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Abstract
[bookmark: _Hlk145863132][bookmark: _Hlk145939017][bookmark: _Hlk147848572][bookmark: _Hlk147873887][bookmark: _Hlk147851242]Online fabric defect detection plays a critical role in the quality management of textile production. However, the high-impact and low-probability (HILP) characteristics of defective samples lead to redundant design of network and hinder its real-time performance. To improve the time efficiency, this paper proposes a dynamic inference network (DI-Net) which can dynamically allocate computation resources as the complexity of image. Firstly, “AND” Gates are incorporated into the backbone to control activation of network’s function modules, allowing for dynamic adjustment of network depth. Additionally, the dynamic inference module which contains several exits with inference unit is proposed to collaborate with “AND” Gates. When sample’s confidence at specific exit satisfies the early-exit policy, the inference unit will allow it to early-exit from network and output a negative value to corresponding “AND” Gate. As a result, the output of "AND" Gate will also be negative and subsequent network will not be activated. Finally, the two-stage training strategy and exit-weighted loss function are proposed to avoid crosstalk and facilitate different exits to focus on adequate samples, enabling the efficient training of DI-Net. The experiments on the fabric dataset demonstrate that the proposed DI-Net can achieve detection precision and recall over 99% for normal samples, and approximately 95% for defective samples. Besides, its detection speed has been improved by 20%, reaching 30.1 frames per second (FPS) and 20.96 m/min. This indicates that the proposed DI-Net can meet the requirements of online fabric defect detection.
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Introduction
Vision-based defect detection plays a crucial role in smart fabric manufacturing for ensuring the quality of textile products (Gao et al., 2022; Xu et al., 2024), which can be further categorized as online fabric defect detection and offline fabric defect detection (Koch et al., 2015). For online detection, products are detected on production lines as they are being produced. For offline detection, products are detected on specialized equipment after they have been produced. Online detection is generally preferred in industry due to its ability to provide immediate feedback and minimize production waste (Lu et al., 2023). Therefore, online detection has much higher requirement of time efficiency. The detection speed needs to reach 15–20 m/min to satisfy the requirement of real-time performance (Zhao et al., 2020). Therefore, it is crucial to design a time-efficient fabric defect detection approach for smarter textile manufacturing.
Recently, deep learning-based methods have achieved excellent performance in industrial defect detection (Saberironaghi et al., 2023). Lin et al. (2019) utilized convolutional neural network to realize the defect detection of LED chips. Zhang et al. (2023) proposed an attention-based feature fusion GAN method for defect detection of yarn-dyed fabrics. The unsupervised method (Zhao et al., 2023) is also studied to achieve fabric defect detection under small sample conditions. Shao et al. (2023) designed a multitask detection model with teacher network and student network to realize the defect detection in both linen and patterned fabrics. Yang et al. (2022) developed a convolutional autoencoder method for defect detection of air rudder, which only requires positive samples for model training. 
There are also some studies aiming for online defect detection. To improve the real-time performance, the attention mechanism was incorporated with convolutional neural network to achieve both fast and accurate defect detection in additive manufacturing (Li et al., 2023). The Yolo detection model was also improved with a more lightweight backbone network and attention mechanism, leading to further improvement in detection speed (Chen et al., 2023; Ma et al., 2023). Furthermore, the edge-cloud collaborative architectures (Zhao et al., 2020; Wang et al., 2023) have also been designed for industrial defect detection. The data collection and real-time defect detection are conducted in the edge-layer defect detection machines, the training and optimizing are realized in the cloud-layer high-performance computing center. Transfer learning was employed in online defect detection. Pre-trained detection models with large-scale datasets can be used to guide the learning of specialized defect detection models, so as to improve detection performance, reduce the required training samples, and accelerate the model training (Zhu et al., 2020).
[bookmark: _Hlk147828331]Although deep learning-based methods have achieved great progress in defect detection, they are still limited in the reasonable allocation of computation resources between normal samples and defective samples. In industrial production, the defective samples only constitute a small proportion of total samples (Psarommatis et al., 2023). Taking the thermal fixing process of fabric as an example, the ratio of defective samples to normal samples is typically less than 1:10000. Therefore, compared to normal samples, defective samples have a distinct characteristic of low-probability. However, although the proportion of defective samples is small, missing detection of defective samples will directly result in economic losses. Accurate defect detection is significant for product quality management. Therefore, the defective samples also have the characteristic of high-impact.
[bookmark: _Hlk145861280][bookmark: _Hlk147828360][bookmark: _Hlk145926740]In summary, in online fabric defect detection, the defective samples will be considered as a typical high-impact but low-probability (HILP) event (Khaloie et al., 2019), which means the defective samples occur with low probability but has high impact on the quality and price of product. To meet the HILP characteristics of defective samples, large-scale convolutional neural networks which have more powerful feature extraction abilities are necessary. Because these defects tend to have tiny and irregular visual characteristics, as shown in Fig.1. These defects require deeper networks for feature extraction and detection. This will absolutely result in redundant network structure and significant waste of computation resources because more normal samples can be easily detected using a simpler network. Therefore, addressing the network redundancy caused by the HILP characteristic of defective samples and constructing a more lightweight network is the key to improve the time-efficiency in online fabric defect detection.
[bookmark: _Hlk161224343][image: ]
Fig.1. Fabric defects with tiny size and irregular shape
In this paper, the DI-Net which can dynamically allocate computation resources as the complexity of images is proposed for more time-efficient online fabric defect detection. The contribution of this paper can be summarized as follows:
1)	The "AND" Gate is incorporated into the backbone of network, which enables network to have the ability to dynamically adjust its depth. These "AND" Gates are connected in series at different depths in the backbone and installed after feature extraction blocks. If the preceding "AND" Gate outputs a negative value, the subsequent parts of the network will not be activated. Therefore, by controlling the inputs to these "AND" Gates, the depth of the network can be dynamically adjusted. 
[bookmark: _Hlk147850266]2) The dynamic inference module which consists of early-exit policy and several exits with inference unit is proposed to dynamically allocate computation resources as image complexity. When the confidence of sample at specific exit exceeds the threshold, the inference unit will allow it to early exit from network and output a negative value to corresponding "AND" Gate. As a result, the “AND" Gate will output a negative value and subsequent network will not be activated, thus avoiding waste of computation resources. For online defect detection, normal samples with simple features will be able to early-exit from network, while defective samples with complicated defects features may require more feature extraction before output.
3)	The novel two-stage training strategy and exit-weighted loss function are proposed for efficient model training of proposed DI-Net. In the first stage, the backbone of the network and last exit are trained separately. In the second stage, the backbone is frozen, and all candidate early-exits are trained jointly. The two-stage training strategy can avoid the “crosstalk” during the training process. The weighted exit loss function can help each exit to pay more attention to samples that are more likely to output at this specific exit. 
The rest of this paper is organized as follows: Section II reviews recent works of lightweight deep learning methods. Section III describes the proposed DI-Net which includes feature extraction module, dynamic inference module and two-stage training strategy. Section IV introduces the experiments and discussions. Section V summarizes conclusions and future work.
Literature Review
To improve the efficiency of convolutional neural networks, some lightweight deep learning methods have been studied. Existing methods can be divided into three categories: efficient structure design methods, network pruning methods and knowledge distillation methods (Liang et al., 2021).
Efficient structure design methods
[bookmark: _Hlk145928154]For efficient structure design methods, specialized network structures are commonly designed to reduce the required computation of the network. For example, Shufflenet (Zhang et al., 2018) innovatively designed pointwise group convolution which uses 1x1 convolutions operation to reduce the computation cost and used channel shuffle operation to enable information flow across feature channels. Ghostnet (Han et al., 2020) proposed a plug-and-play ghost module which uses linear transformations to generate more feature maps with cheap computation resources. MobileNetV2 (Sandler et al., 2020) proposed depthwise separable convolutions which split the standard convolution into two separate stages depthwise convolution and pointwise convolution so that the required computation can be reduced. These methods have been widely applied in some edge-computing applications (Addabbo et al., 2022; Lu et al., 2022). For different defect detection scenarios, efficient convolutional neural networks can be customized as their detection requirements and characteristics so as to improve detection efficiency.
Network pruning methods
For network pruning methods, insignificant parts of the network for defect detection will be pruned to reduce the computation cost of the network. Liu et al. (2022) introduced the discrimination-aware losses into the network, and the deep network will be compressed by removing redundant kernels and channels for each layer as their discrimination-aware losses. Wang et al. (2020) designed sparse learning and the genetic algorithm scheme for network pruning to achieve a better balance between the pruning ratio and accuracy. Kuang et al. (2022) evaluated the importance of filters by randomly pruning them from network and probing their impact on the task-related loss function. This approach enables the evaluation of filters’ importance, and subsequently prunes filters with lower scores. Wang et al. (2023) proposed a collaborative pruning method which evaluates the importance of filters as their structural similarity and detail richness of feature maps, unimportant filters will be removed as evaluation results. Network pruning methods reduce computation cost by removing redundant kernels or circuits from convolutional neural networks. They can be utilized to balance the trade-off between accuracy and efficiency, thereby meeting the requirements of defect detection tasks.
Knowledge distillation methods
Knowledge distillation methods contain two networks: student network and teacher network. The student network with smaller scale is used for defect detection, while the teacher network with larger scale is used for training the student network (Gou et al. 2021). The pre-trained teacher network with comprehensive knowledge is used to guide the learning of the lightweight student network so that a similar detection performance can be achieved with fewer parameters and less computation. For industrial defect detection, it is a great challenge to design a robust teacher network for defect detection due to the various products and detection scenarios. Furthermore, the student network also needs to be customized as variations across different scenarios.
Research gaps and motivations
[bookmark: _Hlk145849612]Although these approaches can reduce the computation requirements of networks; they are not entirely suitable for online fabric defect detection problems. In online defect detection, complex neural networks are required to fulfill feature extraction of small and irregular defects even though defective samples only take a small portion of total samples. It is inevitable to lead to redundant design of network and the increase in computation demands. The main computation waste of online fabric defect detection is caused by the HILP characteristics of defective samples. Therefore, reducing the computation demands on normal samples may be a key factor to improve real-time performance in online fabric defect detection.
To address this issue, some studies try to get insights from the human brain. In daily life, our brain can quickly comprehend simple or familiar scenes, while more time will be required for cognitive thinking with complicated or strange scenes. Which indicates that our brain can dynamically allocate biological neural networks according to the difficulty of tasks (Murata et al., 2000). This property motivates the development of dynamic convolutional neural networks (Han et al., 2022; Han et al., 2022), the dynamic inference mechanism can be applied in network to allocate computation resources as the complexities of images. Inspired by previous research, it is a great idea to design dynamic neural networks which have several exits and early-exit policy, so that the computation resources between normal samples and defective samples will be rationally allocated. For normal samples with simple features, they can early-exit from network when certain conditions are satisfied, and remaining parts of network will be idle to avoid waste of computation resource, as shown in Fig.2(a). For defective samples with complicated features, they will undergo sufficient feature extraction before output, as shown in Fig.2(b).
[image: ]
Fig.2. The dynamic neural network with early-exit policy
Method
This section introduces the framework of proposed DI-Net, which includes three parts: the feature extraction module, the dynamic inference module, and the model training, as shown in Fig. 3.
[image: ]
Fig.3. The framework of proposed DI-Net
[bookmark: _Hlk145949223]Feature extraction module
[bookmark: OLE_LINK1]In this section, the backbone of the network is designed with reference to ResNet (He et al., 2016). For images with the shape of 512×512, the backbone employs several feature extraction blocks to generate feature maps at four different scales with the shape of 128×128, 64×64, 32×32 and 16×16. These feature maps can be represented as , the structure of the backbone is shown in Table 1. Besides, three “AND” Gates are placed after each feature extraction block to control the activation status of subsequent network.
Table.1. Structure of ResNet50
	Name
	ResNet101
	Output Size

	Input
	512, 512, 3
	

	Pre-FE Stage
	Conv (7×7, s=2)
Maxpool, stride=2
	

	FE Block_1
	4×Identity Unit
	128×128

	FE Block_2
	Conv Unit 
3×Identity Unit
	64×64

	FE Block_3
	Conv Unit
4×Identity Unit
	[bookmark: _Hlk119584329]32×32

	FE Block_4
	Conv Unit 
2×Identity Unit
	16×16


[bookmark: _Hlk145973634]The Pre-FE Stage is composed of a 7×7 convolutional layer and a max pooling layer. The FE block contains two types of units, conv unit and identity unit. Both units are composed of convolutional layers, Relu activation function and batch normalization, as shown in Fig.4. The identity unit consists of three 1×1 convolutional layers with a stride of 1. As for the conv unit, it replaces one convolutional layer with a stride of 2 for the down-sampling, and an additional 1×1 convolutional layer with a stride of 2 is added in the residual connection.
[image: ]
Fig.4. The structure of Identity Unit and Conv Unit
For these feature maps, large-scale feature maps  from shallow blocks contain more general information such as the boundary and texture. Small-scale feature maps  contain high-level semantic information and play more significant role in the prediction. To effectively leverage information from these hierarchical feature maps , the aggregation module is designed for the feature fusion, as shown in Eq. (1).
		(1)
The  represents feature maps extracted from , the  represents the aggregation module, and  is the output of the aggregation module, the structure of aggregation module is shown in Fig.5.
[image: ]
Fig.5. Structure of aggregation module
[bookmark: _Hlk145975564]The input of aggregation module includes  with the shape of N×N and  with the shape of 2N×2N. The output  have the same shape as . To ensure a smooth feature fusion, the 1×1 convolutional operations with different strides are applied to let two feature maps have the same shape of N×N. Then, they are processed by elementwise addition, and the specific expression is shown in Eq. (2).
[bookmark: _Hlk136356409][bookmark: _Hlk136353270]		(2)
Where  represents feature maps after elementwise addition,  represents 1×1 convolutional operation with a stride of 1,  represents 1×1 convolutional operation with a stride of 2. At last, a 1×1 convolutional operation and sigmoid activation are performed on  to obtain final feature maps . The aggregation module can realize the information propagation between multi-level feature maps, thus realizing more robust feature extraction.
Dynamic inference module
[bookmark: _Hlk147771840]In this section, the dynamic inference module is constructed to allocate computation resources as the complexity of images. The dynamic inference module consists of several exits, which are set at different depths and receive feature maps from different feature extraction blocks. Every exit is composed of classifier and inference unit, the inference unit determines whether sample should early-exit from network. The inference unit can dynamically adjust the depth of network with the collaboration of “AND” Gate in the backbone.
The classifier takes corresponding feature map  as input and takes probabilities for each class as output. It is composed of two 1×1 convolutional layers with stride 1, one average pooling layer, and one linear layer. The SoftMax function is added after the linear layer to obtain probabilities distribution for each class. Then the probability distribution will be used as the input of inference unit, determining whether sample should early-exit from network or continue to detection.
For the input sample , the prediction of inference unit- can be written as Eq. (3).
		(3)
Where  is the probability for class , the  means the classification confidence of inference unit-, and the  is the output of inference unit-.
Once the classification confidence of certain inference unit satisfies the threshold , the sample will be allowed to early-exit from the network, and  will be used as the final prediction result  of the DI-Net.
		(4)
After samples early-exit from the network, it is necessary to dynamically adjust the depth of network to avoid computation waste. Therefore, the DI-Net introduces the collaboration between inference unit and “AND” Gate to achieve the dynamic adjustments of network depth, thus avoiding waste of computation resources. Once image early-exit from network, the inference unit will output negative value to corresponding “AND” Gate. As a result, the output of "AND" Gate will be negative and subsequent network will not be activated, the inference mechanism is shown in Fig.6.
[image: ]
Fig.6. The inference mechanism of DI-Net 
In Fig.6, the dashed lines and shaded modules are currently not activated. During the forward propagation process, once the  at a certain exit-(k-1) exceeds its threshold , the inference unit-(k-1) will allow sample to early-exit from the network. Then, the DI-Net will directly take the  as final prediction results . At the same time, the inference unit-(k-1) will output a negative value to corresponding “AND” . As a result, the output of “AND”  will also be negative, and subsequent networks including feature blocks, aggregation modules, classifiers, and inference units all will not be activated. Therefore, the network will be able to dynamically adjust its depth and avoid waste of computation resources.
If the inference unit-(k-1) does not satisfy the early-exit policy, it will output a positive value to corresponding “AND” . This means the output of corresponding “AND”  will also be positive. All modules associated with exit-k will be activated, and sample will be fed into deeper modules for the next round of inference. And early feature maps  with more general information will also be propagated to aggregation-k to improve the prediction performance.
Compared with static convolutional neural networks, the DI-Net introduces dynamic inference module to enable the network to dynamically allocate computation resources based on the complexity of image. The easy image (such as normal samples) can early-exit from network when the threshold is satisfied. The hard image (such as defective samples) may reach the last exit and output. And threshold  for exit- will be set according to different detection requirements.
[bookmark: _Hlk145949284]Two-stage training strategy
[bookmark: _Hlk145880849]The dynamic inference network will face the issue of “crosstalk” during the model training. Because multi-exit may have opposite gradients during the backpropagation process, further interfering with each other and influencing the overall performance. In this section, a novel two-stage training strategy and exit-weighted loss function are proposed for efficient model training.
During the training process, the cross-entropy loss function  is used for each classifier. The loss used in the updating of network is obtained by weighted summing the  from all the exits, as shown in Eq (5) and Eq (6).
		(5)
		(6)
Where the  is the number of samples, and the  is the number of classifiers. The  is the ground truth,  is the predicted probability distribution of  from classifier , and . The  and  have the shape of , where  is the number of classes. 
The  is the weight of the classifier  for both defective samples and normal samples. It is used to encourage exits to adequately allocate weights on defective samples and normal samples, as shown in Fig. 7. For example, the feature extraction Block-1 and Block-2 are capable of extracting shallow-level feature maps with more general information. They are more suitable for normal samples which do not contain complicated features. Thus, their  should be more sensitive to normal samples. The Block-3 and Block-4 can extract more complicated features such as fabric defects, and their  should be more sensitive to defective samples.
[image: ]
Fig.7. Exit-weighted cross-entropy loss for model training
To solve the crosstalk problem during model training, the network is trained as two-stage. For the first-stage training, we aim to firstly train the backbone, which is responsible for the feature extraction of the network and its parameters will be shared with all exits. The weights of the backbone and the last exit of the network will be updated at every iteration, while the parameters of other exit modules will be frozen. As a result, the network will have only one output and crosstalk between different exits will be avoided.
For the second-stage training, the weights of backbone and the last exit will be frozen and not updated, and the remaining exits in this network will be trained jointly. During the second-stage training, even if different exits have opposite gradients, the feature extraction ability of backbone will not be affected because its parameters are already frozen. The training efficiency of these three exits can be improved because the backbone already has strong feature extraction abilities.
Experiments
In this section, several experiments are conducted to evaluate the performance of the proposed DI-Net. Firstly, the experiment setup and dataset are introduced. Secondly, the proposed dynamic inference method is compared with other deep learning-based defect detection methods. Thirdly, the function of these exits in the DI-Net is explored and discussed. Furthermore, the parameter setting of thresholds is analyzed. Finally, the performance of the proposed two-stage training strategy and exit-weighted loss are evaluated.
Experiment setup and dataset introduction
[bookmark: OLE_LINK2]The experiment is conducted on Windows 10 operating system with NVIDIA GTX1060Ti. The Python 3.8 and PyTorch 1.10 deep learning framework are used as the compiler. The backpropagation process utilizes the SGDM optimizer with a momentum of 0.9. The training setup includes a batch size of 32, epochs of 30, and a learning rate of 0.001. The confidence threshold of multi-exit , , , , are set as 0.8, 0.7, 0.6, and 0.5. 
To conduct the experiments, an online vision-based defect detection machine is equipped in a textile factory. Two line-scan CCD cameras with 4096×2 pixels and a linen-array LED are installed on the thermo-fixing machines for the image collection. The linen-array LED is used to provide abundant and steady illumination. Two linen-scan CCD cameras can cover a width of 2.6 meters, enabling complete image collection of fabrics. Images captured from the line-scan CCD cameras have a resolution of 4096×512 pixels, and they are subsequently clipped into 8 images, each with a shape of 512×512 pixels. Therefore, two linen-scan CCD cameras can provide 16 images with shape of 512×512 pixels, covering an area of 2.6×0.1625 meters. Collected fabric samples can be divided into normal fabric and four types of defects including the hole, stain, broken yarn, and end-out, as shown in Fig. 8. The dataset for experiment consists of about 5000 normal samples and about 300 samples for each type of defects obtained via data augmentation operation. The training set and test set are divided as a ratio of 7:3.
[bookmark: _Hlk161224322][image: ]
Fig.8. Vision-based defect detection machine and defective samples
Detection performance evaluation
In this section, precision and recall are used to evaluate the performance of the proposed method. Precision refers to the ratio of accurately predicted positive samples to all samples predicted as positive. Recall refers to the ratio of accurately predicted positive samples to all actual positive samples. In fabric defect detection, high precision means that there are few samples being mistakenly identified, so that false detection can be avoided. High recall ensures that the model can effectively detect defective samples, so that the missing detection can be avoided.
		(7)
		(8)
Where  is the type of fabric samples,  represents that type  are truly classified.  represents that other types are falsely classified as type .  represents that type  are falsely classified as other types.
The frames per second (FPS) under the factory environment are used to evaluate real-time performance. The testing of FPS involves four steps: (1) reading image as its path, (2) transferring the image data to CUDA, (3) performing image preprocessing, (4) inputting the processed image into the model for prediction. Furthermore, to intuitively evaluate the real-time performance of the algorithm in online fabric defect detection, the FPS should be translated into detection speed based on machine parameters. Two linen-CCD cameras capture 2 images with shape of 4096×512 pixels, covering an area of 2.6×0.1625 meters, these images are clipped into 16 images with shape of 512×512 pixels. In this research, the fabric has widths of 2 meters or 2.2 meters. Therefore, the leftmost and rightmost images are excluded from the detection process, and a total of 14 images are used for detection. The detection speed can be calculated as follows:
		(9)
The proposed DI-Net is compared with other deep learning methods to evaluate its performance. The ResNet50 has the same backbone as the DI-Net and does not have the dynamic inference function. The DI-Net-A has the same backbone as the DI-Net but does not contain the aggregation module. The MobileNet-v3 (Mobile) (Howard et al., 2019) is a deep learning method with efficient structure design. The Brain-inspired pruning (BIP) (Wang et al., 2023) is the effective collaborative pruning operations conducted on ResNet50. The Mobile-DI and BIP-DI are dynamic inference modules implemented on the Mobile and BIP model. All these experiments are performed with the same setting and dataset, experiment results are shown in Table.2. In Table.2, the P and R respectively represent precision and recall.
Table.2. The performance of various detection methods on fabric dataset
	(%)
	Normal
	Hole
	Stain
	Broken Yarn
	End-out
	FPS
	DS
m/min

	
	P
	R
	P
	R
	P
	R
	P
	R
	P
	R
	
	

	ResNet50
	99.5
	99.4
	99.2
	98.9
	96.7
	95.6
	98.3
	97.8
	95.2
	94.4
	25.6
	17.83

	DI-Net
	99.3
	99.1
	98.7
	97.8
	96.3
	93.3
	98.1
	97.8
	95.1
	93.3
	30.1
	20.96

	DI-Net-A
	98.9
	98.6
	95.6
	95.4
	93.2
	92.5
	95.3
	94.9
	93.5
	91.2
	31.6
	22.01

	Mobile
	97.9
	98.2
	94.2
	93.3
	91.7
	91.1
	94.9
	94.4
	88.7
	85.6
	34.5
	24.03

	Mobile-DI
	95.2
	95.7
	91.5
	91.1
	89.3
	87.8
	91.3
	92.2
	87.5
	81.1
	35.9
	25.00

	BIP
	98.2
	98.6
	97.9
	96.7
	94.4
	93.3
	95.6
	93.3
	91.4
	88.9
	28.7
	19.98

	BIP-DI
	96.4
	96.9
	95.8
	94.4
	90.7
	89.9
	91.1
	87.8
	87.6
	83.3
	29.5
	20.54


[bookmark: _Hlk145430829]Table.2 shows the performance of these detection methods on fabric dataset. For these approaches without the dynamic inference module, the ResNet50 achieves the best precision and recall for both normal and defective samples. But the 17.83 m/min detection speed cannot meet the real-time requirements of online fabric defect detection. The MobileNet achieves the fastest detection speed with 34.5 FPS and 24.03 m/min. But its precision and recall are slightly lower than the ResNet50. The BIP achieves a balance between ResNet and MobileNet-v3 in terms of both accuracy and detection speed via the collaborative pruning of network. Its detection speed reaches 19.98 m/min, which is enough for on-line fabric defect detection, but its detection accuracy is lower than DI-Net due to the pruning.
After integrating the dynamic inference module into the network, these methods show a significant increase in detection speed and a decrease in precision and recall to varying degrees. The Mobile-DI achieves the highest 35.9 FPS and 25.00 m/min detection speed. The BIP-DI achieves 29.5 FPS and 20.54 m/min. Both these two methods can meet the real-time requirement of online fabric defect detection. However, their detection performance decreases severally after integrating dynamic inference module because both two approaches have already adapted lightweight strategy to improve time-efficiency. The detection precision and recall of these two methods for defective samples (e.g., stains and end-out) even dropped below 90%, which cannot satisfy the requirement of online fabric defect detection.
For DI-Net, it utilizes the standard ResNet-50 network as its backbone, which still has some excess in feature extraction capacity. As a result, its decline in detection performance is smaller compared to other methods. In terms of detection accuracy, DI-Net achieves over 99% precision and recall for normal samples while maintaining about 95% precision and recall for defective samples. Regarding detection speed, DI-Net can achieve 30.1 FPS and 20.96 m/min in factory environments. It can meet the real-time and accuracy requirements for online fabric defect detection. Moreover, compared with DI-Net, the DI-Net-A which does not contain the aggregation module shows some improvement in detection speed, but it also has significant decrease in detection accuracy. Which demonstrates that the aggregation module can improve the defect detection accuracy for the DI-Net.
[bookmark: _Hlk145188486]Analysis of the dynamic inference network
[bookmark: _Hlk161223430][bookmark: _Hlk146665131][bookmark: _Hlk147918367]The DI-Net can dynamically allocate computation resources as the complexity of images. Samples will early-exit from the network once confidence value exceeds the threshold. Therefore, appropriately thresholds , , ,  of exits  can directly impact the performance of the network. In this section, the , , , , are set as 0.8, 0.7, 0.6, and 0.5. The distribution of predicted probability is calculated using SoftMax function, it is expressed as Eq (10). The max value of the probability will be used as the confidence value.
		(10)
Where the  is the probability of class  at exit , the  represents the number of classes. The probability distribution is analyzed on both normal samples and defective samples, as shown in Fig.9. Besides, the impact of thresholds on detection performance is also analyzed, and detailed results can be found in the appendix.
[image: ]
Fig.9. Probability distribution of normal and defective samples at different exits
[bookmark: _Hlk147917994]It can be observed from Fig.9 that the probabilities of normal samples at exit-1 and exit-2 are significantly higher than other defective samples. The average probability at exit-1 can reach more than 60% and exit-2 can reach more than 80%, which means that most samples can early-exit from the network at exit-1 and exit-2. For defective samples, the predicted probability remains low at exit-1 and exit-2, which can avoid false detection because defective samples are less likely to early-exit from network at exit-1 and exit-2. More defective samples will output from the network at exit-3 and exit-4 after sufficient feature extraction.
Furthermore, to investigate the output conditions and real-time performance of different types of samples in the DI-Net. The proportion of each type of sample at four exits and their detection speed are analyzed, as shown in Table.3.
Table.3. Analysis of fabric defect detection in DI-Net
	
	Normal
	Hole
	Stain
	Broken yarn
	End out

	Exit1 (%)
	20.7
	0.4
	0.9
	1.5
	0.2

	Exit2 (%)
	63.1
	9.3
	9.5
	13.2
	7.6

	Exit3 (%)
	15.4
	52.1
	49.2
	56.8
	43.5

	Exit4 (%)
	0.8
	38.2
	40.4
	28.5
	48.7

	FPS
	31.9
	24.3
	24.2
	25.0
	23.7

	DS (m/min)
	22.22
	16.92
	16.85
	17.41
	16.51


It can be observed from Table.3 that more than 80% of normal samples early exit from network at exit-1 and exit-2, and 63.1% of normal samples output at exit-2. Therefore, it is proved that the DI-Net can reduce computation waste on normal samples. The DI-Net achieves 31.9 FPS and 22.22 m/min detection speed for normal samples. For defective samples, about 90% of the samples output at exit-3 and exit-4. Among them, the detection speed for broken yarn reaches the fastest 25.0 FPS and 17.41 m/min. While the detection speed for end out reaches the slowest 23.7 FPS and 16.51 m/min. The average detection speed for defective samples is 24.3 FPS and 16.92m/min. Compared to ResNet50, the DI-Net exhibits a decrease in real-time performance when detecting defective samples, which can be attributed to the additional computation requirements introduced by the aggregation module.
Besides, the error analysis of DI-Net is conducted to discuss its performance and identify areas for improvement. In online fabric defect detection, some normal samples are prone to be detected as defective, as shown in Fig.10 (a) and (b). The wrinkle on the fabric may be mistakenly identified as end out, and the yarn on the edge of fabric may be identified as broken yarn. Both samples are uncommon in fabric production and will not affect the quality of the fabric. Additionally, some incomplete defects may be falsely identified because the fabric image is clipped into 512×512 pixel images for detection. The incomplete hole is mistakenly identified as stain and the incomplete end-out is mistakenly identified as hole in the Fig.10 (c) and (f). Besides, some uncommon and less prominent defects are also prone to false detection, such as the Fig.10 (d) and (e), the small hole is mistakenly identified as stain due to its tiny size. The stain defect is mistakenly identified as normal due to its low contrast.
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Fig.10. Error analysis of fabric defect detection
Training strategy evaluation
Traditionally, the model training takes end-to-end (E2E) as training approach (Huang et al., 2017) and cross-entropy (CE) as the loss function. However, for the dynamic inference neural network, multi-exit joint training can lead to crosstalk and further affect accuracy. Additionally, the standard cross-entropy loss may limit the detection performance of dynamic inference neural network. To demonstrate the effectiveness of proposed two-stage training strategy and exit-weighted loss in this paper, comparative experiments are conducted, as shown in Table.4. The PN and RN represent the detection precision and recall on normal samples. And the PD and RD represent the detection precision and recall on defective samples.
Table.4. Comparative experiments for different training strategy
	Method
	Loss
	PN(%)
	RN(%)
	PD(%)
	RD(%)

	ResNet50
	
	99.5
	99.4
	97.3
	96.6

	E2E
	
	96.2
	95.7
	94.9
	92.2

	E2E
	
	94.3
	93.5
	92.7
	90.2

	Two-stage
	
	99.3
	99.1
	96.9
	95.8

	Two-stage
	
	97.7
	96.9
	95.1
	94.3


Among them, ResNet50 is the standard neural network without the dynamic module, which has the highest detection accuracy. It can be observed that compared to the two-stage training method, the end-to-end training method shows a decrease in both accuracy and recall. It demonstrates that the proposed two-stage training method can mitigate the “crosstalk” issue caused by gradient interference among different exits, thereby improving the detection accuracy of dynamic neural networks. Furthermore, the dynamic neural network achieved a 2% improvement in both detection accuracy and recall after using the exit-weighted loss function. It indicates that the network can better focus on specific categories by customizing the weighted loss function for each exit, thereby enhancing the detection performance. 
Conclusion and future work
In this paper, a dynamic inference neural network which can allocate computation resources based on the complexity of the image is designed to improve the time-efficiency in online fabric defect detection. The “AND” Gate is incorporated into the backbone, enabling the DI-Net to have the ability to dynamically adjust its depth. Compared with other dynamic networks, the aggregation module is incorporated into the network to realize the information propagation between multi-level feature maps, thus improving detection accuracy of DI-Net. Moreover, the two-stage training strategy is designed to avoid the “crosstalk” between multiple exits, and the exit-weighted loss function is also employed for more efficient model training. The experimental results also demonstrate that the proposed method can meet the requirements of online fabric defect detection. And the dynamic inference mechanism is compatible with other lightweight methods to further improve detection speed.
However, the proposed method still has some limitations. Firstly, the proposed DI-Net is primarily designed for plain fabric. The detection performance will decline when detecting fabrics with complex textures and backgrounds. Secondly, some subtle defects, or wrinkles and yarns on fabrics, can potentially result in missing detections or false detections because the backbone network has limited capability in extracting intricate features. Thirdly, the proposed methods still require a large number of defective samples for the model training. However, it is still challenging to obtain sufficient and qualified data to support the model training.
In future work, we aim to apply dynamic inference networks to more complex fabrics and a wider range of industrial scenarios, such as online defect detection for patterned fabrics and steel surfaces. Additionally, inspired by the Transformer, we will try to incorporate the attention mechanism into the convolutional neural networks to enhance their feature extraction ability. Importantly, we will explore the generative methods which can learn defects features from defective fabric and generate defects in normal fabrics.
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Appendix
[bookmark: _Hlk146667166]Two threshold setting strategies are designed in this section. The first is decreasing threshold strategy: Higher thresholds are set at exit-1 and exit-2 with thresholds gradually decreasing, exit-3 and exit-4 have low thresholds. So that only the detection results with high predicted probability can early-exit from network. The second strategy is the increasing threshold strategy: Lower thresholds are set at exit-1 and exit-2 with thresholds gradually increasing, exit-3 and exit-4 have high thresholds. So that more images can early-exit from the network if they exceed the threshold. The threshold combinations for , , ,  are shown in Table.1. Where the  to  takes decreasing threshold strategy, and  to  increasing threshold strategy.
Table.1. Threshold combinations for four exits
	Combination
	Parameter setting

	
	=0.9, =0.8, =0.7, =0.6

	
	=0.8, =0.7, =0.6, =0.5

	
	=0.7, =0.6, =0.5, =0.4

	
	=0.6, =0.5, =0.4, =0.3

	
	=0.6, =0.7, =0.8, =0.9

	
	=0.5, =0.6, =0.7, =0.8

	
	=0.4, =0.5, =0.6, =0.7

	
	=0.3, =0.4, =0.5, =0.6


The detection performance on normal samples and defective samples are respectively shown in Fig.1 and Fig.2. These figures have two vertical axis which respectively represent detection performance and the percentage of samples output from specific exit. For decreasing threshold strategy, as the threshold at exit-1 and exit-2 gradually decreases, more samples early-exit at both exit-1 and exit-2. However, it also leads to a significant decrease in detection accuracy, particularly for defective samples. For increasing threshold strategy, a large number of samples early-exit at exit-1 and exit-2 with insufficient confidence, resulting in bad detection performance. Therefore, higher thresholds should be set at exit-1 and exit-2 to ensure that only samples with enough confidence can early-exit from the network. And lower thresholds can be set at exit-3 and exit-4, as the detection outcomes have already become sufficiently reliable after enough feature extraction.
[image: ]
Fig.1. Detection performance on normal samples
[image: ]
Fig.2. Detection performance on defective samples
Besides, to evaluate the impact of threshold combination setting to the detection efficiency. The FPS of different threshold combination in factory environment and laboratory environment is calculated, as shown in Table.2.
Table.2. FPS of different threshold combination
	Combination
	FPS-F
	FPS-L

	
	27.8
	42.1

	
	30.1
	47.6

	
	30.8
	49.2

	
	31.4
	50.9

	
	31.7
	51.7

	
	32.2
	53.1

	
	32.5
	53.9

	
	32.7
	54.3


From the experimental results, it can be observed that by lowering the thresholds at exit-1 and exit-2, a large number of samples are directed to these exits, which improves the frames per second (FPS). However, this approach also leads to a decrease in accuracy. Therefore, it is necessary to consider specific detection scenarios and choose appropriate thresholds based on the trade-off between FPS and accuracy.
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