate NSS’s effectiveness in selecting valuable tests earlier, we report the APFD of NSS
and baselines in Table 9, where we can observe that NSS obtains SOTA APFD results across various
datasets and DNN architectures when prioritizing all tests in candidate datasets. Specifically, we
can observe that compared with neuron-coverage-guided test case selection methods, NSS obtains
higher RAUC in all combinations. For example, NSS obtains 99.18% RAUC in MNIST and LeNet1
combination, while NAC, KMNC, and NPC only obtain 45.73%, 41.86%, and 45.27% RAUC, which
is even lower than RS, consistent with previous studies [12, 59]. Then, we can also observe that
although SA-guided test case selection methods obtain higher RAUC compared with RS, they are
still lower than NSS. For example, DSA and LSA obtain 90.68% and 88.43% in MNIST and LeNet1
combination, while MNIST and LeNet1 obtains 99.18% RAUC. Next, compared with uncertainty-
guided methods, NSS still obtains SOTA RAUC in all combinations. For example, NSS improve the
RAUC in MNIST and LeNet1 combination from 98.48% to 99.18%.
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Answer to RQ2.3: NSS obtains higher APFD compared with baseline strategies. For example,
when we prioritize all candidate tests for the MNIST and LeNet1 combination, NSS obtains
99.18% APFD while baselines only obtain 98.48% APFD at most.

4.3.4 Optimization Effectiveness. After selecting valuable tests from unlabeled candidate datasets,
DNN developers will manually label the tests to retrain the DNN with these tests to improve DNN
performance. To evaluate the effectiveness of NSS in optimizing the model, we collect the selected
samples with four different ratios (5%, 10%, 15%, and 20%) and add them to the original training set
for further model tuning. The selection strategy employed is consistent with that mentioned in
Table 7. For each dataset and model combination, we use the same training hyperparameters (e.g.,
epoch, optimizer settings) to perform a fair comparison. Specifically, all models are trained for 40
epochs, with the learning rate initialized to 0.001 and stepped down to one-tenth of the original in
the 20th and 30th epochs. We use SGD as the optimizer with a Nesterov momentum of 0.99.

We provide the DNN accuracy improvement results in Table 10, where we can observe that
NSS obtains SOTA performance in most of the experiments. Specifically, compared with neuron-
coverage-guided methods, we can observe that NSS obtains SOTA performance in all experiments.
For example, when we fine-tune DNNs with 5% tests which were selected from the candidate dataset,
NSS increases 9.01% accuracy in the MNIST and LeNet1 dataset, while NAC, KMNC, and NPC only
increased 7.07%, 7.31%, and 7.10% accuracy. As shown in Table 10, we can also observe that the
accuracy improvement of DNNs fine-tuned with tests selected by neuron-coverage-guided methods
is close to RS’s result, which is consistent with previous study [12, 13, 56]. Then, compared with
SA-guided methods, we can observe that NSS is also better than DSA and LSA for all experiments.
For example, as shown in Table 10 when we fine-tune DNNs with 5% tests selected from candidate
dataset for Fashion and LeNet1 combination, NSS improve 9.43% accuracy, while DSA and LSA
only improve 4.97% to 5.17% accuracy. Finally, compared with uncertainty-guided methods, we
can observe that in most experiments, NSS obtains SOTA performance, while only in MNIST and
LeNet1 combination, DeepGini obtains SOTA performance compared with NSS. For example, when
we finetune DNNs with 5% tests for MNIST and LeNet1 combination, DeepGini increases 7.57%
accuracy, while NSS only obtains 7.44% accuracy. However, we can also notice that in other model
and dataset combinations, NSS still has SOTA performances.

In conclusion, the empirical evaluation of NSS demonstrates its superior capability in enhancing
DNN performance. This approach not only surpasses traditional neuron-coverage-guided methods
in all test scenarios but also outperforms SA-guided and certain uncertainty-guided methods,
showcasing its effectiveness in optimizing DNN accuracy. Despite the competitive performance of
methods like DeepGini in specific cases, NSS consistently emerges as the optimal choice for DNN
developers seeking to improve model performance through targeted test selection.

Answer to RQ2.4: NSS selected tests can improve more accuracy compared with baselines.
For example, when we finetune DNN with 5% tests for MNIST and LeNet1 combination, NSS
improves 9.01% accuracy while baselines only improve 7.57% accuracy.

4.3.5 Overhead. Test case selection is used to select valuable test cases from a large number of
unlabeled candidate datasets, which can reduce the labeling efforts of DNN developers. However, if
the selection method has a high overhead, it can negatively impact the efficiency and practicality
of the overall testing process. To evaluate the overhead of NSS and the baselines, we record the
time consumed by each selection method when the proportion of selected samples among all
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Table 10. Increase in DNN’s Accuracy (%) After Repairing the DNN with Test Cases Selected by DLS Testing

Dataset (DNN) Select 5% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 9.01 7.07 7.31 7.10 7.10 7.39 7.57 7.38 7.62 7.54 7.41 7.09
MNIST (L-5) 7.44 7.04 7.24 7.03 7.04 7.33 7.12 7.43 7.51 7.57 7.21 7.04
Fashion (L-1) 9.43 4.95 5.01 4.98 4.97 5.17 5.74 6.12 5.85 5.31 5.73 4.97
Fashion (R-20) 6.79 6.08 6.10 6.09 6.10 6.08 6.12 6.52 6.37 6.13 6.15 6.08
SVHN (L-5) 5.77 3.86 3.94 3.85 3.86 4.25 4.73 4.23 4.31 4.21 4.23 3.85
SVHN (V-16) 3.35 2.11 2.41 2.12 2.12 2.32 3.34 2.59 2.47 2.57 2.81 2.11
CIFAR-10 (V-16) 2.86 1.51 1.61 1.50 1.51 1.74 1.76 2.07 2.11 2.12 2.05 1.50
CIFAR-10 (R-20) 4.62 2.35 2.47 2.35 2.34 2.51 2.83 2.88 2.74 2.79 2.81 2.35

Dataset (DNN) Select 10% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 9.04 7.14 7.42 7.14 7.15 7.81 7.93 7.48 7.65 7.91 7.82 7.14
MNIST (L-5) 7.46 7.06 7.31 7.08 7.07 7.42 7.21 7.43 7.51 8.21 7.24 7.06
Fashion (L-1) 9.50 5.04 5.11 5.05 5.03 5.46 6.13 6.24 5.97 5.77 6.23 5.04
Fashion (R-20) 6.82 6.14 6.23 6.12 6.16 6.15 6.53 6.55 6.46 6.37 6.42 6.14
SVHN (L-5) 5.85 4.12 4.22 4.13 4.14 4.39 5.29 4.59 4.72 5.21 5.17 4.13
SVHN (V-16 3.56 2.40 2.51 2.38 2.39 2.57 3.47 2.83 2.70 2.92 3.03 2.38
CIFAR-10 (V-16) 3.33 1.82 1.91 1.81 1.82 1.92 2.59 2.35 2.42 2.73 2.33 1.81
CIFAR-10 (R-20) 4.73 2.44 2.54 2.43 2.41 2.55 3.02 3.14 2.98 3.02 3.15 2.43

Dataset (DNN) Select 15% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1) 9.04 7.20 7.49 7.21 7.20 7.85 7.97 7.52 7.69 8.03 7.93 7.20
MNIST (L-5) 7.46 7.07 7.37 7.09 7.08 7.54 7.34 7.43 7.51 8.43 7.25 7.08
Fashion (L-1) 9.53 5.10 5.21 5.09 5.08 5.53 6.25 6.53 6.07 6.01 6.31 5.09
Fashion (R-20) 6.86 6.26 6.31 6.27 6.27 6.38 6.67 6.63 6.48 6.52 6.60 6.26
SVHN (L-5) 6.10 4.38 4.45 4.36 4.37 4.77 5.56 4.83 4.86 5.77 5.48 4.37
SVHN (V-16) 3.67 2.57 2.65 2.58 2.57 2.85 3.55 3.24 3.09 3.16 3.17 2.57
CIFAR-10 (V-16) 3.84 2.02 2.22 2.04 2.03 2.19 3.13 3.15 3.17 3.21 2.51 2.04
CIFAR-10 (R-20) 4.82 2.55 2.71 2.55 2.56 2.67 3.59 3.42 3.29 3.47 3.41 2.56

Dataset (DNN) Select 20% Test Cases
NSS NAC KMNC NPC DSA LSA PRIMA Softmax Dropout Gini ATS RS

MNIST (L-1 9.07 7.26 7.53 7.26 7.27 7.89 8.11 7.65 7.78 8.07 8.01 7.26
MNIST (L-5) 7.47 7.09 7.41 7.10 7.08 7.83 7.55 7.44 7.52 8.62 7.25 7.08
Fashion (L-1) 9.63 5.12 5.24 5.12 5.13 5.68 6.34 6.79 6.24 6.15 6.47 5.12
Fashion (R-20) 6.88 6.31 6.37 6.32 6.31 6.43 6.82 6.71 6.59 6.63 6.63 6.32
SVHN (L-5) 6.33 4.61 4.72 4.61 4.59 4.89 5.82 5.08 4.97 5.92 5.69 4.61
SVHN (V-16) 3.72 2.80 2.92 2.82 2.79 2.92 3.56 3.47 3.28 3.32 3.40 2.81
CIFAR-10 (V-16) 4.33 2.49 2.57 2.49 2.49 2.89 3.63 3.42 3.59 3.37 2.77 2.49
CIFAR-10 (R-20) 4.92 2.71 2.77 2.72 2.72 2.85 4.05 3.75 3.63 3.91 3.76 2.71

DLS, test case selection methods; L, LeNet; R, ResNet; V, VGG. We use green color to highlight the original accuracy.

candidates is 5%, 10%, 15%, and 20%, respectively. In this experiment, we take the time consumption
for RS as 0 seconds. The evaluation results are shown in Figure 6. First, we can observe that
neuron-coverage-guided selection methods (i.e., NAC, KMNC, and NPC) approximately consume
hundreds of seconds on smaller models and close to or over 103 seconds on larger models. The
slowest KMNC-based selection generally takes several hours to complete, consistent with recent
research results [12, 13], which is due to neuron-coverage metric-guided selection methods are
based on a greedy search to select test samples one by one with time complexity $ (<=2) [12],
where m is the number of elements (e.g., neurons) to cover and n is the size of unlabeled datasets.
Then, we can also observe that NSS is more efficient compared with SA-guided test case selection
methods in most experiments. However, for the SVHN dataset, LSA obtains competitive results
with NSS, which is due to the SVHN dataset having more data samples in the dataset compared
with other datasets. Then, NSS will require more time for ArgSort function. Finally, we can also
observe that NSS will require more time compared with uncertainty-guided selection methods. For
example, NSS is slower than DeepGini in all experiments which is because DeepGini only requires
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Fig. 6. Overhead on all dataset and model combinations. The vertical axis is the logarithmic coordinate.

calculating the Gini score and the use ArgSort function to select tests with higher Gini scores.
However, NSS will first utilize Sensitive Neuron Identifier to detect sensitive neurons in DNNs and
then calculate TNSScore for these neurons, which inevitably requires more time for NSS. We also
notice that ATS will spend more time compared with DeepGini and NSS, which is because ATS
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Table 11. Time Overhead Breakdown for NSS across Different Datasets and Models When We Select 20%
Test Cases from Candidate Dataset

Dataset MNIST Fashion CIFAR10 SVHN

Model LeNet1 LeNet5 LeNet1 ResNet20 VGG16 ResNet20 LeNet5 VGG16

Test case selection 5.62 5.68 5.76 6.68 7.40 7.18 12.61 15.67
Sensitive Neuron Identifier 36.76 37.13 36.77 66.40 39.97 46.60 89.36 95.92

Full result 382.74 412.52 371.59 682.73 415.28 489.33 815.72 1035.46

Full result means that we select 20% test cases based on all neuron’s TNSScore.

will calculate the extra pattern and fitness score, which cause it slower than NSS and Gini. We can
also observe in uncertainty-guided selection methods, that only MC Dropout requires more time
compared with other methods (i.e., requires 102 to 103 seconds for test case selection), which is
due to MC Dropout requires several times dropout process since the sample parameters are 200
(default setting in other articles [59]).

Answer to RQ2.5: NSS obtains competitive results compared with uncertainty-guided test case
selection methods.

4.3.6 Breaking Down the Overhead of NSS. As shown in Figure 6, we illustrate the overhead of
NSS and baseline strategies. In this section, we further break down the overhead of NSS in Table 11.
Specifically, as illustrated in Algorithms 1 and 2, two main components contribute to the overhead
of NSS: Sensitive Neuron Identifier and Test Case Selection. During the selection process, NSS
will first use a small subset in the dataset, where both the Sensitive Neuron Identifier and Test
Case Selection use BenignMutation to obtain mutation cases for the input G . Then G and G ′ are
fed into the models and the neuron sensitivity is calculated. However, the test case selection will
only compute the neuron sensitivity for the sensitive neurons for all candidate datasets. As shown
in Table 11, we can observe that when we select 20% tests based on the TNSScore for sensitive
neurons (i.e., we first utilize a small subset to detect sensitive neurons in DNNs and then calculate
TNSScore in these neurons), we only require about 10% time compared with selecting 20% tests
based on all neurons’ TNSScore in DNNs since when we first identify sensitive neurons in DNNs,
the test case selection process only requires a few times (e.g., about 10.06% to 18.51% in Table 11)
compared to the Sensitive Neuron Identifier.

Answer to RQ2.6: Sensitive Neuron Identifier largely reduce the overhead of NSS. For example,
with the Sensitive Neuron Identifier, the overhead of MNIST and LeNet1 decreases from 382.74
seconds to 42.38 seconds.

4.4 How Does Sensitive Neuron Size Affect NSS’s Effectiveness?
The FDR experiment results in Table 7 are based on Top-10% most sensitive neurons across all
datasets and models, which derives from our empirical studies where we can obtain adequate
performance (FDR) while maintaining sufficient selection efficiency with Top-10% neurons. How-
ever, a fixed percentage of neurons may not generalize well to models, so we also study how the
proportion of sensitive neurons tested would affect the estimation of the value of a test case and
further affect the FDR.
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Table 12. FDR with the Ratio of Sensitive Neurons (Sampled from the
Last Encoder Layer) Ranging from 1% to 100%

Dataset (DNN) Top k% Sensitive Neurons
1% 5% 10% 20% 100%

MNIST (LeNet-1) 48.9% 51.4% 53.3% 56.7% 59.3%
MNIST (LeNet-5) 44.8% 50.0% 50.9% 51.8% 54.3%
Fashion (LeNet-1) 54.4% 57.0% 57.4% 61.2% 58.3%
Fashion (ResNet-20) 54.5% 60.3% 62.0% 63.9% 66.0%
SVHN (LeNet-5) 47.1% 50.9% 51.2% 51.8% 52.2%
SVHN (VGG-16) 41.4% 43.1% 43.3% 45.7% 46.3%
CIFAR-10 (VGG-16) 55.7% 56.6% 60.7% 60.0% 60.9%
CIFAR-10 (ResNet-20) 52.9% 53.9% 54.1% 54.9% 55.1%

We report the FDR for 20% of the test cases.

Fig. 7. The correlation between FDR and the number of sampled neurons. The dashed line represents the
data obtained by cubic spline interpolation.

The evaluation results are illustrated in Table 12, where we can observe that first whenwe increase
the percentage of sensitive neurons in DNNs, the FDRwill consistently increase in most experiments.
For example, when we increase the )>?:% from 1% to 100%, the FDR of NSS will increase from
48.9% to 59.3% for MNIST and LeNet1 combination, which is consistent with our intuition, as
more neurons tend to yield more accurate estimates. However, as discussed in Section 4.3.6, when
we increase the )>?:%, the overhead of NSS will further increase, which indicates that there is
a tradeoff between the FDR and the overhead of the NSS testing process. Second, we can also
observe that the FDR will decrease when we increase the )>?:% to 100% for some combinations.
For example, when we increase the )>?:% from 20% to 100%, the FDR will decrease from 61.2% to
58.3% for the Fashion and LeNet1 combination. We can observe that in Figure 7, similar behaviors
also existed in the Fashion and ResNet20 and MNIST and LeNet1 combinations. For example, when
we increase the)>?:% from 60% to 100% the FDR will decrease 0.65% for the Fashion and ResNet20
combination. We can also observe that MNIST and LeNet1 will also decrease 0.3% FDR when the
)>?:% increases to 100% compared with its optimal performance, which indicates that directly
utilizing all internal neurons for test case selection may not obtain SOTA FDR for test case selection
process.
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Table 13. NSS’s FDR (%) with Different Model Layers Where Sensitive Neurons Are
Sampled from

Dataset (DNN) Sensitive Neuron Selection Layer
Layer 1 Layer 2 Layer -2 Layer -1 Gini-Layer

MNIST (LeNet-1) 56.65 56.50 56.70 60.05 56.71
MNIST (LeNet-5) 51.65 51.50 51.80 53.55 51.35
Fashion (LeNet-1) 57.15 57.00 61.20 60.40 58.32
Fashion (ResNet-20) 44.25 46.30 60.65 63.90 49.37
SVHN (LeNet-5) 47.69 51.65 51.79 56.25 50.28
SVHN (VGG-16) 21.17 21.65 42.04 45.76 53.75
CIFAR-10 (VGG-16) 40.45 40.25 52.40 60.00 45.71
CIFAR-10 (ResNet-20) 30.25 33.60 40.00 54.85 48.92

Layer -1 and Layer -2 refer to the final and penultimate layers of the network’s encoder component,
respectively, while Layer 1 and Layer 2 refer to the first and the second layers of the network’s
encoder component. Gini-Layer is the last layer in the DNNs that was previously used to calculate
Gini values.

Answer to RQ3:The ratio of sensitive neurons affects the result of NSS. In most of the experiments,
increasing the ratio of sensitive neurons will increase the FDR of NSS, but it will also increase
the testing overhead.

4.5 How Does the Selected Layer Affect NSS’s Effectiveness?
Our evaluation results in Table 7 directly use the last encoder layer in DNNs to evaluate NSS’s
fault detection effectiveness, which inspired us to discuss whether the layer used in NSS will affect
its fault detection effectiveness. To answer this question, we evaluate NSS for different encoder
layers in DNNs in Table 13, where we also evaluate NSS in the final layer which is commonly
used by current uncertainty-guided selection methods (e.g., DeepGini [12] and ATS [13]). We can
observe that first, in most of the experiments, NSS’s effectiveness will increase when we consider a
deeper encoder layer in DNNs. For example, when we choose the first encoder layer in the CIFAR10
and ResNet-20 combination, the FDR of NSS only has 30.25%, while when we choose Layer -2
and Layer -1, the FDR will increase to 40.00% and 54.85%, which indicate that when we utilize
deeper encoder layer in DNNs for NSS to select tests from candidate dataset, the FDR of NSS will be
higher. This pattern suggests that deeper encoder layers, which encapsulate a broader perceptual
field and richer global semantic information, are more effective for fault detection with NSS. In
contrast, shallower layers primarily capture local, low-level data features, limiting the scope of
fault-related information that can be detected. The enhanced performance observed with deeper
layers underscores the inherent architectural advantages of DNNs, where sensitive neurons in
these layers are more likely to identify global fault-related information. This observation aligns
with strategies employed in current backdoor trigger mitigation efforts, which typically analyze
the last encoder layer to identify malicious modifications within DNNs [21].

Next, we also evaluate NSS in the DNN final layer (we note it as Gini-Layer) which is commonly
used to calculate Gini values for DeepGini in Table 13. We can observe that the FDR of NSS in the
Gini-Layer is lower than the last encoder layer of the encoder component in most of the experiments.
For example, NSS obtains 60.05% FDR in the last encoder layer in MNIST and LeNet1 combination,
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Table 14. FDR of NSS with Different Mutation Strategies for Algorithm 1 line 5–6

ResNet20 VGG16
Mutation 5% 10% 15% 20% 5% 10% 15% 20%

Shift 72.0% 63.4% 57.1% 52.6% 75.9% 67.8% 65.4% 62.8%
Rotation 69.8% 62.9% 58.2% 52.7% 73.4% 65.9% 62.7% 59.4%
Scale 70.2% 62.9% 57.4% 53.0% 68.4% 64.5% 62.7% 58.9%
Shear 71.4% 63.4% 58.3% 53.9% 69.2% 65.3% 63.1% 61.0%
Contrast 75.6% 65.1% 58.9% 53.9% 61.8% 57.6% 53.5% 50.8%
Brightness 76.0% 65.8% 60.5% 55.8% 64.2% 60.7% 55.9% 52.2%
Blur 75.6% 67.0% 60.6% 55.2% 67.3% 62.9% 59.8% 54.3%

All 71.4% 62.8% 56.7% 54.1% 68.6% 64.8% 63.4% 60.7%

Experiments are conducted on the CIFAR-10 dataset with ResNet20 and VGG16 models.

while NSS only obtains 56.71% FDR in the same configuration. The reason may be the intrinsic
difference in the type of information processed by these layers. The final fully connected layer
(Gini-Layer) in DNNs, which is typically used to calculate the Gini index in prioritization techniques
like DeepGini, is designed to make the final decision by integrating all the information processed in
the previous layers. This layer emphasizes the overall confidence level of the network’s prediction
across different classes. On the other hand, the last encoder layer of the encoder component, which
we focus on in our approach, processes more detailed and specific features that are crucial for the
internal decision-making process of the DNN. These features include but are not limited to, spatial
relationships, texture details, and other high-level attributes that are significant for recognizing
patterns in the data.

Answer to RQ4: The selected layer will affect the effectiveness of NSS. Our evaluation results
illustrate that NSS will have the SOTA FDR when we utilize the last encoder layer in our
experiments.

4.6 Does Different BenignMutation Strategies Affect NSS’s Effectiveness?
As shown in Algorithms 1 and 2, NSS will utilize BenignMutation to identify sensitive neurons in
the DNNs and select test cases from candidate datasets. To mutate test cases in candidate datasets,
we utilize seven different benign mutations recommended by recent study [13, 54] to detect sensitive
neurons in Table 7. In this section, we further evaluate NSS’s effectiveness with different benign
mutations in Sensitive Neuron Identifier and test case selection.

BenignMutation in Sensitive Neuron Identifier. We first provide the evaluation results of NSS with
different mutation strategies in Sensitive Neuron Identifier. The evaluation results are shown in
Table 14, where we can observe that first NSS obtains competitive performance in all mutation
strategies. Specifically, NSS obtains 69.8% to 76.0% FDR in seven different mutation strategies
when NSS selects 5% tests from the candidate dataset for CIFAR10 and ResNet20 combination,
which is close to the results that were selected based on all seven mutation strategies (i.e., 71.4%).
Furthermore, we can also observe that NSS obtains SOTA performance for the CIFAR10 and
ResNet20 combination with the brightness mutator and for the CIFAR10 and VGG16 combination
with the shift mutator. This indicates that certain mutators may be more beneficial for sensitive
neuron identification.
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Table 15. FDR of NSS with Different Mutation Strategies for Algorithm 2 line 8–9

ResNet20 VGG16
Mutation 5% 10% 15% 20% 5% 10% 15% 20%

Shift 52.0% 47.8% 44.9% 41.6% 79.0% 74.8% 67.0% 65.2%
Rotation 44.8% 40.1% 39.1% 37.2% 65.2% 60.3% 57.6% 54.6%
Scale 64.4% 57.8% 54.1% 50.2% 74.2% 67.5% 61.8% 56.6%
Shear 51.2% 49.8% 46.2% 43.4% 69.4% 65.7% 61.8% 58.6%
Contrast 48.4% 41.2% 38.5% 35.2% 63.0% 58.4% 53.2% 48.5%
Brightness 65.2% 56.1% 51.7% 48.6% 62.5% 56.3% 52.9% 48.7%
Blur 81.4% 80.6% 78.9% 77.0% 66.8% 62.4% 55.8% 49.4%

All 71.4% 62.8% 56.7% 54.1% 68.6% 64.8% 63.4% 60.7%

Experiments are conducted on the CIFAR-10 dataset with ResNet20 and VGG16 models.

BenignMutation in Test Case Selection. The evaluation results are shown in Table 15, where we
can observe that NSS’s FDR will largely change with different mutation strategies to guide test
case selection. For example, when we select 5% test cases from the candidate dataset for CIFAR-10
and ResNet20 combination, the FDR will change from 44.8% to 81.4% for seven different types of
mutation strategies. We can also observe that NSS with Blur mutation obtains the highest FDR
compared with other mutation strategies when we select 5% to 20% test cases (e.g., 81.4% to 77.0%
FDR) from the candidate dataset for CIFAR-10 and ResNet20 combination. However, for the CIFAR-
10 and VGG16 combination, the Shift mutation strategy consistently achieves the highest FDR
across all selection percentages, ranging from 79.0% to 65.2%. This suggests that the effectiveness
of different mutation strategies for test case selection may vary depending on the specific dataset
and model combination.

Answer to RQ5: The choice of benign mutation strategy has a significant impact on the effective-
ness of NSS. For the CIFAR10 and ResNet20 combination, NSS achieves SOTA performance when
using the Blur mutation strategy, with an FDR ranging from 81.4% to 77.0% when selecting 5%
to 20% of the test cases from the candidate dataset. In contrast, for the CIFAR10 and VGG16
combination, the Shift mutation strategy consistently yields the highest FDR, ranging from
79.0% to 65.2% across all selection percentages, which illustrate that the Blur mutator does
not always obtain SOTA performance across all dataset and model combinations. In some
cases, other mutators may outperform the Blur mutator. Since it is challenging to predetermine
which mutator will achieve SOTA performance for the NSS testing process, our paper focuses
on discussing the combination of seven mutators to provide a more comprehensive and robust
approach.

4.7 Threats to Validity
The internal validity of NSS lies in our implementations, including BenignMutation generation,
Sensitive Neuron Identifier, Test Case Selection algorithm in our code, and implementation in each
experiment in our article. To reduce the threat, four authors carefully checked the correctness of
our implementation.

The external validity of NSS lies in the test subject selection and the tools used in the evaluation.
First, the selection of datasets and DNN models could be an external threat. To reduce the threat,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 188. Publication date: September 2024.



Neuron Sensitivity-Guided Test Case Selection 188:27

we follow the current study to select four widely used datasets (i.e., MNIST, SVHN, CIFAR-10, and
FashionMNIST) and four well-known pre-trained DNN models (i.e., LeNet1, LeNet5, VGG16, and
ResNet20). Another threat could be the generated data including mutation samples in Sensitive
Neuron Identifier and test case selection. To mitigate this threat, we follow the same setting in the
existing work [13, 54] with multiple seed configurations.

The construct validity of NSS mainly lies on the randomness, the selected baselines, metrics,
and the parameters used by NSS and baselines. First, Algorithms 1 and 2 will randomly select
mutation strategies for each test case. To mitigate this randomness, we repeat all experiments five
times and calculate the average results. For baseline selections, following recent study, we consider
three types of test case selection methods [13, 59] (i.e., neuron-coverage-guided, SA-guided, and
uncertainty-guided test case selection). For each type of selection method, we adopted SOTA test
case selection methods that have been widely evaluated by our baseline strategies. We compare
NSS with these SOTA baselines to demonstrate the effectiveness of our proposed test case selection.
Next, the metrics used in our article could be a threat. To reduce the threat, we follow recent studies
[12, 13, 59] to utilize FDR, RAUC, and APFD to measure fault detection effectiveness of NSS and
baselines. Finally, the parameters used in our method and baselines could be a threat. To reduce the
threat, for baselines, we follow the setting of existing works [12, 13, 44, 59, 63]. For our method, we
set multiple different configurations for )>? %.

5 Related Work
This section discusses related work in three groups: neuron-coverage-guided test case selection,
SA-guided test case selection, and uncertainty-guided test case selection.

5.1 Neuron-Coverage-Guided Test Case Selection
Pei et al. [44] propose the first white-box coverage criteria (i.e., NAC), which calculates the per-
centage of activated neurons. DeepGauge [36] then extends NAC and proposes a set of more
fine-grained coverage criteria (e.g., KMNC, NBC, SNAC, and TKNC) by considering the distribution
of neuron outputs from the training data. Inspired by the coverage criteria in traditional software
testing, some coverage metrics [35, 37, 51] are proposed. DeepCover [51] proposes the MC/DC
coverage of DNNs based on the dependence between neurons in adjacent layers. To explore how
inputs affect neuron internal decision logic flow, Xie et al. [63] propose NPC to explore the neuron
path coverage. DeepCT [35] adopts the combinatorial testing idea and proposes a coverage metric
that considers the combination of different neurons at each layer. DeepConcolic [52] analyzed
the limitation of existing coverage criteria and proposed a more fine-grained coverage metric
that considers the relationships between two adjacent layers and the combinations of values of
neurons at each layer. Recently, Liu et al. [34] proposed DeepState to select data based on a stateful
perspective of RNN, which identifies the possibly misclassified test by capturing the state changes
of neurons in RNN models. Since DeepState needs to capture the LSTM and other similar RNNs
to analyze its state change, so DeepState is mainly used in RNN. DeepImportance [14] proposes
the concepts of important neuron, which are core contributors in decision-making, by only testing
important neuron’s coverage can decrease the testing time. Our study demonstrated that using these
coverage criteria, coverage-based test prioritization is not effective and efficient (Section 4.3), which
is usually time-consuming and highly expensive. Sometimes, its effectiveness is even worse than
random prioritization. Instead, our approach uses a simple metric by analyzing internal neuron
sensitivity to become more effective and efficient.
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5.2 SA-Guided Test Case Selection
The SA-guided test case selection method identifies test cases that are most surprising when
compared to the training set. As the pioneering method of SA for deep learning testing, Kim
et al. [22] introduced LSA and DSA. LSA calculates the surprise of a test input by estimating the
negative log-likelihood of its activation traces using a Gaussian kernel density estimator, which
is parameterized based on the training set. Conversely, DSA measures surprise as the ratio of the
Euclidean distance between a test input’s activation traces and the nearest training activation traces
of the same class, to the distance between that point and the nearest training activation traces of
a different class. To reduce the overhead of DSA, Kim et al. [23] propose MDSA, which offers an
efficient alternative to likelihood-based SA by calculating the likelihood of a test’s activation traces
using only the covariance matrix of the training set, enabling constant prediction runtimes and
potentially reduced memory requirements through online covariance estimation for large datasets.
However, recent studies [23, 59] also mentioned that although MDSA improves the efficiency of the
test case selection process, the FDR and APFD of MDSA were lower than DSA. Recently, Kim and
Yoo [24] proposed Multi-Modal SA-guided test case selection, introducing MLSA and MMDSA to
address the complexities of multi-modal distributions in the training set. MLSA utilizes a Gaussian
mixture model for a more accurate estimation of test input surprise by accounting for the diverse
distributions of activation traces, whereas MMDSA clusters activation traces with the k-means
algorithm, applying MDSA within each cluster to tailor the assessment of surprise to the nuanced
structure of the data. Although SA-guided methods have been widely used for test case selection
Kim et al. [22], Feng et al. [12], Gao et al. [13], Weiss and Tonella [59], Xie et al. [63], Wang et al.
[58], researchers also mentioned that they are less effective compared with uncertainty-guided test
case selection methods.

5.3 Uncertainty-Guided Test Case Selection
The uncertainty-guided test case selection aims to select test cases in DNNs that exhibit low confi-
dence in their predictions, thereby highlighting potential vulnerabilities. As the first uncertainty-
guided test case selection for DNNs, DeepGini [12] computes a Gini score for inputs based on
the output of the final layer, serving as a heuristic for uncertainty. Building on this foundation, Li
et al. [32] introduced CES, a method that prioritizes test cases using CES derived from the final
layer’s output. Besides, Gao et al. [13] proposed ATS, which leverages the difference between the
model output to measure the behavior diversity of the DNN test case. However, since ATS requires
the calculation of fitness scores for all classes, it requires more computation times compared with
DeepGini. Furthermore, Wang et al. [58] developed PRIMA, a pioneering approach that prioritizes
test inputs capable of eliciting divergent predictions across various mutated model versions.4 Weiss
and Tonella [59] conducted an empirical analysis demonstrating that straightforward uncertainty-
guided techniques, such as employing the Vanilla Softmax output, Softmax Entropy, and MC
Dropout can achieve SOTA performance in test case selection. Additionally, Weiss and Tonella
[59] proposed the PCS guided test case selection, which selects tests by examining the softmax
likelihood disparity between the predicted class and its closest competitor. Our observation is that
uncertainty-guided methods are focused on the model’s final layer’s output and ignore utilizing
internal neuron information, which means that these uncertainty-guided methods may ignore the
internal-neuron-related test cases which will induce internal neurons into an error and then cause
the model to have incorrect behaviors even though the final layer output has high confidence. For
example, ANP [61] and FMP [21] mentioned that some test cases can cause internal neurons to
have incorrect behaviors while the final layer output has high confidence. Our method utilizes

4After discussing with Wang et al., we classify PRIMA as an uncertainty-guided method.
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internal neuron information by proposing the TNSScore to reveal how a test case affects internal
neuron behaviors, which causes our method to become more effective and efficient.

6 Conclusion
In this article, we propose NSS, a neuron sensitivity-guided test case selection method, and we also
propose a Sensitive Neuron Identifier to detect sensitive neurons in the model. The experimental
results of the article show that NSS can efficiently find more valuable test cases, which can be used to
improve the quality of the model. NSS combines the advantages of existing neuron coverage criteria
and prioritization techniques (i.e., allows the selected test cases to find neuron’s corner cases), and
these test cases also have higher confidence triggering the model into error. Our evaluation results
illustrate that utilizing NSS selected tests to fine-tune DNN models can improve accuracy more
than baselines. For example, when we select 5% test cases from the MNIST and LeNet1 combination,
NSS obtains 81.8% FDR, when we use these test cases to finetune the LeNet1, it can increase 9.01%
accuracy.
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