

1 A new methodology for the real-time limited-stop bus service design
2 problem

3 **Jintao Hu**

4 Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

5

6 **W.Y. Szeto**

7 Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

8 The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China

9

10 Guangdong-Hong Kong-Macau Joint Laboratory for Smart Cities, China

11 Tel: 852-28578552; Email: ceszeto@hku.hk

12

Abstract

13 Providing limited-stop bus services can improve the efficiency of bus systems. This paper
14 proposes a new two-stage strategy for providing real-time limited-stop bus services for a
15 corridor and the corresponding model is developed. In the first (tactical planning) stage, given
16 the maximum number of different limited-stop services, an operator determines a set of limited-
17 stop services based on historical bus travel times and passenger arrival rates. In the second
18 (operational) stage, an operator selects one service from the set of limited-stop services obtained
19 in the first stage for each limited-stop vehicle based on (short-term) predictive travel times and
20 passenger arrival rates. Prediction errors are considered in the second stage. An enhanced
21 artificial bee colony algorithm is developed to solve the first-stage model and the Monte Carlo
22 Simulation method is adopted to solve the second-stage model. Numerical results are presented
23 to illustrate the effectiveness and efficiency of the strategy and the effect of prediction errors.

24 **Keywords:**

25 Limited-stop bus service; A two-stage strategy; Real-time optimization; Prediction errors

26

27 1. Introduction

28 Bus operation control strategies are important instruments for bus operators to improve the
29 efficiency of bus systems (Liu et al., 2013). One of the strategies is providing limited-stop bus
30 services. In these services, buses can skip some intermediate stops on a given route. It has been
31 proved that providing limited-stop bus services can benefit passengers (e.g., Ercolano, 1984;
32 El-Geneidy and Surprenant-Legault, 2010) and operators (e.g., Silverman, 1998; Tetreault and
33 El-Geneidy, 2010). Moreover, if limited-stop bus services are applied to electric bus systems,
34 the energy utilization rate of buses can be improved (Tang et al., 2023). Because of these
35 benefits, limited-stop bus services have drawn much attention from researchers in recent years.
36 This paper focuses on providing these services, which is referred to as the limited-stop bus
37 service design problem (LSBSDP) in the literature.

38 In the literature, the strategy of providing limited-stop bus services on a given route can be
39 divided into two broad categories. One is the tactical planning strategy. In this strategy, an
40 operator determines one limited-stop service on a given route at the tactical planning level and
41 then all limited-stop vehicles (a limited-stop vehicle means the vehicle can provide a limited-
42 stop service) provide the same limited-stop service at the operational level (e.g., Wirasinghe
43 and Vandebona, 2011; Chiraphadhanakul and Barnhart, 2013; Yi et al., 2016; Albarracin and
44 Jaramillo-Ramirez, 2019; Nesheli et al., 2022). This strategy is attractive as passengers can plan
45 for it. The other is the dynamic stop-skipping strategy (e.g., Fu et al., 2003; Wu et al., 2019;
46 Zhang et al., 2017a; Zhang et al., 2017b; Gkiotsalitis, 2021; Zhang et al., 2021). In this strategy,
47 an operator does not consider the tactical planning level. Each limited-stop vehicle can provide
48 one limited-stop service out of all possible different services at the operational level and can
49 offer a different limited-stop service from the other (or the same limited-stop service as the
50 other) on a given route. It is implicitly assumed that passengers get real-time information about
51 the limited-stop service through mobile applications. Compared with the tactical planning
52 strategy, the dynamic stop-skipping strategy has higher effectiveness (i.e., it provides a more
53 system cost saving) due to its higher flexibility to skip stops. However, the strategy creates a
54 more difficult optimization problem and a higher computational burden for the real-time
55 application. Considering the lower effectiveness of the tactical planning strategy and the
56 requirement for higher computational efficiency of the dynamic stop-skipping strategy for real-
57 time applications, we propose a new two-stage strategy in this paper. The two-stage strategy
58 has 1) higher effectiveness than the tactical planning strategy and 2) higher computational
59 efficiency than the dynamic stop-skipping strategy. Furthermore, the new strategy is more

60 general than these two strategies, which are only special cases of the new strategy.

61 At the operational level of providing limited-stop services, the limited-stop service scheme
62 of a limited-stop vehicle is fixed once it departs from the starting terminal (Fu et al., 2003).
63 Therefore, when we determine its real-time limited-stop service scheme, the real (future) values
64 of bus travel times and passenger arrival rates associated with the vehicle are unknown. An
65 operator needs to predict these values before determining the limited-stop service scheme. It is
66 a common assumption that these predictive values (also named average or expected values) are
67 known and given in the literature of the real-time LSBSDP (e.g., Fu et al., 2003; Gkiotsalitis,
68 2021). This paper also adopts the same assumption. However, in previous studies, authors
69 determined the limited-stop service scheme by these predictive values directly (e.g., Fu et al.,
70 2003; Wu et al., 2019; Gkiotsalitis, 2021). Different from them, we also take prediction errors
71 into consideration. In other words, we determine the limited-stop service scheme by both the
72 predictive values and prediction errors. We believe that the prediction errors need to be
73 considered for two reasons. The first reason is that there must be prediction errors between the
74 predictive and real values. In other words, the prediction errors do not equal 0 in reality. The
75 second reason is that prediction errors can decrease the effectiveness of bus systems with
76 dynamic limited-stop bus services. For example, when an operator obtains the predictive values
77 by a prediction model with low effectiveness, if he/she directly adopts the predictive values as
78 the real values, he/she is very likely to make a wrong determination of the limited-stop service
79 scheme and the wrong determination can reduce the benefit of providing limited-stop services.
80 In our study, new models (i.e., the first- and second-stage models) for the new two-stage
81 strategy are developed to address the LSBSDP. Prediction errors are considered in the second-
82 stage model. To our best knowledge, no study has dealt with these errors when addressing the
83 LSBSDP. Moreover, the new models can provide more effective solutions than the model
84 derived from the tactical planning strategy and take less computational time than the model
85 derived from the dynamic stop-skipping strategy.

86 There are roughly two approaches to developing a model for the LSBSDP. The first one is
87 the schedule-based approach (e.g., Fu et al., 2003; Chen et al., 2015; Yu et al., 2015; Gkiotsalitis,
88 2019; Mou et al., 2020; Zhao et al., 2021; Sadrani et al., 2022). With this approach, models first
89 calculate the arrival and departure times of buses at each bus stop. Then passengers' waiting
90 and in-vehicle times can be obtained. Specifically, the waiting time of one passenger is
91 expressed as the difference between the arrival times of a bus and the passenger at his/her origin
92 bus stop, and his/her in-vehicle travel time equals the gap between the departure time of the bus
93 at his/her origin and the arrival time of the bus at his/her destination. The second one is the

frequency-based approach (e.g., Tang et al., 2016, 2018, 2019, 2020, 2022; Wang et al., 2018). Models of this approach do not focus on the arrival and departure times of buses. Passengers' waiting time is calculated directly by the bus frequency (it usually equals the reciprocal of the frequency), and their in-vehicle travel time between two successive bus stops is the mean of historical in-vehicle travel times. Unlike the schedule-based approach, the frequency-based approach is not applicable to modeling the LSBSDP at the operational level. As a result, we adopt the schedule-based approach for our model development in our study.

The solution methods to solve the models of LSBSDP can be broadly classified into exact methods and meta-heuristics. In terms of exact methods, some researchers (e.g., Ulusoy et al., 2010; Huang et al., 2021) solved their models by an enumeration while others (e.g., Leiva et al., 2010; Larrain et al., 2015; Soto et al., 2017; Tang et al., 2017) adopted non-linear programming or mixed-integer non-linear programming solvers. These methods can derive optimal solutions, but they do not apply to a long bus corridor because of their low computational efficiency. To overcome this problem, some researchers (e.g., Ulusoy and Chien, 2015; Yi et al., 2016; Torabi and Salari, 2019; Jiang and Ma, 2021; Liang et al., 2021) attempted to use meta-heuristics, e.g., genetic algorithms and artificial bee colony (ABC) algorithms. The solution method adopted in our study is also a meta-heuristic. Specifically, we develop an enhanced ABC algorithm to solve our model. We demonstrate its higher effectiveness and computational efficiency than genetic and ABC algorithms, which is shown in sub-section 5.3.

In summary, the major contributions of the paper are shown as follows:

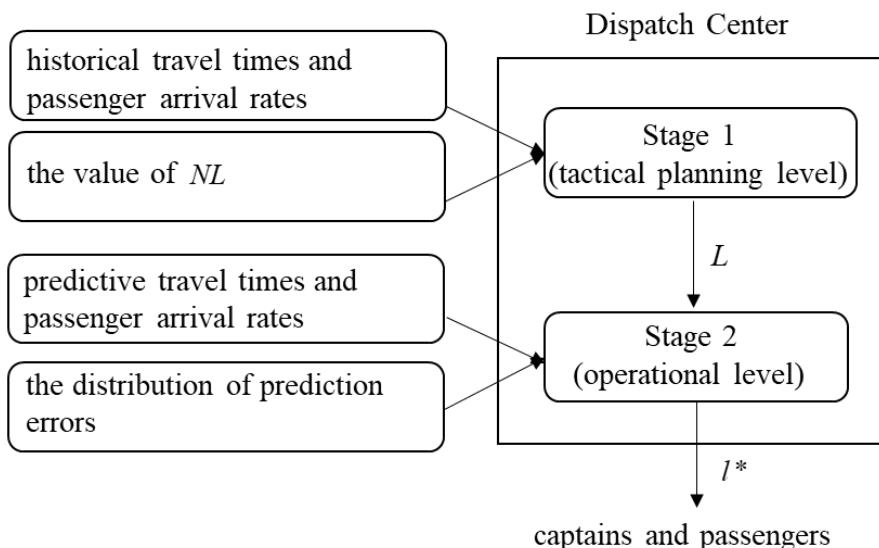
- (1) A more general two-stage strategy for the LSBSDP than the tactical planning strategy and the dynamic stop-skipping strategy is proposed.
- (2) The corresponding model is developed, and prediction errors are considered in the second-stage model.
- (3) An enhanced ABC algorithm is developed, with higher effectiveness and computational efficiency than genetic and traditional ABC algorithms.

The remainder of this paper is structured as follows: Section 2 is the problem statement. Section 3 describes the formulation of the model for each stage. Section 4 depicts the solution method. Section 5 shows numerical results, and section 6 concludes the paper.

2. Problem statement

The paper proposes a two-stage strategy to address the real-time limited-stop bus service design problem for a corridor, as shown in Figure 1. In the first stage (i.e., at the tactical

126 planning level), an operator determines a set of limited-stop services (denoted as L) based on
 127 historical bus travel times and passenger arrival rates. The maximum number of limited-stop
 128 services in L is a parameter, which is predetermined and denoted as NL . However, the stop
 129 sequence of each of these limited-stop services is required to determine. In the second stage
 130 (i.e., at the operational level), for each limited-stop vehicle, an operator selects one limited-stop
 131 service (denoted as l^*) from L based on (short-term) predictive travel times and passenger
 132 arrival rates. Predictive travel times and passenger arrival rates are assumed to be known, which
 133 can be obtained by prediction models in practice (e.g., Chien et al., 2002; Sheu, 2005).
 134 Prediction errors are considered in the second stage. After Stage 2 (i.e., l^* is determined), 1)
 135 a bus captain drives a vehicle departing from the bus terminal and provides the corresponding
 136 service; 2) passengers are informed of service l^* by mobile applications.



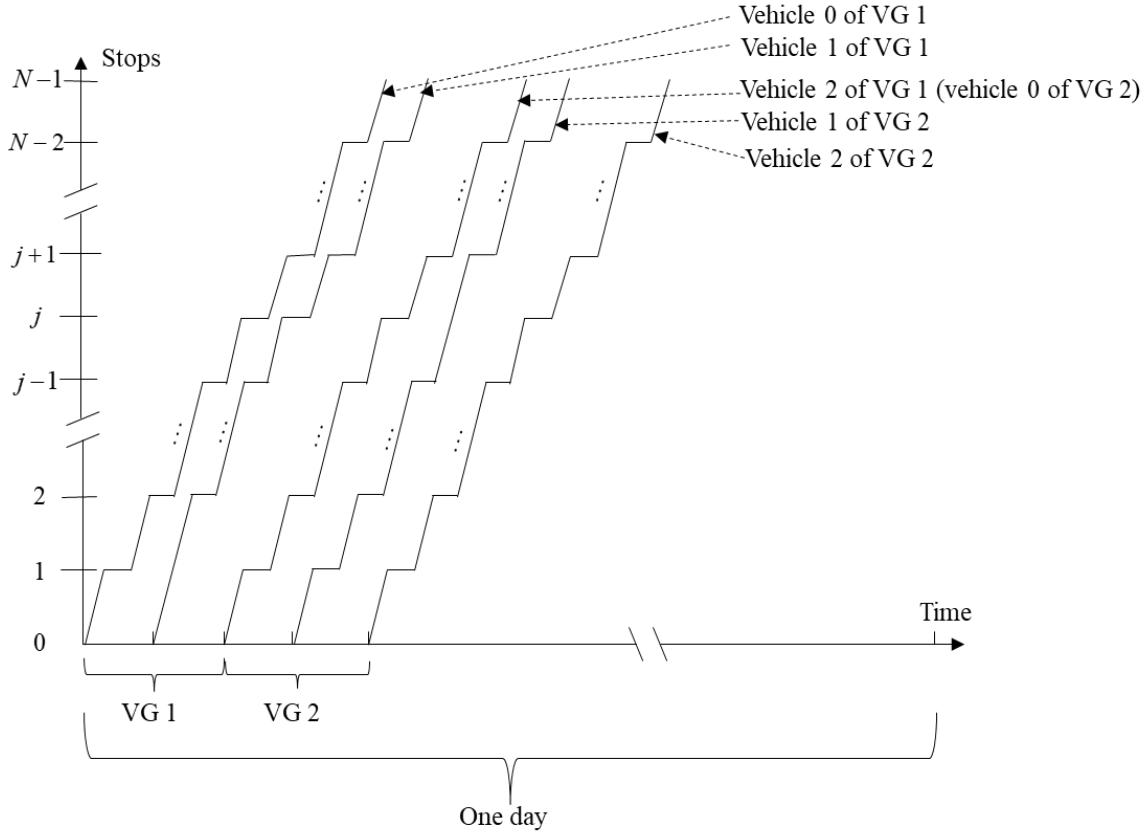
137

138
139

Figure 1. The two-stage strategy

140 As in the study of Liu et al. (2013), we assume that all-stop and limited-stop vehicles depart
 141 from the bus terminal alternately. This assumption is imposed to guarantee a minimum level of
 142 service for each origin-destination (OD) pair of passengers: The changed bus headway at each
 143 stop due to stop-skipping would not exceed two times the standard headway, to avoid large
 144 waiting time for the passengers (Liu et al., 2013). Because of this assumption, when an operator
 145 wants to determine the service of one limited-stop vehicle, the operations of all-stop vehicles
 146 before and after the limited-stop vehicle need to be considered together with the operation of
 147 the limited-stop vehicle. We let i be the vehicle type and use $i=0,1,2$ to represent the
 148 previous all-stop vehicle, the limited-stop vehicle (whose service is undetermined), and the next
 149 all-stop vehicle, respectively. These three vehicles form a vehicle group (VG) and then all

150 vehicles in one day can be grouped into a certain number of VGs, as illustrated in Figure 2. We
 151 also use N to denote the number of stops in a bus corridor. The total system cost for one VG
 152 is comprised of 1) the waiting cost for all passengers between the departure of vehicle 0 and the
 153 arrival of vehicle 2, 2) the in-vehicle travel cost associated with passengers in vehicles 1 and 2,
 154 and 3) the operating cost associated with vehicles 1 and 2.



155
 156 Figure 2. The space-time diagram of vehicles for VG 1 and VG 2

157 3. Model formulation

158 3.1. Notations

159 Since our model involves two stages, we classify notations into common notations, first-
 160 stage notations, and second-stage notations, as shown below.

161

162 Common notations

163 Indices and sets

164 i Vehicle type, $i = 0, 1, 2$.

165 j Bus stop index, $j = 0, 1, \dots, N-1$, where 0 and $N-1$ mean the starting and
 166 ending terminals, respectively. N is the number of stops in a bus corridor.

167 e The destination stop index of passengers.

168 l The index of a limited-stop service, $l = 1, 2, \dots, NL$. In this paper, an all-stop

169		service is regarded as a special case of a limited-stop service.
170	p	VG index, representing the order of vehicle groups.
171	d	Day index.
172	J	The set of bus stops, i.e., $J = \{0, 1, \dots, N-1\}$.
173	E	The set of passenger destinations, $E \subset J$.
174	L	The set of limited-stop services.
175	P	The set of VGs in one day.
176	D	The set of days for collecting historical bus travel times and passenger arrival rates in the first stage.
177	Parameters	
179	NL	The maximum number of limited-stop services predetermined in Stage 1.
180	WV	Value of waiting time.
181	IV	Value of in-vehicle travel time.
182	OV	Value of operating time.
183	Cap	The capacity of a vehicle.
184	b	The average boarding time per passenger.
185	a	The average alighting time per passenger.
186	τ_1	The time of opening and closing doors.
187	τ_2	Acceleration time.
188	τ_3	Deceleration time.
189		
190	First-stage notations	
191	Parameters	
192	$r_{i,j}^{d,p}$	The historical travel time of vehicle i of VG p between stops $j-1$ and j on day d .
193		
194	$\lambda_{i,j,e}^{d,p}$	The historical arrival rate of passengers heading to stop e from stop j between the arrival times of vehicles $i-1$ and i of VG p at stop j on day d .
195		
196		
197	Parameter vectors	
198	$\mathbf{r}^{d,p}$	$(r_{i,j}^{d,p})_{\forall i \in I, j \in J}$.
199	$\boldsymbol{\lambda}^{d,p}$	$(\lambda_{i,j,e}^{d,p})_{\forall i \in I, j \in J, e \in E}$.
200	Decision variables	
201	y_{ij}^l	A binary variable. It equals 1 if vehicle i associated with service l does not skip stop j , and 0 otherwise. Please note that vehicles 0 and 2 cannot skip stops, i.e., $y_{ij}^l = 1$, for $i = 0, 2$; $j = 0, 1, \dots, N-1$; $l = 1, 2, \dots, NL$.
202		
203		
204	\mathbf{y}^l	$(y_{ij}^l)_{\forall i \in I, j \in J}$.
205	\mathbf{y}	$(y_{ij}^l)_{\forall i \in I, j \in J, l \in L}$.
206	Functions	
207	$z(\mathbf{y})$	The minimum total operator and passenger costs (associated with all $p \in P$ in all $d \in D$).
208		
209	$f(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y})$	The minimum total operator and passenger costs associated with day d and VG p .
210		

211 $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ The total operator and passenger costs associated with day d and VG p
 212 when limited-stop service l is adopted.

213 Auxiliary variables

214	$H_{i,j,l}^{d,p}$	The headway between vehicles $i-1$ and i of VG p at stop j on day d if limited-stop service l is adopted.
215	$Z_{1,l}^{d,p}$	The waiting cost of passengers of VG p on day d if limited-stop service l is adopted.
216	$Z_{2,l}^{d,p}$	The in-vehicle travel cost of passengers on VG p on day d if limited-stop service l is adopted.
217	$Z_{3,l}^{d,p}$	The operating cost of VG p on day d if limited-stop service l is adopted.
218	$A_{i,j,l}^{d,p}$	The arrival time of vehicle i of VG p at stop j on day d if limited-stop service l is adopted.
219	$A_{2,j}^{d,p-1}$	The arrival time of vehicle 2 of VG $p-1$ at stop j on day d . It has been determined when $f(\mathbf{r}^{d,p-1}, \boldsymbol{\lambda}^{d,p-1}, \mathbf{y})$ is calculated.
220	$D_{i,j,l}^{d,p}$	The departure time of vehicle i of VG p at stop j on day d if limited-stop service l is adopted.
221	$S_{i,j,l}^{d,p}$	The dwell time of vehicle i of VG p at stop j on day d if limited-stop service l is adopted.
222	$FBP_{i,j,e,l}^{d,p}$	The number of passengers who want to travel from stop j to stop e and fail to board vehicle i of VG p on day d if limited-stop service l is adopted.
223	$FBP_{2,j,e}^{d,p-1}$	The number of passengers who want to travel from stop j to stop e and fail to board vehicle 2 of VG $p-1$ on day d . It has been determined when $f(\mathbf{r}^{d,p-1}, \boldsymbol{\lambda}^{d,p-1}, \mathbf{y})$ is calculated.
224	$IP_{i,j,l}^{d,p}$	The number of passengers on vehicle i of VG p on day d when the vehicle arrives stop j if limited-stop service l is adopted.
225	$SBP_{i,j,e,l}^{d,p}$	The number of passengers who want to travel from stop j to stop e and succeed in boarding vehicle i of VG p on day d if limited-stop service l is adopted.
226	$AP_{i,j,l}^{d,p}$	The number of passengers who alight at stop j from vehicle i of VG p on day d if limited-stop service l is adopted.
227	$W_{i,j,e,l}^{d,p}$	The number of waiting passengers who want to travel from stop j to stop e when vehicle i of VG p on day d arrives stop j .
228	$TSBP_{i,j,l}^{d,p}$	The number of passengers who succeed in boarding vehicle i of VG p on day d at stop j if limited-stop service l is adopted.

245
 246 **Second-stage notations**

247 Random variables

248	$\tilde{r}_{i,j}$	The real travel time of vehicle i of the next VG between stops $j-1$ and j . (The value of $\tilde{r}_{i,j}$ is unknown, but the mean and variance satisfy Equations (41) and (42).)
-----	-------------------	---

251	$r_{i,j}$	The predictive travel time of vehicle i of the next VG between stops $j-1$ and j .
252		
253	$\varepsilon_{i,j}^r$	The predictive error of $\tilde{r}_{i,j}$.
254	$\tilde{\mathbf{r}}$	$(\tilde{r}_{i,j})_{\forall i \in I, j \in J}$.
255	$\tilde{\lambda}_{i,j,e}$	The real arrival rate of passengers heading to stop e from stop j between the arrival times of vehicles $i-1$ and i of the next VG at stop j . (The value of $\tilde{\lambda}_{i,j,e}$ is unknown, but the mean and variance satisfy Equations (43) and (44).)
256		
257		
258	$\lambda_{i,j,e}$	The predictive arrival rate of passengers heading to stop e from stop j between the arrival times of vehicles $i-1$ and i of the next VG at stop j .
259		
260	$\varepsilon_{i,j,e}^\lambda$	The predictive error of $\tilde{\lambda}_{i,j,e}$.
261	$\tilde{\lambda}$	$(\tilde{\lambda}_{i,j,e})_{\forall i \in I, j \in J, e \in E}$.
262	Parameters	
263	$r_{i,j}^*$	A value of $r_{i,j}$.
264	$\lambda_{i,j,e}^*$	A value of $\lambda_{i,j,e}$.
265	y_{ij}^l	The decision variable in the first stage, but it is a parameter in the second stage.
266	$\tilde{r}_{i,j}$	The expected value of $\tilde{r}_{i,j}$. It can be estimated by calculating the mean of $r_{i,j}^{d,p}, \forall d \in D, p \in P$.
267		
268	$\sigma_{i,j}^{2,\tilde{r}}$	The variance of $\tilde{r}_{i,j}$. It can be estimated by calculating the variance of $r_{i,j}^{d,p}, \forall d \in D, p \in P$.
269		
270	$\sigma_{i,j}^{2,r}$	The variance of the prediction error when we predict $\tilde{r}_{i,j}$ by a prediction model.
271	$\tilde{\lambda}_{i,j,e}$	The expected value of $\tilde{\lambda}_{i,j,e}$. It can be estimated by calculating the mean of $\lambda_{i,j,e}^{d,p}, \forall d \in D, p \in P$.
272		
273	$\sigma_{i,j,e}^{2,\tilde{\lambda}}$	The variance of $\tilde{\lambda}_{i,j,e}$. It can be estimated by calculating the variance of $\lambda_{i,j,e}^{d,p}, \forall d \in D, p \in P$.
274		
275	$\sigma_{i,j,e}^{2,\lambda}$	The variance of the prediction error when we predict $\tilde{\lambda}_{i,j,e}$ by a prediction model.
276		
277	Decision variable	
278	l^*	The index of the best limited-stop service in L (associated with the next VG).
279	Function	
280	$g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l)$	The total operator and passenger costs associated with the next VG when limited-stop service l is adopted.
281		
282		

283 3.2. Assumptions

284 3.2.1. The first stage (i.e., tactical planning level)

285 With the knowledge of $\mathbf{r}^{d,p}$ and $\lambda^{d,p}$, an operator in the first stage aims to determine the
286 stop sequences of a fixed number of limited-stop services to minimize total operator and
287 passenger costs for all $p \in P$ in all $d \in D$.

288 3.2.2. The second stage (i.e., operational level)

289 In the second stage, we assume that an operator can get the values of predictive bus travel
290 times and passenger arrival rates for the next VG (i.e., $r_{i,j}^*$ and $\lambda_{i,j,e}^*$) by prediction models.
291 Then the operator determines one limited-stop service in L to minimize the operator and
292 passenger costs for the next VG, with the consideration of the (historical) prediction errors of
293 prediction models. The mean of these prediction errors is 0, while the variances of these
294 prediction errors are fixed and given.

295 3.2.3. Passenger behavior, capacity, passenger arrival rate, and waiting time

296 A passenger is assumed to wait for a vehicle that serves both his/her origin and destination.
297 Since capacity constraints are considered, he/she has to wait for the next vehicle if the arriving
298 vehicle is fully loaded. In a word, a passenger boards the first arriving vehicle that serves both
299 his/her origin and destination and is not fully loaded.

300 The passenger arrival rate between two successive vehicles is assumed to be uniform. As a
301 result, when a vehicle arrives at a stop, the average waiting time of new passengers at the stop
302 is half of the headway while the additional average waiting of remaining passengers is the
303 headway. New passengers mean that they arrive at the stop after the last vehicle leaves the stop
304 and before the arriving vehicle arrives at the stop. Remaining passengers mean that they arrive
305 at the stop before the last vehicle leaves the stop but fail to board the last vehicle because either
306 1) the vehicle is fully loaded or 2) the vehicle cannot serve their origin and destination.

307 3.2.4. Headway, dwell time, and overtaking phenomenon

308 The headway (and the bus arrival time) at the bus terminal is fixed and given. This implies
309 that the number of buses is known and given and hence the capital cost need not be considered.

310 Moreover, the headway between all-stop and limited-stop vehicles is assumed to be not greater
 311 than 15 min so that the arrival times of passengers are not affected by any stop-skipping strategy
 312 of limited-stop vehicles. Furthermore, the dwell time at each stop is determined by the numbers
 313 of boarding passengers and alighting passengers at the stop. In addition, overtaking phenomena
 314 are not allowed.

315 *3.3. Formulation*

316 3.3.1. The first stage

317 An operator in the first stage aims to determine the stop sequences of a fixed number of
 318 limited-stop services to minimize total operator and passenger costs for all $p \in P$ in all
 319 $d \in D$. The first-stage model can be formulated as follows:

320

321
$$\min z(\mathbf{y}) = \sum_{d \in D} \sum_{p \in P} f(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}) \quad (1)$$

322 Subject to

323
$$y_{ij}^l = 1, \text{ for } i = 0, 2; j = 0, 1, \dots, N-1; l = 1, 2, \dots, NL, \quad (2)$$

324
$$y_{ij}^l = 1, \text{ for } i = 1; j = 0, N-1; l = 1, 2, \dots, NL, \quad (3)$$

325
$$y_{ij}^l \in \{0, 1\}, \text{ for } i = 0, 1, 2; j = 0, 1, \dots, N-1; l = 1, 2, \dots, NL. \quad (4)$$

326

327 In Objective function (1), $f(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y})$ is the minimum total operator and passenger
 328 costs associated with day d and VG p . Constraint (2) guarantees that vehicles 0 and 2 are
 329 all-stop vehicles, and Constraint (3) ensures that vehicle 1 serves the starting and ending
 330 terminals. Constraint (4) defines y_{ij}^l to be binary variables.

331 In Objective function (1), $f(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y})$ can be computed by

332
$$f(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}) = \min_{l \in \{1, 2, \dots, NL\}} \{h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)\}. \quad (5)$$

333 $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ is the total operator and passenger costs associated with day d and VG p
 334 when limited-stop service l is adopted.

335 Let $H_{i,j,l}^{d,p}$ be the headway between vehicles $i-1$ and i of VG p at stop j on day d
 336 if limited-stop service l is adopted. When

337 $H_{i,j,l}^{d,p} \geq 0, \text{ for } i=1,2; j=0,1,\dots,N-2$ (6)

338 is satisfied (i.e., overtaking phenomena do not occur), we can obtain $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ by

339
$$h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l) = Z_{1,l}^{d,p} + Z_{2,l}^{d,p} + Z_{3,l}^{d,p}, \quad (7)$$

340
$$Z_{1,l}^{d,p} = WV \sum_{i=1}^2 \sum_{j=0}^{N-2} \sum_{e \in E} (\lambda_{i,j,e}^{d,p} H_{i,j,l}^{d,p} \cdot \frac{H_{i,j,l}^{d,p}}{2} + FBP_{i-1,j,e,l}^{d,p} \cdot H_{i,j,l}^{d,p}), \quad (8)$$

341
$$Z_{2,l}^{d,p} = IV \sum_{i=1}^2 \sum_{j=0}^{N-2} \sum_{e \in E} SBP_{i,j,e,l}^{d,p} \cdot \left(\sum_{k=j+1}^e r_{i,k}^{d,p} + \sum_{k=j}^{e-1} S_{i,k,l}^{d,p} \right), \quad (9)$$

342
$$Z_{3,l}^{d,p} = OV \sum_{i=1}^2 \left(\sum_{j=1}^{N-1} r_{i,j}^{d,p} + \sum_{j=0}^{N-2} S_{i,j,l}^{d,p} \right), \quad (10)$$

343
$$A_{0,j,l}^{d,p} = A_{2,j}^{d,p-1}, \text{ for } j=1,2,\dots,N-1, \quad (11)$$

344
$$A_{i,j,l}^{d,p} = D_{i,j-1,l}^{d,p} + r_{i,j}^{d,p}, \text{ for } i=1,2; j=1,2,\dots,N-1, \quad (12)$$

345
$$D_{i,j,l}^{d,p} = A_{i,j,l}^{d,p} + S_{i,j,l}^{d,p}, \text{ for } i=1,2; j=0,1,\dots,N-2, \quad (13)$$

346
$$H_{i,j,l}^{d,p} = A_{i,j,l}^{d,p} - A_{i-1,j,l}^{d,p}, \text{ for } i=1,2; j=1,2,\dots,N-2, \quad (14)$$

347
$$FBP_{0,j,e,l}^{d,p} = FBP_{2,j,e}^{d,p-1}, \text{ for } j=1,2,\dots,N-1; e \in E, \quad (15)$$

348
$$IP_{i,j,l}^{d,p} = \sum_{k=0}^{j-1} \sum_{e \in E, e \geq j} SBP_{i,k,e,l}^{d,p}, \text{ for } i=1,2; j=1,2,\dots,N-1, \quad (16)$$

349
$$AP_{i,j,l}^{d,p} = \sum_{k=0}^{j-1} \sum_{e \in E, e=j} SBP_{i,k,e,l}^{d,p}, \text{ for } i=1,2; j=1,2,\dots,N-1, \quad (17)$$

350
$$W_{i,j,e,l}^{d,p} = \lambda_{i,j,e}^{d,p} H_{i,j,l}^{d,p} + FBP_{i-1,j,e,l}^{d,p}, \text{ for } i=1,2; j=0,1,\dots,N-2; e \in E, \quad (18)$$

351
$$TSBP_{i,j,l}^{d,p} = y_{i,j}^l \cdot \min \left\{ \sum_{e \in E, e > j} y_{i,e}^l W_{i,j,e,l}^{d,p}, Cap - IP_{i,j,l}^{d,p} + AP_{i,j,l}^{d,p} \right\}, \text{ for } i=1,2; j=0,1,\dots,N-2, \quad (19)$$

352
$$SBP_{i,j,e,l}^{d,p} = TSBP_{i,j,l}^{d,p} \cdot \frac{y_{i,e}^l W_{i,j,e,l}^{d,p}}{\sum_{e' \in E, e' > j} y_{i,e'}^l W_{i,j,e',l}^{d,p}}, \text{ for } i=1,2; j=0,1,\dots,N-2; e \in E, \quad (20)$$

353
$$FBP_{i,j,e,l}^{d,p} = W_{i,j,e,l}^{d,p} - SBP_{i,j,e,l}^{d,p}, \text{ for } i=1,2; j=0,1,\dots,N-2; e \in E, \text{ and} \quad (21)$$

354
$$\begin{cases} S_{i,j,l}^{d,p} = y_{i,j}^l \cdot (b \cdot TSBP_{i,j,l}^{d,p} + \tau_1 + \tau_2), \text{ for } i=1,2; j=0, \\ S_{i,j,l}^{d,p} = y_{i,j}^l \cdot (\max \{b \cdot TSBP_{i,j,l}^{d,p}, a \cdot AP_{i,j,l}^{d,p}\} + \tau_1 + \tau_2 + \tau_3), \text{ for } i=1,2; j=1,2,\dots,N-2. \end{cases} \quad (22)$$

355

356 Equation (7) defines that $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ is comprised of 1) the waiting cost for all
357 passengers between the departure of vehicle 0 and the arrival of vehicle 2, 2) the in-vehicle

358 travel cost associated with passengers in vehicles 1 and 2, and 3) the operating cost associated
 359 with vehicles 1 and 2. Equations (8)-(10) are used to calculate these three costs, respectively.

360 In Equation (8), $\lambda_{i,j,e}^{d,p} H_{i,j,l}^{d,p} \cdot \frac{H_{i,j,l}^{d,p}}{2}$ is the waiting time of new passengers, whereas

361 $FBP_{i-1,j,e,l}^{d,p} \cdot H_{i,j,l}^{d,p}$ is the additional waiting time of remaining passengers. In Equation (9),

362 $SBP_{i,j,e,l}^{d,p}$ is the number of in-vehicle passengers for OD pair (j,e) and $(\sum_{k=j+1}^e r_{i,k}^{d,p} + \sum_{k=j}^{e-1} S_{i,k,l}^{d,p})$

363 is the corresponding in-vehicle travel time per passenger. In Equation (10), $(\sum_{j=1}^{N-1} r_{i,j}^{d,p} + \sum_{j=0}^{N-2} S_{i,j,l}^{d,p})$

364 is the operating time of vehicle i .

365 Equation (11) determines the arrival time of vehicle 0 of VG p at each stop: vehicle 0
 366 of VG p is just vehicle 2 of VG $p-1$. Equations (12) and (13) are included to calculate
 367 bus arrival and departure times at each stop, respectively. Equation (14) computes the headway
 368 at each stop.

369 Equation (15) sets the number of passengers who fail to board vehicle 0 of VG p to be
 370 that of vehicle 2 of VG $p-1$. Equations (16), (17), and (18) are used to compute the
 371 numbers of in-vehicle passengers, alighting passengers, and waiting passengers, respectively.
 372 Equation (19) is used to calculate the number of total passengers who can succeed in boarding.

373 Equation (20) determines the number of passengers who succeed in boarding for each OD
 374 pair, whereas Equation (21) computes the number of passengers who fail to board for each OD
 375 pair. Equation (22) defines the dwell time when we assume a 2-door operation.

376 When Objective function (1) is minimized, the optimal values of y_{ij}^l are obtained, and are
 377 used to deduce the optimal stop sequence of limited-stop service l . (A stop sequence of service
 378 l offered by vehicle 1 is represented by a string of binary numbers $y_{10}^l y_{11}^l \dots y_{1,N-1}^l$.) The
 379 collection of the optimal stop sequence of each limited-stop service is denoted as L' . As there
 380 is no constraint to ensure that all elements in L' are different, it is possible that some elements
 381 in L' are repeated. As a result, we collect all *different* elements in L' to create a new set,
 382 which is denoted as L . The size of L may be different from NL and we use $|L|$ to denote
 383 it.

384 Objective function (1) in Stage 1 represents the total cost of *all* VGs during *all* days.
 385 Conducting Stage 1 once can cover all VGs during all days and derive one L for *all* days.

386 3.3.2. The second stage

387 In the second stage, the operator needs to determine the best limited-stop service in L for
 388 the next VG by

389
$$l^* = \arg \min_{l \in \{1, 2, \dots, |L|\}} \{E(g(\tilde{\mathbf{r}}, \tilde{\boldsymbol{\lambda}}, \mathbf{y}^l))\}. \quad (23)$$

390 When

391
$$H_{i,j,l} \geq 0, \text{ for } i=1, 2; j=0, 1, \dots, N-2 \quad (24)$$

392 is satisfied (overtaking phenomena do not occur), $g(\tilde{\mathbf{r}}, \tilde{\boldsymbol{\lambda}}, \mathbf{y}^l)$ can be calculated by

393
$$g(\tilde{\mathbf{r}}, \tilde{\boldsymbol{\lambda}}, \mathbf{y}^l) = Z_{1,l} + Z_{2,l} + Z_{3,l}, \quad (25)$$

394
$$Z_{1,l} = WV \sum_{i=1}^2 \sum_{j=0}^{N-2} \sum_{e \in E} (\tilde{\lambda}_{i,j,e} H_{i,j,l} \cdot \frac{H_{i,j,l}}{2} + FBP_{i-1,j,e,l} \cdot H_{i,j,l}), \quad (26)$$

395
$$Z_{2,l} = IV \sum_{i=1}^2 \sum_{j=0}^{N-2} \sum_{e \in E} SBP_{i,j,e,l} \cdot \left(\sum_{k=j+1}^e \tilde{r}_{i,k} + \sum_{k=j}^{e-1} S_{i,k,l} \right), \quad (27)$$

396
$$Z_{3,l} = OV \sum_{i=1}^2 \left(\sum_{j=1}^{N-1} \tilde{r}_{i,j} + \sum_{j=0}^{N-2} S_{i,j,l} \right), \quad (28)$$

397
$$A_{0,j,l} = A_{2,j}, \text{ for } j=1, 2, \dots, N-1, \quad (29)$$

398
$$A_{i,j,l} = D_{i,j-1,l} + \tilde{r}_{i,j}, \text{ for } i=1, 2; j=1, 2, \dots, N-1, \quad (30)$$

399
$$D_{i,j,l} = A_{i,j,l} + S_{i,j,l}, \text{ for } i=1, 2; j=0, 1, \dots, N-2, \quad (31)$$

400
$$H_{i,j,l} = A_{i,j,l} - A_{i-1,j,l}, \text{ for } i=1, 2; j=1, 2, \dots, N-2, \quad (32)$$

401
$$FBP_{0,j,e,l} = FBP_{2,j,e}, \text{ for } j=1, 2, \dots, N-1; e \in E, \quad (33)$$

402
$$IP_{i,j,l} = \sum_{k=0}^{j-1} \sum_{e \in E, e \geq j} SBP_{i,k,e,l}, \text{ for } i=1, 2; j=1, 2, \dots, N-1, \quad (34)$$

403
$$AP_{i,j,l} = \sum_{k=0}^{j-1} \sum_{e \in E, e=j} SBP_{i,k,e,l}, \text{ for } i=1, 2; j=1, 2, \dots, N-1, \quad (35)$$

404
$$W_{i,j,e,l} = \tilde{\lambda}_{i,j,e} H_{i,j,l} + FBP_{i-1,j,e,l}, \text{ for } i=1, 2; j=0, 1, \dots, N-2; e \in E, \quad (36)$$

405
$$TSBP_{i,j,l} = y_{i,j}^l \cdot \min \left\{ \sum_{e \in E, e > j} y_{i,e}^l W_{i,j,e,l}, Cap - IP_{i,j,l} + AP_{i,j,l} \right\}, \text{ for } i=1, 2; j=0, 1, \dots, N-2, \quad (37)$$

406
$$SBP_{i,j,e,l} = TSBP_{i,j,l} \cdot \frac{y_{i,e}^l W_{i,j,e,l}}{\sum_{e' \in E, e' > j} y_{i,e'}^l W_{i,j,e',l}}, \text{ for } i=1, 2; j=0, 1, \dots, N-2; e \in E, \quad (38)$$

407 $FBP_{i,j,e,l} = W_{i,j,e,l} - SBP_{i,j,e,l}$, for $i = 1, 2; j = 0, 1, \dots, N-2; e \in E$, and (39)

408
$$\begin{cases} S_{i,j,l} = y_{i,j}^l \cdot (b \cdot TSBP_{i,j,l} + \tau_1 + \tau_2), \text{for } i = 1, 2; j = 0 \\ S_{i,j,l} = y_{i,j}^l \cdot (\max\{b \cdot TSBP_{i,j,l}, a \cdot AP_{i,j,l}\} + \tau_1 + \tau_2 + \tau_3), \text{for } i = 1, 2; j = 1, 2, \dots, N-2 \end{cases} \quad (40)$$

409
410 The meanings of notations used in the second-stage model basically follow those in the first-
411 stage counterpart, except that the latter notations are for VG p on day d whereas the former
412 notations are for the next VG.

413 As $\tilde{r}_{i,j}$ and $\tilde{\lambda}_{i,j,e}$ are unknown, the operator needs to predict them by prediction models.
414 We denote their predictive values as $r_{i,j}^*$ and $\lambda_{i,j,e}^*$, respectively. The predictive error of
415 $\tilde{r}_{i,j} \left(\tilde{\lambda}_{i,j,e} \right)$ is denoted as $\varepsilon_{i,j}^r \left(\varepsilon_{i,j,e}^\lambda \right)$.

416 If we assume

417 1) $\tilde{r}_{i,j}$ follows a normal distribution, denoted as $N(\bar{\tilde{r}}_{i,j}, \sigma_{i,j}^{2,\tilde{r}})$;
418 2) $\tilde{\lambda}_{i,j,e}$ follows a normal distribution, denoted as $N(\bar{\tilde{\lambda}}_{i,j,e}, \sigma_{i,j,e}^{2,\tilde{\lambda}})$;
419 3) $\varepsilon_{i,j}^r$ and $\varepsilon_{i,j,e}^\lambda$ follow normal distributions with a mean of 0, denoted as $N(0, \sigma_{i,j}^{2,r})$
420 and $N(0, \sigma_{i,j,e}^{2,\lambda})$, respectively,

421 the means and variances of $\tilde{r}_{i,j}$ and $\tilde{\lambda}_{i,j,e}$ obey the following equations (their derivation
422 process is presented in Appendix A):

423
$$E(\tilde{r}_{i,j} | r_{i,j} = r_{i,j}^*) = \frac{\bar{\tilde{r}}_{i,j} \sigma_{i,j}^{2,r} + r_{i,j}^* \sigma_{i,j}^{2,\tilde{r}}}{\sigma_{i,j}^{2,\tilde{r}} + \sigma_{i,j}^{2,r}}, \text{for } i = 0, 1, 2; j = 1, 2, \dots, N-1, \quad (41)$$

424
$$Var(\tilde{r}_{i,j} | r_{i,j} = r_{i,j}^*) = \frac{\sigma_{i,j}^{2,\tilde{r}} \sigma_{i,j}^{2,r}}{\sigma_{i,j}^{2,\tilde{r}} + \sigma_{i,j}^{2,r}}, \text{for } i = 0, 1, 2; j = 1, 2, \dots, N-1, \quad (42)$$

425
$$E(\tilde{\lambda}_{i,j,e} | \lambda_{i,j,e} = \lambda_{i,j,e}^*) = \frac{\bar{\tilde{\lambda}}_{i,j,e} \sigma_{i,j,e}^{2,\lambda} + \lambda_{i,j,e}^* \sigma_{i,j,e}^{2,\tilde{\lambda}}}{\sigma_{i,j,e}^{2,\tilde{\lambda}} + \sigma_{i,j,e}^{2,\lambda}}, \text{for } i = 1, 2; j = 0, 1, \dots, N-1, \text{ and} \quad (43)$$

426
$$Var(\tilde{\lambda}_{i,j,e} | \lambda_{i,j,e} = \lambda_{i,j,e}^*) = \frac{\sigma_{i,j,e}^{2,\tilde{\lambda}} \sigma_{i,j,e}^{2,\lambda}}{\sigma_{i,j,e}^{2,\tilde{\lambda}} + \sigma_{i,j,e}^{2,\lambda}}, \text{for } i = 1, 2; j = 0, 1, \dots, N-1. \quad (44)$$

427 3.3.3. Two special cases

428 As mentioned earlier, the tactical planning strategy and dynamic stop-skipping strategy are
429 only two special cases of the two-stage strategy.

430 If we set parameter NL to 1, L derived from the first stage only contains one limited-stop
431 service. It means that all limited-stop vehicles in the second stage must provide the limited-stop
432 service. This situation is just the same as that of the tactical planning strategy.

433 If we set parameter NL to be the maximum number of all possible different limited-stop
434 services, L derived from the first stage is likely to contain all possible different limited-stop
435 services and it depends on whether there is one optimal solution or there are multiple optimal
436 solutions for Stage 1: (1) If there is only one optimal solution for Stage 1, L' is just the set of
437 all different possible limited-stop services and L is the same as L' . In this situation, each
438 limited-stop vehicle in the second stage can provide one limited-stop service out of all possible
439 different services. It is just the same as the situation of the dynamic stop-skipping strategy; (2)
440 If there are multiple optimal solutions for Stage 1, some elements in L' may be repeated and
441 L' is not the set of all possible different limited-stop services. Then L derived from L' is
442 not the set of all possible different limited-stop services. This situation is not the same as that
443 of the dynamic stop-skipping strategy. However, we can prove that the objective function value
444 of Stage 1 associated with L is the same as that associated with the set of all possible different
445 limited-stop services L'' by the following statements:

- 446 1) As L' is obtained by solving the model of Stage 1, L' gives the lowest objective
447 function value of Stage 1.
- 448 2) As all elements in L' can be found in L and vice versa, the objective function value of
449 Stage 1 associated with L is the same as that of L' .
- 450 3) As L'' is a feasible solution, the objective function value of L'' is not better than that
451 of L' , which is the lowest objective value according to statement 1). Moreover, as all
452 elements in L' can be found in L'' , L'' can be considered to be formed by introducing
453 more different elements to L' . For any solution including L'' , adding more different
454 elements in the solution cannot increase the objective function value of Stage 1. Therefore,
455 the objective function value of L'' must be the same as that of L' , which is also the same
456 as that of L according to statement 2).

457 **4. Solution method**

458 We develop an enhanced ABC algorithm and adopt the Monte Carlo Simulation method to
459 solve the first- and second-stage models, respectively.

460 4.1. The enhanced ABC algorithm for the first-stage model

461 An enhanced ABC algorithm is developed to solve the first model (i.e., determine \mathbf{y}). We
462 first introduce the ABC algorithm proposed by Karaboga (2005) (referred to as the traditional
463 ABC algorithm) and then describe the difference between the traditional and enhanced ABC
464 algorithms.

465 4.1.1. The traditional ABC algorithm

466 The algorithmic steps of the traditional ABC algorithm are shown in Figure 3, which are
467 explained below:

468

469 Step 0: Parameter setting

470 Set the number of employed bees N_e , the number of onlooker bees N_o , the maximum
471 number of unimproved iterations (the number of trials that fail to improve the current
472 solution) U_{\max} , and the maximum number of iterations I_{\max} .

473 Step 1: Initialization

474 Set iteration = 0. Randomly generate initial solutions \mathbf{y}_b , for $b = 0, 1, \dots, N_e - 1$ and assign
475 one employed bee to each solution. Evaluate the fitness $fit(\mathbf{y}_b)$, for $b = 0, 1, \dots, N_e - 1$.
476 Record the best solution $\hat{\mathbf{y}}$ in $\{\mathbf{y}_b \mid b = 0, 1, \dots, N_e - 1\}$. Set the counters of unimproved
477 iterations $u_b = 0$, for $b = 0, 1, \dots, N_e - 1$. Set iteration = 1.

478 Step 2: Employed bee phase

479 For each employed bee $b = 0, 1, \dots, N_e - 1$

480 Step 2.1: Generate a neighbor solution \mathbf{y}_b^* based on \mathbf{y}_b .

481 Step 2.2: Evaluate the fitness $fit(\mathbf{y}_b^*)$. If $fit(\mathbf{y}_b^*) > fit(\mathbf{y}_b)$, replace \mathbf{y}_b with \mathbf{y}_b^*
482 and $u_b = 0$, else increase u_b by 1.

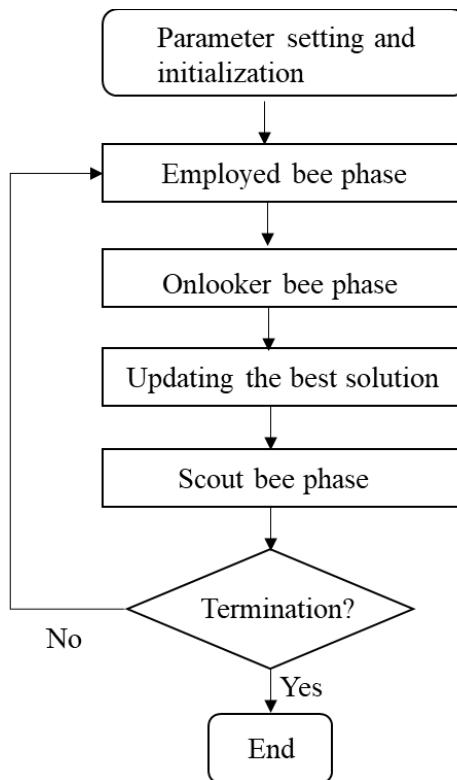
483 Step 3: Onlooker bee phase

484 For each onlooker bee

485 Step 3.1: Select a solution \mathbf{y}_b by the fitness-based roulette wheel selection method and
486 then generate a neighbor solution \mathbf{y}_b^* based on \mathbf{y}_b .

487 Step 3.2: Evaluate the fitness $fit(\mathbf{y}_b^*)$. If $fit(\mathbf{y}_b^*) > fit(\mathbf{y}_b)$, replace \mathbf{y}_b with \mathbf{y}_b^*
488 and $u_b = 0$, else increase u_b by 1.

489 Step 4: Updating the best solution
 490 For $b = 0, 1, \dots, N_e - 1$, if $\hat{fit}(\mathbf{y}_b) > \hat{fit}(\hat{\mathbf{y}})$, set $\hat{\mathbf{y}}$ to be \mathbf{y}_b .
 491 Step 5: Scout bee phase
 492 For $b = 0, 1, \dots, N_e - 1$, if $u_b \geq U_{\max}$, replace \mathbf{y}_b with a new randomly generated solution
 493 and evaluate the fitness of the new solution.
 494 Step 6: Termination criterion checking
 495 If iteration $< I_{\max}$, iteration = iteration + 1 and return to Step 2. Otherwise, stop and output
 496 the best solution $\hat{\mathbf{y}}$.
 497



498
 499 Figure 3. The flowchart of the traditional ABC algorithm
 500
 501 *The representation of a solution in the traditional ABC algorithm*
 502 Based on Constraints (2)-(4), y_{ij}^l , for $i = 1; j = 1, 2, \dots, N - 2; l = 1, 2, \dots, NL$ can be 0 or 1, and
 503 y_{ij}^l must be 1 for other values of i , (i.e., $i = 0, 2$). Because of that, a solution in the traditional
 504 ABC algorithm can be represented by Figure 4, which only considers
 505 y_{ij}^l , for $i = 1; j = 1, 2, \dots, N - 2; l = 1, 2, \dots, NL$ as binary values.
 506

l_1	$y_{1,1}^1$	$y_{1,2}^1$	$y_{1,3}^1$	\cdots	$y_{1,N-2}^1$
l_2	$y_{1,1}^2$	$y_{1,2}^2$	$y_{1,3}^2$	\cdots	$y_{1,N-2}^2$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

Figure 4. The representation of a solution in the traditional ABC algorithm

Fitness function

The fitness function $fit(\mathbf{y})$ in the traditional ABC algorithm equals the reciprocal of the objective function value (i.e., $1/z(\mathbf{y})$). $z(\mathbf{y})$ is computed by Equations (1) and (5) and $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$. $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ can be obtained by Equations (7)-(22) if $y_{i,j}^l$ is given, which is presented in detail in Appendix B.

Random generation of a solution and non-neighborhood/neighborhood operators

In Steps 1 and 5, a solution in the traditional ABC algorithm is generated randomly. It means that each element y_{ij}^l , for $i = 1; j = 1, 2, \dots, N - 2; l = 1, 2, \dots, NL$ is randomly determined to be 0 or 1.

In Steps 2.1 and 3.1, each employed or onlooker bee generates a neighbor solution based on \mathbf{y}_b by one of the neighborhood operators:

Neighborhood operator 1: Single change

This operator randomly selects one element y_{ij}^l in \mathbf{y}_b and then changes the value from 0 to 1 or from 1 to 0.

Neighborhood operator 2: Swap within the limited-stop service

This operator randomly selects one limited-stop service in \mathbf{y}_b and two elements y_{ij}^l of the service. Then we swap the values of these two elements.

Neighborhood operator 3: Swap between two limited-stop services

If $NL > 1$, this operator randomly selects two limited-stop services and one stop ($j = 1, 2, \dots, N-2$) in \mathbf{y}_b . Then we swap the values of these two elements y_{ij}^l associated with these limited-stop services and the stop.

4.1.2. The difference between the traditional and enhanced ABC algorithms

It is easy for the traditional ABC algorithm to fall into a local optimum as employed and

535 onlooker bees can only search neighbor solutions. We enhance the traditional ABC algorithm
536 by allowing employed bees to search non-neighbor solutions. For this purpose, an enhanced
537 step is introduced between Steps 1 and 2 of the traditional ABC algorithm, which is shown as
538 follows:

539

540 Enhanced step: Enhanced employed bee phase

541 For each employed bee $b = 0, 1, \dots, N_e - 1$

542 Step ①: Generate a non-neighbor solution \mathbf{y}_b^* based on \mathbf{y}_b .

543 Step ②: Evaluate the fitness $fit(\mathbf{y}_b^*)$. If $fit(\mathbf{y}_b^*) > fit(\mathbf{y}_b)$, replace \mathbf{y}_b with \mathbf{y}_b^*
544 and $u_b = 0$, else increase u_b by 1.

545

546 In Step ①, each employed bee generates a non-neighbor solution based on \mathbf{y}_b by a non-
547 neighborhood operator. The non-neighborhood operator is to 1) select solution \mathbf{y}_b by the
548 fitness-based roulette wheel selection method, 2) select a limited-stop service index and two
549 stop indices randomly, and 3) change all elements y_{ij}^l with the stop index between the two
550 selected stop indices inclusively and with the selected limited-stop service index in \mathbf{y}_b to be
551 the same as those in \mathbf{y}_b .

552 *4.2. The Monte Carlo Simulation method for the second-stage model*

553 We adopt the Monte Carlo Simulation method to solve the second-stage model, i.e., to
554 calculate $E(g(\tilde{\mathbf{r}}, \tilde{\boldsymbol{\lambda}}, \mathbf{y}^l))$, for $l = 1, 2, \dots, |L|$ and then determine the best limited-stop service l^*
555 in L for the next VG. The steps of the method are as follows:

556

557 Step 0: Parameter setting

558 Set the maximum number of simulations m_{\max} .

559 Step 1: Initialization

560 Set the simulation counter $m = 1$ and $E(g(\tilde{\mathbf{r}}, \tilde{\boldsymbol{\lambda}}, \mathbf{y}^l)) = 0$.

561 Step 2: Sampling

562 Randomly generate a value of $\tilde{r}_{i,j}$ and a value of $\tilde{\lambda}_{i,j,e}$ from normal distributions with
563 their means and variances defined by Equations (41), (42), (43), and (44).

564 Step 3: Calculation

565 Based on the values of $\tilde{r}_{i,j}$ and $\tilde{\lambda}_{i,j,e}$ generated in Step 2, calculate $g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l)$ by
566 Equations (25)-(40). Its calculation process is similar to that of $h(\mathbf{r}^{d,p}, \lambda^{d,p}, \mathbf{y}^l)$, which is
567 detailed in Appendix B.

568 Step 4: Update

569 Update $E(g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l))$ by $E(g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l)) = \frac{(m-1)E(g(\tilde{\mathbf{r}}, \lambda, \mathbf{y}^l)) + g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l)}{m}$.

570 Step 5: Stop test

571 If $m < m_{\max}$, set $m = m + 1$ and return Step 2; Otherwise, stop and output $E(g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l))$.

572

573 After the above Monte Carlo Simulation method, we get the values of
574 $E(g(\tilde{\mathbf{r}}, \tilde{\lambda}, \mathbf{y}^l))$, for $l = 1, 2, \dots, |L|$. l^* can be determined by comparing these values as stated by
575 Equation (23).

576 5. Numerical study

577 In this section, 1) the effectiveness and efficiency of our strategy, 2) the effect of variances
578 of prediction errors, and 3) the effectiveness and efficiency of the enhanced ABC algorithm
579 were examined. All solution methods were coded with C++ in Visual Studio 2019 and run on a
580 computer with a 2.30 GHz CPU and 16.0 GB RAM.

581 In the following numerical studies, a real-world bus route (Route 63 in Harbin City, China)
582 is adopted. It is a 34-stop bus corridor and around 17 km. The average running times (i.e., $\tilde{r}_{i,j}$)
583 between neighbor stops are presented in Table 1. On each day, the operation time of the bus
584 system is from 6:00 to 24:00. Headway at the starting terminal is 5 minutes. Cap , b , a , τ_1 ,
585 τ_2 , and τ_3 are 150 passengers, 1 second, 2 seconds, 6 seconds, 7 seconds, and 7 seconds,
586 respectively. As in the study of Chen et al. (2015), WV , IV , and OV are \$15/h, \$10/h, and
587 \$150/h, respectively.

588

589 Table 1. The average running times (seconds) between neighbor stops

Stop	0	1	2	3	4	5	6	7	8	9
$\tilde{r}_{i,j}$	0	54	43	45	68	111	97	70	60	53
Stop	10	11	12	13	14	15	16	17	18	19
$\tilde{r}_{i,j}$	68	76	92	65	78	36	87	61	59	39
Stop	20	21	22	23	24	25	26	27	28	29

$\bar{r}_{i,j}$	51	111	55	45	97	83	85	37	42	32
Stop	30	31	32	33						
$\tilde{r}_{i,j}$	69	52	23	47						

590 In the first stage, we adopted 1 day for data collection. The historical bus travel time (i.e.,
 591 $r_{i,j}^{d,p}$) between any two neighbor stops was randomly generated by a normal distribution with a
 592 mean of $\bar{r}_{i,j}$ and a variance of $(0.3 \times \bar{r}_{i,j})^2$ (i.e., $\sigma_{i,j}^{2,r} = (0.3 \times \bar{r}_{i,j})^2$). Similarly, the historical
 593 passenger arrival rate (i.e., $\lambda_{i,j,e}^{d,p}$) from any upstream stop to any downstream destination was
 594 randomly generated by a normal distribution with a mean of 0.5 person/minute (i.e., $\bar{\lambda}_{i,j,e} = 0.5$
 595 person/minute) and a variance of $(0.3 \times \bar{\lambda}_{i,j,e})^2$ (i.e., $\sigma_{i,j,e}^{2,\lambda} = (0.3 \times \bar{\lambda}_{i,j,e})^2$). Destinations are
 596 comprised of stops 11, 22, and 33.

597 In the enhanced ABC algorithm, the values of N_e , N_o , U_{\max} , and I_{\max} are $10 \times NL$,
 598 $5 \times NL$, $10 \times NL$, and 400, respectively. The usage probabilities of neighborhood operators 1,
 599 2, and 3 are 0.3, 0.3, and 0.4, respectively. NL is set to 4 unless otherwise specified.

600 In the second stage, we generate $r_{i,j}^*$ by introducing an auxiliary parameter $\tilde{r}_{i,j}^*$ (a value
 601 of $\tilde{r}_{i,j}$). The generation method is to 1) generate $\tilde{r}_{i,j}^*$ by the distribution of $\tilde{r}_{i,j}$, 2) get the
 602 distribution of $r_{i,j}$ by equation $r_{i,j} = \tilde{r}_{i,j}^* + \varepsilon_{i,j}^r$, and 3) generate $r_{i,j}^*$ by the distribution of
 603 $r_{i,j}$. This generation method was also adopted by Schinckel et al. (2007), Guo and Yang (2020),
 604 and Khalilisamani et al. (2021). The generation of $\lambda_{i,j,e}^*$ is similar to that of $r_{i,j}^*$. The
 605 variances of prediction errors $\sigma_{i,j}^{2,r}$ and $\sigma_{i,j,e}^{2,\lambda}$ are set to 0 unless otherwise specified.

606 In the Monte Carlo Simulation method, m_{\max} is set as 1000.

607 5.1. The effectiveness and computational efficiency of our strategy

608 In this sub-section, the effectiveness and computational efficiency of our strategy were tested
 609 by comparing it with the tactical planning strategy and the dynamic stop-skipping strategy. The
 610 tactical planning strategy means that an operator determines one limited-stop service at the
 611 tactical planning level and then all limited-stop vehicles provide the same limited-stop service
 612 at the operational level. The dynamic stop-skipping strategy means that an operator does not
 613 consider the tactical planning level. Each limited-stop vehicle can provide one limited-stop
 614 service out of all possible different services at the operational level and each limited-stop
 615 service

616 vehicle can provide a different limited-stop service from the other. This strategy still considers
 617 VGs. There are also 3 vehicles ($i = 0, 1, 2$) in one VG and only vehicle 1 is a limited-stop
 618 vehicle. The difference between our strategy and the dynamic stop-skipping strategy is that
 619 vehicle 1 of our strategy can provide one limited-stop service in L (the subset of all possible
 620 different limited stop services) but vehicle 1 of the dynamic stop-skipping strategy can provide
 621 one limited-stop service out of all possible different limited-stop services.

622 The value of NL has an influence on the effectiveness and computational efficiency of our
 623 strategy. We adopted $NL = 1, 2, 3, 4$ and got the corresponding number of limited-stop services
 624 and the sequence of stops from the first stage, as shown in Table 2.

625

626 Table 2. The stop sequences of the limited-stop services obtained from the first stage

NL	The stop sequences of the limited-stop services
1	0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-23-24-25-26-28-33
2	0-1-2-3-4-5-6-7-8-9-10-11-13-15-17-18-19-22-23-25-28-29-33 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28- 29-33
3	0-1-2-3-4-5-6-7-8-9-10-11-13-15-19-20-22-23-24-25-33 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-19-20-22-23-24-26-28-33 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28- 29-30-31-32-33
4	0-1-2-3-4-5-6-7-8-9-10-11-14-15-16-19-22-23-26-33 (service 1) 0-1-2-3-4-5-6-7-8-9-10-11-12-16-17-18-19-20-22-23-24-26-27-28-33 (service 2) 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-28-33 (service 3) 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28- 29-30-31-32-33 (service 4)

627

628 Table 3 shows the relationship between NL and the system cost saving (i.e., reduction) and
 629 running times at the operational level for one day. The system cost saving is the difference
 630 between the total operator and passenger costs in the situations with and without limited-stop
 631 services. In this table,

632 (1) $NL = 1$ implies that each limited-stop vehicle at the operational level provides the same
 633 limited-stop service, which is the same as the situation of the tactical planning strategy.

634 (2) $NL = 2, 3$, or 4 is the situation of our strategy.

635 (3) $NL = \max$ represents the situation of the dynamic stop-skipping strategy. The first stage
 636 is not considered and any limited-stop vehicle can provide any limited-stop service at the
 637 operational level. In our numerical study, the number of all possible different limited-
 638 stop services equals $2^{32} = 4294967296$ (there are 32 intermediate stops in the corridor).

639 At the operational level, we exhausted all possible different limited-stop services and
 640 then selected the best one.

641 (4) The reduction is x when NL is y means that if the number of limited-stop services
 642 obtained from the first stage is y , we can save $\$x$ per day at the operational level. The
 643 benchmark is the situation without limited-stop services (i.e., $NL = 0$).

644

645 Table 3. The system cost savings (\$) and running times (seconds) under different values of
 646 NL

NL	1 (tactical planning strategy)	2	3	4	Max (dynamic stop-skipping strategy)
Reduction	1177	2987	3151	3195	3586 (optimal)
Reduction percentage*	32.8%	83.3%	87.9%	89.15%	100.0%
Running time	0	8.3×10^{-3}	1.1×10^{-2}	1.3×10^{-2}	2.8×10^6

647 Reduction percentage*: reduction/optimal reduction $\times 100\%$.

648

649 *The effectiveness of our strategy*

650 From Table 3, we can see that our strategy can increase reduction significantly, compared
 651 with the tactical planning strategy (i.e., $NL = 1$). The tactical planning strategy can only give
 652 32.8% of the optimal reduction, which is relatively small. On the contrary, our strategy can lead
 653 to more than 80% of the optimal reduction. Moreover, we observe that a large value of NL
 654 leads to higher effectiveness. We also find our strategy has lower effectiveness, in terms of a
 655 reduction percentage, compared with the dynamic stop-skipping strategy. However, it is
 656 acceptable because the reduction percentages are already more than 85% when we provide
 657 three/four limited-stop services.

658

659 *The computational efficiency of our strategy*

660 The computational efficiency of the tactical planning strategy, our strategy, and the dynamic
 661 stop-skipping strategy were also tested. We compared their running times at the operational
 662 level under different numbers of stops in a corridor, and the result is presented in Table 3. In
 663 Table 3, all running times of the tactical planning strategy are 0 s. This is because an operator
 664 does not need to determine which limited-stop service is the best at the operational level since
 665 there is only one limited-stop service. With our strategy, it can be observed that running time
 666 increases with the value of NL . However, all running times are very small. The maximum
 667 running time is only 1.3×10^{-2} s, which implies the high computational efficiency of our

668 strategy. However, with the dynamic stop-skipping strategy, the minimum running time is
 669 2.8×10^6 s, which is obviously unacceptable in real-time operations.

670 In conclusion, 1) the tactical planning strategy has the highest computational efficiency but
 671 its effectiveness can be low; 2) the dynamic stop-skipping strategy has the highest effectiveness
 672 but its computational efficiency is unacceptable when the corridor is long; 3) our strategy has
 673 both high effectiveness and high efficiency, which provides a better trade-off between
 674 effectiveness and computational efficiency than the above two strategies; 4) a larger value of
 675 NL leads to higher effectiveness and lower efficiency. If an operator prefers effectiveness, a
 676 larger value of NL , e.g., 4, is recommended; if an operator prefers efficiency, a smaller value
 677 of NL , e.g., 2, is recommended.

678 *5.2. The effect of variances of prediction errors*

679 In this sub-section, the performance of our strategy under different variances of prediction
 680 errors is studied. At the operational level, the number of limited-stop vehicles used to provide
 681 each of the four limited-stop services in one day under different variances of prediction errors
 682 are presented in Table 4. (For services 1 to 4 in Table 4, please refer to Table 2.) The result
 683 illustrates that the number of limited-stop vehicles for each service varies with the variances of
 684 prediction errors. To be more specific, for the same VG, an operator may offer very different
 685 limited-stop services in L under different variances of prediction errors.

686 Since the variances of prediction errors change the number of limited-stop vehicles in each
 687 service, it is obvious that the system cost saving at the operational level for one day is also
 688 affected. The saving under different variances of prediction errors is shown in Table 5. From
 689 the table, we can find that the saving (i.e., reduction) decreases as the variances of prediction
 690 errors increase. When $\sigma_{i,j}^{2,r} = 0.100 \cdot \bar{r}_{i,j}$ minute² and $\sigma_{i,j,e}^{2,\lambda} = 0.100 \cdot \bar{\lambda}_{i,j,e}$ (person/minute)², the
 691 saving is only \$2112, which is much less than the one with $\sigma_{i,j}^{2,r} = 0.000 \cdot \bar{r}_{i,j}$ minute² and
 692 $\sigma_{i,j,e}^{2,\lambda} = 0.000 \cdot \bar{\lambda}_{i,j,e}$ (person/minute)² (i.e., \$3195). From this result, we can conclude that the
 693 variances of prediction errors cannot be ignored, especially in situations with large variances of
 694 prediction errors.

695

696 Table 4. The numbers of limited-stop vehicles under different variances of prediction errors

Variances of prediction errors	$\sigma_{i,j}^{2,r} = 0.000 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.001 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.010 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.100 \cdot \bar{r}_{i,j}$
	$\sigma_{i,j,e}^{2,\lambda} = 0.000 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.001 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.010 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.100 \cdot \bar{\lambda}_{i,j,e}$

Service 1	1	1	1	0
Service 2	16	18	15	12
Service 3	36	35	38	32
Service 4	55	54	54	64

697

698 **Table 5. The system cost savings (\$)** under different variances of prediction errors

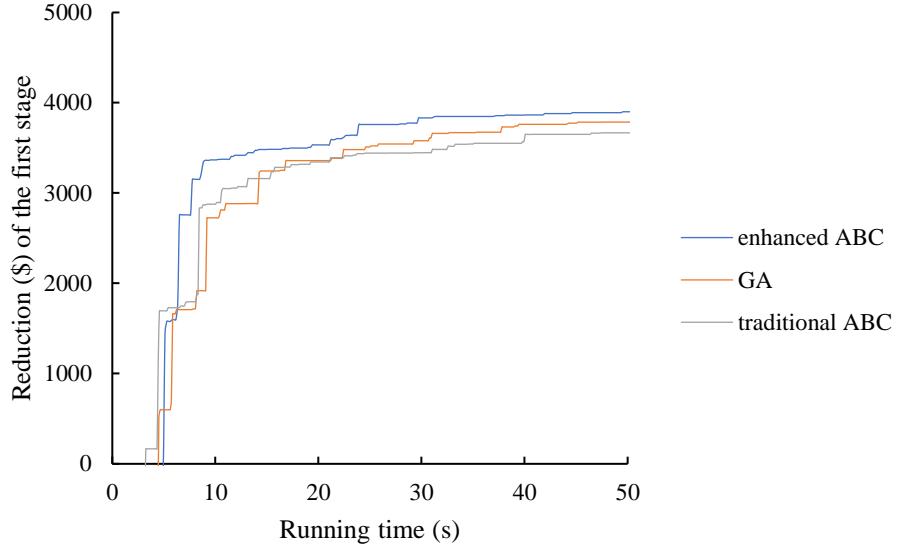
Variances of prediction errors	$\sigma_{i,j}^{2,r} = 0.000 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.001 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.010 \cdot \bar{r}_{i,j}$	$\sigma_{i,j}^{2,r} = 0.100 \cdot \bar{r}_{i,j}$
	$\sigma_{i,j,e}^{2,\lambda} = 0.000 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.001 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.010 \cdot \bar{\lambda}_{i,j,e}$	$\sigma_{i,j,e}^{2,\lambda} = 0.100 \cdot \bar{\lambda}_{i,j,e}$
Reduction	3195	3118	2746	2112

699 *5.3. The accuracy and computational efficiency of the enhanced ABC algorithm*

700 To test the accuracy and computational efficiency of the enhanced ABC algorithm, we carried
 701 out an enumeration to search for the global optimum when $NL = 1$. As limited-stop services
 702 must serve the first and last stop, there are 32 intermediate stops. Therefore, the number of
 703 possible limited-stop services is $2^{32} = 4294967296$. All possible different limited-stop services
 704 were evaluated and the optimal limited-stop service is 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-
 705 16-17-18-19-20-21-23-24-25-26-27-29-34, which is the same as the result obtained from the
 706 enhanced ABC algorithm in Table 2. However, the enumeration took 2.3×10^6 s, whereas the
 707 enhanced ABC algorithm only took 11.0 s (in 400 iterations). The results illustrate that the
 708 enhanced ABC algorithm is accurate and efficient.

709 We also studied the accuracy and computational efficiency of the enhanced ABC algorithm
 710 when $NL = 4$, compared with a genetic algorithm (GA) and the traditional ABC algorithm.
 711 Their reductions over running time are shown in Figure 5. It is easy to see that 1) the enhanced
 712 ABC algorithm provides a higher-quality solution after convergence than GA and the traditional
 713 ABC algorithm, which shows higher effectiveness; 2) the enhanced ABC algorithm takes less
 714 running time to get the same solution quality (with more than a \$2000 reduction) than GA and
 715 the traditional ABC algorithm, which shows higher computational efficiency.

716



717
718
719

Figure 5. The convergence of the enhanced ABC algorithm, GA, and the traditional ABC algorithm

720 **6. Conclusion**

721 The paper proposes a new two-stage strategy to address the LSBSDP. The two-stage strategy
722 is more general than the tactical planning strategy and the dynamic stop-skipping strategy.
723 Numerical studies show that our strategy has both high effectiveness and high efficiency, which
724 provides a better trade-off between effectiveness and computational efficiency than the tactical
725 planning strategy and the dynamic stop-skipping strategy.

726 Prediction errors are considered in this study. In the numerical examples, different variances
727 of prediction errors can lead to very different limited-stop service schemes at the operational
728 level. The system cost saving of providing limited-stop services is, therefore, affected. In
729 particular, the saving decreases as the variances of prediction errors increase. More importantly,
730 the effect of prediction errors cannot be neglected, especially in situations with large variances
731 of prediction errors.

732 An enhanced ABC algorithm is developed to solve the first-stage model. Its high
733 effectiveness and computational efficiency are verified by comparing it with an enumeration,
734 GA, and the traditional ABC algorithm.

735 This study opens at least two future research directions. First, the distribution of prediction
736 errors may not follow normal distributions in practice. How to extend the current methodology
737 to tackle other distributions is one important direction. Second, in some situations, the headway
738 between all-stop and limited-stop vehicles can be larger than 15 min. This means the arrival
739 times of passengers may be affected by the stop-skipping strategy. How to model this situation

740 is another interesting direction.

741 Appendix A: The derivation process of Equations (41), (42), (43), and (44)

742 To derive Equations (41) and (42), we need to calculate $\tilde{r}_{i,j}$ when $r_{i,j} = r_{i,j}^*$. In this
 743 appendix, we determine the distribution of $\tilde{r}_{i,j}$ when $r_{i,j} = r_{i,j}^*$ by obtaining the probability
 744 density function of $\tilde{r}_{i,j}$ when $r_{i,j} = r_{i,j}^*$, i.e., $f_{\tilde{r}_{i,j}|r_{i,j}^*}(\cdot)$.

745 Let $\tilde{r}_{i,j}^*$ be a variable representing a possible value of $\tilde{r}_{i,j}$. Then by definition,

$$746 \quad \begin{aligned} f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*) &= \frac{f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*, r_{i,j}^*)}{f_{r_{i,j}^*}(r_{i,j}^*)} \\ &= \frac{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*) \times f_{r_{i,j}|\tilde{r}_{i,j}^*}(r_{i,j}^*)}{f_{r_{i,j}^*}(r_{i,j}^*)}, \end{aligned} \quad (45)$$

747 where

748 $f_{\tilde{r}_{i,j}|r_{i,j}^*}(\cdot, \cdot)$ The joint probability density function of $\tilde{r}_{i,j}$ and $r_{i,j}$.

749 $f_{r_{i,j}^*}(\cdot)$ The probability density function of $r_{i,j}$.

750 $f_{\tilde{r}_{i,j}}(\cdot)$ The probability density function of $\tilde{r}_{i,j}$.

751 $f_{r_{i,j}|\tilde{r}_{i,j}^*}(\cdot)$ The probability density function of $r_{i,j}$ when $\tilde{r}_{i,j} = \tilde{r}_{i,j}^*$.

752

753 Since $\tilde{r}_{i,j}$ follows $N(\bar{r}_{i,j}, \sigma_{i,j}^{2,\tilde{r}})$, the corresponding distribution of $f_{\tilde{r}_{i,j}}(\cdot)$ is $N(\bar{r}_{i,j}, \sigma_{i,j}^{2,\tilde{r}})$.

754 Since the prediction error of $\tilde{r}_{i,j}$ follows $N(0, \sigma_{i,j}^{2,r})$, the corresponding distribution of

755 $f_{r_{i,j}|\tilde{r}_{i,j}^*}(\cdot)$ is $N(\tilde{r}_{i,j}^*, \sigma_{i,j}^{2,r})$. For simplicity, we denote $f_{\tilde{r}_{i,j}}(\cdot)$ and $f_{r_{i,j}|\tilde{r}_{i,j}^*}(\cdot)$ as $n_1(\cdot)$ and

756 $n_2(\cdot)$, respectively. Then Equation (45) becomes

$$757 \quad \begin{aligned} f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*) &= \frac{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*) \times f_{r_{i,j}|\tilde{r}_{i,j}^*}(r_{i,j}^*)}{f_{r_{i,j}^*}(r_{i,j}^*)} \\ &= \frac{n_1(\tilde{r}_{i,j}^*) \times n_2(r_{i,j}^*)}{f_{r_{i,j}^*}(r_{i,j}^*)}. \end{aligned} \quad (46)$$

758 Since the corresponding distribution of $n_2(\cdot)$ is $N(\tilde{r}_{i,j}^*, \sigma_{i,j}^{2,r})$, we have

$$759 \quad n_2(r_{i,j}^*) = \frac{1}{\sqrt{2\pi\sigma_{i,j}^{2,r}}} e^{-\frac{(r_{i,j}^* - \tilde{r}_{i,j}^*)^2}{2\sigma_{i,j}^{2,r}}}. \quad (47)$$

760 Let us construct an auxiliary distribution, $N(\tilde{r}_{i,j}^*, \sigma_{i,j}^{2,r})$, and the corresponding probability
 761 density function is denoted as $n_3(\cdot)$. Then we have

$$762 n_3(\tilde{r}_{i,j}^*) = \frac{1}{\sqrt{2\pi\sigma_{i,j}^{2,r}}} e^{-\frac{(\tilde{r}_{i,j}^* - \bar{r}_{i,j}^*)^2}{2\sigma_{i,j}^{2,r}}}. \quad (48)$$

763 From Equations (47) and (48), it is easy to see that $n_2(r_{i,j}^*) = n_3(\tilde{r}_{i,j}^*)$. We substitute this
 764 equation into Equation (46) and then obtain

$$765 f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*) = \frac{n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*)}{f_{r_{i,j}}(r_{i,j}^*)}. \quad (49)$$

766 It is easy to see $\int_{-\infty}^{+\infty} f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*) d\tilde{r}_{i,j}^* = 1$. Then we have

$$767 \int_{-\infty}^{+\infty} \frac{n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*)}{f_{r_{i,j}}(r_{i,j}^*)} d\tilde{r}_{i,j}^* = 1. \quad (50)$$

768 $n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*)$ in the left side of the equation can be rewritten as (to be clear, we use x ,
 769 u_1 , σ_1^2 , u_2 , and σ_2^2 to denote $\tilde{r}_{i,j}^*$, $\bar{r}_{i,j}$, $\sigma_{i,j}^{2,\tilde{r}}$, $r_{i,j}^*$, and $\sigma_{i,j}^{2,r}$)

$$\begin{aligned}
n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*) &= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-u_1)^2}{2\sigma_1^2}} \times \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x-u_2)^2}{2\sigma_2^2}} \\
&= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{(x-u_1)^2}{2\sigma_1^2} + \frac{(x-u_2)^2}{2\sigma_2^2}} \\
&= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{(x-u_1)^2\sigma_2^2 + (x-u_2)^2\sigma_1^2}{2\sigma_1^2\sigma_2^2}} \\
&\quad - \frac{x^2 - 2\frac{u_1\sigma_2^2 + u_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2}x + \frac{u_1^2\sigma_2^2 + u_2^2\sigma_1^2}{\sigma_1^2 + \sigma_2^2}}{2\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}} \\
&= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{(x - \frac{u_1\sigma_2^2 + u_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2})^2}{2(\sigma_1^2 + \sigma_2^2)} - \frac{(u_1 - u_2)^2}{2(\sigma_1^2 + \sigma_2^2)}} \\
&= \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{(u_1 - u_2)^2}{2(\sigma_1^2 + \sigma_2^2)}} \frac{1}{\sqrt{2\pi} \frac{\sigma_1\sigma_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}} e^{-\frac{(x - \frac{u_1\sigma_2^2 + u_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2})^2}{2\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}}} \tag{51}
\end{aligned}$$

770

$$= A \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-u_0)^2}{2\sigma_0^2}},$$

771 where $A = \frac{e^{-\frac{(u_1-u_2)^2}{2(\sigma_1^2 + \sigma_2^2)}}}{\sqrt{2\pi(\sigma_1^2 + \sigma_2^2)}}$, $u_0 = \frac{u_1\sigma_2^2 + u_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2}$, and $\sigma_0^2 = \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

772 From Equations (50) and (51), we can get $\frac{A}{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*)} = 1$ by

$$\begin{aligned}
&\int_{-\infty}^{+\infty} \frac{n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*)}{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*)} d\tilde{r}_{i,j}^* = 1 \\
&\Rightarrow \frac{A}{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*)} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-u_0)^2}{2\sigma_0^2}} dx = 1 \tag{52} \\
&\Rightarrow \frac{A}{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*)} \times 1 = 1 \\
&\Rightarrow \frac{A}{f_{\tilde{r}_{i,j}}(\tilde{r}_{i,j}^*)} = 1.
\end{aligned}$$

773

774 Based on Equations (49) and (51) and $\frac{A}{f_{r_{i,j}}(r_{i,j}^*)} = 1$, we have

$$775 f_{\tilde{r}_{i,j}|r_{i,j}^*}(\tilde{r}_{i,j}^*) = \frac{n_1(\tilde{r}_{i,j}^*) \times n_3(\tilde{r}_{i,j}^*)}{f_{r_{i,j}}(r_{i,j}^*)} = \frac{A \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-u_0)^2}{2\sigma_0^2}}}{f_{r_{i,j}}(r_{i,j}^*)} = \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{(x-u_0)^2}{2\sigma_0^2}}. \quad (53)$$

776 Finally, according to Equation (53), we can conclude that the corresponding distribution of
777 $f_{\tilde{r}_{i,j}|r_{i,j}^*}(\cdot)$ is $N(u_0, \sigma_0^2)$. As a result, the following equations (i.e., Equations (41) and (42))

778 hold:

$$779 E(\tilde{r}_{i,j} | r_{i,j} = r_{i,j}^*) = u_0 = \frac{u_1\sigma_2^2 + u_2\sigma_1^2}{\sigma_1^2 + \sigma_2^2} = \frac{\tilde{r}_{i,j}\sigma_{i,j}^{2,r} + r_{i,j}^*\sigma_{i,j}^{2,\tilde{r}}}{\sigma_{i,j}^{2,\tilde{r}} + \sigma_{i,j}^{2,r}} \text{ and}$$

$$780 Var(\tilde{r}_{i,j} | r_{i,j} = r_{i,j}^*) = \sigma_0^2 = \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2 + \sigma_2^2} = \frac{\sigma_{i,j}^{2,\tilde{r}}\sigma_{i,j}^{2,r}}{\sigma_{i,j}^{2,\tilde{r}} + \sigma_{i,j}^{2,r}}.$$

781 Similarly, the following equations (i.e., Equations (43) and (44)) also hold:

$$782 E(\tilde{\lambda}_{i,j,e} | \lambda_{i,j,e} = \lambda_{i,j,e}^*) = \frac{\tilde{\lambda}_{i,j,e}\sigma_{i,j,e}^{2,\lambda} + \lambda_{i,j,e}^*\sigma_{i,j,e}^{2,\tilde{\lambda}}}{\sigma_{i,j,e}^{2,\tilde{\lambda}} + \sigma_{i,j,e}^{2,\lambda}} \text{ and}$$

$$783 Var(\tilde{\lambda}_{i,j,e} | \lambda_{i,j,e} = \lambda_{i,j,e}^*) = \frac{\sigma_{i,j,e}^{2,\tilde{\lambda}}\sigma_{i,j,e}^{2,\lambda}}{\sigma_{i,j,e}^{2,\tilde{\lambda}} + \sigma_{i,j,e}^{2,\lambda}}.$$

784 **Appendix B: The calculation process of $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$**

785 In this appendix, we present how to calculate $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ by Equations (7)-(22) if $y_{i,j}^l$
786 is given. The detailed calculation process is shown as follows:

787

788 1. Set $i = 1$. Obtain $A_{i-1,j,l}^{d,p}$, for $j = 0, 1, \dots, N-1$ and $FBP_{i-1,j,e,l}^{d,p}$, for $j = 0, 1, \dots, N-1; e \in E$ by
789 Equations (11) and (15).

790 **While** $i \leq 2$, do

791 Set $j = 0$.

792 **While** $j \leq N-2$, do

793 1) As $A_{i-1,j,l}^{d,p}$ and $A_{i,j,l}^{d,p}$ is known, get $H_{i,j,l}^{d,p}$ by Equation (14).

794 2) Since $SBP_{i,k,e,l}^{d,p}, \forall k < j$ is known, calculate $IP_{i,j,l}^{d,p}$ and $AP_{i,j,l}^{d,p}$ by Equations
795 (16) and (17), respectively.

796 3) Obtain $W_{i,j,e,l}^{d,p}$ by Equation (18) as $FBP_{i-1,j,e,l}^{d,p}$ and $H_{i,j,l}^{d,p}$ are known.
 797 4) With the knowledge of $W_{i,j,e,l}^{d,p}$, $IP_{i,j,l}^{d,p}$, and $AP_{i,j,l}^{d,p}$, get $TSBP_{i,j,l}^{d,p}$ by Equation
 798 (19).
 799 5) With the knowledge of $W_{i,j,e,l}^{d,p}$ and $TSBP_{i,j,l}^{d,p}$, obtain $SBP_{i,j,e,l}^{d,p}$ by Equation
 800 (20).
 801 6) Since $W_{i,j,e,l}^{d,p}$ and $SBP_{i,j,e,l}^{d,p}$ are known, calculate $FBP_{i,j,e,l}^{d,p}$ by Equation (21).
 802 7) Calculate $S_{i,j,l}^{d,p}$ by Equation (22) as $AP_{i,j,l}^{d,p}$ and $TSBP_{i,j,l}^{d,p}$ are known.
 803 8) As $S_{i,j,l}^{d,p}$ is known, compute $A_{i,j+1,l}^{d,p}$ by Equations (12) and (13).
 804 9) $j = j + 1$.
 805 **endwhile**
 806 $i = i + 1$.
 807 **endwhile**
 808 2. As the values of all variables on the right-hand side of Equations (8)-(10) are known,
 809 calculate $Z_{1,l}^{d,p}$, $Z_{2,l}^{d,p}$, and $Z_{3,l}^{d,p}$. Obtain $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ by adding up $Z_{1,l}^{d,p}$, $Z_{2,l}^{d,p}$, and
 810 $Z_{3,l}^{d,p}$ using Equation (7).
 811 3. Check whether Inequality (6) is satisfied. If it is satisfied, stop and output $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$;
 812 Otherwise, set $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$ equals a sufficiently large positive value, then stop and
 813 output $h(\mathbf{r}^{d,p}, \boldsymbol{\lambda}^{d,p}, \mathbf{y}^l)$.

814 **Acknowledgments**

815 This research was jointly supported by a grant from the National Natural Science Foundation
 816 of China (No. 71771194) and the Research Grants Council of the Hong Kong Special
 817 Administrative Region of China (17203223). The authors are grateful to the two reviewers for
 818 their constructive comments.

819 **References**

820 Albarracin, A.F.G., Jaramillo-Ramirez, D., 2019. Limited-stop high-frequency service design
 821 reducing in-vehicle congestion. Journal of Advanced Transportation 2019, 5745870.
 822 Chen, J., Liu, Z., Zhu, S., Wang, W., 2015. Design of limited-stop bus service with capacity
 823 constraint and stochastic travel time. Transportation Research Part E-Logistics and
 824 Transportation Review 83, 1-15.

825 Chien, S.I.J., Ding, Y., Wei, C., 2002. Dynamic bus arrival time prediction with artificial neural
826 networks. *Journal of Transportation Engineering* 128(5), 429-438.

827 Chiraphadhanakul, V., Barnhart, C., 2013. Incremental bus service design: combining limited-
828 stop and local bus services. *Public Transport* 5(1), 53-78.

829 El-Geneidy, A.M., Surprenant-Legault, J., 2010. Limited-stop bus service: an evaluation of an
830 implementation strategy. *Public Transport* 2(4), 291-306.

831 Ercolano, J.M., 1984. Limited-stop bus operations: an evaluation. *Transportation Research*
832 Record 994, 24-29.

833 Fu, L., Liu, Q., Calamai, P., 2003. Real-time optimization model for dynamic scheduling of
834 transit operations. *Transportation Research Record* 1857(1), 48-55.

835 Gkiotsalitis, K., 2019. Robust stop-skipping at the tactical planning stage with evolutionary
836 optimization. *Transportation Research Record* 2673(3), 611-623.

837 Gkiotsalitis, K., 2021. Stop-skipping in rolling horizons. *Transportmetrica A-Transport Science*
838 17(4), 492-520.

839 Guo, J., Yang, C., 2020. Impact of prediction errors on high throughput predictive resource
840 allocation. *IEEE Transactions on Vehicular Technology* 69(9), 9984-9999.

841 Huang, D., Xing, J., Liu, Z., An, Q., 2021. A multi-stage stochastic optimization approach to
842 the stop-skipping and bus lane reservation schemes. *Transportmetrica A-Transport*
843 *Science* 17(4), 1272-1304.

844 Jiang, X., Ma, J., 2021. Mixed scheduling model for limited-stop and normal bus service with
845 fleet size constraint. *Information* 12(10), 400.

846 Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Technical
847 Report Tr06. Erciyes University.

848 Khalilisamani, N., Thomson, P., Raadsma, H., Khatkar, M., 2021. Impact of genotypic errors
849 with equal and unequal family contribution on accuracy of genomic prediction in
850 aquaculture using simulation. *Scientific Reports* 11(1), 18318.

851 Larrain, H., Munoz, J.C., Giesen, R., 2015. Generation and design heuristics for zonal express
852 services. *Transportation Research Part E-Logistics and Transportation Review* 79, 201-
853 212.

854 Leiva, C., Munoz, J.C., Giesen, R., Larrain, H., 2010. Design of limited-stop services for an
855 urban bus corridor with capacity constraints. *Transportation Research Part B-
856 Methodological* 44(10), 1186-1201.

857 Liang, M., Zhang, H., Ma, R., Wang, W., Dong, C., 2021. Cooperatively coevolutionary
858 optimization design of limited-stop services and operating frequencies for transit
859 networks. *Transportation Research Part C-Emerging Technologies* 125, 103038.

860 Liu, Z., Yan, Y., Qu, X., Zhang, Y., 2013. Bus stop-skipping scheme with random travel time.
861 *Transportation Research Part C-Emerging Technologies* 35, 46-56.

862 Mou, Z., Zhang, H., Liang, S., 2020. Reliability optimization model of stop-skipping bus
863 operation with capacity constraints. *Journal of Advanced Transportation* 2020, 4317402.

864 Nesheli, M.M., Srikuenthiran, S., Shalaby, A., 2022. An optimization model for planning
865 limited-stop transit operations. *Public Transport*, <https://doi.org/10.1007/s12469-022-00293-5>.

867 Sadrani, M., Jafarian-Moghaddam, A.R., Esfahani, M.A., Rahimi, A.M., 2022. Designing

868 limited-stop bus services for minimizing operator and user costs under crowding
869 conditions. *Public Transport*, <https://doi.org/10.1007/s12469-022-00307-2>.

870 Schinckel, A., Einstein, M., Foster, K., Craig, B., 2007. Evaluation of the impact of errors in
871 the measurement of backfat depth on the prediction of fat-free lean mass. *Journal of*
872 *Animal Science* 85(8), 2031-2042.

873 Sheu, J.B., 2005. A fuzzy clustering approach to real-time demand-responsive bus dispatching
874 control. *Fuzzy Sets and Systems* 150(3), 437-455.

875 Silverman, N., 1998. Limited-stop bus service at New York city transit. *Journal of*
876 *Transportation Engineering* 124(6), 503-509.

877 Soto, G., Larrain, H., Munoz, J.C., 2017. A new solution framework for the limited-stop bus
878 service design problem. *Transportation Research Part B-Methodological* 105, 67-85.

879 Tang, C., Ceder, A., Zhao, S., Ge, Y., 2016. Determining optimal strategies for single-line bus
880 operation by means of smartphone demand data. *Transportation Research Record*
881 2539(1), 130-139.

882 Tang, C., Ceder, A.A., Ge, Y., 2017. Integrated optimization of bus line fare and operational
883 strategies using elastic demand. *Journal of Advanced Transportation* 2017, 7058789.

884 Tang, C., Shi, H., Liu, T., 2023. Optimization of single-line electric bus scheduling with skip-
885 stop operation. *Transportation Research Part D-Transport and Environment* 117, 103652.

886 Tetreault, P.R., El-Geneidy, A.M., 2010. Estimating bus run times for new limited-stop service
887 using archived AVL and APC data. *Transportation Research Part A-Policy and Practice*
888 44(6), 390-402.

889 Torabi, M., Salari, M., 2019. Limited-stop bus service: a strategy to reduce the unused capacity
890 of a transit network. *Swarm and Evolutionary Computation* 44, 972-986.

891 Ulusoy, Y.Y., Chien, S.I.J., 2015. Optimal bus service patterns and frequencies considering
892 transfer demand elasticity with genetic algorithm. *Transportation Planning and*
893 *Technology* 38(4), 409-424.

894 Ulusoy, Y.Y., Chien, S.I.J., Wei, C.H., 2010. Optimal all-stop, short-turn, and express transit
895 services under heterogeneous demand. *Transportation Research Record* 2197(1), 8-18.

896 Wang, D.Z.W., Nayan, A., Szeto, W.Y., 2018. Optimal bus service design with limited stop
897 services in a travel corridor. *Transportation Research Part E-Logistics and*
898 *Transportation Review* 111, 70-86.

899 Wirasinghe, S.C., Vandebona, U., 2011. Route layout analysis for express buses. *Transportation*
900 *Research Part C-Emerging Technologies* 19(2), 374-385.

901 Wu, W., Liu, R., Jin, W., Ma, C., 2019. Simulation-based robust optimization of limited-stop
902 bus service with vehicle overtaking and dynamics: A response surface methodology.
903 *Transportation Research Part E-Logistics and Transportation Review* 130, 61-81.

904 Yi, Y., Choi, K., Lee, Y.J., 2016. Optimal limited-stop bus routes selection using a genetic
905 algorithm and smart card data. *Journal of Public Transportation* 19(4), 178-198.

906 Yu, B., Wang, K., Peng, Z., Wang, C., Gao, Z., Yao, B., 2015. Dynamic extra buses scheduling
907 strategy in public transport. *Promet-Traffic and Transportation* 27(3), 205-216.

908 Zhang, H., Liang, S., Zhao, S., Shang, Q., 2021. Advantages of bus stop skipping and holding
909 control in reducing schedule deviation. *Proceedings of the Institution of Civil*
910 *Engineers-Municipal Engineer* 174(1), 14-23.

911 Zhang, H., Zhao, S., Cao, Y., Liu, H., Liang, S., 2017a. Real-time integrated limited-stop and
912 short-turning bus control with stochastic travel time. *Journal of Advanced
913 Transportation* 2017, 2960728.

914 Zhang, H., Zhao, S., Liu, H., Li, J., 2017b. A dynamic short-turning bus control for uncertain
915 demand. *Journal of Advanced Transportation* 2017, 7392962.

916 Zhao, H., Feng, S., Ci, Y., 2021. Scheduling a bus fleet for evacuation planning using stop-
917 skipping method. *Transportation Research Record* 2675(11), 865-876.

918