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Estimation of vehicular journey time variability by
Bayesian data fusion with general mixture model
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Wong

Abstract—This paper presents a Bayesian data fusion frame-
work for estimating journey time variability that uses a mixture
distribution model to classify feeding data into different traffic
states. Different from most studies, the proposed framework
offers a generalized statistical foundation for making full use of
multiple traffic data sources to estimate the vehicular journey
time variability. Feeding data collected from multiple data
sources are classified based on the associated traffic conditions,
and the corresponding estimation biases of the individual data
sources are determined by arbitrary distributions. The proposed
framework is implemented and tested on a Hong Kong corridor
with actual data collected from the field. Different statistical
distributions of prior and likelihood knowledge are applied
and compared. The findings of the case study show significant
improvement in the journey time estimations of the proposed
method compared with the individual measurements. The results
also highlight the benefit of incorporating a traffic state classifier
and prior knowledge in the fusion framework. This study
contributes to the development of reliability-based intelligent
transportation systems based on advanced traffic data analytics.

Index Terms—Journey time variability, Bayesian data fusion,
general mixture model, traffic state classification, automatic
vehicle identification.

I. INTRODUCTION

ESTIMATION of vehicular journey times and their asso-
ciated variability in congested road networks is crucial

for the development and operation of reliable intelligent trans-
portation systems [1], [2]. There have been a large number of
studies estimating and modeling journey times with different
data sources [3]. Tam and Lam [4] propose an estimation
model based on Automatic Vehicle Identification (AVI) sys-
tem. Celikoglu [5] presents a fundamental diagram based
approach utilizing data collected from microwave sensors.
Jenelius and Koutsopoulos [6] develop a statistical model
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using low-frequency GPS data. Qiu et al. [7] and Han et
al. [8] use deep learning methods to estimate journey time
with taxi data. Reviews on point travel time estimation using
different types of data can be referred to [3]. However, the
aforementioned methods only operate with the single data
source. With the increasing availability of traffic data from
multiple sources, recent transportation studies have begun
to explore the use of data fusion techniques to estimate
journey time [9]–[11]. Existing data fusion techniques can be
generally divided into three groups: statistical, probabilistic-
based and artificial intelligence-based techniques [12], [13].
Early data fusion models apply simple statistical methods,
such as weighted average and convex combination, to fuse
the different measurements [14]–[16]. However, these methods
lack flexibility and fail to provide accurate and reliable com-
binations. To overcome the drawbacks, Kalman Filter (KF)
is arguably one of the most widely applied statistical data
fusion techniques in the traffic domain [17], [18]. Chu et
al. [19] apply a standard linear KF to combine traffic data
collected from loop detectors and probe vehicles to estimate
freeway journey times. Han [20] compares the journey time
estimation performance of the extended KF and unscented KF
for multi-sensor data sources. Trinh et al. [21] propose the
incremental KF to estimate the traffic state using loop detectors
and GPS data. Nevertheless, the estimation performance of
the KF is closely related to the explicitness and complexity
of the adopted traffic model, which limits the estimation
precision to some extent. As it is desirable to combine different
data sources without complicated traffic models, studies on
traffic data fusion have been further explored via probabilistic-
based and artificial intelligence-based algorithms [22], [23]. El
Faouzi et al. [24] apply Dempster-Shafer evidence theory to
estimate the travel time by fusing conventional traffic detector
and probe vehicle data. Guo and Yang [25] propose a support
degree algorithm based on the credibility and similarity among
license plate recognition data, loop detector data and probe
vehicle data to estimate the travel time. Zhu et al. [26] estimate
link travel time using artificial neural networks with three
different sources. Sun et al. [27] propose a relation learning
framework to estimate travel time with heterogeneous data.

It can be found that most journey time estimation algo-
rithms presented in the literature have largely focused on
deterministic estimation with no consideration of the asso-
ciated variability. Therefore, recent studies have investigated
the journey time variability in order to better evaluate the
performance of transport networks using a single data source.
A large number of empirical studies estimate the variability
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by fitting the travel time distribution into a specific assumed
distribution [28]–[30]. Uno et al. [31] analyze the journey time
reliability with the assumption of lognormal distribution using
bus probe data. Sumalee et al. [32] propose an algorithm
to estimate the link travel time distributions based on the
cell transmission model, and the probability mass function
of the journey time is fitted to a skew-normal distribution
using loop detector data. Rahmani et al. [33] present a non-
parametric model to reduce the bias from probe vehicle
data in order to estimate the travel time distribution. Ma et
al. [34] proposed a generalized Markov chain approach to
estimate trip travel time distribution with automatic vehicle
location data. Chen et al. [35] develop a copula-based model
for arterial travel time distribution estimation using AVI and
trajectory data separately. Nevertheless, most journey time
variability estimation algorithms have not effectively leveraged
the benefit of multi-source data. In a recent study, to improve
the estimation performance with data fusion techniques, Shi
et al. [36] propose an improved Dempster–Shafer evidence
theory to estimate the travel time distribution using multi-
source data with consideration of spatial correlations. Mil and
Piantanakulchai [37] propose a Bayesian based model using
maximum likelihood to estimate travel time. Based on this
study, Gemma et al. [38] incorporate the Gaussian mixture
model to represent the ground truth in the data fusion process.
Saffari et al. [39] also apply Bayesian model to estimate
macroscopic fundamental diagrams with multiple data sources.
However, all these fusion models rely on strong Gaussian
assumptions for the consideration of inferential tractability but
overlook the skewness associated with journey time.

Despite these research efforts, we have not seen a unified
framework with general formulations for estimating journey
time variability with the use of different data sources under
different traffic conditions. As far as our knowledge, most
studies on Bayesian data fusion use non-informative prior
probability due to its simplicity, and there is no existing work
that investigates the impact of prior information on journey
time variability. In practical scenarios, traffic data collected
from different detectors might suffer from the problem of non-
Gaussian measurement errors caused by traffic control, sensor
failures, or impulsive data processing [40]. The common
Gaussian assumptions might lead to biased or unreliable fusion
results. Moreover, existing traffic state classification models
based on Gaussian mixtures, e.g. Wang et al. [41] and Liu et
al. [42], ignore the heavy-tailed characteristics of journey time
distribution under different traffic states.

Therefore, this paper presents a generalized and transfer-
able statistical model for estimating journey time variability
with heterogeneous data sources taking into account of the
prevailing traffic conditions via a mixture distribution model
based state classification algorithm. The prior knowledge and
the corresponding systematic errors associated with different
sources are incorporated into the underlying posterior distri-
bution models following the classification and identification of
traffic states in the data fusion framework. Different from [37]–
[39], the data fusion model proposed herein tests the benefit of
introducing different informative prior knowledge and allows
arbitrary distributions to estimate measurement errors. This

work contributes to the state-of-the-art in three aspects: first,
our work offers a generalized and transferable statistical model
based on the Bayesian theory for making full use of multiple
data sources, going beyond the conventional Gaussian error
assumptions. Then, the analysis on the influence of prior
knowledge advances our understanding on the interplay be-
tween the different types of shared priors and observation error
likelihoods. Finally, the application of the general mixture
model makes the data classification more flexible in capturing
the effect of skewness and other distributional characteristics
in journey time with associated traffic states.

The rest of this paper is organized as follows: Section 2
presents the methodology including the problem settings and
use of notations. Section 3 presents a case study of the selected
Hong Kong corridor with journey time data inferred from
different sensors. Section 4 provides some concluding remarks.

II. METHODOLOGY

The proposed vehicular journey time estimation framework
consists of two components: a data classification procedure
based on a mixture distribution model and a Bayesian data
fusion framework. The input data are first fed through the
mixture distribution model and classified according to the
traffic states that the data are associated with. The classified
traffic data are then processed and integrated by the Bayesian
fusion algorithm for deriving a corresponding journey time
estimation. The entire framework consists of various parame-
ters which need to be determined through a training process.
The accuracy of the trained data classification and fusion
framework is then evaluated through a testing process with
use of a set of performance metrics. Fig. 1 summarises
the proposed journey time distribution estimation framework.
Details of each component, including the training and testing
procedures, are presented in the following sections.

Fig. 1: Flowchart of the proposed methodology
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A. Traffic state classification

For each day d considered in the analysis, we define τ(d) =
{1, 2, ..., T(d)} to be a series of time intervals spanning the
day d. We also define S(τ(d)) = s to be a discrete variable
representing the prevailing traffic condition in state s, where
s ∈ S , during a specific time interval τ(d) on day d. The
notation S denotes the set of all traffic states considered in
the analysis. A simple example can be a binary case s =
{0, 1}, where S(τ(d)) = 0 means the traffic is in ‘free-flow’
state during time τ(d), and S(τ(d)) = 1 means the traffic is in
‘congested’ state at that time τ(d).

The traffic state S(τ(d)) is considered to be stochastic with
the probability P (S(τ(d) = s) being in a specific state s
given by πs for all s ∈ S. We consider all states s in S
are mutually exclusive and comprehensively exhaustive, and
this gives

∑
∀s∈S πs = 1.

We further define Ψθs
(Ô) to be the probability distribution

model of observed journey time Ô, in which the distribution
model parameters θs are dependent on the prevailing traffic
state S(τ(d)) = s at the time of interest τ(d).

The objective of the data classification algorithm is to
determine from which traffic state S(τ(d)) the data are
collected based on the average journey times Ô(τ(d)) inferred
from the measurements. Given the inferred journey times
Ô(τ(d)) = ô from all measurements, the state classification
is based on the probability P

(
(S(τ(d)) = s)|(Ô(τ(d)) = ô)

)
which is determined from the inferred journey time
Ô(τ(d)) = ô as stated in the proposition below:

Proposition II.1. Given the observed journey time Ô(τ(d)) at
time τ(d) being ô, the probability of the corresponding traffic
state S(τ(d)) being in s at the time can be determined as

P
(
(S(τ(d)) = s)|(Ô(τ(d)) = ô)

)
=

πsΨθs
(Ô(τ(d)) = ô)∑

∀s∈S [πsΨθs
(Ô(τ(d)) = ô)]

.
(1)

Proof. The probability P
(
(S(τ(d)) = s)|(Ô(τ(d)) = ô)

)
can

be expressed by Bayes’ theorem over all possible traffic states
s as:

P
(
(S(τ(d)) = s)|(Ô(τ(d)) = ô)

)
=

P (S(τ(d)) = s)P
(
(Ô(τ(d)) = ô)|(S(τ(d)) = s)

)
P
(
Ô(τ(d)) = ô

) .
(2)

Moreover, the probability P
(
Ô(τ(d)) = ô

)
in (2) can be

established by the theorem of total probability with use of the
inferred journey time distribution model Ψθs over possible
states s as

P
(
Ô(τ(d)) = ô

)
=
∑
∀s∈S

[P (S(τ(d)) = s)Ψθs(Ô(τ(d)) = ô)].

(3)

Substituting (3) into (2), and the definitional “P (S(τ(d)) =
s) = πs” for all s, gives (1).

Given the classification probability function (1) and the
inferred journey time Ô(τ(d)) = ô at the time of interest τ(d),
a corresponding traffic state s∗ ∈ S is assigned such that the
associated P

(
(S(τ(d)) = s∗)|(Ô(τ(d)) = ô)

)
is maximized,

i.e.

s∗ = argmax
s

P
(
(S(τ(d)) = s)|(Ô(τ(d)) = ô)

)
= argmax

s

{ πsΨθs
(Ô(τ(d)) = ô)∑

∀s∈S [πsΨθs(Ô(τ(d)) = ô)]

} (4)

The classification rule (4) requires determination of the
parameters Θ = [θs,πs], for all s ∈ S . That is, we would
need to determine the model parameters θ in the inferred
journey time distribution model Ψθs , and the probabilities
P (S(τ(d)) = s) = πs of the occurrences of each traffic state
s in S.

1) Determination of parameters Θ: To determine Θ, we
first establish the following general mixture model (GMM,
[43]), parameterized by Θ, for the distribution of inferred
journey times:

ΨΘ(Ô) =
∑
∀s∈S

πsΨθs
(Ô) (5)

with Ψθs(Ô) being the conditional distribution function of Ô
on traffic state s as in (1) and (4), for all s ∈ S. The parameters
Θ in the mixture distribution model (5) are to be determined
by using the maximum likelihood estimation (MLE) via an
expectation-maximization (EM) algorithm with consideration
of the latent variable [43].

Given a set of N independent journey time measurements:
{ô1, ô2, · · · , ôN} inferred at different times for determining
the parameters Θ in the mixture model, we can formulate
a corresponding likelihood function with respect to these
measurements over all possible states s ∈ S as:

L(Θ|ô1, ô2, · · · , ôN ) =

N∏
n=1

∑
∀s∈S

[πsΨθs
(Ô = ôn)]. (6)

It is noted that the likelihood function is a function of the
parameter set Θ = [θs,πs], for all s ∈ S, given a specific set
of inferred observations Ô = {ô1, ô2, · · · , ôN}.

The likelihood function in (6) can further be converted into
the logarithmic form as:

L̃(Θ|ô1, ô2, · · · , ôN ) =

N∑
n=1

log

(∑
∀s∈S

[πsΨθs
(Ô = ôn)]

)
.

(7)
The objective herein is to seek a set of parameters Θ∗,

where
Θ∗ = argmax

Θ
L̃(Θ|ô1, ô2, · · · , ôN ) (8)
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The solution Θ∗ in (8) is to be solved by the the expecta-
tion–maximization (EM) algorithm [43] as follows:

1) Initialize Θ(0) at iteration κ = 0.

2) E-step: Calculate the expected value Q(Θ,Θ(κ)) of the
log-likelihood function L̃ with the parameters set Θ(κ)

at the current iteration κ:

Q(Θ,Θ(κ)) = E
[
L̃(Θ|ô1, ô2, · · · , ôN )|Θ(κ)

]
, (9)

in which the expectation is taken over all component
distributions Ψθs

, for all s ∈ S, in the mixture model.

3) M-step: Update Θ by maximizing the log-likelihood
function (9):

Θ(κ+1) = argmax
Θ

Q(Θ,Θ(κ)) (10)

4) Compute the log-likelihood value with the updated
parameters. If the change in the log-likelihood function
values is less than a predefined threshold, or a
predefined maximum number of iterations has been
reached, the algorithm will stop. Otherwise, return to
Step 2 (the E-step).

B. Data fusion

Following the classification of vehicular journey time data,
we then have a Bayesian data fusion framework which aims to
estimate the posterior distribution for the actual journey times
T (τ(d)) at times τ(d) after incorporating all associated ob-
servations Oj(τ(d)) collected from J multiple sources, where
J ≥ 1. It is also considered that measurements taken from each
source j, where j = 1, 2, ..., J , are associated with an error
ej whose statistical properties are assumed to be known from
historical records. The statistical properties can be recognized
as the traffic state-dependent systematic error and random
error associated with the measurements taken from source j
respectively [44].

Given the true but unknown journey time T (τ(d)) at time
τ(d) is t, where t > 0, it can be deduced that the corresponding
measurement Oj(τ(d)) of the journey time taken by source j
will be Oj(τ(d)) = oj = t+ej . Here, the state-dependent error
ej follows an arbitrary probability distribution. Specifically,
the error ej from sufficiently large datasets can be assumed to
follow Gaussian distribution N (µj , σj) for all j = 1, 2, ..., J .
Hence the distribution of measurement Oj(τ(d)) can be ex-
pressed by

P
(
Oj(τ(d)) = oj |T (τ(d)) = t

)
∼ N (t+ µj , σj) , (11)

in which µj and σj are estimated based on the prevailing
traffic states S(τ(d)). The parameters in the distribution are
considered to be dependent on the prevailing traffic states
S(τ(d)) that is to be identified in the classification stage
presented in the previous section.

We now define OJ (τ(d)) = [Oj(τ(d))] = [o1, o2, ..., oJ ]
to be the collection of measured journey times from all

available sources j at time τ(d). The posterior probability of the
actual journey times T (τ(d)) inferred from these measurements
OJ (τ(d)) is established by using Bayes’ theorem as:

P
(
T (τ(d)) = t|OJ (τ(d))

)
=

P
(
OJ (τ(d))|T (τ(d)) = t

)
· P
(
T (τ(d)) = t

)
P
(
OJ (τ(d))

) (12)

in which t denotes the true (but unknown) value of T (τ(d)),
and P

(
T (τ(d)) = t

)
is the prior distribution of T (τ(d)) before

taking into account the measurements of OJ (τ(d)).
We then define the following function of time t

g(t) = P
(
OJ (τ(d))|T (τ(d)) = t

)
· P
(
T (τ(d)) = t

)
(13)

which is recognized as the numerator of (12).
As different sensors operate on the basis of different phys-

ical principles, we further suppose measurements made from
different sources are independent from each other, which gives

P
(
OJ (τ(d))|T (τ(d)) = t

)
= P

(
O1(τ(d)) = o1, · · · , OJ(τ(d)) = oJ |T (τ(d)) = t

)
=

J∏
j=1

P
(
Oj(τ(d)) = oj |T (τ(d)) = t

)
,

(14)

and hence the function g(t) can be further expressed as:

g(t) = P
(
OJ (τ(d))|T (τ(d)) = t

)
· P

(
T (τ(d)) = t

)
=

[
J∏

j=1

P
(
Oj(τ(d)) = oj |T (τ(d)) = t

)
· P

(
T (τ(d)) = t

)]
.

(15)
Estimates for the true journey time t can be derived

from either an interval estimation or point estimation
approach. From an interval estimation perspective, the
statistics of the true journey time t are given by (16) and
(17) in the following proposition in terms of the function g(t):

Proposition II.2. The mean t̂∗ and standard deviation σ̂2
t∗ of

the posterior estimate, t̂, can be determined in terms of g(t)
respectively as:

t̂∗ =

∫∞
0

[t · g(t)] dt∫∞
0

g(t) dt
(16)

σ̂2
t∗ =

∫∞
0

[(
t− t̂∗

)2
g(t)

]
dt∫∞

0
g(t) dt

(17)

Proof. The mean t̂∗ of the posterior estimate can be expressed
from the first principle as:

t̂∗ =

∫ ∞

0

[
t · P

(
T (τ(d)) = t|OJ (τ(d))

)]
dt (18)
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Using Bayes’ theorem to revise the right-hand-side expres-
sion of (18), we have

t̂∗ =

∫∞
0

[
t · P

(
OJ (τ(d))|T (τ(d)) = t

)
P
(
T (τ(d)) = t

)]
dt

P
(
OJ (τ(d))

) ,

(19)
in which we note using theorem of total probability that

P
(
OJ (τ(d))

)
=

∫ ∞

0

[
P
(
OJ (τ(d))|T (τ(d)) = t

)
· P

(
T (τ(d)) = t

)]
dt.

(20)

Given the expression of g(t) in (15), from (19) and (20) we
can have

t̂∗ =

∫∞
0

[
t · P

(
OJ (τ(d))|T (τ(d)) = t

)
P
(
T (τ(d)) = t

)]
dt∫∞

0

[
P
(
OJ (τ(d))|T (τ(d)) = t

)
P
(
T (τ(d)) = t

)]
dt

=

∫∞
0

[t · g(t)] dt∫∞
0

g(t) dt
.

(21)
Likewise, we can also have

σ̂2
t∗ =

∫ ∞

0

[(
t− t̂∗

)2
P
(
T (τ(d)) = t|OJ (τ(d))

)]
dt

=

∫∞
0

[(
t− t̂∗

)2
g(t)

]
dt∫∞

0
g(t) dt

(22)

following similar working procedure.

For point estimation, the unknown true journey time t is to
be estimated as the most probable value that maximizes the
posterior probability in (12), where

t̂∗MAP (τ(d)) = argmax
t

P
(
T (τ(d)) = t|OJ (τ(d))

)
, (23)

in which t̂∗MAP (τ(d)) is regarded as the maximum a posterior
(MAP) estimation.

It is noted that the denominator of the posterior probability
in (12) is merely the distribution of measurements OJ (τ(d))
which is independent of the choice of value for t̂∗MAP (τ(d)),
Expression (23) for t̂∗MAP (τ(d)) can hence be simplified to

t̂∗MAP (τ(d))

= argmax
t

P
(
OJ (τ(d))|T (τ(d)) = t

)
P
(
T (τ(d)) = t

)
= argmax

t
[g(t)].

(24)
The journey time estimates above can be solved via various

numerical methods depending on the prior distribution model
adopted [43]. Closed form solutions for t̂∗ and σ̂2

t∗ may be
available given the specific prior and error distribution as
presented below (see also [37]).

Case A: Uniform prior distribution with Gaussian error
distribution

Should the prior distribution be uniform where the prob-
ability P (T (τ(d)) = t) is a constant, the point estimate

t̂∗MAP (τ(d)) will coincide with the mean value of the interval
estimate t̂∗ with the symmetricity of the uniform prior distri-
bution [37], [43]. Moreover, expression (24) can be reduced
to:

t̂∗MAP (τ(d)) = t̂∗

= argmax
t

 J∏
j=1

P
(
Oj(τ(d)) = oj |T (τ(d)) = t

) (25)

in which the constant term P (T (τ(d)) = t) in g(t) in (24) can
be removed from the maximization.

Given the J data sources with the respective measurements
oj , and errors ej ∼ N(µj , σj), at prevailing time τ(d),
maximizing the right-hand-side of expression (25) gives the
standard deviation (σ̂t∗ ) and expected value of t̂∗MAP at time
τ(d) as [37], [43]:

σ̂2
t∗ =

[ J∑
j=1

1

σ2
j

]−1

, (26)

t̂∗ = t̂∗MAP =
[ J∑
j=1

oj − µj

σ2
j

]
σ̂2
t∗ . (27)

Case B: Gaussian prior distribution with Gaussian error
distribution

Should the prior distribution of the journey time be Gaus-
sian, say N(λ, δ), i.e.:

P
(
T (τ(d)) = t

)
=

1√
2πδ

· exp
[
−
(
t− λ

)2
2δ2

]
, (28)

we also have the point estimate t̂∗MAP (τ(d)) coinciding
with the mean value of the interval estimate t̂∗ due to the
symmetricity of the Gaussian prior distribution [37], [43].
Expression (24) also becomes:

t̂∗MAP (τ(d)) = t̂∗

= argmax
t

[ J∏
j=1

P
(
Oj(τ(d)) = oj |T (τ(d)) = t

)
P
(
T (τ(d)) = t

)]
= argmax

t

{
1√
2πδ

[ J∏
j=1

1√
2πσj

]
exp

[
−

( (t− λ)2

2δ2

+

j∑
j=1

(oj − t− µj)
2

2σ2
j

)]}
(29)

Maximizing the right-hand-side of (29) gives the following
MAP estimated statistics of the true journey time t:

σ̂2
t∗ =

 1

δ2
+

J∑
j=1

1

σ2
j

−1

(30)

t̂∗ = t̂∗MAP =
[ λ
δ2

+

J∑
j=1

oj − µj

σ2
j

]
σ̂2
t∗ (31)
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Fig. 2: Case study corridor

III. CASE STUDY

A. Data collection

The fusion algorithm is now implemented and tested with
a case study using real-world traffic data collected from a
selected Hong Kong corridor as shown in Fig. 2. The selected
corridor connects the Island Eastern Corridor in Hong Kong
Island with the Western Harbour Crossing in Kowloon. The
total length of the study route is 9.2 kilometers and the
journey time of the study path under free-flow conditions is
7.6 minutes.

Data are collected from two different sources from 7:00 to
21:00 on all weekdays during the study period: 1 November
2017 to 31 March 2018. Regarding the data sources, we
first have a pair of RFID (radio frequency identification)-
based AVI sensors deployed at both ends of the corridor
with which the journey times of detected vehicles can be
derived by matching their identifications at the two ends. It
is known that journey times inferred from AVI could contain
various disturbances due to mis-identification of vehicles,
detouring, or stopping of vehicles en-route [1], [45]. A filtering
algorithm is adopted herein based upon the ST-DBSCAN
(Spatio-Temporal Density-Based Spatial Clustering of Appli-
cations with Noise) method [46], [47] to remove the invalid
journey time observations. The filtered journey time data are
aggregated and interpolated based on the median value of the
valid measurements every 5-min period. Fig. 3(a) shows an
example of filtered and aggregated journey time observations
on 24 January 2018.

We further have cameras deployed under the Autoscope
system at seven locations along the corridor with which
sectional journey times of the vehicles can be derived through
image processing. Given the location-wide measurements, the
spatio-temporal speed field of the study corridor is constructed
by using the established kernel-based Adaptive Smoothing
Method (ASM) [48], with which the journey time profiles
can be constructed by using a frozen field method [45] with
a temporal resolution of 5-minute. Fig. 3(b) is an example
of journey time records converted from the sectional cameras
along the corridor on 24 January 2018.

The traffic data are divided into two sets in the experiments:
data collected during 1 November 2017 and 28 February 2018
are regarded as the training dataset; data collected during
1 March 2018 and 31 March 2018 are regarded as the

(a) AVI (b) Autoscope

Fig. 3: Journey times inferred from AVI system and Autoscope
system - 24 January 2018

testing dataset. For evaluation, validated ground truths of the
journey times are also provided by the Hong Kong Transport
Department.

B. State classification

We start with exploring the performance of the state clas-
sification method with the feeding data. The parameters of
the mixture distribution model are first determined with the
training dataset for traffic state classification. Three of the
most commonly used probability distributions in the literature
are chosen for constructing the mixture model: Gaussian,
lognormal and Gamma distribution models. We will also study
the effect of having different number of traffic states on the
performance of the classification algorithm.

Fig. 4 first shows the empirical distribution (see the his-
togram in the figure) of all journey times inferred from the
data sources during the training period, and their comparison
against the probability density function generated by the
general mixture model. We start with considering two states
(free-flow and congested) in the general mixture model. It
is noted that the lognormal mixture model has the best fit
among the three distribution model settings considered herein
as shown in Fig. 4(b), Fig. 4(d) and Fig. 4(f). However, the
deviation from the diagonal line suggests the presence of an
additional distinct traffic state cluster in the journey time data.
The speed-flow data inferred from the Autoscope camera at
location ‘Autoscope 3’ (see Fig. 2) are used to further illustrate
the classification performance, with the results obtained from
lognormal mixture model shown in Fig. 6(a). The blue dots in
the figures are the measurements classified to be free flow (i.e.,
upper portion of the speed-flow scatter plot) while the red dots
represent data classified as congested (i.e., lower portion of
the speed-flow scatter plot). The figure reveals that the traffic
data within the transition areas between congested and free-
flow conditions cannot be fully distinguished by the general
mixture model with only two components.

To improve the classification results, we further add a third
traffic state (the transition state) into the general mixture
model setting and the corresponding results are shown in
Fig. 5 and Fig. 6(b). Compared to Fig. 4 and Fig. 6(a),
our results generally reveal that the general mixture model
with incorporation of three traffic states could identify the
observations within the transition states and hence deliver
an improved classification performance (see also [49]). Table



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

TABLE I: Statistics of journey time estimates with different general mixture model settings

Free Flow Congested
Unit: seconds Mean STD Weight(%) Mean STD Weight(%)

Gaussian 534.84 46.53 40.3 915.84 317.97 59.7
Lognormal 523.86 36.49 34.2 883.60 287.67 65.8

Gamma 526.32 38.41 35.5 892.24 288.79 64.5
Free Flow Transition Congestion

Mean STD Weight(%) Mean STD Weight(%) Mean STD Weight (%)
Gaussian 522.25 35.69 35.3 771.77 161.15 48.6 1237.65 375.40 16.1

Lognormal 519.30 33.70 33.5 746.69 156.56 45.0 1175.11 358.05 21.5
Gamma 520.26 34.16 34.0 756.95 158.02 46.7 1202.47 363.56 19.3

(a) Histogram: Gaussian (b) Q-Q plot: Gaussian

(c) Histogram: Lognormal (d) Q-Q plot: Lognormal

(e) Histogram: Gamma (f) Q-Q plot: Gamma

Fig. 4: General mixture model with two traffic states

I further summarizes the statistics of the state classification
generated by the three different mixture models (Gaussian,
lognormal, and Gamma) with two and three state components.
The results show that the lognormal and Gamma mixture
models perform similarly when incorporating either two or
three state components into the mixture model.

With the prevailing traffic state classification, Table II shows
the statistics of journey time measurement errors associated
with different mixture distribution model settings. In general,
the measurement errors under congested conditions have larger
mean and standard deviation values than those under free-
flow or transition conditions. This is consistent with our
understanding of journey time characteristics. We attribute
the higher variability of travel time errors to the different
congestion phases along the complex study corridor that
contains signalized intersections, frontage access with entries

(a) Histogram: Gaussian (b) Q-Q plot: Gaussian

(c) Histogram: Lognormal (d) Q-Q plot: Lognormal

(e) Histogram: Gamma (f) Q-Q plot: Gamma

Fig. 5: General mixture model with three traffic states

and exits, and a cross-harbour tunnel [50]. The inherent nature
of the study corridor and the varying level of traffic flow
makes the lower variability almost unlikely to be observed
during congestion period. Moreover, it can be observed that
the measurement errors classified by lognormal mixture model
generally have the smallest mean and standard deviation. This
suggests that the lognormal mixture could better describe the
journey time distribution features and achieve more accurate
classification results.

To validate the error distribution, we compare the histogram
of errors with several different types of distributions, including
Gaussian, skew-normal, Gaussian mixture, generalized normal
and logistic distributions, as shown in Fig. 7. It can be found
that the errors associated with different data sources and
traffic states do not exhibit clear Gaussian distributions. Fig. 8
further presents the Q-Q plots of Autoscope errors under free
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TABLE II: Statistics of journey time estimate errors with different mixture model settings (unit: [seconds])

Mixture Sources Free Flow Congested
Mean STD Mean STD

Gaussian AVI -72.24 75.06 -134.09 275.55
Autoscope -120.92 69.56 -219.01 255.42

Lognormal AVI -71.38 71.65 -128.58 263.88
Autoscope -121.48 65.79 -209.04 246.09

Gamma AVI -71.36 72.07 -129.83 266.30
Autoscope -121.14 66.34 -211.16 248.03

Mixture Sources Free Flow Transition Congestion
Mean STD Mean STD Mean STD

Gaussian AVI -71.24 71.58 -108.74 155.67 -208.66 491.85
Autoscope -121.21 65.82 -165.12 152.75 -385.05 411.83

Lognormal AVI -70.99 69.38 -101.62 144.29 -195.22 432.36
Autoscope -120.79 64.01 -154.58 139.34 -346.01 371.80

Gamma AVI -71.19 70.61 -103.92 149.02 -204.18 458.29
Autoscope -121.11 65.07 -158.66 144.30 -365.37 389.93

(a) Two traffic states (b) Three traffic states

Fig. 6: Clustering of speed-flow data with different numbers
of traffic states classified by Lognormal mixture model

flow conditions with different error distributions. Both figures
indicate that the skew-normal and Gaussian mixtures show
better fitting performance for both data sources.

On the characteristics of the data sources, we find that
both AVI and Autoscope tend to underestimate the path
journey times with the mean errors over all traffic states being
negative. Therefore, it is necessary to use non-zero mean error
distributions to account for such systematic bias. Meanwhile,
the AVI data produce a smaller absolute mean error but
a larger standard deviation compared with the Autoscope
system. Therefore, it is necessary to fuse the data collected
from different data sources for more reliable estimation on
journey time distribution.

C. Journey time estimation with data fusion

The trained mixture model based classification is now
incorporated into the Bayesian data fusion framework. The
metrics shown herein include both the point estimation (i.e.,
mean absolute error (MAE) and mean absolute percentage
error (MAPE)) and interval estimation (i.e., average coverage
error (ACE), captured mean width interval (CMWI) and index
F [51]), in which the confidence level (i.e. α) for the interval
estimation is set to be 90%.

Fig. 9 compares the stacked MAPE results produced by dif-
ferent classification mixture models and fusion model settings.
We first note the effect of different settings of the mixture
distribution models for traffic state classification incorporated

(a) AVI: free flow (b) AVI: transition

(c) AVI: congestion (d) Autoscope: free flow

(e) Autoscope: transition (f) Autoscope: congestion

Fig. 7: Error distributions of two data sources under different
traffic states classified by Lognormal mixture model

in the data fusion framework. Similar to the results shown in
the training process, it is found that all mixture models with
the incorporation of three traffic states (free-flow, transition,
congested) could lead to higher eventual estimation accura-
cies compared to those with only two states (free-flow and
congested). It is also interesting to note that the best mixture
model identified from the training process (i.e., lognormal
mixture model) performs similarly to the Gaussian mixture
model in the overall fusion framework. In fact, the benefit of
adopting a more computationally demanding lognormal mix-
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(a) Gaussian (b) Skew-normal (c) Gaussian mixture (d) Generalized normal (e) Logistic

Fig. 8: Distribution analysis of Autoscope errors under free flow conditions using Q-Q Plot

(a) Classified by Gaussian mixture (b) Classified by Lognormal mixture (c) Classified by Gamma mixture

Fig. 9: Comparison of MAPE with different prior and error distribution settings with data classified by different general mixture
models

TABLE III: Accuracies of journey time estimates under different model settings (α = 90%)

Prior Error MAE (unit: [s]) MAPE(%) ACE(%) CMWI (unit: [s]) Index F

Uniform

Gaussian 72.49 6.91 3.55 402.63 0.0050
Skew-normal 72.89 6.86 3.21 388.52 0.0052

Gaussian mixture 73.89 6.86 -0.71 308.46 0.0065
Generalized normal 73.85 6.82 -0.12 313.92 0.0063

Logistic 72.73 6.81 1.09 334.74 0.0060

Gaussian

Gaussian 86.14 8.01 -1.41 355.04 0.0057
Skew-normal 83.34 7.81 -1.95 344.57 0.0059

Gaussian mixture 79.26 7.35 -7.01 277.73 0.0073
Generalized normal 80.38 7.43 -6.54 283.30 0.0071

Logistic 80.32 7.54 -4.40 302.89 0.0067

Lognormal

Gaussian 86.72 7.99 -2.26 342.88 0.0058
Skew-normal 86.12 7.92 -3.81 331.78 0.0061

Gaussian mixture 81.74 7.49 -8.51 273.26 0.0074
Generalized normal 82.79 7.54 -8.01 272.3 0.0073

Logistic 82.60 7.63 -5.50 294.43 0.0068

Gamma

Gaussian 85.68 7.98 -2.06 346.43 0.0058
Skew-normal 85.22 7.89 -3.41 336.24 0.0060

Gaussian mixture 80.65 7.42 -8.06 272.42 0.0074
Generalized normal 81.83 7.50 -7.41 274.45 0.0073

Logistic 81.97 7.62 -5.10 297.17 0.0068

ture distribution model for state classification is not significant
when compared with other mixture distribution models in the
overall fusion framework. The observations herein suggest that
the selection of the number of traffic states to be incorporated
in the classification is more important than the choice of
distribution models in traffic state classification.

Table III summaries all statistics of the journey time es-
timates obtained by different model settings given the best
classification model (lognormal mixture) with respect to given
validated ground truths and Fig. 10 presents a comparative
analysis of point estimation metric MAPE and interval estima-
tion index F with cluster columns. On the choice of prior dis-
tribution, it is found that the best prior information identified

from the testing results is the uniform distribution with consid-
eration point estimation metrics (i.e., MAE and MAPE). This
suggests that the benefit of incorporating a prior assumption on
journey time characteristics does not help to improve the point
estimates of journey times in the present case study. However,
the benefits of incorporating prior knowledge of journey times
are realized in interval estimations as the index F values
delivered by the prediction with the incorporation of Gaussian,
lognormal and Gamma prior distributions are higher than that
with uniform distribution in all settings. This implies that
prior assumptions with information inferred from historical
data could reduce the estimated interval width with the same
confidence (α = 90%) and hence higher reliability of journey
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TABLE IV: Accuracies of point journey time estimates under different classified traffic states

Free Flow Transition Congestion
AVI Autoscope Fused AVI Autoscope Fused AVI Autoscope Fused

MAE(s) 75.76 120.66 37.64 119.41 161.24 71.52 280.55 428.66 179.91
MAPE 11.77% 19.00% 5.95% 13.12% 17.60% 7.99% 16.13% 24.59% 10.00%

(a) MAPE (b) Index F

Fig. 10: Comparison of MAPE and index F metrics with
different prior and error distribution settings

time estimates. Among the informative prior distributions, it
is noted that the journey times estimated by Gaussian prior
distribution deliver a similar or even better performance to
those estimated by lognormal and Gamma prior on some
occasions in terms of MAPE and index F. This may suggest
that the skewness captured by both lognormal and Gamma
distribution does not significantly impact the journey time
distribution modeling, as the symmetric Gaussian performs
similarly in this case. It can be understood for the fact that
the classification of data based on traffic states may lead to
a reduction in skewness within each individual subset. The
finding echoes some of the previous studies on journey time
distribution modeling [28], [52]–[54].

We now investigate the impact of the error distribution on
the estimation results. It can be observed from Fig. 10(a)
that the best fitting model identified from the Q-Q plots
in the training process (i.e., Gaussian mixture model) could
achieve the best point estimation performance. However, it
also results in the underestimation of variability as shown
in the value of ACE. We attribute this to the fact that the
greater informativeness derived from individual data sources
gives stronger constraints to the parameters of interest, which
leads to a smaller value of uncertainty.

It can be seen that there is a trade-off between estimation
accuracy and corresponding reliability due to the interactions
between prior and likelihood functions. To further analyze this
effect, Fig. 11 compares the shapes of posterior distribution
under different combinations of prior and likelihood distribu-
tions. As shown in Fig. 11(a) and Fig. 11(c), the narrower
error distribution makes the likelihood dominate the updating
process and leads to a smaller variance in the posterior.
Compared to the uncertainty estimation, it is found that the
choice of error distribution has a limited impact on the MAP
estimates. In contrast, the choice of prior contributes less to the
location and shape of the posterior distribution in this scenario
since they are less informative compared to the likelihood
as presented in Fig. 11(a) and Fig. 11(b). However, we can
still see the benefits of incorporating prior as they could help

to avoid the posterior probabilities being concentrated in a
neighborhood of possibly inaccurate information sources and
hence reduce the accumulation of errors in the fusion process.

Considering the influence of prior and error distribution, the
combination of Gaussian prior and skew-normal error distri-
butions is regarded as the optimal model setting scenario as
it strikes a balance between the point and interval estimation.
Fig. 12 further compares the cumulative distribution of the
estimation errors under the best scenario with the uniform prior
setting. The Hong Kong Transport Department requires that
fusion results over 95% of journey time estimates need to have
absolute errors of less than 20%. It can be found that the fusion
model incorporated with Gaussian prior distributions could
reach the requirement although the uniform prior distribution
can deliver even better performance. Moreover, the journey
time intervals estimated with the uniform prior are much larger
than those with the Gaussian prior distribution given the same
confidence level α = 90%.

Table IV further presents the point estimation metrics
under different classified traffic states achieved by the best
model setting (combination of lognormal mixture classifica-
tion, Gaussian prior and skew-normal error distributions). In
general, the results show that the journey times processed by
the fusion algorithm can outperform those obtained directly
from individual sources via the point and interval detectors
deployed on-site in terms of accuracy. It is also found that
the estimation error is the smallest under free-flow condition,
with larger improvements gained in MAPE reduction under
the congested condition.

Fig. 13 further visualizes the corresponding results of jour-
ney time interval estimations on selected weekdays. The red
dots in the figure represent the validated measurements from
the field, and the shaded area represents the interval estimation
of journey time with a confidence α of 90%. It is observed
that the validated measurements are well captured within the
estimated journey time interval with surges of journey time
during congested periods recognized associated with wider
prediction intervals on all selected days.

IV. CONCLUSION

This paper presents a Bayesian data fusion framework with
a general mixture distribution traffic state classification model
for the estimation of vehicular journey time distributions using
heterogeneous data. In contrast to most studies, the proposed
data fusion framework provides associated variability esti-
mation with a generalized and transferable statistical model.
The framework incorporates traffic state classification based
on a general mixture distribution model, with the journey
time variability then being estimated based on the road traffic
conditions. Feeding data collected from multiple data sources
are classified based on their associated traffic conditions, and
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(a) Gaussian prior with Gaussian error (b) Lognormal prior with Gaussian error (c) Gaussian prior with Gaussian mixture error

Fig. 11: Effect of prior and individual likelihood distribution on the estimated results

(a) Gaussian prior (b) Uniform prior

Fig. 12: Cumulative distribution of journey time estimation
errors with different prior distributions (with skew-normal
error)

(a) 05 Mar, 2018 (Mon.) (b) 07 Mar, 2018 (Wed.)

(c) 09 Mar, 2018 (Fri.)

Fig. 13: Estimated journey time variability on different week-
days (confidence level: α = 90%)

the corresponding biases of the individual data sources are in-
vestigated by using arbitrary distributions. Lastly, the vehicular
journey times and their associated variability are estimated by
Bayesian theory and different statistical distributions of prior
and error likelihood are applied and compared.

The proposed framework is implemented and tested using
actual data collected in a real-world setting on a Hong Kong
highway corridor. The experimental results reveal significant
improvements in the estimations of journey times and the
associated variability compared with measurements obtained
from individual sources. We then use the underlying general
mixture distribution model to further analyze the effect of
incorporating traffic state classification. The results show that
preclassifying the feeding data according to their associated
traffic conditions can improve the estimation accuracy. We also
find that the number of traffic conditions included in the model
influences the fusion performance, and that classifying data
into three clusters can better describe the traffic conditions.
However, the improvement is more significant in the free-flow
condition than the congested condition. This finding concurs
with the difficulties that are frequently encountered when
modeling the characteristics of congested traffic given the
complicated dynamics involved [1]. The classification results
of the different mixture models also indicate that the lognormal
mixture can better describe the journey time characteristics
than the Gaussian and Gamma mixture models.

Our test results using different algorithmic settings show
that the uniform prior distribution provides the best deter-
ministic estimation. This suggests that incorporating prior
knowledge did not improve the deterministic journey time
estimation. We believe this could be because the correlation
among the day-to-day journey time data is not significant as
the journey time patterns are vulnerable to multiple exogenous
factors. Nevertheless, it is observed that the inclusion of
informative prior distributions can avoid error accumulation
from observations in the fusion process. Moreover, our results
also find that the choice of error distribution contributes
more significantly to the interval estimation compared with
point estimation. Considering the balance between ACE and
CMWI, Gaussian prior with skew-normal error distributions
can significantly reduce the width of the estimated intervals
while maintaining the coverage of the journey time records
at an acceptable level, in contrast to the non-informative
distributions.

The proposed data fusion framework contributes to the
development of reliability-based intelligent transportation sys-
tems through the improved estimation of the journey time and
the associated variability. Our framework also offers a gen-
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eralized statistical foundation for making full use of multiple
traffic data sources. Currently the Bayesian fusion framework
is limited to the genuine likelihood without incorporating
weights to multiple data sources in order to account for their
variations in accuracy or confidence levels. Future work we
have been working on is to construct a real-time learning
algorithm that can refine the weights assigned to different
data sources with respect to prevailing traffic conditions via a
weighted likelihood function in the Bayesian inference [55].
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