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Abstract

Providing limited-stop bus services can improve the efficiency of bus systems. This paper
proposes a new two-stage strategy for providing real-time limited-stop bus services for a
corridor and the corresponding model is developed. In the first (tactical planning) stage, given
the maximum number of different limited-stop services, an operator determines a set of limited-
stop services based on historical bus travel times and passenger arrival rates. In the second
(operational) stage, an operator selects one service from the set of limited-stop services obtained
in the first stage for each limited-stop vehicle based on (short-term) predictive travel times and
passenger arrival rates. Prediction errors are considered in the second stage. An enhanced
artificial bee colony algorithm is developed to solve the first-stage model and the Monte Carlo
Simulation method is adopted to solve the second-stage model. Numerical results are presented

to illustrate the effectiveness and efficiency of the strategy and the effect of prediction errors.
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1. Introduction

Bus operation control strategies are important instruments for bus operators to improve the
efficiency of bus systems (Liu et al., 2013). One of the strategies is providing limited-stop bus
services. In these services, buses can skip some intermediate stops on a given route. It has been
proved that providing limited-stop bus services can benefit passengers (e.g., Ercolano, 1984;
El-Geneidy and Surprenant-Legault, 2010) and operators (e.g., Silverman, 1998; Tetreault and
El-Geneidy, 2010). Moreover, if limited-stop bus services are applied to electric bus systems,
the energy utilization rate of buses can be improved (Tang et al., 2023). Because of these
benefits, limited-stop bus services have drawn much attention from researchers in recent years.
This paper focuses on providing these services, which is referred to as the limited-stop bus
service design problem (LSBSDP) in the literature.

In the literature, the strategy of providing limited-stop bus services on a given route can be
divided into two broad categories. One is the tactical planning strategy. In this strategy, an
operator determines one limited-stop service on a given route at the tactical planning level and
then all limited-stop vehicles (a limited-stop vehicle means the vehicle can provide a limited-
stop service) provide the same limited-stop service at the operational level (e.g., Wirasinghe
and Vandebona, 2011; Chiraphadhanakul and Barnhart, 2013; Yi et al., 2016; Albarracin and
Jaramillo-Ramirez, 2019; Nesheli et al., 2022). This strategy is attractive as passengers can plan
for it. The other is the dynamic stop-skipping strategy (e.g., Fu et al., 2003; Wu et al., 2019;
Zhang et al., 2017a; Zhang et al., 2017b; Gkiotsalitis, 2021; Zhang et al., 2021). In this strategy,
an operator does not consider the tactical planning level. Each limited-stop vehicle can provide
one limited-stop service out of all possible different services at the operational level and can
offer a different limited-stop service from the other (or the same limited-stop service as the
other) on a given route. It is implicitly assumed that passengers get real-time information about
the limited-stop service through mobile applications. Compared with the tactical planning
strategy, the dynamic stop-skipping strategy has higher effectiveness (i.e., it provides a more
system cost saving) due to its higher flexibility to skip stops. However, the strategy creates a
more difficult optimization problem and a higher computational burden for the real-time
application. Considering the lower effectiveness of the tactical planning strategy and the
requirement for higher computational efficiency of the dynamic stop-skipping strategy for real-
time applications, we propose a new two-stage strategy in this paper. The two-stage strategy
has 1) higher effectiveness than the tactical planning strategy and 2) higher computational

efficiency than the dynamic stop-skipping strategy. Furthermore, the new strategy is more
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general than these two strategies, which are only special cases of the new strategy.

At the operational level of providing limited-stop services, the limited-stop service scheme
of a limited-stop vehicle is fixed once it departs from the starting terminal (Fu et al., 2003).
Therefore, when we determine its real-time limited-stop service scheme, the real (future) values
of bus travel times and passenger arrival rates associated with the vehicle are unknown. An
operator needs to predict these values before determining the limited-stop service scheme. It is
a common assumption that these predictive values (also named average or expected values) are
known and given in the literature of the real-time LSBSDP (e.g., Fu et al., 2003; Gkiotsalitis,
2021). This paper also adopts the same assumption. However, in previous studies, authors
determined the limited-stop service scheme by these predictive values directly (e.g., Fu et al.,
2003; Wu et al., 2019; Gkiotsalitis, 2021). Different from them, we also take prediction errors
into consideration. In other words, we determine the limited-stop service scheme by both the
predictive values and prediction errors. We believe that the prediction errors need to be
considered for two reasons. The first reason is that there must be prediction errors between the
predictive and real values. In other words, the prediction errors do not equal 0 in reality. The
second reason is that prediction errors can decrease the effectiveness of bus systems with
dynamic limited-stop bus services. For example, when an operator obtains the predictive values
by a prediction model with low effectiveness, if he/she directly adopts the predictive values as
the real values, he/she is very likely to make a wrong determination of the limited-stop service
scheme and the wrong determination can reduce the benefit of providing limited-stop services.
In our study, new models (i.e., the first- and second-stage models) for the new two-stage
strategy are developed to address the LSBSDP. Prediction errors are considered in the second-
stage model. To our best knowledge, no study has dealt with these errors when addressing the
LSBSDP. Moreover, the new models can provide more effective solutions than the model
derived from the tactical planning strategy and take less computational time than the model
derived from the dynamic stop-skipping strategy.

There are roughly two approaches to developing a model for the LSBSDP. The first one is
the schedule-based approach (e.g., Fuet al., 2003; Chen et al., 2015; Yu et al., 2015; Gkiotsalitis,
2019; Mou et al., 2020; Zhao et al., 2021; Sadrani et al., 2022). With this approach, models first
calculate the arrival and departure times of buses at each bus stop. Then passengers’ waiting
and in-vehicle times can be obtained. Specifically, the waiting time of one passenger is
expressed as the difference between the arrival times of a bus and the passenger at his/her origin
bus stop, and his/her in-vehicle travel time equals the gap between the departure time of the bus

at his/her origin and the arrival time of the bus at his/her destination. The second one is the
3
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frequency-based approach (e.g., Tang et al., 2016, 2018, 2019, 2020, 2022; Wang et al., 2018).
Models of this approach do not focus on the arrival and departure times of buses. Passengers’
waiting time is calculated directly by the bus frequency (it usually equals the reciprocal of the
frequency), and their in-vehicle travel time between two successive bus stops is the mean of
historical in-vehicle travel times. Unlike the schedule-based approach, the frequency-based
approach is not applicable to modeling the LSBSDP at the operational level. As a result, we
adopt the schedule-based approach for our model development in our study.

The solution methods to solve the models of LSBSDP can be broadly classified into exact
methods and meta-heuristics. In terms of exact methods, some researchers (e.g., Ulusoy et al.,
2010; Huang et al., 2021) solved their models by an enumeration while others (e.g., Leiva et
al., 2010; Larrain et al., 2015; Soto et al., 2017; Tang et al., 2017) adopted non-linear
programming or mixed-integer non-linear programming solvers. These methods can derive
optimal solutions, but they do not apply to a long bus corridor because of their low
computational efficiency. To overcome this problem, some researchers (e.g., Ulusoy and Chien,
2015; Yietal., 2016; Torabi and Salari, 2019; Jiang and Ma, 2021; Liang et al., 2021) attempted
to use meta-heuristics, e.g., genetic algorithms and artificial bee colony (ABC) algorithms. The
solution method adopted in our study is also a meta-heuristic. Specifically, we develop an
enhanced ABC algorithm to solve our model. We demonstrate its higher effectiveness and
computational efficiency than genetic and ABC algorithms, which is shown in sub-section 5.3.

In summary, the major contributions of the paper are shown as follows:

(1) A more general two-stage strategy for the LSBSDP than the tactical planning strategy

and the dynamic stop-skipping strategy is proposed.

(2) The corresponding model is developed, and prediction errors are considered in the

second-stage model.

(3) An enhanced ABC algorithm is developed, with higher effectiveness and computational

efficiency than genetic and traditional ABC algorithms.

The remainder of this paper is structured as follows: Section 2 is the problem statement.
Section 3 describes the formulation of the model for each stage. Section 4 depicts the solution

method. Section 5 shows numerical results, and section 6 concludes the paper.

2. Problem statement

The paper proposes a two-stage strategy to address the real-time limited-stop bus service

design problem for a corridor, as shown in Figure 1. In the first stage (i.e., at the tactical
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planning level), an operator determines a set of limited-stop services (denoted as L) based on
historical bus travel times and passenger arrival rates. The maximum number of limited-stop
services in L is a parameter, which is predetermined and denoted as NL. However, the stop
sequence of each of these limited-stop services is required to determine. In the second stage
(i.e., at the operational level), for each limited-stop vehicle, an operator selects one limited-stop
service (denoted as |1*) from L based on (short-term) predictive travel times and passenger
arrival rates. Predictive travel times and passenger arrival rates are assumed to be known, which
can be obtained by prediction models in practice (e.g., Chien et al., 2002; Sheu, 2005).
Prediction errors are considered in the second stage. After Stage 2 (i.e., |* is determined), 1)
a bus captain drives a vehicle departing from the bus terminal and provides the corresponding

service; 2) passengers are informed of service |* by mobile applications.

Dispatch Center

P
historical travel times and

| passenger arrival rates )

- \\ Stage 1
the value of NL = (tactical planning level)

- vy

- — - ~ L
predictive travel times and

| passenger arrival rates J~] >{ Stage 2 J

(the distribution of prediction ) (operational level)
€ITorS

. vy

j*

Y
captains and passengers

Figure 1. The two-stage strategy

As in the study of Liu et al. (2013), we assume that all-stop and limited-stop vehicles depart
from the bus terminal alternately. This assumption is imposed to guarantee a minimum level of
service for each origin-destination (OD) pair of passengers: The changed bus headway at each
stop due to stop-skipping would not exceed two times the standard headway, to avoid large
waiting time for the passengers (Liu et al., 2013). Because of this assumption, when an operator
wants to determine the service of one limited-stop vehicle, the operations of all-stop vehicles
before and after the limited-stop vehicle need to be considered together with the operation of
the limited-stop vehicle. We let i be the vehicle type and use i1=0,1,2 to represent the
previous all-stop vehicle, the limited-stop vehicle (whose service is undetermined), and the next

all-stop vehicle, respectively. These three vehicles form a vehicle group (VG) and then all
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vehicles in one day can be grouped into a certain number of VGs, as illustrated in Figure 2. We
alsouse N to denote the number of stops in a bus corridor. The total system cost for one VG
is comprised of 1) the waiting cost for all passengers between the departure of vehicle 0 and the
arrival of vehicle 2, 2) the in-vehicle travel cost associated with passengers in vehicles 1 and 2,

and 3) the operating cost associated with vehicles 1 and 2.

.- Vehicle 0 of VG 1
--- Vehicle 1 of VG 1

---------- Vehicle 2 of VG 1 (vehicle 0 of VG 2)
Y R Vehicle 1 of VG 2

" -Vehicle 2 of VG 2

Stops

Time

One day

Figure 2. The space-time diagram of vehicles for VG 1 and VG 2

3. Model formulation

3.1. Notations

Since our model involves two stages, we classify notations into common notations, first-

stage notations, and second-stage notations, as shown below.

Common notations

Indices and sets

i Vehicle type, 1=0,1,2.

J Bus stop index, j=0,1,..,N-1, where 0 and N -1 mean the starting and

ending terminals, respectively. N is the number of stops in a bus corridor.
e The destination stop index of passengers.
I The index of a limited-stop service, |1=1,2,...,NL. In this paper, an all-stop
6
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Parameters
NL
wv
v
oV
Cap

service is regarded as a special case of a limited-stop service.
VG index, representing the order of vehicle groups.

Day index.

The set of bus stops, i.e., J = {0,1,..., N —l} .

The set of passenger destinations, Ec J .

The set of limited-stop services.

The set of VGs in one day.

The set of days for collecting historical bus travel times and passenger arrival
rates in the first stage.

The maximum number of limited-stop services predetermined in Stage 1.
Value of waiting time.

Value of in-vehicle travel time.

Value of operating time.

The capacity of a vehicle.

The average boarding time per passenger.

The average alighting time per passenger.

The time of opening and closing doors.

Acceleration time.

Deceleration time.

First-stage notations

Parameters

d,p
i

AP

1,].€

The historical travel time of vehicle i of VG p between stops j—1 and ]

onday d.
The historical arrival rate of passengers heading to stop € from stop |

between the arrival times of vehicles i—1 and i of VG p atstop j onday

d.

Parameter vectors

rd-?

AT

a0)
(I’” viel jed ©

d,
(A5 e
p Viel, jed ecE

Decision variables

yilj

y
y

Functions

z(y)

A binary variable. It equals 1 if vehicle i associated with service | does not
skip stop |, and 0 otherwise. Please note that vehicles 0 and 2 cannot skip stops,
ie, y;=1fori=0,2j=01..,N-%1=12. NL.

(yili )viel,jeJ ’
(yili )viel,jeJ,IeL.

The minimum total operator and passenger costs (associated with all peP in
all deD).

f(r*®?,A%",y) The minimum total operator and passenger costs associated with day d and

VG p.
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h(r®?,2%",y") The total operator and passenger costs associated with day d and VG p

when limited-stop service | is adopted.

Auxiliary variables

d
Hd:p

i,j,

d,p
Zl,l

d,p
ZZ,I

d,p
Z3,I
A

il

FBR"*

2,je

d
va

i,j.el

TSBRSP

il

The headway between vehicles i—1 and i of VG p atstop j on day d

if limited-stop service | is adopted.
The waiting cost of passengers of VG p onday d if limited-stop service |

is adopted.
The in-vehicle travel cost of passengers on VG p on day d if limited-stop

service | is adopted.
The operating cost of VG p onday d if limited-stop service | is adopted.
The arrival time of vehicle i of VG p atstop j onday d if limited-stop

service | is adopted.
The arrival time of vehicle 2 of VG p-1 atstop j onday d.Ithas been

determined when f(r¢** %"

,y) is calculated.
The departure time of vehicle i of VG p at stop j on day d if limited-

stop service | is adopted.
The dwell time of vehicle i of VG p atstop j on day d if limited-stop

service | is adopted.
The number of passengers who want to travel from stop | to stop e and fail

to board vehicle i of VG p onday d iflimited-stop service | isadopted.
The number of passengers who want to travel from stop j tostop € and fail
to board vehicle 2 of VG p-1 on day d. It has been determined when
f(r*"t, A% y) s calculated.

The number of passengers on vehicle i of VG p on day d when the
vehicle arrives stop ] if limited-stop service | is adopted.

The number of passengers who want to travel from stop | to stop e and

succeed in boarding vehicle i of VG p onday d iflimited-stop service |
1s adopted.
The number of passengers who alight at stop j from vehicle i of VG p on

day d if limited-stop service | isadopted.
The number of waiting passengers who want to travel from stop j to stop e

when vehicle i of VG p onday d arrivesstop j.
The number of passengers who succeed in boarding vehicle i of VG p on

day d atstop | if limited-stop service | is adopted.

Second-stage notations
Random variables

i j

The real travel time of vehicle i of the next VG between stops j—1 and j.

(The value of F; is unknown, but the mean and variance satisfy Equations (41)
and (42).)



251
252
253

254
255
256
257

258
259
260

261

262
263

264
265
266
267
268
269
270
271
272
273
274

275

276
277
278

279
280

281
282

Parameters
hy”

Aije™

yilj

[#

The predictive travel time of vehicle i of the next VG between stops j—1
and j.

The predictive error of ;.

(r'l )viel,jeJ ’

The real arrival rate of passengers heading to stop e fromstop | between the
arrival times of vehicles 1—1 and i of the next VG at stop j. (The value of
/i., je 1s unknown, but the mean and variance satisfy Equations (43) and (44).)
The predictive arrival rate of passengers heading to stop e from stop |
between the arrival times of vehicles i—1 and i ofthe next VG atstop j.

The predictive error of /i, je

G
( 1.3 Jviel, jed ecE

Avalueof T, ;.
A value of A

i,je-

The decision variable in the first stage, but it is a parameter in the second stage.
The expected value of T ;. It can be estimated by calculating the mean of

r’? vdeD,peP.

ij !
The variance of f ;. It can be estimated by calculating the variance of

r? vdeD,peP.

ij

The variance of the prediction error when we predict f; by a prediction model.

The expected value of /ﬂ’j’e. It can be estimated by calculating the mean of
AP vdeD,peP.

i,j.e’
The variance of i, je- It can be estimated by calculating the variance of
AP vdeD,peP.

i,j.e?

The variance of the prediction error when we predict i,l by a prediction

e

model.

Decision variable

I*

Function
g(F,hy")

The index of the best limited-stop service in L (associated with the next VG).

The total operator and passenger costs associated with the next VG when

limited-stop service | is adopted.
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3.2. Assumptions

3.2.1. The first stage (i.e., tactical planning level)

With the knowledge of r®® and A%P, an operator in the first stage aims to determine the
stop sequences of a fixed number of limited-stop services to minimize total operator and

passenger costs forall peP inall deD.
3.2.2. The second stage (i.e., operational level)

In the second stage, we assume that an operator can get the values of predictive bus travel

times and passenger arrival rates for the next VG (i.e., r;* and A .. *)by prediction models.

ij i,j.e
Then the operator determines one limited-stop service in L to minimize the operator and
passenger costs for the next VG, with the consideration of the (historical) prediction errors of
prediction models. The mean of these prediction errors is 0, while the variances of these

prediction errors are fixed and given.

3.2.3. Passenger behavior, capacity, passenger arrival rate, and waiting time

A passenger 1s assumed to wait for a vehicle that serves both his/her origin and destination.
Since capacity constraints are considered, he/she has to wait for the next vehicle if the arriving
vehicle is fully loaded. In a word, a passenger boards the first arriving vehicle that serves both
his/her origin and destination and is not fully loaded.

The passenger arrival rate between two successive vehicles is assumed to be uniform. As a
result, when a vehicle arrives at a stop, the average waiting time of new passengers at the stop
is half of the headway while the additional average waiting of remaining passengers is the
headway. New passengers mean that they arrive at the stop after the last vehicle leaves the stop
and before the arriving vehicle arrives at the stop. Remaining passengers mean that they arrive
at the stop before the last vehicle leaves the stop but fail to board the last vehicle because either

1) the vehicle is fully loaded or 2) the vehicle cannot serve their origin and destination.

3.2.4. Headway, dwell time, and overtaking phenomenon

The headway (and the bus arrival time) at the bus terminal is fixed and given. This implies

that the number of buses is known and given and hence the capital cost need not be considered.

10
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Moreover, the headway between all-stop and limited-stop vehicles is assumed to be not greater
than 15 min so that the arrival times of passengers are not affected by any stop-skipping strategy
of limited-stop vehicles. Furthermore, the dwell time at each stop is determined by the numbers
of boarding passengers and alighting passengers at the stop. In addition, overtaking phenomena

are not allowed.

3.3. Formulation

3.3.1. The first stage

An operator in the first stage aims to determine the stop sequences of a fixed number of

limited-stop services to minimize total operator and passenger costs for all peP in all

d € D. The first-stage model can be formulated as follows:

min  z(y)=>.> f(r"",a""y) (1)
deD peP
Subject to
y; =1fori=0,2;j=01..,N-%1=12,.,NL, 2)
y; =Lfori=1j=0N-11=12,.,NL, 3)
y; €{0,},fori=0,1,2;j=0,1..,N-11=12,.,NL. 4)

In Objective function (1), f(r*®,A%f,y) is the minimum total operator and passenger
costs associated with day d and VG p. Constraint (2) guarantees that vehicles 0 and 2 are
all-stop vehicles, and Constraint (3) ensures that vehicle 1 serves the starting and ending

terminals. Constraint (4) defines yi'j to be binary variables.

In Objective function (1), f(r*®,A%",y) can be computed by

f (rdypa)\‘d’p’y) = Ie{:{ninNL}{h(rd’pl)\’d'p’yl)}' (5)

20
h(r®?,A%P,y") is the total operator and passenger costs associated with day d and VG p
when limited-stop service | is adopted.

Let H"" be the headway between vehicles i—1 and i of VG p atstop j onday d

i,j,l

if limited-stop service | is adopted. When

11
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Hif‘jﬁZO,fori:1,2;j:o,1,._.,N_2 ©)

is satisfied (i.e., overtaking phenomena do not occur), we can obtain h(r®®,A%° y') by

h(r®?, 250 y) =27 + 2, + Z5, ()
d Sh el apryae Hift d d
2" =WV Zz(/lljiHljF: TJJF FBRS e - Hijl) (®)
i=1 j=0 ecE
d 2 N-2 g e g e-1 g
Zz,ip =1V ZZSBPi,jY,:I ( Z ri,kyp +Zsi,kﬁ) > )
i=1 j=0 ecE k=j+1 k=j
g 2 N-1 g N-2 d
Z3" =0V (2 r"+ 2 S5 (10)
i=1 j=1 j=0
Ah=AP for j=1,2,..,N -1, (11)
Al =Dl P fori=12,j=12,..,N -1, (12)
Dh = Al +558 fori=1,2;j=01..,N-2, (13)
HEh = AL AP, fori=1,2,1=12,..,N-2, (14)
FBR,\", =FBR\" " for j=1,2,...,N-LecE, (15)
j-1
RSP =>" > SBRLE, fori=12;j=12,.,N-1, (16)
k=0 ecE,ex>j
j-1
APSP=>" > SBRYE fori=12;j=12..,N-1, (17)
k=0 ecE,e=j
WSe = A%PHS + FBRY" | fori=1,2;j=0,1..,N-2eeE, (18)
TSBPY? = y! . .min{ Dy WP, Cap—IR%P + APif‘j;f},for i=12,j=0,1.,N-2,(19)
ecE.e>j
y.' WP
SBR%? =TSBP%?- ie I"J'e"d —,fori=12,j=01..,N-2eekE, (20)
Z YieWi j e
e'cEe'>]
FBR%S, =W, —SBR%?  fori=12j=0,1..,N-2e<E, and (21)

ij, i,j,l

p
|
SHh =y, (max{b-TSBR'!, a- AR 1 }+17, +7,+7,), fori=1,2,j=12,..,N-2.

L1,

SdP =yl .(b-TSBP®P +7, +7,),fori=12;j=0,
{ y|,] ( 1 2) J (22)

iy il

Equation (7) defines that h(r®,A%" y') is comprised of 1) the waiting cost for all

passengers between the departure of vehicle 0 and the arrival of vehicle 2, 2) the in-vehicle

12
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travel cost associated with passengers in vehicles 1 and 2, and 3) the operating cost associated

with vehicles 1 and 2. Equations (8)-(10) are used to calculate these three costs, respectively.

d,p

In Equation (8), A'PH!!- 2" is the waiting time of new passengers, whereas

FBPdl‘]eI H,dj‘i is the additional waiting time of remaining passengers. In Equation (9),

SBP% %1 s the number of in-vehicle passengers for OD pair (j,e) and ( Z ro° +ZS| ol

k=j+1

is the corresponding in-vehicle travel time per passenger. In Equation (10), (Z P+ Z SI i)
i1

is the operating time of vehicle i.

Equation (11) determines the arrival time of vehicle 0 of VG p at each stop: vehicle 0
of VG p isjustvehicle 2 of VG p-1.Equations (12) and (13) are included to calculate
bus arrival and departure times at each stop, respectively. Equation (14) computes the headway
at each stop.

Equation (15) sets the number of passengers who fail to board vehicle 0 of VG p tobe
that of vehicle 2 of VG p-1. Equations (16), (17), and (18) are used to compute the
numbers of in-vehicle passengers, alighting passengers, and waiting passengers, respectively.
Equation (19) is used to calculate the number of total passengers who can succeed in boarding.

Equation (20) determines the number of passengers who succeed in boarding for each OD
pair, whereas Equation (21) computes the number of passengers who fail to board for each OD
pair. Equation (22) defines the dwell time when we assume a 2-door operation.

When Objective function (1) is minimized, the optimal values of yi'j are obtained, and are

used to deduce the optimal stop sequence of limited-stop service /. (A stop sequence of service
[ offered by vehicle 1 is represented by a string of binary numbers yl'0 Vi ... lefl .) The
collection of the optimal stop sequence of each limited-stop service is denoted as L'. As there
1s no constraint to ensure that all elementsin L' are different, it is possible that some elements
in L' are repeated. As a result, we collect all different elements in L' to create a new set,
which is denoted as L. Thesize of L may be different from NL and weuse |L| to denote
it.

Objective function (1) in Stage 1 represents the total cost of al/l VGs during all days.

Conducting Stage 1 once can cover all VGs during all days and derive one L for all days.
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3.3.2. The second stage

In the second stage, the operator needs to determine the best limited-stop service in L for

the next VG by
*=arg min {E(g(F, %y )} (23)

When
>0,fori=12;j=0,1..,N-2 (24)

IJ|_

is satisfied (overtaking phenomena do not occur), g(F,A,y') can be calculated by

g(f’i’yl) =Z,,+Z,,+2;,, (25)
2 N-2
Z1I:V\/VZ z |Je 1jel i,j,I)? (26)
i=1 j=0 ecE
2 N-2
ZIVZ SB i,jel (z |k+ZS|kI) (27)
i=1 j=0 ecE k=j+1
2 N-1 N-2
Zs,l :OV;(Zl ﬁj +ZOSi,j,I) > (28)
=1 j= j=
A=A forj=12,..,N-1, (29)
A =Dy +F;fori=12,j=12,...,N-1, (30)
D =A,; +S,;,fori=12,j=01..,N-2, (31)
Hiji=A —Ayfori=12,j=12,..,N-2, (32)
FBR, ;.. =FBP, ;. for j=12,.,N-LeckE, (33)
j-1
IR, =>. > SBR,,.fori=12j=12.,N-1 (34)
k=0 ecE,e>j
j-1
D SBR,. . fori=12j=12..,N-1, (35)
k=0 ecE e=j
Wiyj’e,—ﬂ,,JeH i TFBP_ ., fori=12,j=01..,N-2ecE, (36)

TSBR;, = y;,j'min{ 2. YW, Cap- |P|J|+AP|”},fori:1,2;j:O,.l,..,N—Z,(37)

ecE.e>j

I
—TSBP yle i,j.el

IJI z yle i,j.e\l

e'cE.e>j

SBP,

i,j,el

fori=12;j=0,1,..,N-2ecE, (38)

14



407

408

409
410
411

412
413

414

415

416
417

418

419

420

421
422

423

424

425

426

427

428
429

FBP

i,j.el

=W.

i,j.el

- SBP,

i,j.el?

fori=12;j=0,1..,N-2ecE, and (39)

{s =y -(b-TSBP, +7,+7,),fori=1,2; j=0 o)

y,J (max{b-TSBR, ;,,a- AR ; }+7,+7,+17,),fori=1,2,j=12,..,N-2

ij,I?

The meanings of notations used in the second-stage model basically follow those in the first-

stage counterpart, except that the latter notations are for VG p onday d whereas the former

notations are for the next VG.

As F. and A

. ij. are unknown, the operator needs to predict them by prediction models.

We denote their predictive values as I, ;* and 4 ;.*, respectively. The predictive error of

r. (i- ) is denoted as gir,j (g'k' )

(] 1,].e ,].e
If we assume

1) © . follows a normal distribution, denoted as N (F.

] IJ'

2) i, ;o follows a normal distribution, denoted as N ( ,Je,af‘j%e);

3) &, and gix' ;e follow normal distributions with a mean of 0, denoted as N (0, Gf’jr)

and N(0,0”

"), respectively,

the means and variances of F; and 4 ;. obey the following equations (their derivation

1)
process is presented in Appendix A):

[lora +r*2r

E(F 16, =6,*)= L " 5 i fori=0,12;j=12,...,N-1, 41
i,j +O'
UZrO_Zr
Var(F ; |r..:r..*)——r fori=0,1,2;j=12,..,N-1, (42)
’ O +Ui,}
5 * Zje |Je+/1’|1e |J~e
E(/L’jyeM,,’jye: e )= o o fori=12;j=0,1,..,N—-1,and (43)
O-i,},e+o-i,],e
Gz,xo_z,x
7 _ _ i,j.e“ije Ci
Var(4 . |4 . _/l"j'e*)_W fori=12;j=0,1,..,N-1. (44)

3.3.3. Two special cases

As mentioned earlier, the tactical planning strategy and dynamic stop-skipping strategy are

only two special cases of the two-stage strategy.
15
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If we set parameter NL to 1, L derived from the first stage only contains one limited-stop
service. It means that all limited-stop vehicles in the second stage must provide the limited-stop
service. This situation is just the same as that of the tactical planning strategy.

If we set parameter NL to be the maximum number of all possible different limited-stop
services, L derived from the first stage is likely to contain all possible different limited-stop
services and it depends on whether there is one optimal solution or there are multiple optimal
solutions for Stage 1: (1) If there is only one optimal solution for Stage 1, L' is just the set of
all different possible limited-stop services and L is the same as L'. In this situation, each
limited-stop vehicle in the second stage can provide one limited-stop service out of all possible
different services. It is just the same as the situation of the dynamic stop-skipping strategy; (2)
If there are multiple optimal solutions for Stage 1, some elements in L' may be repeated and
L' is not the set of all possible different limited-stop services. Then L derived from L' is
not the set of all possible different limited-stop services. This situation is not the same as that
of the dynamic stop-skipping strategy. However, we can prove that the objective function value
of Stage 1 associated with L is the same as that associated with the set of all possible different
limited-stop services L" by the following statements:

1) As L' is obtained by solving the model of Stage 1, L' gives the lowest objective

function value of Stage 1.

2) As all elements in L' canbe foundin L and vice versa, the objective function value of
Stage 1 associated with L is the same as that of L'.

3) As L" is a feasible solution, the objective function value of L" is not better than that
of L', which is the lowest objective value according to statement 1). Moreover, as all
elementsin L' canbe foundin L", L" can be considered to be formed by introducing
more different elements to L'. For any solution including L", adding more different
elements in the solution cannot increase the objective function value of Stage 1. Therefore,
the objective function value of L" must be the same as that of L', which is also the same

as that of L according to statement 2).

4. Solution method

We develop an enhanced ABC algorithm and adopt the Monte Carlo Simulation method to

solve the first- and second-stage models, respectively.
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4.1. The enhanced ABC algorithm for the first-stage model

An enhanced ABC algorithm is developed to solve the first model (i.e., determine y). We

first introduce the ABC algorithm proposed by Karaboga (2005) (referred to as the traditional
ABC algorithm) and then describe the difference between the traditional and enhanced ABC

algorithms.
4.1.1. The traditional ABC algorithm

The algorithmic steps of the traditional ABC algorithm are shown in Figure 3, which are

explained below:

Step 0: Parameter setting

Set the number of employed bees N,, the number of onlooker bees N, the maximum

number of unimproved iterations (the number of trials that fail to improve the current

solution) U and the maximum number of iterations |, .

max 2
Step 1: Initialization

Set iteration = 0. Randomly generate initial solutions y,,forb=0,1,...,N, -1 and assign
one employed bee to each solution. Evaluate the fitness fit(y,), forb=0,1,...,N,-1.
Record the best solution ¥ in {y,|b=0,1..,N,—1}. Set the counters of unimproved
iterations u, =0,forb=0,1,...,N, —1. Set iteration = 1.

Step 2: Employed bee phase
For each employed bee b=0,1,...,N, -1

Step 2.1: Generate a neighbor solution Yy, * based on Yy, .
Step 2.2: Evaluate the fitness fit(y,*). If fit(y,*) > fit(y,), replace y, with y, *
and U, =0, else increase U, by I.

Step 3: Onlooker bee phase
For each onlooker bee

Step 3.1: Select a solution Yy, by the fitness-based roulette wheel selection method and
then generate a neighbor solution y,* basedon Yy, .
Step 3.2: Evaluate the fitness fit(y,*). If fit(y,*) > fit(y,), replace y, with y, *

and U, =0, else increase U, by I.
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Step 4: Updating the best solution
For b=01..,N,-1,if fit(y,)> fit(y),set y tobe y,.

Step 5: Scout bee phase

For b=0,1,...,N,-1,if u,>U__,replace y, with a new randomly generated solution

and evaluate the fitness of the new solution.
Step 6: Termination criterion checking

Ifiteration < |, , iteration = iteration + 1 and return to Step 2. Otherwise, stop and output

the best solution V.

P
Parameter setting and
mitialization

)

Employed bee phase

y

A4

Onlooker bee phase

I

Updating the best solution

|

Scout bee phase

Yes

End
Figure 3. The flowchart of the traditional ABC algorithm
The representation of a solution in the traditional ABC algorithm
Based on Constraints (2)-(4), yi'j fori=1j=12,..,N-2;1=1,2,..,NL canbeOor 1, and

yi'j must be 1 for other values of i, (i.e., 1=0,2). Because of that, a solution in the traditional

ABC algorithm can be represented by Figure 4, which only considers
yi'j,for i=1j=12,..,N-2;1=12,..,NL as binary values.
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Figure 4. The representation of a solution in the traditional ABC algorithm

Fitness function

The fitness function fit(y) in the traditional ABC algorithm equals the reciprocal of the
objective function value (i.e., 1/z(y)). z(y) is computed by Equations (1) and (5) and
h(r*®,2%?,y"). h(r®?,A%"y') can be obtained by Equations (7)-(22) if yi'yj is given,

which is presented in detail in Appendix B.

Random generation of a solution and non-neighborhood/neighborhood operators

In Steps 1 and 5, a solution in the traditional ABC algorithm is generated randomly. It means
that each element yi'j fori=1j=12,.,N-2;1=12,..,NL is randomly determined to be 0
or 1.

In Steps 2.1 and 3.1, each employed or onlooker bee generates a neighbor solution based on

Y, by one of the neighborhood operators:

Neighborhood operator 1: Single change
This operator randomly selects one element yi'j in y, and then changes the value from
0to 1 or from 1 to 0.

Neighborhood operator 2: Swap within the limited-stop service
This operator randomly selects one limited-stop service in Yy, and two elements yi'j of
the service. Then we swap the values of these two elements.

Neighborhood operator 3: Swap between two limited-stop services

If NL>1, this operator randomly selects two limited-stop services and one stop

(J=12,..,N-2)in Yy,. Then we swap the values of these two elements yilj associated

with these limited-stop services and the stop.
4.1.2. The difference between the traditional and enhanced ABC algorithms

It is easy for the traditional ABC algorithm to fall into a local optimum as employed and
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onlooker bees can only search neighbor solutions. We enhance the traditional ABC algorithm
by allowing employed bees to search non-neighbor solutions. For this purpose, an enhanced
step is introduced between Steps 1 and 2 of the traditional ABC algorithm, which is shown as

follows:

Enhanced step: Enhanced employed bee phase
For each employed bee b=0,1...,N, -1

Step (1): Generate a non-neighbor solution y,* based on Y, .
Step (2): Evaluate the fitness fit(y,*). If fit(y,*)> fit(y,), replace y, with y, *

and U, =0, else increase U, by I.

In Step (1), each employed bee generates a non-neighbor solution based on y, by a non-

neighborhood operator. The non-neighborhood operator is to 1) select solution y,. by the
fitness-based roulette wheel selection method, 2) select a limited-stop service index and two
stop indices randomly, and 3) change all elements yi'j with the stop index between the two
selected stop indices inclusively and with the selected limited-stop service index in Y, to be

the same as those in Y,

4.2. The Monte Carlo Simulation method for the second-stage model

We adopt the Monte Carlo Simulation method to solve the second-stage model, i.e., to
calculate E(g(F,A,y'")).forl=1,2,...|L| and then determine the best limited-stop service |1*

in L for the next VG. The steps of the method are as follows:

Step 0: Parameter setting

Set the maximum number of simulations m__, .
Step 1: Initialization
Set the simulation counter m=1 and E(g(F,A,y'))=0.
Step 2: Sampling
Randomly generate a value of F; and a value of 2:”.’6 from normal distributions with

their means and variances defined by Equations (41), (42), (43), and (44).
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Step 3: Calculation

Based on the values of F; and i, i generated in Step 2, calculate g(F,Ay') by

Equations (25)-(40). Its calculation process is similar to that of h(r®",A%",y'), which is
detailed in Appendix B.
Step 4: Update

)= (M-DE(9(r,hy") +9(F. 4 y") .

Update E(g(F,A,y') by E(g(F.hy'") -

Step 5: Stop test

If m<m__,set m=m+1 and return Step 2; Otherwise, stop and output E(g(F,A,y')).

max °

After the above Monte Carlo Simulation method, we get the values of
E(g(F,A,y")),for1=1,2,...,|L|. 1* canbe determined by comparing these values as stated by
Equation (23).

5. Numerical study

In this section, 1) the effectiveness and efficiency of our strategy, 2) the effect of variances
of prediction errors, and 3) the effectiveness and efficiency of the enhanced ABC algorithm
were examined. All solution methods were coded with C++ in Visual Studio 2019 and run on a
computer with a 2.30 GHz CPU and 16.0 GB RAM.

In the following numerical studies, a real-world bus route (Route 63 in Harbin City, China)

1s adopted. It is a 34-stop bus corridor and around 17 km. The average running times (i.e., f i)

between neighbor stops are presented in Table 1. On each day, the operation time of the bus

system is from 6:00 to 24:00. Headway at the starting terminal is 5 minutes. Cap, b, a, 7,

7,, and 7, are 150 passengers, 1 second, 2 seconds, 6 seconds, 7 seconds, and 7 seconds,

respectively. As in the study of Chen et al. (2015), WV, IV ,and OV are $15/h, $10/h, and
$150/h, respectively.

Table 1. The average running times (seconds) between neighbor stops

Stop 0 1 2 3 4 5 6 7 8 9

Fi,j 0 54 43 45 68 111 97 70 60 53
Stop 10 11 12 13 14 15 16 17 18 19
[4 68 76 92 65 78 36 87 61 59 39

i
Stop 20 21 22 23 24 25 26 27 28 29
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[ 51 111 55 45 97 &3 85 37 42 32

Stop 30 31 32 33
[ 69 52 23 47

In the first stage, we adopted 1 day for data collection. The historical bus travel time (i.e.,

rif’j* P) between any two neighbor stops was randomly generated by a normal distribution with a
mean of F; and a variance of (0.3x ¥,;)? (i.c., o7 =(0.3xF;;)?). Similarly, the historical

. . d, . .
passenger arrival rate (i.e., A ;%) from any upstream stop to any downstream destination was

randomly generated by a normal distribution with a mean of 0.5 person/minute (i.e., Z ie=0.5

person/minute) and a variance of (0.3 x il o) (e, af’fe =(O.3></7~,|' j,e)z ). Destinations are

comprised of stops 11, 22, and 33.

In the enhanced ABC algorithm, the values of N_,, N , U and |, are 10xNL,

0 max ° X

5xNL, 10xNL, and 400, respectively. The usage probabilities of neighborhood operators 1,

2, and 3 are 0.3, 0.3, and 0.4, respectively. NL is set to 4 unless otherwise specified.

* 1 ] ih *
In the second stage, we generate I, ;* by introducing an auxiliary parameter ;> (avalue

i, 1

of ;). The generation method is to 1) generate ;> by the distribution of T ;, 2) get the

distribution of r,; by equation r ;= *+ &, and 3) generate r,;* by the distribution of

i ij?

I ;- This generation method was also adopted by Schinckel et al. (2007), Guo and Yang (2020),

and Khalilisamani et al. (2021). The generation of A

ije 18 similar to that of r,;*. The

variances of prediction errors O'iz'jr and O'iz’jke are set to 0 unless otherwise specified.

In the Monte Carlo Simulation method, m,_,, is set as 1000.

X

5.1. The effectiveness and computational efficiency of our strategy

In this sub-section, the effectiveness and computational efficiency of our strategy were tested
by comparing it with the tactical planning strategy and the dynamic stop-skipping strategy. The
tactical planning strategy means that an operator determines one limited-stop service at the
tactical planning level and then all limited-stop vehicles provide the same limited-stop service
at the operational level. The dynamic stop-skipping strategy means that an operator does not
consider the tactical planning level. Each limited-stop vehicle can provide one limited-stop

service out of all possible different services at the operational level and each limited-stop
22



616  vehicle can provide a different limited-stop service from the other. This strategy still considers

617  VGs. There are also 3 vehicles (i=0,1,2) in one VG and only vehicle 1 is a limited-stop

618  vehicle. The difference between our strategy and the dynamic stop-skipping strategy is that
619  vehicle 1 of our strategy can provide one limited-stop service in L (the subset of all possible
620 different limited stop services) but vehicle 1 of the dynamic stop-skipping strategy can provide
621  one limited-stop service out of all possible different limited-stop services.

622 The value of NL has an influence on the effectiveness and computational efficiency of our

623  strategy. We adopted NL =1,2,3,4 and got the corresponding number of limited-stop services

624  and the sequence of stops from the first stage, as shown in Table 2.
625

626 Table 2. The stop sequences of the limited-stop services obtained from the first stage
NL The stop sequences of the limited-stop services
1 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-23-24-25-26-28-33
2 0-1-2-3-4-5-6-7-8-9-10-11-13-15-17-18-19-22-23-25-28-29-33
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-
29-33
3 0-1-2-3-4-5-6-7-8-9-10-11-13-15-19-20-22-23-24-25-33
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-19-20-22-23-24-26-28-33
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-
29-30-31-32-33
4 0-1-2-3-4-5-6-7-8-9-10-11-14-15-16-19-22-23-26-33 (service 1)
0-1-2-3-4-5-6-7-8-9-10-11-12-16-17-18-19-20-22-23-24-26-27-28-33 (service 2)
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-28-33 (service
3)
0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-
29-30-31-32-33 (service 4)

627

628 Table 3 shows the relationship between NL and the system cost saving (i.e., reduction) and
629 running times at the operational level for one day. The system cost saving is the difference
630 between the total operator and passenger costs in the situations with and without limited-stop
631  services. In this table,

632 (1) NL =1 implies that each limited-stop vehicle at the operational level provides the same
633 limited-stop service, which is the same as the situation of the tactical planning strategy.

634 (2) NL=2, 3, or 4 is the situation of our strategy.

635 (3) NL=max represents the situation of the dynamic stop-skipping strategy. The first stage
636 is not considered and any limited-stop vehicle can provide any limited-stop service at the
637 operational level. In our numerical study, the number of all possible different limited-
638 stop services equals 2% =4294967296 (there are 32 intermediate stops in the corridor).
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At the operational level, we exhausted all possible different limited-stop services and
then selected the best one.

(4) The reductionis x when NL is y means that if the number of limited-stop services
obtained from the first stage is Yy, we can save § X per day at the operational level. The

benchmark is the situation without limited-stop services (i.e., NL=0).

Table 3. The system cost savings ($) and running times (seconds) under different values of

NL
NL 1 2 3 4 Max
(tactical planning (dynamic stop-skipping
strategy) strategy)
Reduction 1177 2987 3151 3195 3586 (optimal)
Reduction 32.8% 83.3% 87.9%  89.15% 100.0%
percentage™
Running time 0 8.3x10° 1.1x10* 1.3x10* 2.8x10°

Reduction percentage*: reduction/optimal reduction x 100%.

The effectiveness of our strategy

From Table 3, we can see that our strategy can increase reduction significantly, compared
with the tactical planning strategy (i.e., NL =1). The tactical planning strategy can only give
32.8% of the optimal reduction, which is relatively small. On the contrary, our strategy can lead
to more than 80% of the optimal reduction. Moreover, we observe that a large value of NL
leads to higher effectiveness. We also find our strategy has lower effectiveness, in terms of a
reduction percentage, compared with the dynamic stop-skipping strategy. However, it is
acceptable because the reduction percentages are already more than 85% when we provide

three/four limited-stop services.

The computational efficiency of our strategy

The computational efficiency of the tactical planning strategy, our strategy, and the dynamic
stop-skipping strategy were also tested. We compared their running times at the operational
level under different numbers of stops in a corridor, and the result is presented in Table 3. In
Table 3, all running times of the tactical planning strategy are 0 s. This is because an operator
does not need to determine which limited-stop service is the best at the operational level since
there is only one limited-stop service. With our strategy, it can be observed that running time

increases with the value of NL. However, all running times are very small. The maximum
running time is only 1.3x107 s, which implies the high computational efficiency of our
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strategy. However, with the dynamic stop-skipping strategy, the minimum running time is
2.8x10° s, which is obviously unacceptable in real-time operations.

In conclusion, 1) the tactical planning strategy has the highest computational efficiency but
its effectiveness can be low; 2) the dynamic stop-skipping strategy has the highest effectiveness
but its computational efficiency is unacceptable when the corridor is long; 3) our strategy has
both high effectiveness and high efficiency, which provides a better trade-off between
effectiveness and computational efficiency than the above two strategies; 4) a larger value of
NL leads to higher effectiveness and lower efficiency. If an operator prefers effectiveness, a
larger value of NL, e.g., 4, is recommended; if an operator prefers efficiency, a smaller value

of NL,e.g., 2, is recommended.

5.2. The effect of variances of prediction errors

In this sub-section, the performance of our strategy under different variances of prediction
errors is studied. At the operational level, the number of limited-stop vehicles used to provide
each of the four limited-stop services in one day under different variances of prediction errors
are presented in Table 4. (For services 1 to 4 in Table 4, please refer to Table 2.) The result
illustrates that the number of limited-stop vehicles for each service varies with the variances of
prediction errors. To be more specific, for the same VG, an operator may offer very different
limited-stop services in L under different variances of prediction errors.

Since the variances of prediction errors change the number of limited-stop vehicles in each
service, it is obvious that the system cost saving at the operational level for one day is also
affected. The saving under different variances of prediction errors is shown in Table 5. From

the table, we can find that the saving (i.e., reduction) decreases as the variances of prediction

errors increase. When of'jr = O.lOO-FiY ; minute®and ai%}’fe = 0.100-2} i (person/minute)?, the

saving is only $2112, which is much less than the one with 05'{ =0.000-E i minute’ and

ol = O.OOO-Z'Le (person/minute)? (i.e., $3195). From this result, we can conclude that the

variances of prediction errors cannot be ignored, especially in situations with large variances of

prediction errors.

Table 4. The numbers of limited-stop vehicles under different variances of prediction errors
Variances of ¢ =0.000-F; o7 =0.001-F; o7 =0010-f, o2 =0.100-F,

prediction Z - =
o/t =0001-4 .. o, =0010-4 .. o, =0.100-4 .

errors GZY}L = 0.000 . Z

i.j.e i,j.e ij.e i,j.e i.j.e i,j.e ij.e i,j.e
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700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716

Service 1 1 1 1 0

Service 2 16 18 15 12
Service 3 36 35 38 32
Service 4 55 54 54 64

Table 5. The system cost savings ($) under different variances of prediction errors
Variances of " =0.000-F; o7 =0.001-F, o7/ =0.010-f, o/ =0.100-F

prediction = = - -
errors af’fe =0.000-4; ;. af'jxve =0.001-4 ;. of‘ﬁe =0.010-4; af’jfe =0.100-4;
Reduction 3195 3118 2746 2112

5.3. The accuracy and computational efficiency of the enhanced ABC algorithm

To test the accuracy and computational efficiency of the enhanced ABC algorithm, we carried
out an enumeration to search for the global optimum when NL =1. As limited-stop services

must serve the first and last stop, there are 32 intermediate stops. Therefore, the number of

possible limited-stop servicesis 2% = 4294967296 . All possible different limited-stop services
were evaluated and the optimal limited-stop service is 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-
16-17-18-19-20-21-23-24-25-26-27-29-34, which is the same as the result obtained from the
enhanced ABC algorithm in Table 2. However, the enumeration took 2.3x10° s, whereas the
enhanced ABC algorithm only took 11.0 s (in 400 iterations). The results illustrate that the
enhanced ABC algorithm is accurate and efficient.

We also studied the accuracy and computational efficiency of the enhanced ABC algorithm
when NL =4, compared with a genetic algorithm (GA) and the traditional ABC algorithm.
Their reductions over running time are shown in Figure 5. It is easy to see that 1) the enhanced
ABC algorithm provides a higher-quality solution after convergence than GA and the traditional
ABC algorithm, which shows higher effectiveness; 2) the enhanced ABC algorithm takes less
running time to get the same solution quality (with more than a $2000 reduction) than GA and

the traditional ABC algorithm, which shows higher computational efficiency.
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Figure 5. The convergence of the enhanced ABC algorithm, GA, and the traditional ABC
algorithm

6. Conclusion

The paper proposes a new two-stage strategy to address the LSBSDP. The two-stage strategy
is more general than the tactical planning strategy and the dynamic stop-skipping strategy.
Numerical studies show that our strategy has both high effectiveness and high efficiency, which
provides a better trade-off between effectiveness and computational efficiency than the tactical
planning strategy and the dynamic stop-skipping strategy.

Prediction errors are considered in this study. In the numerical examples, different variances
of prediction errors can lead to very different limited-stop service schemes at the operational
level. The system cost saving of providing limited-stop services is, therefore, affected. In
particular, the saving decreases as the variances of prediction errors increase. More importantly,
the effect of prediction errors cannot be neglected, especially in situations with large variances
of prediction errors.

An enhanced ABC algorithm is developed to solve the first-stage model. Its high
effectiveness and computational efficiency are verified by comparing it with an enumeration,
GA, and the traditional ABC algorithm.

This study opens at least two future research directions. First, the distribution of prediction
errors may not follow normal distributions in practice. How to extend the current methodology
to tackle other distributions is one important direction. Second, in some situations, the headway
between all-stop and limited-stop vehicles can be larger than 15 min. This means the arrival
times of passengers may be affected by the stop-skipping strategy. How to model this situation
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is another interesting direction.

Appendix A: The derivation process of Equations (41), (42), (43), and (44)

To derive Equations (41) and (42), we need to calculate f; when r;=r,*. In this

appendix, we determine the distribution of F; when r;=r * by obtaining the probability

()

density function of F; when ;=1 %, ie, i
' L il

Let T ;* be a variable representing a possible value of T ;. Then by definition,

( ) "IJ']J(TJ*,rIJ)
fi ]lrl j rl . ( L )
""J * * (45)
- ffi,i () fri,i|fi,j*(ri‘j )
f (r;®) |
where
fﬁ,,-ri,j ) The joint probability density function of F; and ;.
f () The probability density function of I, ;
f () The probability density function of T, ;.
ri,jlfi_,-*(') The probability density function of r,; when F,=F, *.

Since F; follows N (F

) the corresponding distribution of f () is N(F

IJ’ I]’

Since the prediction error of F; follows N(0,0'izy'jr) , the corresponding distribution of

- L) is N(F *0' {) . For simplicity, we denote f () and f _ () as n() and

J )

| L *x

n,(-), respectively. Then Equation (45) becomes

( *) = ff” (rN-i,j*)X friyjmvj*(ri,j*)
s L

o (46)

_ nl(ri,j*)x nz(ri,j*)

f (0,
Since the corresponding distribution of n,(-) is N(F ;*, 0 /), we have

1 _(rl,J*_rl,j*)

Z(ri,j*) _ e 207 (47)
2o}
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Let us construct an auxiliary distribution, N(r,;*,07}), and the corresponding probability

density function is denoted as n,(-). Then we have

(R’
(%)= T (48)

i >
2r0;y

From Equations (47) and (48), it is easy to see that n,(r, ;*)=n,(F ;*). We substitute this

equation into Equation (46) and then obtain

. nl(ri,j*)x ns(ri,j*)

foo(F* 49

w07 = -
It is easy to see [w fF " L(F;9)dr ; *=1. Then we have

o (F xRN

[ S *= (50)

—0 frl’l (rlvl*)
n (F ;*)xny(F ;*) in the left side of the equation can be rewritten as (to be clear, we use X,

2 2 & % = 2, * 2.r
u,, o;, U,,and o, to denote Fi™ B o, T , and Giyj)
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7(X*“2)2

202

7(X*U1)2
l 20'12 X#e

—€
2o, N2ro
1 2

nl(ri,j*)x ns(ri,j*) =

W)’ ()

2 2
— 1 e 207 2035
2700,
1 (x=y)” oF +(x-Up )’ o
2_2
— e 20{05
270,0,
2 2 2 2,02 2
x2—2u1022+u2201 U o—zeruzzo—1
o1 +62 o1 +O'2
oto;
1 o P
2n0,0,
(X7U1¢722+U2°'12 2
of +o3 (4—u,)?
1 2 6120'22 2(612+0'22)
_ e ot +of
2700,
2 2
(X_U152 +Up0q %
2.2
(u17u2)2 _ [ +O'2
- 2 2
e 2(ct+03) 1 2 0;10'22
_ e of +05

770 J27(c?+02) o, G102 (51)
2 2
1[(71 +O'2

2
= A—1 e_(XZCU’ZZ) ,
V2o,
()
g 20i+al) _U,05 +U,07 olo;

771 where A=—————, U,=—22—21 and o, -

> o 2, 2 2, _2°
2, 2
\ 27 (o) +0,) 0, t0, 0, +0,

772 From Equations (50) and (51), we can get fL*=l by

J.+ocn1(ﬁ,j*)xn3(ri’j*)dfi-*=1
= f (5, ’
(Xfuo)2
A +o0 1 T 202
= | e % dx=1
fo (r;)°"=
773 (%) 7 V2mo Y
:Lxlzl
fo(6®
3L=l
(6™
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Based on Equations (49) and (51) and _A =1, we have

f (r;®
1 ook
= % PR A I € ’ (X—Uo)2
( )= nl(rl,J )Xn3(ri,j ) — 27[0—0 — 1 e_ 26& (53)
"lr frij(ri,j*) f,.ij(ri,j*) V2rao,

Finally, according to Equation (53), we can conclude that the corresponding distribution of

- .() is N(uy,0?7). As a result, the following equations (i.e., Equations (41) and (42))

hold:
2 2 F LAr * 2F
. uo; +U,o, L.oi +6. 70
E(I’i |r.=r.*)—u0= 122 221='J 'J ij i and
o, t 0o, O'iyj +O'iyj
2 2 2,F 2r
2 0'10'2 O' O'

Var(f;[r; =1 ;%) =0, = = :
o, +o, O'i'j +0'i]j

Similarly, the following equations (i.e., Equations (43) and (44)) also hold:

3 i P44 *ol
E(/ﬁtlﬂr—ﬂf ) |Je|je lJe L€ and
i,j.e i i,j.e 2% 2.\
OiieTOije
25 22
~ 0.0,
_ _ j.evije
Var(ﬂmj,e M’l.j,e _ﬂ’u\e )_ 2. 2.0
O-i,j,e+o-| j.e

Appendix B: The calculation process of h(r®?,1%? y')

In this appendix, we present how to calculate h(r®®,A%" y') by Equations (7)-(22) if yi j

is given. The detailed calculation process is shown as follows:

I. Set i=1. Obtain AP ,forj=01,..N-1 and FBR"

1JeI,forj:O,l,...N—l;eeE by
Equations (11) and (15).
While i<2,do

Set j=0

While j<N-2,do

1) As A11J| and Adj is known, get H"" by Equation (14).

IJ|

2) Since SBRY®,,Vk < j is known, calculate IP%? and AR‘P by Equations

i,j, i,j,l

(16) and (17), respectively.
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3) Obtain W,? by Equation (18) as FBP%"_ . and Hfﬁ are known.

ij.el i-1,j.el

4) With the knowledge of WP | IP®P and AP%P, get TSBP"" by Equation

i,j.el? ij,l>° i,j,1° il
(19).
5) With the knowledge of W% ~and TSBP®P, obtain SBP®P by Equation

i,j.e, ijl> i,jel
(20).
6) Since W%, and SBR%®, are known, calculate FBR'? by Equation (21).

ijel

7) Calculate S®:” by Equation (22) as AP%P and TSBP®? are known.

Ll il il

8)As S%" is known, compute Aﬁéjfu by Equations (12) and (13).

i)l
9) j=j+1.
endwhile
I=1+1.
endwhile
2. As the values of all variables on the right-hand side of Equations (8)-(10) are known,
calculate Z?, ZJi?, and Zj;". Obtain h(r®?,A"? y') by adding up Z\*, Z;;*, and
Z3;" using Equation (7).
3. Check whether Inequality (6) is satisfied. If it is satisfied, stop and output h(r®®,A*",y');
Otherwise, set h(r®®,A%",y') equals a sufficiently large positive value, then stop and

output h(r*?,a%° y'").
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