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Abstract 12 

 Providing limited-stop bus services can improve the efficiency of bus systems. This paper 13 

proposes a new two-stage strategy for providing real-time limited-stop bus services for a 14 

corridor and the corresponding model is developed. In the first (tactical planning) stage, given 15 

the maximum number of different limited-stop services, an operator determines a set of limited-16 

stop services based on historical bus travel times and passenger arrival rates. In the second 17 

(operational) stage, an operator selects one service from the set of limited-stop services obtained 18 

in the first stage for each limited-stop vehicle based on (short-term) predictive travel times and 19 

passenger arrival rates. Prediction errors are considered in the second stage. An enhanced 20 

artificial bee colony algorithm is developed to solve the first-stage model and the Monte Carlo 21 

Simulation method is adopted to solve the second-stage model. Numerical results are presented 22 

to illustrate the effectiveness and efficiency of the strategy and the effect of prediction errors. 23 
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1. Introduction 27 

Bus operation control strategies are important instruments for bus operators to improve the 28 

efficiency of bus systems (Liu et al., 2013). One of the strategies is providing limited-stop bus 29 

services. In these services, buses can skip some intermediate stops on a given route. It has been 30 

proved that providing limited-stop bus services can benefit passengers (e.g., Ercolano, 1984; 31 

El-Geneidy and Surprenant-Legault, 2010) and operators (e.g., Silverman, 1998; Tetreault and 32 

El-Geneidy, 2010). Moreover, if limited-stop bus services are applied to electric bus systems, 33 

the energy utilization rate of buses can be improved (Tang et al., 2023). Because of these 34 

benefits, limited-stop bus services have drawn much attention from researchers in recent years. 35 

This paper focuses on providing these services, which is referred to as the limited-stop bus 36 

service design problem (LSBSDP) in the literature. 37 

In the literature, the strategy of providing limited-stop bus services on a given route can be 38 

divided into two broad categories. One is the tactical planning strategy. In this strategy, an 39 

operator determines one limited-stop service on a given route at the tactical planning level and 40 

then all limited-stop vehicles (a limited-stop vehicle means the vehicle can provide a limited-41 

stop service) provide the same limited-stop service at the operational level (e.g., Wirasinghe 42 

and Vandebona, 2011; Chiraphadhanakul and Barnhart, 2013; Yi et al., 2016; Albarracin and 43 

Jaramillo-Ramirez, 2019; Nesheli et al., 2022). This strategy is attractive as passengers can plan 44 

for it. The other is the dynamic stop-skipping strategy (e.g., Fu et al., 2003; Wu et al., 2019; 45 

Zhang et al., 2017a; Zhang et al., 2017b; Gkiotsalitis, 2021; Zhang et al., 2021). In this strategy, 46 

an operator does not consider the tactical planning level. Each limited-stop vehicle can provide 47 

one limited-stop service out of all possible different services at the operational level and can 48 

offer a different limited-stop service from the other (or the same limited-stop service as the 49 

other) on a given route. It is implicitly assumed that passengers get real-time information about 50 

the limited-stop service through mobile applications. Compared with the tactical planning 51 

strategy, the dynamic stop-skipping strategy has higher effectiveness (i.e., it provides a more 52 

system cost saving) due to its higher flexibility to skip stops. However, the strategy creates a 53 

more difficult optimization problem and a higher computational burden for the real-time 54 

application. Considering the lower effectiveness of the tactical planning strategy and the 55 

requirement for higher computational efficiency of the dynamic stop-skipping strategy for real-56 

time applications, we propose a new two-stage strategy in this paper. The two-stage strategy 57 

has 1) higher effectiveness than the tactical planning strategy and 2) higher computational 58 

efficiency than the dynamic stop-skipping strategy. Furthermore, the new strategy is more 59 
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general than these two strategies, which are only special cases of the new strategy. 60 

At the operational level of providing limited-stop services, the limited-stop service scheme 61 

of a limited-stop vehicle is fixed once it departs from the starting terminal (Fu et al., 2003). 62 

Therefore, when we determine its real-time limited-stop service scheme, the real (future) values 63 

of bus travel times and passenger arrival rates associated with the vehicle are unknown. An 64 

operator needs to predict these values before determining the limited-stop service scheme. It is 65 

a common assumption that these predictive values (also named average or expected values) are 66 

known and given in the literature of the real-time LSBSDP (e.g., Fu et al., 2003; Gkiotsalitis, 67 

2021). This paper also adopts the same assumption. However, in previous studies, authors 68 

determined the limited-stop service scheme by these predictive values directly (e.g., Fu et al., 69 

2003; Wu et al., 2019; Gkiotsalitis, 2021). Different from them, we also take prediction errors 70 

into consideration. In other words, we determine the limited-stop service scheme by both the 71 

predictive values and prediction errors. We believe that the prediction errors need to be 72 

considered for two reasons. The first reason is that there must be prediction errors between the 73 

predictive and real values. In other words, the prediction errors do not equal 0 in reality. The 74 

second reason is that prediction errors can decrease the effectiveness of bus systems with 75 

dynamic limited-stop bus services. For example, when an operator obtains the predictive values 76 

by a prediction model with low effectiveness, if he/she directly adopts the predictive values as 77 

the real values, he/she is very likely to make a wrong determination of the limited-stop service 78 

scheme and the wrong determination can reduce the benefit of providing limited-stop services. 79 

In our study, new models (i.e., the first- and second-stage models) for the new two-stage 80 

strategy are developed to address the LSBSDP. Prediction errors are considered in the second-81 

stage model. To our best knowledge, no study has dealt with these errors when addressing the 82 

LSBSDP. Moreover, the new models can provide more effective solutions than the model 83 

derived from the tactical planning strategy and take less computational time than the model 84 

derived from the dynamic stop-skipping strategy. 85 

There are roughly two approaches to developing a model for the LSBSDP. The first one is 86 

the schedule-based approach (e.g., Fu et al., 2003; Chen et al., 2015; Yu et al., 2015; Gkiotsalitis, 87 

2019; Mou et al., 2020; Zhao et al., 2021; Sadrani et al., 2022). With this approach, models first 88 

calculate the arrival and departure times of buses at each bus stop. Then passengers’ waiting 89 

and in-vehicle times can be obtained. Specifically, the waiting time of one passenger is 90 

expressed as the difference between the arrival times of a bus and the passenger at his/her origin 91 

bus stop, and his/her in-vehicle travel time equals the gap between the departure time of the bus 92 

at his/her origin and the arrival time of the bus at his/her destination. The second one is the 93 
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frequency-based approach (e.g., Tang et al., 2016, 2018, 2019, 2020, 2022; Wang et al., 2018). 94 

Models of this approach do not focus on the arrival and departure times of buses. Passengers’ 95 

waiting time is calculated directly by the bus frequency (it usually equals the reciprocal of the 96 

frequency), and their in-vehicle travel time between two successive bus stops is the mean of 97 

historical in-vehicle travel times. Unlike the schedule-based approach, the frequency-based 98 

approach is not applicable to modeling the LSBSDP at the operational level. As a result, we 99 

adopt the schedule-based approach for our model development in our study. 100 

The solution methods to solve the models of LSBSDP can be broadly classified into exact 101 

methods and meta-heuristics. In terms of exact methods, some researchers (e.g., Ulusoy et al., 102 

2010; Huang et al., 2021) solved their models by an enumeration while others (e.g., Leiva et 103 

al., 2010; Larrain et al., 2015; Soto et al., 2017; Tang et al., 2017) adopted non-linear 104 

programming or mixed-integer non-linear programming solvers. These methods can derive 105 

optimal solutions, but they do not apply to a long bus corridor because of their low 106 

computational efficiency. To overcome this problem, some researchers (e.g., Ulusoy and Chien, 107 

2015; Yi et al., 2016; Torabi and Salari, 2019; Jiang and Ma, 2021; Liang et al., 2021) attempted 108 

to use meta-heuristics, e.g., genetic algorithms and artificial bee colony (ABC) algorithms. The 109 

solution method adopted in our study is also a meta-heuristic. Specifically, we develop an 110 

enhanced ABC algorithm to solve our model. We demonstrate its higher effectiveness and 111 

computational efficiency than genetic and ABC algorithms, which is shown in sub-section 5.3. 112 

In summary, the major contributions of the paper are shown as follows: 113 

(1) A more general two-stage strategy for the LSBSDP than the tactical planning strategy 114 

and the dynamic stop-skipping strategy is proposed.  115 

(2) The corresponding model is developed, and prediction errors are considered in the 116 

second-stage model. 117 

(3) An enhanced ABC algorithm is developed, with higher effectiveness and computational 118 

efficiency than genetic and traditional ABC algorithms. 119 

The remainder of this paper is structured as follows: Section 2 is the problem statement. 120 

Section 3 describes the formulation of the model for each stage. Section 4 depicts the solution 121 

method. Section 5 shows numerical results, and section 6 concludes the paper. 122 

2. Problem statement 123 

The paper proposes a two-stage strategy to address the real-time limited-stop bus service 124 

design problem for a corridor, as shown in Figure 1. In the first stage (i.e., at the tactical 125 
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planning level), an operator determines a set of limited-stop services (denoted as L ) based on 126 

historical bus travel times and passenger arrival rates. The maximum number of limited-stop 127 

services in L  is a parameter, which is predetermined and denoted as NL . However, the stop 128 

sequence of each of these limited-stop services is required to determine. In the second stage 129 

(i.e., at the operational level), for each limited-stop vehicle, an operator selects one limited-stop 130 

service (denoted as *l ) from L  based on (short-term) predictive travel times and passenger 131 

arrival rates. Predictive travel times and passenger arrival rates are assumed to be known, which 132 

can be obtained by prediction models in practice (e.g., Chien et al., 2002; Sheu, 2005). 133 

Prediction errors are considered in the second stage. After Stage 2 (i.e., *l  is determined), 1) 134 

a bus captain drives a vehicle departing from the bus terminal and provides the corresponding 135 

service; 2) passengers are informed of service *l  by mobile applications. 136 

 137 

Figure 1. The two-stage strategy 138 

 139 

As in the study of Liu et al. (2013), we assume that all-stop and limited-stop vehicles depart 140 

from the bus terminal alternately. This assumption is imposed to guarantee a minimum level of 141 

service for each origin-destination (OD) pair of passengers: The changed bus headway at each 142 

stop due to stop-skipping would not exceed two times the standard headway, to avoid large 143 

waiting time for the passengers (Liu et al., 2013). Because of this assumption, when an operator 144 

wants to determine the service of one limited-stop vehicle, the operations of all-stop vehicles 145 

before and after the limited-stop vehicle need to be considered together with the operation of 146 

the limited-stop vehicle. We let i   be the vehicle type and use 0,1,2i =   to represent the 147 

previous all-stop vehicle, the limited-stop vehicle (whose service is undetermined), and the next 148 

all-stop vehicle, respectively. These three vehicles form a vehicle group (VG) and then all 149 
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vehicles in one day can be grouped into a certain number of VGs, as illustrated in Figure 2. We 150 

also use N  to denote the number of stops in a bus corridor. The total system cost for one VG 151 

is comprised of 1) the waiting cost for all passengers between the departure of vehicle 0 and the 152 

arrival of vehicle 2, 2) the in-vehicle travel cost associated with passengers in vehicles 1 and 2, 153 

and 3) the operating cost associated with vehicles 1 and 2. 154 

 155 

Figure 2. The space-time diagram of vehicles for VG 1 and VG 2 156 

3. Model formulation 157 

3.1. Notations 158 

Since our model involves two stages, we classify notations into common notations, first-159 

stage notations, and second-stage notations, as shown below.  160 

 161 

Common notations 162 

Indices and sets 163 

i   Vehicle type, 0,1,2i = . 164 

j   Bus stop index, 0,1,..., 1j N= −  , where 0 and 1N −   mean the starting and 165 

ending terminals, respectively. N is the number of stops in a bus corridor. 166 

e   The destination stop index of passengers. 167 

l   The index of a limited-stop service, 1,2,...,l NL=  . In this paper, an all-stop 168 
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service is regarded as a special case of a limited-stop service.  169 

p   VG index, representing the order of vehicle groups. 170 

d   Day index. 171 

J   The set of bus stops, i.e.,  0,1,..., 1J N= − . 172 

E   The set of passenger destinations, E J . 173 

L   The set of limited-stop services. 174 

P   The set of VGs in one day. 175 

D   The set of days for collecting historical bus travel times and passenger arrival 176 

rates in the first stage. 177 

Parameters 178 

NL  The maximum number of limited-stop services predetermined in Stage 1. 179 

WV    Value of waiting time. 180 

IV    Value of in-vehicle travel time. 181 

OV    Value of operating time. 182 

Cap    The capacity of a vehicle. 183 

b    The average boarding time per passenger. 184 

a    The average alighting time per passenger. 185 

1    The time of opening and closing doors. 186 

2    Acceleration time. 187 

3    Deceleration time. 188 

 189 

First-stage notations 190 

Parameters 191 
,

,

d p

i jr    The historical travel time of vehicle i  of VG p  between stops 1j −  and j  192 

on day d . 193 
,

, ,

d p

i j e   The historical arrival rate of passengers heading to stop e   from stop j  194 

between the arrival times of vehicles 1i −  and i  of VG p  at stop j  on day 195 

d . 196 

Parameter vectors 197 
,d p

r  ( ),

, ,

d p

i j i I j J
r

  
. 198 

,d p
λ  ( ),

, , , ,

d p

i j e i I j J e E


   
. 199 

Decision variables 200 
l

ijy   A binary variable. It equals 1 if vehicle i  associated with service l  does not 201 

skip stop j , and 0 otherwise. Please note that vehicles 0 and 2 cannot skip stops, 202 

i.e., 1,for 0,2; 0,1,..., 1; 1,2,...,l

ijy i j N l NL= = = − = . 203 

l
y  ( )

,

l

ij i I j J
y

  
. 204 

y  ( )
, ,

l

ij i I j J l L
y

   
. 205 

Functions 206 

( )z y  The minimum total operator and passenger costs (associated with all p P  in 207 

all d D ). 208 
, ,( , , )d p d pf r λ y The minimum total operator and passenger costs associated with day d  and 209 

VG p . 210 
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, ,( , , )d p d p lh r λ y  The total operator and passenger costs associated with day d   and VG p  211 

when limited-stop service l  is adopted. 212 

Auxiliary variables 213 
,

, ,

d p

i j lH  The headway between vehicles 1i −  and i  of VG p  at stop j  on day d  214 

if limited-stop service l  is adopted. 215 
,

1,

d p

lZ  The waiting cost of passengers of VG p  on day d  if limited-stop service l  216 

is adopted. 217 
,

2,

d p

lZ  The in-vehicle travel cost of passengers on VG p  on day d  if limited-stop 218 

service l  is adopted. 219 
,

3,

d p

lZ  The operating cost of VG p  on day d  if limited-stop service l  is adopted. 220 

,

, ,

d p

i j lA   The arrival time of vehicle i  of VG p  at stop j  on day d  if limited-stop 221 

service l  is adopted. 222 
, 1

2,

d p

jA −  The arrival time of vehicle 2  of VG 1p −  at stop j  on day d . It has been 223 

determined when , 1 , 1( , , )d p d pf − −
r λ y  is calculated. 224 

,

, ,

d p

i j lD   The departure time of vehicle i  of VG p  at stop j  on day d  if limited-225 

stop service l  is adopted. 226 
,

, ,

d p

i j lS  The dwell time of vehicle i  of VG p  at stop j  on day d  if limited-stop 227 

service l  is adopted. 228 
,

, , ,

d p

i j e lFBP  The number of passengers who want to travel from stop j  to stop e  and fail 229 

to board vehicle i  of VG p  on day d  if limited-stop service l  is adopted. 230 
, 1

2, ,

d p

j eFBP −  The number of passengers who want to travel from stop j  to stop e  and fail 231 

to board vehicle 2   of VG 1p −   on day d  . It has been determined when 232 
, 1 , 1( , , )d p d pf − −

r λ y  is calculated. 233 
,

, ,

d p

i j lIP  The number of passengers on vehicle i   of VG p   on day d   when the 234 

vehicle arrives stop j  if limited-stop service l  is adopted. 235 
,

, , ,

d p

i j e lSBP  The number of passengers who want to travel from stop j   to stop e   and 236 

succeed in boarding vehicle i  of VG p  on day d  if limited-stop service l  237 

is adopted. 238 
,

, ,

d p

i j lAP  The number of passengers who alight at stop j  from vehicle i  of VG p  on 239 

day d  if limited-stop service l  is adopted. 240 
,

, , ,

d p

i j e lW  The number of waiting passengers who want to travel from stop j  to stop e  241 

when vehicle i  of VG p  on day d  arrives stop j . 242 
,

, ,

d p

i j lTSBP  The number of passengers who succeed in boarding vehicle i  of VG p  on 243 

day d  at stop j  if limited-stop service l  is adopted. 244 

 245 

Second-stage notations 246 

Random variables 247 

,i jr    The real travel time of vehicle i  of the next VG between stops 1j −  and j . 248 

(The value of ,i jr  is unknown, but the mean and variance satisfy Equations (41) 249 

and (42).) 250 
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,i jr    The predictive travel time of vehicle i   of the next VG between stops 1j −  251 

and j . 252 
r

,i j  The predictive error of ,i jr . 253 

r    ( ), ,i j i I j J
r

  
. 254 

, ,i j e   The real arrival rate of passengers heading to stop e  from stop j  between the 255 

arrival times of vehicles 1i −  and i  of the next VG at stop j . (The value of 256 

, ,i j e  is unknown, but the mean and variance satisfy Equations (43) and (44).) 257 

, ,i j e    The predictive arrival rate of passengers heading to stop e   from stop j  258 

between the arrival times of vehicles 1i −  and i  of the next VG at stop j . 259 
λ

, ,i j e  The predictive error of , ,i j e . 260 

λ    ( ), ,
, ,

i j e
i I j J e E


   

. 261 

Parameters 262 

, *i jr  A value of ,i jr . 263 

, , *i j e  A value of , ,i j e . 264 

l

ijy  The decision variable in the first stage, but it is a parameter in the second stage. 265 

,i jr  The expected value of ,i jr  . It can be estimated by calculating the mean of 266 

,

, , ,d p

i jr d D p P   . 267 

2,r

,i j  The variance of ,i jr  . It can be estimated by calculating the variance of 268 

,

, , ,d p

i jr d D p P   . 269 

2,r

,i j  The variance of the prediction error when we predict ,i jr  by a prediction model. 270 

, ,i j e  The expected value of , ,i j e  . It can be estimated by calculating the mean of 271 

,

, , , ,d p

i j e d D p P    . 272 

2,

, ,i j e λ  The variance of , ,i j e  . It can be estimated by calculating the variance of 273 

,

, , , ,d p

i j e d D p P    . 274 

2,λ

, ,i j e  The variance of the prediction error when we predict , ,i j e   by a prediction 275 

model. 276 

Decision variable 277 

*l  The index of the best limited-stop service in L  (associated with the next VG). 278 

Function 279 

( , , )lg r λ y  The total operator and passenger costs associated with the next VG when 280 

limited-stop service l  is adopted. 281 

 282 
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3.2. Assumptions 283 

3.2.1. The first stage (i.e., tactical planning level) 284 

With the knowledge of ,d p
r  and ,d p

λ , an operator in the first stage aims to determine the 285 

stop sequences of a fixed number of limited-stop services to minimize total operator and 286 

passenger costs for all p P  in all d D . 287 

3.2.2. The second stage (i.e., operational level) 288 

In the second stage, we assume that an operator can get the values of predictive bus travel 289 

times and passenger arrival rates for the next VG (i.e., , *i jr  and , , *i j e ) by prediction models. 290 

Then the operator determines one limited-stop service in L   to minimize the operator and 291 

passenger costs for the next VG, with the consideration of the (historical) prediction errors of 292 

prediction models. The mean of these prediction errors is 0, while the variances of these 293 

prediction errors are fixed and given. 294 

3.2.3. Passenger behavior, capacity, passenger arrival rate, and waiting time 295 

A passenger is assumed to wait for a vehicle that serves both his/her origin and destination. 296 

Since capacity constraints are considered, he/she has to wait for the next vehicle if the arriving 297 

vehicle is fully loaded. In a word, a passenger boards the first arriving vehicle that serves both 298 

his/her origin and destination and is not fully loaded. 299 

The passenger arrival rate between two successive vehicles is assumed to be uniform. As a 300 

result, when a vehicle arrives at a stop, the average waiting time of new passengers at the stop 301 

is half of the headway while the additional average waiting of remaining passengers is the 302 

headway. New passengers mean that they arrive at the stop after the last vehicle leaves the stop 303 

and before the arriving vehicle arrives at the stop. Remaining passengers mean that they arrive 304 

at the stop before the last vehicle leaves the stop but fail to board the last vehicle because either 305 

1) the vehicle is fully loaded or 2) the vehicle cannot serve their origin and destination. 306 

3.2.4. Headway, dwell time, and overtaking phenomenon 307 

The headway (and the bus arrival time) at the bus terminal is fixed and given. This implies 308 

that the number of buses is known and given and hence the capital cost need not be considered. 309 
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Moreover, the headway between all-stop and limited-stop vehicles is assumed to be not greater 310 

than 15 min so that the arrival times of passengers are not affected by any stop-skipping strategy 311 

of limited-stop vehicles. Furthermore, the dwell time at each stop is determined by the numbers 312 

of boarding passengers and alighting passengers at the stop. In addition, overtaking phenomena 313 

are not allowed. 314 

3.3. Formulation 315 

3.3.1. The first stage 316 

An operator in the first stage aims to determine the stop sequences of a fixed number of 317 

limited-stop services to minimize total operator and passenger costs for all p P   in all 318 

d D . The first-stage model can be formulated as follows:  319 

 320 

 , ,min ( ) ( , , )d p d p

d D p P

z f
 

=y r λ y  (1) 321 

Subject to 322 

 1,for 0,2; 0,1,..., 1; 1,2,...,l

ijy i j N l NL= = = − = , (2) 323 

 1,for 1; 0, 1; 1,2,...,l

ijy i j N l NL= = = − = , (3) 324 

 {0,1},for 0,1,2; 0,1,..., 1; 1,2,...,l

ijy i j N l NL = = − = . (4) 325 

 326 

In Objective function (1), , ,( , , )d p d pf r λ y   is the minimum total operator and passenger 327 

costs associated with day d  and VG p . Constraint (2) guarantees that vehicles 0 and 2 are 328 

all-stop vehicles, and Constraint (3) ensures that vehicle 1 serves the starting and ending 329 

terminals. Constraint (4) defines l

ijy  to be binary variables. 330 

In Objective function (1), , ,( , , )d p d pf r λ y  can be computed by 331 

 , , , ,

{1,2,..., }
( , , ) min { ( , , )}d p d p d p d p l

l NL
f h


=r λ y r λ y . (5) 332 

, ,( , , )d p d p lh r λ y  is the total operator and passenger costs associated with day d  and VG p  333 

when limited-stop service l  is adopted. 334 

Let ,

, ,

d p

i j lH  be the headway between vehicles 1i −  and i  of VG p  at stop j  on day d  335 

if limited-stop service l  is adopted. When 336 
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 ,

, , 0,for 1,2; 0,1,..., 2d p

i j lH i j N = = −   (6) 337 

is satisfied (i.e., overtaking phenomena do not occur), we can obtain 
, ,( , , )d p d p lh r λ y  by 338 

 , , , , ,

1, 2, 3,( , , )d p d p l d p d p d p

l l lh Z Z Z= + +r λ y , (7) 339 

 

,2 2
, ,, , , , ,

1, , , , , 1, , , , ,

1 0

( )
2

d pN
i j ld p d p d p d p d p

l i j e i j l i j e l i j l

i j e E

H
Z WV H FBP H

−

−

= = 

=  +  , (8) 340 

 
2 2 1

, , , ,

2, , , , , , ,

1 0 1

( )
N e e

d p d p d p d p

l i j e l i k i k l

i j e E k j k j

Z IV SBP r S
− −

= =  = + =

=  +   , (9) 341 

 
2 1 2

, , ,

3, , , ,

1 1 0

( )
N N

d p d p d p

l i j i j l

i j j

Z OV r S
− −

= = =

= +   , (10) 342 

 , , 1

0, , 2, , for 1,2,..., 1d p d p

j l jA A j N−= = − , (11) 343 

 , , ,

, , , 1, , , for 1,2; 1,2,..., 1d p d p d p

i j l i j l i jA D r i j N−= + = = − , (12) 344 

 , , ,

, , , , , , , for 1,2; 0,1,..., 2d p d p d p

i j l i j l i j lD A S i j N= + = = − ,  (13) 345 

 , , ,

, , , , 1, , , for 1,2; 1,2,..., 2d p d p d p

i j l i j l i j lH A A i j N−= − = = − ,  (14) 346 

 , , 1

0, , , 2, , , for 1,2,..., 1;d p d p

j e l j eFBP FBP j N e E−= = −  , (15) 347 

 
1

, ,

, , , , ,

0 ,

, for 1,2; 1,2,..., 1,
j

d p d p

i j l i k e l

k e E e j

IP SBP i j N
−

=  

= = = −   (16) 348 

 
1

, ,

, , , , ,

0 ,

, for 1,2; 1,2,..., 1,
j

d p d p

i j l i k e l

k e E e j

AP SBP i j N
−

=  =

= = = −   (17) 349 

 , , , ,

, , , , , , , 1, , , , for 1,2; 0,1,..., 2; ,d p d p d p d p

i j e l i j e i j l i j e lW H FBP i j N e E −= + = = −   (18) 350 

 , , , ,

, , , , , , , , , , ,

,

min , , for 1,2; 0,.1,.., 2,d p l l d p d p d p

i j l i j i e i j e l i j l i j l

e E e j

TSBP y y W Cap IP AP i j N
 

 
=  − + = = − 

 
 (19) 351 

 

,

, , , ,, ,

, , , , , ,

, ' , , ',

' , '

, for 1,2; 0,1,..., 2; ,

l d p

i e i j e ld p d p

i j e l i j l l d p

i e i j e l

e E e j

y W
SBP TSBP i j N e E

y W
 

=  = = − 


 (20) 352 

 , , ,

, , , , , , , , , , for 1,2; 0,1,..., 2; ,d p d p d p

i j e l i j e l i j e lFBP W SBP i j N e E= − = = −   and (21) 353 

 

, ,

, , , , , 1 2

, , ,

, , , , , , , 1 2 3

( ), for 1,2; 0,

(max{ , } ), for 1,2; 1,2,..., 2.

d p l d p

i j l i j i j l

d p l d p d p

i j l i j i j l i j l

S y b TSBP i j

S y b TSBP a AP i j N

 

  

 =   + + = =


=    + + + = = −

 (22) 354 

 355 

Equation (7) defines that 
, ,( , , )d p d p lh r λ y   is comprised of 1) the waiting cost for all 356 

passengers between the departure of vehicle 0 and the arrival of vehicle 2, 2) the in-vehicle 357 
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travel cost associated with passengers in vehicles 1 and 2, and 3) the operating cost associated 358 

with vehicles 1 and 2. Equations (8)-(10) are used to calculate these three costs, respectively. 359 

In Equation (8), 

,

, ,, ,

, , , ,
2

d p

i j ld p d p

i j e i j l

H
H    is the waiting time of new passengers, whereas 360 

, ,

1, , , , ,

d p d p

i j e l i j lFBP H−    is the additional waiting time of remaining passengers. In Equation (9), 361 

,

, , ,

d p

i j e lSBP  is the number of in-vehicle passengers for OD pair ( , )j e  and 
1

, ,

, , ,

1

( )
e e

d p d p

i k i k l

k j k j

r S
−

= + =

+   362 

is the corresponding in-vehicle travel time per passenger. In Equation (10), 
1 2

, ,

, , ,

1 0

( )
N N

d p d p

i j i j l

j j

r S
− −

= =

+   363 

is the operating time of vehicle i . 364 

Equation (11) determines the arrival time of vehicle 0  of VG p  at each stop: vehicle 0  365 

of VG p  is just vehicle 2  of VG 1p − . Equations (12) and (13) are included to calculate 366 

bus arrival and departure times at each stop, respectively. Equation (14) computes the headway 367 

at each stop.  368 

Equation (15) sets the number of passengers who fail to board vehicle 0  of VG p  to be 369 

that of vehicle 2   of VG 1p −  . Equations (16), (17), and (18) are used to compute the 370 

numbers of in-vehicle passengers, alighting passengers, and waiting passengers, respectively. 371 

Equation (19) is used to calculate the number of total passengers who can succeed in boarding. 372 

Equation (20) determines the number of passengers who succeed in boarding for each OD 373 

pair, whereas Equation (21) computes the number of passengers who fail to board for each OD 374 

pair. Equation (22) defines the dwell time when we assume a 2-door operation. 375 

When Objective function (1) is minimized, the optimal values of l

ijy  are obtained, and are 376 

used to deduce the optimal stop sequence of limited-stop service l. (A stop sequence of service 377 

l offered by vehicle 1 is represented by a string of binary numbers 10

ly 11

ly   1, 1

l

Ny −  .) The 378 

collection of the optimal stop sequence of each limited-stop service is denoted as 'L . As there 379 

is no constraint to ensure that all elements in 'L  are different, it is possible that some elements 380 

in 'L  are repeated. As a result, we collect all different elements in 'L  to create a new set, 381 

which is denoted as L . The size of L  may be different from NL  and we use | |L  to denote 382 

it. 383 

Objective function (1) in Stage 1 represents the total cost of all VGs during all days. 384 

Conducting Stage 1 once can cover all VGs during all days and derive one L  for all days.  385 
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3.3.2. The second stage 386 

In the second stage, the operator needs to determine the best limited-stop service in L  for 387 

the next VG by  388 

 
{1,2,...,| |}

* arg min { ( ( , , ))}l

l L
l E g


= r λ y .  (23) 389 

When  390 

 , , 0,for 1,2; 0,1,..., 2i j lH i j N = = −   (24) 391 

is satisfied (overtaking phenomena do not occur), ( , , )lg r λ y  can be calculated by 392 

 1, 2, 3,( , , )l

l l lg Z Z Z= + +r λ y , (25) 393 

 
2 2

, ,

1, , , , , 1, , , , ,

1 0

( )
2

N
i j l

l i j e i j l i j e l i j l

i j e E

H
Z WV H FBP H

−

−

= = 

=  +  , (26) 394 

 
2 2 1

2, , , , , , ,

1 0 1

( )
N e e

l i j e l i k i k l

i j e E k j k j

Z IV SBP r S
− −

= =  = + =

=  +   , (27) 395 

 
2 1 2

3, , , ,

1 1 0

( )
N N

l i j i j l

i j j

Z OV r S
− −

= = =

= +   , (28) 396 

 0, , 2, , for 1,2,..., 1j l jA A j N= = − , (29) 397 

 , , , 1, , , for 1,2; 1,2,..., 1i j l i j l i jA D r i j N−= + = = − , (30) 398 

 , , , , , , , for 1,2; 0,1,..., 2i j l i j l i j lD A S i j N= + = = − ,  (31) 399 

 , , , , 1, , , for 1,2; 1,2,..., 2i j l i j l i j lH A A i j N−= − = = − ,  (32) 400 

 0, , , 2, , , for 1,2,..., 1;j e l j eFBP FBP j N e E= = −  , (33) 401 

 
1

, , , , ,

0 ,

, for 1,2; 1,2,..., 1,
j

i j l i k e l

k e E e j

IP SBP i j N
−

=  

= = = −   (34) 402 

 
1

, , , , ,

0 ,

, for 1,2; 1,2,..., 1,
j

i j l i k e l

k e E e j

AP SBP i j N
−

=  =

= = = −   (35) 403 

 , , , , , , , 1, , , , for 1,2; 0,1,..., 2; ,i j e l i j e i j l i j e lW H FBP i j N e E −= + = = −   (36) 404 

 , , , , , , , , , , ,

,

min , , for 1,2; 0,.1,.., 2,l l

i j l i j i e i j e l i j l i j l

e E e j

TSBP y y W Cap IP AP i j N
 

 
=  − + = = − 

 
 (37) 405 

 
, , , ,

, , , , ,

, ' , , ',

' , '

, for 1,2; 0,1,..., 2; ,

l

i e i j e l

i j e l i j l l

i e i j e l

e E e j

y W
SBP TSBP i j N e E

y W
 

=  = = − 


 (38) 406 
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 , , , , , , , , , , for 1,2; 0,1,..., 2; ,i j e l i j e l i j e lFBP W SBP i j N e E= − = = −   and (39) 407 

 
, , , , , 1 2

, , , , , , , 1 2 3

( ), for 1,2; 0

(max{ , } ), for 1,2; 1,2,..., 2

l

i j l i j i j l

l

i j l i j i j l i j l

S y b TSBP i j

S y b TSBP a AP i j N

 

  

 =   + + = =


=    + + + = = −

 (40) 408 

 409 

The meanings of notations used in the second-stage model basically follow those in the first-410 

stage counterpart, except that the latter notations are for VG p  on day d  whereas the former 411 

notations are for the next VG.  412 

As ,i jr  and , ,i j e  are unknown, the operator needs to predict them by prediction models. 413 

We denote their predictive values as , *i jr  and , , *i j e , respectively. The predictive error of 414 

( ), , , i j i j er   is denoted as ( )r λ

, , , i j i j e  . 415 

If we assume 416 

1) ,i jr  follows a normal distribution, denoted as 2,r

, ,( , )i j i jN r  ; 417 

2) , ,i j e  follows a normal distribution, denoted as 2,λ

, , , ,( , )i j e i j eN   ; 418 

3) r

,i j  and λ

, ,i j e  follow normal distributions with a mean of 0, denoted as 2,r

,(0, )i jN   419 

and 2,λ

, ,(0, )i j eN  , respectively, 420 

the means and variances of ,i jr   and , ,i j e   obey the following equations (their derivation 421 

process is presented in Appendix A): 422 

 

2,r 2,r

, , , ,

, , , 2,r 2,r

, ,

*
( | *) , for 0,1,2; 1,2,..., 1

i j i j i j i j

i j i j i j

i j i j

r r
E r r r i j N

 

 

+
= = = = −

+
, (41) 423 

 

2,r 2,r

, ,

, , , 2,r 2,r

, ,

( | *) , for 0,1,2; 1,2,..., 1
i j i j

i j i j i j

i j i j

Var r r r i j N
 

 
= = = = −

+
, (42) 424 

 

2,λ 2,λ

, , , , , , , ,

, , , , , , 2,λ 2,λ

, , , ,

*
( | *) , for 1,2; 0,1,..., 1

i j e i j e i j e i j e

i j e i j e i j e

i j e i j e

E i j N
   

  
 

+
= = = = −

+
, and (43) 425 

 

2,λ 2,λ

, , , ,

, , , , , , 2,λ 2,λ

, , , ,

( | *) , for 1,2; 0,1,..., 1
i j e i j e

i j e i j e i j e

i j e i j e

Var i j N
 

  
 

= = = = −
+

. (44) 426 

3.3.3. Two special cases 427 

As mentioned earlier, the tactical planning strategy and dynamic stop-skipping strategy are 428 

only two special cases of the two-stage strategy.  429 
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If we set parameter NL  to 1, L  derived from the first stage only contains one limited-stop 430 

service. It means that all limited-stop vehicles in the second stage must provide the limited-stop 431 

service. This situation is just the same as that of the tactical planning strategy. 432 

If we set parameter NL  to be the maximum number of all possible different limited-stop 433 

services, L  derived from the first stage is likely to contain all possible different limited-stop 434 

services and it depends on whether there is one optimal solution or there are multiple optimal 435 

solutions for Stage 1: (1) If there is only one optimal solution for Stage 1, 'L  is just the set of 436 

all different possible limited-stop services and L  is the same as 'L . In this situation, each 437 

limited-stop vehicle in the second stage can provide one limited-stop service out of all possible 438 

different services. It is just the same as the situation of the dynamic stop-skipping strategy; (2) 439 

If there are multiple optimal solutions for Stage 1, some elements in 'L  may be repeated and 440 

'L  is not the set of all possible different limited-stop services. Then L  derived from 'L  is 441 

not the set of all possible different limited-stop services. This situation is not the same as that 442 

of the dynamic stop-skipping strategy. However, we can prove that the objective function value 443 

of Stage 1 associated with L  is the same as that associated with the set of all possible different 444 

limited-stop services ''L  by the following statements: 445 

1) As 'L   is obtained by solving the model of Stage 1, 'L   gives the lowest objective 446 

function value of Stage 1. 447 

2) As all elements in 'L  can be found in L  and vice versa, the objective function value of 448 

Stage 1 associated with L  is the same as that of 'L .  449 

3) As ''L  is a feasible solution, the objective function value of ''L  is not better than that 450 

of 'L , which is the lowest objective value according to statement 1). Moreover, as all 451 

elements in 'L  can be found in ''L , ''L  can be considered to be formed by introducing 452 

more different elements to 'L  . For any solution including ''L  , adding more different 453 

elements in the solution cannot increase the objective function value of Stage 1. Therefore, 454 

the objective function value of ''L  must be the same as that of 'L , which is also the same 455 

as that of L  according to statement 2). 456 

4. Solution method 457 

We develop an enhanced ABC algorithm and adopt the Monte Carlo Simulation method to 458 

solve the first- and second-stage models, respectively. 459 
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4.1. The enhanced ABC algorithm for the first-stage model 460 

An enhanced ABC algorithm is developed to solve the first model (i.e., determine y ). We 461 

first introduce the ABC algorithm proposed by Karaboga (2005) (referred to as the traditional 462 

ABC algorithm) and then describe the difference between the traditional and enhanced ABC 463 

algorithms. 464 

4.1.1. The traditional ABC algorithm 465 

The algorithmic steps of the traditional ABC algorithm are shown in Figure 3, which are 466 

explained below: 467 

 468 

Step 0: Parameter setting 469 

Set the number of employed bees eN , the number of onlooker bees oN , the maximum 470 

number of unimproved iterations (the number of trials that fail to improve the current 471 

solution) maxU , and the maximum number of iterations maxI . 472 

Step 1: Initialization 473 

Set iteration = 0. Randomly generate initial solutions , for 0,1,..., 1b eb N= −y  and assign 474 

one employed bee to each solution. Evaluate the fitness 
e( ), for 0,1,..., 1bfit b N= −y  . 475 

Record the best solution ŷ   in e{ | 0,1,..., 1}b b N= −y  . Set the counters of unimproved 476 

iterations 
e0, for 0,1,..., 1bu b N= = − . Set iteration = 1. 477 

Step 2: Employed bee phase 478 

For each employed bee 
e0,1,..., 1b N= −  479 

Step 2.1: Generate a neighbor solution *by  based on by . 480 

Step 2.2: Evaluate the fitness ( *)bfit y . If ( *) ( )b bfit fity y , replace by  with *by481 

and 0bu = , else increase bu  by 1. 482 

Step 3: Onlooker bee phase 483 

For each onlooker bee 484 

Step 3.1: Select a solution by  by the fitness-based roulette wheel selection method and 485 

then generate a neighbor solution *by  based on by . 486 

Step 3.2: Evaluate the fitness ( *)bfit y . If ( *) ( )b bfit fity y , replace by  with *by487 

and 0bu = , else increase bu  by 1. 488 
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Step 4: Updating the best solution 489 

For 
e0,1,..., 1b N= − , if ˆ( ) ( )bfit fity y , set ŷ  to be by . 490 

Step 5: Scout bee phase 491 

For 
e0,1,..., 1b N= − , if maxbu U , replace by  with a new randomly generated solution 492 

and evaluate the fitness of the new solution. 493 

Step 6: Termination criterion checking 494 

If iteration < maxI , iteration = iteration + 1 and return to Step 2. Otherwise, stop and output 495 

the best solution ŷ . 496 

 497 

 498 

Figure 3. The flowchart of the traditional ABC algorithm 499 

 500 

The representation of a solution in the traditional ABC algorithm  501 

Based on Constraints (2)-(4), , for 1; 1,2,..., 2; 1,2,...,l

ijy i j N l NL= = − =  can be 0 or 1, and 502 

l

ijy  must be 1 for other values of i , (i.e., 0,2i = ). Because of that, a solution in the traditional 503 

ABC algorithm can be represented by Figure 4, which only considers 504 

, for 1; 1,2,..., 2; 1,2,...,l

ijy i j N l NL= = − =  as binary values. 505 

 506 
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 507 

Figure 4. The representation of a solution in the traditional ABC algorithm 508 

 509 

Fitness function 510 

The fitness function ( )fit y  in the traditional ABC algorithm equals the reciprocal of the 511 

objective function value (i.e., 1/ ( )z y  ). ( )z y   is computed by Equations (1) and (5) and 512 

, ,( , , )d p d p lh r λ y  . 
, ,( , , )d p d p lh r λ y   can be obtained by Equations (7)-(22) if ,

l

i jy   is given, 513 

which is presented in detail in Appendix B. 514 

 515 

Random generation of a solution and non-neighborhood/neighborhood operators 516 

In Steps 1 and 5, a solution in the traditional ABC algorithm is generated randomly. It means 517 

that each element , for 1; 1,2,..., 2; 1,2,...,l

ijy i j N l NL= = − =  is randomly determined to be 0 518 

or 1. 519 

In Steps 2.1 and 3.1, each employed or onlooker bee generates a neighbor solution based on 520 

by  by one of the neighborhood operators: 521 

 522 

Neighborhood operator 1: Single change 523 

This operator randomly selects one element l

ijy  in by  and then changes the value from 524 

0 to 1 or from 1 to 0. 525 

Neighborhood operator 2: Swap within the limited-stop service 526 

This operator randomly selects one limited-stop service in by  and two elements l

ijy  of 527 

the service. Then we swap the values of these two elements. 528 

Neighborhood operator 3: Swap between two limited-stop services 529 

If 1NL   , this operator randomly selects two limited-stop services and one stop 530 

( 1,2,..., 2j N= − ) in by . Then we swap the values of these two elements l

ijy  associated 531 

with these limited-stop services and the stop. 532 

4.1.2. The difference between the traditional and enhanced ABC algorithms 533 

It is easy for the traditional ABC algorithm to fall into a local optimum as employed and 534 
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onlooker bees can only search neighbor solutions. We enhance the traditional ABC algorithm 535 

by allowing employed bees to search non-neighbor solutions. For this purpose, an enhanced 536 

step is introduced between Steps 1 and 2 of the traditional ABC algorithm, which is shown as 537 

follows: 538 

 539 

Enhanced step: Enhanced employed bee phase 540 

For each employed bee 
e0,1,..., 1b N= −  541 

Step ①: Generate a non-neighbor solution *by  based on by . 542 

Step ②: Evaluate the fitness ( *)bfit y . If ( *) ( )b bfit fity y , replace by  with *by543 

and 0bu = , else increase bu  by 1. 544 

 545 

In Step ①, each employed bee generates a non-neighbor solution based on by  by a non-546 

neighborhood operator. The non-neighborhood operator is to 1) select solution 'by   by the 547 

fitness-based roulette wheel selection method, 2) select a limited-stop service index and two 548 

stop indices randomly, and 3) change all elements l

ijy  with the stop index between the two 549 

selected stop indices inclusively and with the selected limited-stop service index in by  to be 550 

the same as those in 'by . 551 

4.2. The Monte Carlo Simulation method for the second-stage model  552 

We adopt the Monte Carlo Simulation method to solve the second-stage model, i.e., to 553 

calculate ( ( , , )), for 1,2,...,| |lE g l L=r λ y  and then determine the best limited-stop service *l  554 

in L  for the next VG. The steps of the method are as follows: 555 

 556 

Step 0: Parameter setting 557 

Set the maximum number of simulations maxm . 558 

Step 1: Initialization 559 

Set the simulation counter 1m =  and ( ( , , ))lE g r λ y =0. 560 

Step 2: Sampling 561 

Randomly generate a value of ,i jr  and a value of , ,i j e  from normal distributions with 562 

their means and variances defined by Equations (41), (42), (43), and (44). 563 
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Step 3: Calculation 564 

Based on the values of ,i jr   and , ,i j e   generated in Step 2, calculate ( , , )lg r λ y   by 565 

Equations (25)-(40). Its calculation process is similar to that of 
, ,( , , )d p d p lh r λ y , which is 566 

detailed in Appendix B. 567 

Step 4: Update 568 

Update ( ( , , ))lE g r λ y  by 
( 1) ( ( , , )) ( , , )

( ( , , ))
l l

l m E g g
E g

m

− +
=

r λ y r λ y
r λ y . 569 

Step 5: Stop test 570 

If maxm m , set 1m m= +  and return Step 2; Otherwise, stop and output ( ( , , ))lE g r λ y . 571 

 572 

After the above Monte Carlo Simulation method, we get the values of 573 

( ( , , )), for 1,2,...,| |lE g l L=r λ y . *l  can be determined by comparing these values as stated by 574 

Equation (23). 575 

5. Numerical study 576 

In this section, 1) the effectiveness and efficiency of our strategy, 2) the effect of variances 577 

of prediction errors, and 3) the effectiveness and efficiency of the enhanced ABC algorithm 578 

were examined. All solution methods were coded with C++ in Visual Studio 2019 and run on a 579 

computer with a 2.30 GHz CPU and 16.0 GB RAM. 580 

In the following numerical studies, a real-world bus route (Route 63 in Harbin City, China) 581 

is adopted. It is a 34-stop bus corridor and around 17 km. The average running times (i.e., ,i jr ) 582 

between neighbor stops are presented in Table 1. On each day, the operation time of the bus 583 

system is from 6:00 to 24:00. Headway at the starting terminal is 5 minutes. Cap , b , a , 
1 , 584 

2 , and 3  are 150 passengers, 1 second, 2 seconds, 6 seconds, 7 seconds, and 7 seconds, 585 

respectively. As in the study of Chen et al. (2015), WV , IV , and OV  are $15/h, $10/h, and 586 

$150/h, respectively. 587 

 588 

Table 1. The average running times (seconds) between neighbor stops 589 

Stop 0 1 2 3 4 5 6 7 8 9 

,i jr  0 54 43 45 68 111 97 70 60 53 

Stop 10 11 12 13 14 15 16 17 18 19 

,i jr  68 76 92 65 78 36 87 61 59 39 

Stop 20 21 22 23 24 25 26 27 28 29 
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,i jr  51 111 55 45 97 83 85 37 42 32 

Stop 30 31 32 33       

,i jr  69 52 23 47       

  590 

In the first stage, we adopted 1 day for data collection. The historical bus travel time (i.e., 591 

,

,

d p

i jr ) between any two neighbor stops was randomly generated by a normal distribution with a 592 

mean of ,i jr   and a variance of (0.3 ,i jr  )2 (i.e., r 22,

, ,0.3( )i j i jr =  ). Similarly, the historical 593 

passenger arrival rate (i.e., ,

, ,

d p

i j e ) from any upstream stop to any downstream destination was 594 

randomly generated by a normal distribution with a mean of 0.5 person/minute (i.e., , ,i j e = 0.5 595 

person/minute) and a variance of (0.3  , ,i j e  )2 (i.e., 2,λ 2

, , , ,(0.3 )i j e i j e =   ). Destinations are 596 

comprised of stops 11, 22, and 33. 597 

In the enhanced ABC algorithm, the values of eN  , oN  , maxU  , and maxI   are 10 NL  , 598 

5 NL , 10 NL , and 400, respectively. The usage probabilities of neighborhood operators 1, 599 

2, and 3 are 0.3, 0.3, and 0.4, respectively. NL  is set to 4 unless otherwise specified.  600 

In the second stage, we generate , *i jr  by introducing an auxiliary parameter , *i jr  (a value 601 

of ,i jr ). The generation method is to 1) generate , *i jr  by the distribution of ,i jr , 2) get the 602 

distribution of ,i jr  by equation r

, , ,*  i j i j i jr r = + , and 3) generate , *i jr  by the distribution of 603 

,i jr . This generation method was also adopted by Schinckel et al. (2007), Guo and Yang (2020), 604 

and Khalilisamani et al. (2021). The generation of , , *i j e   is similar to that of , *i jr  . The 605 

variances of prediction errors 2,r

,i j  and 2,λ

, ,i j e  are set to 0 unless otherwise specified. 606 

In the Monte Carlo Simulation method, maxm  is set as 1000. 607 

5.1. The effectiveness and computational efficiency of our strategy 608 

In this sub-section, the effectiveness and computational efficiency of our strategy were tested 609 

by comparing it with the tactical planning strategy and the dynamic stop-skipping strategy. The 610 

tactical planning strategy means that an operator determines one limited-stop service at the 611 

tactical planning level and then all limited-stop vehicles provide the same limited-stop service 612 

at the operational level. The dynamic stop-skipping strategy means that an operator does not 613 

consider the tactical planning level. Each limited-stop vehicle can provide one limited-stop 614 

service out of all possible different services at the operational level and each limited-stop 615 
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vehicle can provide a different limited-stop service from the other. This strategy still considers 616 

VGs. There are also 3 vehicles ( 0,1,2)i =   in one VG and only vehicle 1 is a limited-stop 617 

vehicle. The difference between our strategy and the dynamic stop-skipping strategy is that 618 

vehicle 1 of our strategy can provide one limited-stop service in L  (the subset of all possible 619 

different limited stop services) but vehicle 1 of the dynamic stop-skipping strategy can provide 620 

one limited-stop service out of all possible different limited-stop services. 621 

The value of NL  has an influence on the effectiveness and computational efficiency of our 622 

strategy. We adopted 1,2,3,4NL =  and got the corresponding number of limited-stop services 623 

and the sequence of stops from the first stage, as shown in Table 2. 624 

 625 

Table 2. The stop sequences of the limited-stop services obtained from the first stage 626 

NL  The stop sequences of the limited-stop services 

1 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-22-23-24-25-26-28-33 

2 0-1-2-3-4-5-6-7-8-9-10-11-13-15-17-18-19-22-23-25-28-29-33 

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-

29-33 

3 0-1-2-3-4-5-6-7-8-9-10-11-13-15-19-20-22-23-24-25-33 

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-19-20-22-23-24-26-28-33 

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-

29-30-31-32-33 

4 0-1-2-3-4-5-6-7-8-9-10-11-14-15-16-19-22-23-26-33 (service 1) 

0-1-2-3-4-5-6-7-8-9-10-11-12-16-17-18-19-20-22-23-24-26-27-28-33 (service 2) 

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-28-33 (service 

3) 

0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-23-24-25-26-27-28-

29-30-31-32-33 (service 4) 

 627 

Table 3 shows the relationship between NL  and the system cost saving (i.e., reduction) and 628 

running times at the operational level for one day. The system cost saving is the difference 629 

between the total operator and passenger costs in the situations with and without limited-stop 630 

services. In this table, 631 

(1) 1NL =  implies that each limited-stop vehicle at the operational level provides the same 632 

limited-stop service, which is the same as the situation of the tactical planning strategy.  633 

(2) 2,  3,  or 4NL =  is the situation of our strategy. 634 

(3) maxNL =  represents the situation of the dynamic stop-skipping strategy. The first stage 635 

is not considered and any limited-stop vehicle can provide any limited-stop service at the 636 

operational level. In our numerical study, the number of all possible different limited-637 

stop services equals 322 4294967296=  (there are 32 intermediate stops in the corridor). 638 
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At the operational level, we exhausted all possible different limited-stop services and 639 

then selected the best one. 640 

(4) The reduction is x  when NL  is y  means that if the number of limited-stop services 641 

obtained from the first stage is y , we can save $ x  per day at the operational level. The 642 

benchmark is the situation without limited-stop services (i.e., 0NL = ). 643 

 644 

Table 3. The system cost savings ($) and running times (seconds) under different values of 645 

NL  646 

NL  1 

(tactical planning 

strategy) 

2 3 4 Max 

(dynamic stop-skipping 

strategy)  

Reduction  1177 2987 3151 3195 3586 (optimal) 

Reduction 

percentage* 

32.8% 83.3% 87.9% 89.15% 100.0% 

Running time  0 38.3 10−  21.1 10−  21.3 10−  62.8 10  

Reduction percentage*: reduction/optimal reduction100%. 647 

 648 

The effectiveness of our strategy 649 

From Table 3, we can see that our strategy can increase reduction significantly, compared 650 

with the tactical planning strategy (i.e., 1NL = ). The tactical planning strategy can only give 651 

32.8% of the optimal reduction, which is relatively small. On the contrary, our strategy can lead 652 

to more than 80% of the optimal reduction. Moreover, we observe that a large value of NL  653 

leads to higher effectiveness. We also find our strategy has lower effectiveness, in terms of a 654 

reduction percentage, compared with the dynamic stop-skipping strategy. However, it is 655 

acceptable because the reduction percentages are already more than 85% when we provide 656 

three/four limited-stop services. 657 

 658 

The computational efficiency of our strategy 659 

The computational efficiency of the tactical planning strategy, our strategy, and the dynamic 660 

stop-skipping strategy were also tested. We compared their running times at the operational 661 

level under different numbers of stops in a corridor, and the result is presented in Table 3. In 662 

Table 3, all running times of the tactical planning strategy are 0 s. This is because an operator 663 

does not need to determine which limited-stop service is the best at the operational level since 664 

there is only one limited-stop service. With our strategy, it can be observed that running time 665 

increases with the value of NL . However, all running times are very small. The maximum 666 

running time is only 21.3 10−   s, which implies the high computational efficiency of our 667 
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strategy. However, with the dynamic stop-skipping strategy, the minimum running time is 668 

62.8 10  s, which is obviously unacceptable in real-time operations. 669 

In conclusion, 1) the tactical planning strategy has the highest computational efficiency but 670 

its effectiveness can be low; 2) the dynamic stop-skipping strategy has the highest effectiveness 671 

but its computational efficiency is unacceptable when the corridor is long; 3) our strategy has 672 

both high effectiveness and high efficiency, which provides a better trade-off between 673 

effectiveness and computational efficiency than the above two strategies; 4) a larger value of 674 

NL  leads to higher effectiveness and lower efficiency. If an operator prefers effectiveness, a 675 

larger value of NL , e.g., 4, is recommended; if an operator prefers efficiency, a smaller value 676 

of NL , e.g., 2, is recommended. 677 

5.2. The effect of variances of prediction errors 678 

In this sub-section, the performance of our strategy under different variances of prediction 679 

errors is studied. At the operational level, the number of limited-stop vehicles used to provide 680 

each of the four limited-stop services in one day under different variances of prediction errors 681 

are presented in Table 4. (For services 1 to 4 in Table 4, please refer to Table 2.) The result 682 

illustrates that the number of limited-stop vehicles for each service varies with the variances of 683 

prediction errors. To be more specific, for the same VG, an operator may offer very different 684 

limited-stop services in L  under different variances of prediction errors. 685 

Since the variances of prediction errors change the number of limited-stop vehicles in each 686 

service, it is obvious that the system cost saving at the operational level for one day is also 687 

affected. The saving under different variances of prediction errors is shown in Table 5. From 688 

the table, we can find that the saving (i.e., reduction) decreases as the variances of prediction 689 

errors increase. When 2,r

, ,0.100i j i jr =   minute2 and 
2,λ

, , , ,0.100i j e i j e =   (person/minute)2, the 690 

saving is only $2112, which is much less than the one with 2,r

, ,0.000i j i jr =    minute2 and 691 

2,λ

, , , ,0.000i j e i j e =   (person/minute)2 (i.e., $3195). From this result, we can conclude that the 692 

variances of prediction errors cannot be ignored, especially in situations with large variances of 693 

prediction errors. 694 

 695 

Table 4. The numbers of limited-stop vehicles under different variances of prediction errors 696 

Variances of 

prediction 

errors 

2,r

, ,0.000i j i jr =   

2,λ

, , , ,0.000i j e i j e =   

2,r

, ,0.001i j i jr =   

2,λ

, , , ,0.001i j e i j e =   

2,r

, ,0.010i j i jr =   

2,λ

, , , ,0.010i j e i j e =   

2,r

, ,0.100i j i jr =   

2,λ

, , , ,0.100i j e i j e =   
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Service 1 1 1 1 0 

Service 2 16 18 15 12 

Service 3 36 35 38 32 

Service 4 55 54 54 64 

 697 

Table 5. The system cost savings ($) under different variances of prediction errors 698 

Variances of 

prediction 

errors 

2,r

, ,0.000i j i jr =   

2,λ

, , , ,0.000i j e i j e =   

2,r

, ,0.001i j i jr =   

2,λ

, , , ,0.001i j e i j e =   

2,r

, ,0.010i j i jr =   

2,λ

, , , ,0.010i j e i j e =   

2,r

, ,0.100i j i jr =   

2,λ

, , , ,0.100i j e i j e =   

Reduction  3195 3118 2746 2112 

5.3. The accuracy and computational efficiency of the enhanced ABC algorithm 699 

To test the accuracy and computational efficiency of the enhanced ABC algorithm, we carried 700 

out an enumeration to search for the global optimum when 1NL = . As limited-stop services 701 

must serve the first and last stop, there are 32 intermediate stops. Therefore, the number of 702 

possible limited-stop services is 322 4294967296= . All possible different limited-stop services 703 

were evaluated and the optimal limited-stop service is 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-704 

16-17-18-19-20-21-23-24-25-26-27-29-34, which is the same as the result obtained from the 705 

enhanced ABC algorithm in Table 2. However, the enumeration took 62.3 10  s, whereas the 706 

enhanced ABC algorithm only took 11.0 s (in 400 iterations). The results illustrate that the 707 

enhanced ABC algorithm is accurate and efficient. 708 

We also studied the accuracy and computational efficiency of the enhanced ABC algorithm 709 

when 4NL = , compared with a genetic algorithm (GA) and the traditional ABC algorithm. 710 

Their reductions over running time are shown in Figure 5. It is easy to see that 1) the enhanced 711 

ABC algorithm provides a higher-quality solution after convergence than GA and the traditional 712 

ABC algorithm, which shows higher effectiveness; 2) the enhanced ABC algorithm takes less 713 

running time to get the same solution quality (with more than a $2000 reduction) than GA and 714 

the traditional ABC algorithm, which shows higher computational efficiency.  715 

 716 
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  717 

Figure 5. The convergence of the enhanced ABC algorithm, GA, and the traditional ABC 718 

algorithm  719 

6. Conclusion 720 

The paper proposes a new two-stage strategy to address the LSBSDP. The two-stage strategy 721 

is more general than the tactical planning strategy and the dynamic stop-skipping strategy. 722 

Numerical studies show that our strategy has both high effectiveness and high efficiency, which 723 

provides a better trade-off between effectiveness and computational efficiency than the tactical 724 

planning strategy and the dynamic stop-skipping strategy. 725 

Prediction errors are considered in this study. In the numerical examples, different variances 726 

of prediction errors can lead to very different limited-stop service schemes at the operational 727 

level. The system cost saving of providing limited-stop services is, therefore, affected. In 728 

particular, the saving decreases as the variances of prediction errors increase. More importantly, 729 

the effect of prediction errors cannot be neglected, especially in situations with large variances 730 

of prediction errors. 731 

An enhanced ABC algorithm is developed to solve the first-stage model. Its high 732 

effectiveness and computational efficiency are verified by comparing it with an enumeration, 733 

GA, and the traditional ABC algorithm.  734 

This study opens at least two future research directions. First, the distribution of prediction 735 

errors may not follow normal distributions in practice. How to extend the current methodology 736 

to tackle other distributions is one important direction. Second, in some situations, the headway 737 

between all-stop and limited-stop vehicles can be larger than 15 min. This means the arrival 738 

times of passengers may be affected by the stop-skipping strategy. How to model this situation 739 
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is another interesting direction. 740 

Appendix A: The derivation process of Equations (41), (42), (43), and (44) 741 

To derive Equations (41) and (42), we need to calculate ,i jr   when , , *i j i jr r=  . In this 742 

appendix, we determine the distribution of ,i jr  when , , *i j i jr r=  by obtaining the probability 743 

density function of ,i jr  when , , *i j i jr r= , i.e., 
, ,| *

( )
i j i jr r

f  . 744 

Let , *i jr  be a variable representing a possible value of ,i jr . Then by definition, 745 

 

, ,

, ,

,

, , ,

,

, ,

,| *
,

, ,| *

,

( *, *)
( *)

( *)

( *) ( *)
,

( *)

i j i j

i j i j

i j

i j i j i j

i j

i j i jr r

i jr r
i jr

i j i jr r r

i jr

f r r
f r

f r

f r f r

f r

=


=

 (45) 746 

where 747 

, ,

( , )
i j i jr r

f    The joint probability density function of ,i jr  and ,i jr . 748 

,

( )
i jr

f   The probability density function of ,i jr . 749 

,

( )
i jr

f   The probability density function of ,i jr . 750 

, ,| *
( )

i j i jr r
f   The probability density function of ,i jr  when , , *i j i jr r= . 751 

 752 

Since ,i jr   follows 2,r

, ,( , )i j i jN r   , the corresponding distribution of 
,

( )
i jr

f    is 2,r

, ,( , )i j i jN r   . 753 

Since the prediction error of ,i jr   follows 2,r

,(0, )i jN   , the corresponding distribution of 754 

, ,| *
( )

i j i jr r
f    is 2,r

, ,( *, )i j i jN r   . For simplicity, we denote 
,

( )
i jr

f    and 
, ,| *

( )
i j i jr r

f    as 1( )n    and 755 

2 ( )n  , respectively. Then Equation (45) becomes 756 

 

, , ,

, ,

,

,

, ,| *

,| *
,

1 , 2 ,

,

( *) ( *)
( *)

( *)

( *) ( *)
.

( *)

i j i j i j

i j i j

i j

i j

i j i jr r r

i jr r
i jr

i j i j

i jr

f r f r
f r

f r

n r n r

f r


=


=

 (46) 757 

Since the corresponding distribution of 2 ( )n   is 2,r

, ,( *, )i j i jN r  , we have 758 

 

2
, ,

2,r
,

( * *)

2

2 ,
2,r

,

1
( *)

2

i j i j

i j

r r

i j

i j

n r e




−
−

= . (47) 759 
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Let us construct an auxiliary distribution, 2,r

, ,( *, )i j i jN r   , and the corresponding probability 760 

density function is denoted as 3( )n  . Then we have  761 

 

2
, ,

2,r
,

( * *)

2

3 ,
2,r

,

1
( *)

2

i j i j

i j

r r

i j

i j

n r e




−
−

= . (48) 762 

From Equations (47) and (48), it is easy to see that 2 , 3 ,( *) ( *)i j i jn r n r=  . We substitute this 763 

equation into Equation (46) and then obtain 764 

 
, ,

,

1 , 3 ,

,| *
,

( *) ( *)
( *) .

( *)i j i j

i j

i j i j

i jr r
i jr

n r n r
f r

f r


=  (49) 765 

It is easy to see 
, ,

, ,| *
( *) * 1

i j i j
i j i jr r

f r dr
+

−
= . Then we have  766 

 

,

1 , 3 ,

,

,

( *) ( *)
* 1

( *)
i j

i j i j

i j

i jr

n r n r
dr

f r

+

−


= . (50) 767 

1 , 3 ,( *) ( *)i j i jn r n r  in the left side of the equation can be rewritten as (to be clear, we use x , 768 

1u , 2

1 , 2u , and 2

2  to denote , *i jr , ,i jr , 2,r

,i j , , *i jr , and 2,r

,i j ) 769 
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where 
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+
. 771 

From Equations (50) and (51), we can get 

,
,

1
( *)

i j
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A

f r
=  by 772 
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Based on Equations (49) and (51) and 

,
,

1
( *)

i j
i jr

A

f r
= , we have  774 
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Finally, according to Equation (53), we can conclude that the corresponding distribution of 776 

, ,| *
( )

i j i jr r
f   is 2

0 0( , )N u  . As a result, the following equations (i.e., Equations (41) and (42)) 777 

hold: 778 
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. 780 

Similarly, the following equations (i.e., Equations (43) and (44)) also hold: 781 
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Appendix B: The calculation process of , ,( , , )d p d p lh r λ y   784 

In this appendix, we present how to calculate 
, ,( , , )d p d p lh r λ y  by Equations (7)-(22) if ,

l

i jy  785 

is given. The detailed calculation process is shown as follows: 786 

 787 

1. Set 1i =  . Obtain ,

1, , , for 0,1,... 1d p

i j lA j N− = −   and ,

1, , , , for 0,1,... 1;d p

i j e lFBP j N e E− = −    by 788 

Equations (11) and (15). 789 

While 2i  , do 790 

Set 0j = . 791 

While 2j N − , do 792 

1) As ,

1, ,

d p

i j lA −  and ,

, ,

d p

i j lA  is known, get ,

, ,

d p

i j lH  by Equation (14). 793 

2) Since ,

, , , ,d p

i k e lSBP k j    is known, calculate ,

, ,

d p

i j lIP   and ,

, ,

d p

i j lAP   by Equations 794 

(16) and (17), respectively. 795 
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3) Obtain ,

, , ,

d p

i j e lW  by Equation (18) as ,

1, , ,

d p

i j e lFBP−  and ,

, ,

d p

i j lH  are known. 796 

4) With the knowledge of ,

, , ,

d p

i j e lW , ,

, ,

d p

i j lIP , and ,

, ,

d p

i j lAP , get ,

, ,

d p

i j lTSBP  by Equation 797 

(19). 798 

5) With the knowledge of ,

, , ,

d p

i j e lW   and ,

, ,

d p

i j lTSBP  , obtain ,

, , ,

d p

i j e lSBP   by Equation 799 

(20). 800 

6) Since ,

, , ,

d p

i j e lW  and ,

, , ,

d p

i j e lSBP  are known, calculate ,

, , ,

d p

i j e lFBP  by Equation (21). 801 

7) Calculate ,

, ,

d p

i j lS  by Equation (22) as ,

, ,

d p

i j lAP  and ,

, ,

d p

i j lTSBP  are known. 802 

8) As ,

, ,

d p

i j lS  is known, compute ,

, 1,

d p

i j lA +  by Equations (12) and (13). 803 

9) 1j j= + . 804 

endwhile 805 

1i i= + . 806 

endwhile 807 

2. As the values of all variables on the right-hand side of Equations (8)-(10) are known, 808 

calculate ,

1,

d p

lZ  , ,

2,

d p

lZ  , and ,

3,

d p

lZ  . Obtain 
, ,( , , )d p d p lh r λ y   by adding up ,

1,

d p

lZ  , ,

2,

d p

lZ  , and 809 

,

3,

d p

lZ  using Equation (7). 810 

3. Check whether Inequality (6) is satisfied. If it is satisfied, stop and output 
, ,( , , )d p d p lh r λ y ; 811 

Otherwise, set 
, ,( , , )d p d p lh r λ y   equals a sufficiently large positive value, then stop and 812 

output 
, ,( , , )d p d p lh r λ y . 813 
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