
Pixel-GS: Density Control with Pixel-aware
Gradient for 3D Gaussian Splatting

Zheng Zhang1 Wenbo Hu2† Yixing Lao1
Tong He3 Hengshuang Zhao1†

1The University of Hong Kong 2Tencent AI Lab 3Shanghai AI Lab

Abstract. 3D Gaussian Splatting (3DGS) has demonstrated impressive
novel view synthesis results and advancing real-time rendering perfor-
mance. However, the effectiveness of 3DGS heavily relies on the quality
of the initial point cloud, as poor initialization can result in blurring and
needle-like artifacts. This issue is mainly due to the point cloud growth
condition, which only considers the average gradient magnitude of points
from observable views, thereby failing to grow for large Gaussians that
are observable from many viewpoints while many of them are only cov-
ered in the boundaries. To address this, we introduce Pixel-GS to take the
area covered by the Gaussian in each view into account during the com-
putation of the growth condition. The covered area is employed to adap-
tively weigh the gradients from different views, thereby facilitating the
growth of large Gaussians. Consequently, Gaussians within the regions
with insufficient initializing points can grow more effectively, leading to a
more accurate and detailed reconstruction. Besides, we propose a simple
yet effective strategy to suppress floaters near the camera by scaling the
gradient field according to the distance to the camera. Extensive qual-
itative and quantitative experiments validate that our method achieves
state-of-the-art rendering quality while maintaining real-time rendering,
on challenging datasets such as Mip-NeRF 360 and Tanks & Temples.
Code and demo are available at: https://pixelgs.github.io.

Keywords: View Synthesis · Real-time Rendering · 3D Gaussian Splat-
ting · Adaptive Density Control

1 Introduction

Novel View Synthesis (NVS) is a fundamental problem in computer vision and
computer graphics. Recently, 3D Gaussian Splatting (3DGS) [22] has drawn
increasing attention for its explicit point-based representation of 3D scenes and
real-time rendering performance.

3DGS represents the scene as a set of points associated with geometry (Gaus-
sian scales) and appearance (opacities and colors) attributes. These attributes
can be effectively learned by differentiable rendering, while the optimization of
the point cloud’s density is challenging. 3DGS carefully initializes the point cloud

†Corresponding author.

https://orcid.org/0009-0001-5282-3661
https://orcid.org/0000-0001-6082-4966
https://orcid.org/0000-0001-8338-3577
https://orcid.org/0000-0003-2772-9320
https://orcid.org/0000-0001-8277-2706
https://pixelgs.github.io

2 Z. Zhang et al.

GT LPIPS: 0.293 LPIPS: 0.242 LPIPS: 0.213

SFM Mem: 0.79GB Mem: 1.75GB Mem: 1.67GB

(a) Ground Truth (b) 3DGS∗ (original
threshold) (c) 3DGS∗ (lower threshold) (d) Pixel-GS (Ours)

To go from (b) to (d), adjust densification from
∑

∥g∥∑
1

> τpos to
∑

pixel·∥g∥∑
pixel > τpos.

Fig. 1: Our Pixel-GS effectively grows points in areas with insufficient initializing
points (a), leading to a more accurate and detailed reconstruction (d). In contrast,
3D Gaussian Splatting (3DGS) suffers from blurring and needle-like artifacts in these
areas, even with a lower threshold of splitting and cloning to encourage more grown
points (c). The rendering quality (in LPIPS ↓) and memory consumption are shown in
the results. 3DGS∗ is our retrained 3DGS model with better performance.

using the sparse points produced by the Structure from Motion (SfM) process
and uses an adaptive density control mechanism to split or clone the points
during the optimization process. However, this mechanism relies heavily on the
initial point cloud’s quality and cannot effectively grow points in areas where
the initial point cloud is sparse, resulting in blurry or needle-like artifacts in the
synthesized images. In practice, the initial SfM point cloud could suffers from
insufficient points in areas with repetitive textures and limited observations. As
shown in the first and second columns of Figure 1, the blurry regions in the ren-
dered images are aligned with the areas where only a limited number of points
are initialized, as 3DGS fails to generate enough points in these areas.

In essence, this issue of insufficient point growth in certain areas is mainly
attributed to the condition determining when to split or clone a point. 3DGS
determines this splitting or cloning by checking whether the average gradient
magnitude of the points in the Normalized Device Coordinates (NDC) exceeds
a threshold. The magnitude of the gradient is equally averaged across different
viewpoints, and the threshold is fixed. Large Gaussians are usually visible from
many viewpoints, and the size of their projection area varies greatly across views.
This variation leads to a significant difference in the number of pixels involved in
the gradient calculation. In the mathematical model of the Gaussian distribution,
pixels near the center of a projected Gaussian significantly influence the gradient
more than those farther from the center. Larger Gaussians often have many
viewpoints where the area near the projected center point is not within the
screen space, thereby lowering the average gradient, making them difficult to
split or clone. Merely lowering the threshold does not resolve this issue, as it
tends to encourage unnecessary point growth in areas already well-populated

Pixel-GS 3

with points, as illustrated in the third column of Figure 1, while still leaving
blurry artifacts in the areas with insufficient points.

In this paper, we propose to consider the calculation of the mean gradient
magnitude of points from the perspective of pixels. During the computation of
the average gradient magnitude for a Gaussian, we take into account the num-
ber of pixels covered by the Gaussian in each view by replacing the averaging
across views with the weighted average across views by the number of covered
pixels. The motivation behind this is to amplify the gradient contribution of
large Gaussians while leaving the conditions for splitting or cloning small Gaus-
sians unchanged, such that we can effectively grow points in the areas with large
Gaussians. Meanwhile, for small Gaussians, the weighted average has only a min-
imal impact the final gradient, as the variation of covered pixel numbers across
different viewpoints is minimal. Therefore, the final number of points in areas
with sufficient initial points remains largely unchanged to prevent unnecessary
memory consumption and processing time. However, points in areas with insuf-
ficient initial points can be effectively grown to reconstruct fine-grained details.
As shown in the last column of Figure 1, our method effectively grows points
in areas with insufficient initial points and renders high-fidelity images, while
directly lowering the threshold in 3DGS to maintain a similar number of final
points fails to render blur-free results. Additionally, we observe that floaters tend
to appear near the camera, which are points that are not well aligned with the
scene geometry and are not contributing to the final rendering. To this end, we
propose to scale the gradient field in NDC space according to the depth value of
the points, thereby suppressing the growth of floaters near the camera.

To evaluate our method, we conduct extensive experiments on the challenging
Mip-NeRF 360 [3] and Tanks & Temples [23] datasets. Experimental results val-
idate that our method consistently outperforms the original 3DGS, both quan-
titatively (17.8% improvement in terms of LPIPS) and qualitatively. We also
show that our method is more robust to the sparsity of the initial point cloud by
manually discarding a certain proportion (up to 99%) of the initial SfM point
clouds. In summary, we make the following contributions:
– We analyze the reason for the blurry artifacts in 3DGS and propose to optimize

the number of points from the perspective of pixels, thereby enabling effective
growth of points in areas with insufficient initial points.

– We present a simple yet effective gradient scaling strategy to suppress the
floater artifacts near the camera.

– Our method achieves state-of-the-art performance on the challenging Mip-
NeRF 360 and Tanks & Temples datasets and is more robust to the variation
in the quality of initial points.

2 Related Work

Novel view synthesis. The task of novel view synthesis refers to the process
of generating images from viewpoints different from the original input view-
points. Recently, NeRF [36] has achieved impressive results in novel view syn-

4 Z. Zhang et al.

thesis by using neural networks to approximate the radiance field and employing
volumetric rendering [10, 28, 33, 34] techniques for rendering. These approaches
use implicit functions (such as MLPs [2, 3, 36], feature grid-based representa-
tions [6, 13, 30, 38, 48], or feature point-based representations [22, 53]) to fit the
scene’s radiance field and render the scene along each camera ray accumulatively.
Due to the requirement to sample multiple points and determine the density and
color of each point along a ray during volumetric rendering, this process is slow in
rendering speeds. Subsequent methods [16,43,44,59,61] have refined a pre-trained
NeRF into a sparse representation, thus achieving real-time rendering of NeRF.
Although some improved scene representations [2–4,6,7,13,17,26,30,38,48] have
been proposed to enhance one or more aspects of NeRF, such as training cost,
rendering results, and rendering speed, 3D Gaussian Splatting (3DGS) [22] still
draws increasing attention due to its explicit representation, high-fidelity re-
sults, and real-time rendering speed. Subsequent works on 3DGS have further
improved it from perspectives such as anti-aliasing [54,62], reducing memory us-
age [12,27,31,37,39,40], replacing spherical harmonics functions to enhance the
modeling capability of high-frequency signals based on reflective surfaces [57],
and modeling dynamic scenes [11,18,21,25,32,52,56,58].

Point-based radiance field. Point-based representations commonly represent
scenes using fixed-size, unstructured points, and are rendered by rasterization
using GPUs [5, 45, 47]. Although this is a simple and convenient representation
to address topological changes, it often results in holes or outliers, leading to
artifacts during rendering. To mitigate this issue of discontinuity, researchers
have proposed differentiable rendering methods based on points, utilizing points
to model local domains [1, 15, 19, 22, 24, 29, 51, 53, 60]. Among these approaches,
Aliev et al. [1] and Kopanas et al. [24] employ neural networks to represent point
features and utilize 2D CNNs for rendering [1, 24]. Point-NeRF [53] models 3D
scenes using neural 3D points and presents strategies for pruning and grow-
ing points to repair common holes and outliers in point-based radiance fields.
3DGS [22] renders with rasterization, which is significantly faster than volumet-
ric approaches. It starts with a sparse point cloud initialization from SfM, using
three-dimensional Gaussian distributions to fit each point’s influence area and
spherical harmonics functions to determine their color features. To enhance the
representational capability of this point-based spatial function, 3DGS introduces
a density control mechanism based on the gradient of each point’s NDC (Nor-
malized Device Coordinates) coordinates and opacity, managing the growth and
elimination of the point cloud. Recent work [8] on 3DGS has improved the point
cloud growth process by incorporating depths and normals to enhance the fitting
ability in low-texture areas. In contrast, our Pixel-GS does not require any addi-
tional priors or information resources, e.g . depths and normals, and can directly
grow points in areas with insufficient initializing points, reducing blurring and
needle-like artifacts.

Floater artifacts. Most radiance field scene representations encounter floater
artifacts [14,50]. Some works [9,46] address floaters by introducing depth priors.
NeRFshop [20] proposes an editing method to remove floaters. Mip-NeRF 360 [3]

Pixel-GS 5

introduces a distortion loss to encourage unimodal density distribution along
each ray, reducing floaters near the camera. NeRF in the Dark [35] uses a variance
loss of weights to decrease floaters. FreeNeRF [55] introduces a penalty term for
the density of points close to the camera as a loss to reduce floaters near the
camera. "Floaters No More" [42] removes floaters by scaling the gradient field of
the spatial domain. Inspired by this approach, our method scales the Gaussian
gradient near the camera to remove floaters.

3 Method

We first review the point cloud growth condition of adaptive density control in
3DGS. Then, we propose a method for calculating the average gradient magni-
tude in the point cloud growth condition from a pixel perspective, significantly
enhancing the reconstruction capability in areas with insufficient initial points.
Finally, we show that by scaling the spatial gradient field that controls point
growth, floaters near the input cameras can be effectively suppressed.

3.1 Preliminaries

In 3D Gaussian Splatting, Gaussian i under viewpoint k generates a 2D covari-

ance matrix Σi,k
2D =

(
ai,k bi,k

bi,k ci,k

)
, and the corresponding influence range radius

Ri
k can be determined by:

Ri
k = 3

ai,k + ci,k

2
+

√(
ai,k + ci,k

2

)2

−
(
ai,kci,k − (bi,k)

2
) , (1)

which covers 99% of the probability in the Gaussian distribution. For Gaus-
sian i, under viewpoint k, the coordinates in the camera coordinate system are(
µi,k
c,x, µ

i,k
c,y, µ

i,k
c,z

)
, and in the pixel coordinate system, they are

(
µi,k
p,x, µ

i,k
p,y, µ

i,k
p,z

)
.

With the image width being W pixels and the height H pixels, Gaussian i par-
ticipates in the calculation for viewpoint k when it simultaneously satisfies the
following six conditions:

Ri
k > 0, µi,k

c,z > 0.2,

−Ri
k − 0.5 < µi,k

p,x < Ri
k +W − 0.5,

−Ri
k − 0.5 < µi,k

p,y < Ri
k +H − 0.5.

(2)

Whether a point is split or cloned is determined by the average magnitude of
the gradient of the NDC coordinates for the viewpoints in which the Gaussian
participates in the calculation. Specifically, for Gaussian i under viewpoint k,
the NDC coordinate is (µi,k

ndc,x, µ
i,k
ndc,y, µ

i,k
ndc,z), and the loss under viewpoint k is

Lk. During adaptive density control per 100 iterations, Gaussian i participates

6 Z. Zhang et al.

W

H

split

clone

∑
∥gk∥∑

1
> τpos

∑
pk·f(∥gk∥)∑

pk
> τpos

f

depth

gk gk

Fig. 2: Pipeline of Pixel-GS. pk represents the number of pixels participating in
the calculation for the Gaussian from this viewpoint, and gk represents the gradient
of the Gaussian’s NDC coordinates. We change the condition for deciding whether a
Gaussian should split or clone from the left to the right side.

in the calculation for M i viewpoints. The threshold τpos is set to 0.0002 in 3D
Gaussian Splatting. When Gaussian satisfies

1

M i

Mi∑
k=1

√√√√(∂Lk

∂µi,k
ndc,x

)2

+

(
∂Lk

∂µi,k
ndc,y

)2

> τpos, (3)

it is transformed into two Gaussians.

3.2 Pixel-aware Gradient

Although the current criteria used to decide whether a point should split or clone
are sufficient for appropriately distributing Gaussians in most areas, artifacts
tend to occur in regions where initial points are sparse. In 3DGS, the lengths of
the three axes of the ellipsoid corresponding to Gaussian i are initialized using
the values calculated by:

ri =

√(
di1
)2

+
(
di2
)2

+
(
di3
)2

3
, (4)

where di1, di2, and di3 are the distances to the three nearest points to Gaussian i,
respectively. We observe that areas inadequately modeled often have very sparse
initial SfM point clouds. This sparsity leads to the initialization of Gaussians in
these areas with ellipsoids characterized by larger axis lengths, resulting in their
computation involving too many viewpoints. These Gaussians exhibit larger gra-
dients only in viewpoints where the center point, after projection, is within or
near the pixel space. This implies that, from these viewpoints, the large Gaus-
sians cover a larger area in the pixel space after projection. This results in these
points having a smaller average gradient size of their NDC coordinates during
the adaptive density control process every 100 iterations (Eq. 3), because they
participate in the computation from too many viewpoints and only have signifi-
cant gradient sizes in individual viewpoints. Consequently, it is difficult for these
points to split or clone, leading to poor modeling in these areas.

Pixel-GS 7

Below, we analyze why the Gaussians in the previously mentioned sparser
areas can only obtain larger NDC coordinate gradients from viewpoints with suf-
ficient coverage, whereas for viewpoints that only affect the edge areas, the NDC
coordinate gradients are smaller. The contribution of a pixel under viewpoint k
to the NDC coordinate gradient of Gaussian i can be computed as: ∂Lk

∂µi,k
ndc,x

∂Lk

∂µi,k
ndc,y

 =

mi
k∑

pix=1

3∑
j=1

 ∂Lk

∂cpixj

∂cpixj

∂αi
k,pix

 ∂αi
k,pix

∂µi,k
ndc,x

∂αi
k,pix

∂µi,k
ndc,y

, (5)

where both ∂αi
k,pix

∂µi,k
ndc,x

and ∂αi
k,pix

∂µi,k
ndc,y

contain factor αi
k, which can be calculated as:

αi
k,pix = σi exp

(
−1

2

(
pixx − µi,k

p,x

pixy − µi,k
p,y

)T (
Σi,k

2D

)−1
(
pixx − µi,k

p,x

pixy − µi,k
p,y

))
, (6)

where cpixj represents the color of the jth channel of the current pixel, and
mi

k represents the number of pixels involved in the calculation for Gaussian
i under viewpoint k. As a function of the distance between the center of the
projected Gaussian and the pixel center, αi

k,pix exhibits exponential decay as the
distance increases. Therefore, pixels located close to the center of the projected
Gaussian contribute significantly more to the NDC coordinate gradient of this
Gaussian than those positioned further away. In many viewpoints, the edge areas
of a large Gaussian participate in the calculations for these viewpoints, which
leads to smaller average NDC coordinate gradients for the large Gaussian across
different viewpoints. On the other hand, we observe that when a large number
of pixels are involved in the calculation for a given viewpoint, the central region
of the Gaussian often participates in the calculations for this viewpoint. It is
straightforward to see that, when a large number of pixels are involved in the
calculation after projection, the projected center point tends to be within the
pixel plane, and according to previous calculations, a small number of pixels
near the center point can be the main contributors to the gradient of the NDC
coordinates.

To solve this problem, we assign a weight to the gradient size of the NDC
coordinates for each Gaussian at every viewpoint. This weight is calculated by
dividing the number of pixels involved in the computation of the Gaussian at
the corresponding viewpoint by the resolution of that viewpoint. The advantage
of this computational approach is that, for large Gaussians, the number of pix-
els involved in the calculations varies significantly across different viewpoints.
According to previous derivations, these large Gaussians only receive larger gra-
dients in viewpoints where a higher number of pixels are involved in the cal-
culations. By averaging the magnitude of gradients weighted by the number of
participating pixels, we can more effectively promote the splitting or cloning of
these Gaussians. Additionally, for smaller Gaussians, since the variation in the
number of pixels involved across different viewpoints is minimal, the proposed
averaging method results in little change compared to the original conditions and

8 Z. Zhang et al.

does not lead to excessive additional memory consumption. The new equation
to decide whether a Gaussian undergoes split or clone is given by:

∑Mi

k=1 m
i
k

√(
∂Lk

∂µi,k
ndc,x

)2

+

(
∂Lk

∂µi,k
ndc,y

)2

∑Mi

k=1 m
i
k

> τpos, (7)

where M i is the number of viewpoints in which Gaussian i participates in the
computation during the corresponding 100 iterations of adaptive density control,
mi

k is the number of pixels Gaussian i participates in at viewpoint k divided by
the total number of pixels at viewpoint k, and ∂Lk

∂µi,k
ndc,x

and ∂Lk

∂µi,k
ndc,y

respectively

represent the gradients of Gaussian i in the x and y directions of NDC space at
viewpoint k. The conditions under which a Gaussian participates in the compu-
tation for a pixel is given by:

√(
pixx − µi,k

p,x

)2
+
(
pixy − µi,k

p,y

)2
< Ri

k,∏i
j=1

(
1− αj

k,pix

)
⩾ 10−4,

αi
k,pix ⩾ 1

255 ,

(8)

while the conditions under which a Gaussian participates in the computation
from a viewpoint is given by Eq. 2.

3.3 Scaled Gradient Field

While using “Pixel-aware Gradient” to decide whether a point should split or
clone (Eq. 7) can address artifacts in modeling areas with insufficient viewpoints
and repetitive texture, we find that this condition for point cloud growth also
exacerbates the presence of floaters near the camera. This is mainly because
floaters near the camera occupy a large screen space and have significant gradi-
ents in their NDC coordinates, leading to an increasing number of floaters during
the point cloud growth process. To address this issue, we scale the gradient field
of the NDC coordinates. Specifically, we use the radius to determine the scale of
the scene, where the radius is calculated by:

radius = 1.1 ·max
i

∥∥∥∥∥∥Ci −

1

N

N∑
j=1

Cj

∥∥∥∥∥∥
2

 . (9)

In the training set, there are N viewpoints, with Cj representing the coordinates
of the jth viewpoint’s camera in the world coordinate system. We scale the
gradient of the NDC coordinates for each Gaussian i under the kth viewpoint,
with the scaling factor f (i, k) being calculated by:

f (i, k) = clip

(µi,k
c,z

γdepthradius

)2

, 0, 1

 , (10)

Pixel-GS 9

where µi,k
c,z is the z-coordinate of Gaussian i in the camera coordinate system un-

der the kth viewpoint, indicating the depth of this Gaussian from the viewpoint,
and γdepth is a hyperparameter set manually.

The primary inspiration for using squared terms as scaling coefficients in
Eq. 10 comes from “Floaters No More” [42]. This paper highlights that floaters
in NeRF [36] mainly arise from regions close to the camera occupying more
pixels after projection, thereby receiving excessive gradients during optimization.
Consequently, these regions close to the camera are optimized first, obscuring the
originally correct spatial positions from being optimized. The number of pixels
occupied is inversely proportional to the square of the distance to the camera,
and hence we scale the gradients by squared distance.

In summary, a major issue with pixel-based optimization is the imbalance
in the spatial gradient field, leading to inconsistent optimization speeds across
different areas. Adaptive scaling of the gradient field in different spatial regions
can effectively address this problem. Therefore, the final calculation equation
that determines whether a Gaussian undergoes a “split” or “clone” is given by:

∑Mi

k=1 m
i
kf (i, k)

√(
∂Lk

∂µi,k
ndc,x

)2

+

(
∂Lk

∂µi,k
ndc,y

)2

∑Mi

k=1 m
i
k

> τpos. (11)

4 Experiments

4.1 Experimental Setup

Datasets and benchmarks. We evaluate our method across a total of 30
real-world scenes, including all scenes from Mip-NeRF 360 (9 scenes) [3] and
Tanks & Temples (21 scenes) [23], which are among the most widely used
datasets in the field of 3D reconstruction. They both contain bounded indoor
scenes and unbounded outdoor scenes, allowing for a comprehensive evaluation
of our method’s performance.
Evaluation metrics. We assess the quality of reconstruction through PSNR↑,
SSIM↑ [49], and LPIPS↓ [63]. Among them, PSNR reflects pixel-aware errors but
does not quite correspond to human visual perception as it treats all errors as
noise without distinguishing between structural and non-structural distortions.
SSIM accounts for structural transformations in luminance, contrast, and struc-
ture, thus more closely mirroring human perception of image quality. LPIPS uses
a pre-trained deep neural network to extract features and measures the high-level
semantic differences between images, offering a similarity that is closer to human
perceptual assessment compared to PSNR and SSIM.
Implementation details. Our method only requires minor modifications to
the original code of 3DGS, so it is compatible with almost all subsequent works
on 3DGS. We use the default parameters of 3DGS to ensure consistency with
the original implementation, including maintaining the same threshold τpos for

10 Z. Zhang et al.

Table 1: Quantitative results on the Mip-NeRF 360 dataset. Cells are high-
lighted as follows: best , second best , and third best . We also show the results of
three challenging scenes. 3DGS∗ is our retrained 3DGS model with better performance.

Mip-NeRF 360 (all scenes) Flowers Bicycle Stump
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Plenoxels [13] 23.08 0.625 0.463 20.10 0.431 0.521 21.91 0.496 0.506 20.66 0.523 0.503
INGP-Base [38] 25.30 0.671 0.371 20.35 0.450 0.481 22.19 0.491 0.487 23.63 0.574 0.450
INGP-Big [38] 25.59 0.699 0.331 20.65 0.486 0.441 22.17 0.512 0.446 23.47 0.594 0.421
Mip-NeRF 360 [3] 27.69 0.792 0.237 21.73 0.583 0.344 24.37 0.685 0.301 26.40 0.744 0.261
3DGS [22] 27.21 0.815 0.214 21.52 0.605 0.336 25.25 0.771 0.205 26.55 0.775 0.210
3DGS∗ [22] 27.71 0.826 0.202 21.89 0.622 0.328 25.63 0.778 0.204 26.90 0.785 0.207
Pixel-GS (Ours) 27.88 0.834 0.176 21.94 0.652 0.251 25.74 0.793 0.173 27.11 0.796 0.181

Table 2: Quantitative results on the Tanks & Temples dataset. We also show
the results of three challenging scenes. ∗ indicates retraining for better performance.

Tanks & Temples (all scenes) Train Barn Caterpillar
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3DGS∗ [22] 24.19 0.844 0.194 22.02 0.812 0.209 28.46 0.869 0.182 23.79 0.809 0.211
Pixel-GS (Ours) 24.38 0.850 0.178 22.13 0.823 0.180 29.00 0.888 0.144 24.08 0.832 0.173

splitting and cloning points as in the original 3DGS. For all scenes, we set a con-
stant γdepth value in Eq. 10 as 0.37 which is obtained through experimentations.
All experiments are conducted on one RTX 3090 GPU with 24GB memory.

4.2 Main Results

We select several representative methods for comparison, including NeRF-based
methods including Plenoxels [13], INGP [38], and Mip-NeRF 360 [3], and the
3DGS [22]. We use the official implementation for all of the compared methods,
and the same train-test split as Mip-NeRF 360, selecting one out of every eight
photos for testing.
Quantitative results. The quantitative results (PSNR, SSIM, and LPIPS) on
the Mip-NeRF 360 and Tanks & Temples datasets are presented in Tables 1
and 2, respectively. We also provide the results of three challenging scenes for
each dataset for more detailed information. Here, we retrain the 3DGS (noted
as 3DGS∗) as doing so yields a better performance than the original 3DGS
(noted as 3DGS). We can see that our method consistently outperforms all the
other methods, especially in terms of the LPIPS metric, while maintaining real-
time rendering speed. Besides, compared to 3DGS, our method shows significant
improvements in the three challenging scenes in both datasets and achieves better
performance over the entire dataset. It quantitatively validates the effectiveness
of our method in improving the quality of reconstruction.
Qualitative results. In Figures 1 and 3, we showcase the comparisons between
our method and 3DGS∗. We can see our approach significantly reduces the blur-
ring and needle-like artifacts, e.g . the region of the flowers in the second row
and the blow-up region in the last row, compared against the 3DGS∗. These re-
gions are initialized with insufficient points from SfM, and our method effectively

Pixel-GS 11

Table 3: Ablation study. The metrics are derived from the average values across all
scenes of the Mip-NeRF 360 and Tanks & Temples datasets, respectively.

Mip-NeRF 360 Tanks & Temples
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
3DGS∗ [22] 27.71 0.826 0.202 24.23 0.844 0.194
Pixel-aware Gradient 27.74 0.833 0.176 21.80 0.791 0.239
Scaled Gradient Field 27.72 0.825 0.202 24.34 0.843 0.198
Complete Model 27.88 0.834 0.176 24.38 0.850 0.178

Table 4: Impact of lowering τpos. We show the corresponding quality and efficiency
metrics when lowering the threshold τpos of point growth for 3DGS∗ and our method.

Dataset Strategy PSNR↑ SSIM↑ LPIPS↓ Train FPS Memory

Mip-NeRF 360
3DGS∗ (τpos = 2× 10−4) 27.71 0.826 0.202 25m40s 126 0.72GB

3DGS∗ (τpos = 1.28× 10−4) 27.83 0.833 0.181 43m23s 90 1.4GB
Ours (τpos = 2× 10−4) 27.88 0.834 0.176 41m25s 89 1.2GB

Tanks & Temples
3DGS∗ (τpos = 2× 10−4) 24.19 0.844 0.194 16m3s 135 0.41GB
3DGS∗ (τpos = 1× 10−4) 23.86 0.842 0.187 27m59s 87 0.94GB
Ours (τpos = 2× 10−4) 24.38 0.850 0.178 26m36s 92 0.84GB

grows points in these areas, leading to a more accurate and detailed reconstruc-
tion. Please refer to the supplemental materials for the point cloud comparison.
These examples clearly validate that our method is more robust to the quality
of initialization point clouds and can reconstruct high-fidelity details.

4.3 Ablation Studies

To evaluate the effectiveness of individual components of our method, i.e. the
pixel-aware gradient and the scaled gradient field, we conduct ablation studies on
the Mip-NeRF 360 and Tanks & Temples datasets. The quantitative and qual-
itative results are presented in Table 3 and Figure 4, respectively. We can see
that both the pixel-aware gradient and the scaled gradient field contribute to the
improvement of the reconstruction quality in the Mip-NeRF 360 dataset. How-
ever, the pixel-aware gradient strategy reduces the reconstruction quality in the
Tanks & Temples dataset. This is mainly due to floaters that tend to appear near
the camera in some large scenes in Tanks & Temples and the pixel-aware gra-
dient encourages more Gaussians, as shown in column (b) of Figure 4. Notably,
this phenomenon also exists for the 3DGS when the threshold τpos is lowered,
which also promotes more Gaussians, as shown in Table 4. But importantly, the
combination of both proposed strategies achieves the best performance in the
Tanks & Temples dataset, as shown in Table 3, since the scaled gradient field
can suppress the growth of floaters near the camera. In summary, the ablation
studies demonstrate the effectiveness of our proposed individual components and
the necessity of combining them to achieve the best performance.

12 Z. Zhang et al.

(a) Ground Truth (b) Pixel-GS (Ours) (c) 3DGS∗ [22]

Fig. 3: Qualitative comparison between Pixel-GS (Ours) and 3DGS∗. The
first three scenes are from the Mip-NeRF 360 dataset (Bicycle, Flowers, and Treehill),
while the last four scenes are from the Tanks & Temples dataset (Barn, Caterpillar,
Playground, and Train). The blow-up regions or arrows highlight the parts with distinct
differences in quality. 3DGS∗ is our retrained 3DGS model with better performance.

Pixel-GS 13

22.69dB 8.20dB 23.88dB 24.29dB

25.61dB 20.35dB 26.42dB 28.25dB

(a) 3DGS∗ (b) Pixel-aware Gradient (c) Scaled Gradient Field (d) Complete Model

Fig. 4: Qualitative results of the ablation study. The PSNR↑ results are shown
on the corresponding images.

0.0 0.5 1.0

27
.0

27
.5

PSNR vs. Drop Rate

Ours
3DGS

0.0 0.5 1.0

0.
80

0.
82

SSIM vs. Drop Rate

Ours
3DGS

0.0 0.5 1.0

0.
20

0.
25

LPIPS vs. Drop Rate

Ours
3DGS

Fig. 5: Reconstruction quality (PSNR↑, SSIM↑, and LPIPS↓) vs. Dropping
rate of initializing points. Here, the dropping rate refers to the percentage of points
dropped from the original SfM point clouds for initializing Gaussians. The results are
obtained on the Mip-NeRF 360 dataset.

4.4 Analysis

The impact of lowering the threshold τpos. As the blurring and needle-like
artifacts in 3DGS mainly occur in areas with insufficient initializing points, one
straightforward solution would be to lower the threshold τpos to encourage the
growth of more points. To verify this, we experiment on the Mip-NeRF 360 and
Tanks & Temples datasets by lowering the threshold τpos from 2e−4 to 1.28e−4
for 3DGS to make the final optimized number of points comparable to ours.
From Table 4, we can see that lowering the threshold τpos for 3DGS significantly
increases the memory consumption and decreases the rendering speed, while
still falling behind ours in terms of reconstruction quality. As can be seen from
the qualitative comparison in Figure 1, this is because the point cloud growth
mechanism of 3DGS struggles to generate points in areas with insufficient ini-
tializing points and only yields unnecessary points in areas where the initial SfM
point cloud is already dense. In contrast, although our method also results in
additional memory consumption, our method’s point cloud distribution is more
uniform, enabling effectively growing points in areas with insufficient initializing
points, thereby leading to a more accurate and detailed reconstruction while still
maintaining real-time rendering speed.
Robustness to the quality of initialization point clouds. Finally, SfM al-
gorithms often fail to produce high-quality point clouds in some areas, e.g ., too
few observations, repetitive textures, or low textures. The point cloud produced

14 Z. Zhang et al.

by SfM is usually the necessary input for 3DGS and our method. Therefore, we
explore the robustness of our method to the quality of initialization point clouds
by randomly dropping points from the SfM point clouds used for initialization
and compared the results with that of 3DGS. Figure 5 shows how the recon-
struction quality varies with the proportion of dropped points. We can see that
our method consistently outperforms 3DGS in terms of all the metrics (PSNR,
SSIM, and LPIPS). And more importantly, our method is less affected by the
dropping rate than 3DGS. Notably, even though the 99% initializing points have
been dropped, the reconstruction quality of our method still surpasses that of
3DGS initialized with complete SfM point clouds, in terms of LPIPS. These re-
sults demonstrate the robustness of our method to the quality of initialization
point clouds, which is crucial for real-world applications.

5 Discussion and Conclusion

Limitation While our method can enhance the quality of scene modeling, it
does increase the number of Gaussians required to model a scene, which in turn
raises memory consumption. This issue can be addressed by employing point
cloud pruning techniques. For example, when our method is combined with the
RadSplat’s [41] point cloud pruning method, the average memory consumption
on the Mip-NeRF 360 dataset can be reduced from 1.2GB to 0.4GB without com-
promising the quality. Additionally, when the camera’s distance from the scene
center changes significantly, it may be necessary to adjust the hyperparameter
γdepth to better eliminate floaters.
Conclusion The blurring and needle-like artifacts in 3DGS are mainly at-
tributed to its inability to grow points in areas with insufficient initializing points.
To address this issue, we propose Pixel-GS, which considers the number of pix-
els covered by a Gaussian in each view to dynamically weigh the gradient of
each view during the computation of the growth condition. This strategy effec-
tively grows Gaussians with large extents, which are more likely to exist in areas
with insufficient initializing points, such that our method can adaptively grow
points in these areas while avoiding unnecessary growth in areas with enough
points. We also introduce a simple yet effective strategy to deal with floaters by
scaling the gradient field by the distance to the camera. Extensive experiments
demonstrate that our method significantly reduces blurring and needle-like arti-
facts and effectively suppresses floaters, achieving state-of-the-art performance
in terms of rendering quality. Meanwhile, although our method consumes slightly
more memory consumption, the increased points are mainly distributed in areas
with insufficient initializing points, which are necessary for high-quality recon-
struction, and our method still maintains real-time rendering speed. Finally, our
method is more robust to the number of initialization points, thanks to our
effective pixel-aware gradient and scaled gradient field.
Acknowledgement. This work is supported by the National Natural Science
Foundation of China (No. 62201484), HKU Startup Fund, and HKU Seed Fund
for Basic Research.

Pixel-GS 15

References

1. Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural
point-based graphics. In: ECCV (2020) 4

2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: ICCV (2021) 4

3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In: CVPR (2022) 3, 4, 9, 10

4. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf:
Anti-aliased grid-based neural radiance fields. In: ICCV (2023) 4

5. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting
on today’s gpus. In: EUROGRAPHICS (2005) 4

6. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
ECCV (2022) 4

7. Chen, Z., Li, Z., Song, L., Chen, L., Yu, J., Yuan, J., Xu, Y.: Neurbf: A neural
fields representation with adaptive radial basis functions. In: ICCV (2023) 4

8. Cheng, K., Long, X., Yang, K., Yao, Y., Yin, W., Ma, Y., Wang, W., Chen, X.:
Gaussianpro: 3d gaussian splatting with progressive propagation. In: ICML (2024)
4

9. Chung, J., Oh, J., Lee, K.M.: Depth-regularized optimization for 3d gaussian splat-
ting in few-shot images. In: CVPR (2024) 4

10. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. In: SIGGRAPH
(1988) 4

11. Duan, Y., Wei, F., Dai, Q., He, Y., Chen, W., Chen, B.: 4d gaussian splatting:
Towards efficient novel view synthesis for dynamic scenes. arXiv:2402.03307 (2024)
4

12. Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ fps. arXiv:2311.17245 (2023)
4

13. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: CVPR (2022) 4, 10

14. Goli, L., Reading, C., Sellán, S., Jacobson, A., Tagliasacchi, A.: Bayes’ rays: Un-
certainty quantification for neural radiance fields. In: CVPR (2024) 4

15. Gross, M., Pfister, H.: Point-based graphics (2011) 4
16. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking

neural radiance fields for real-time view synthesis. in 2021 ieee. In: ICCV (2021) 4
17. Hu, W., Wang, Y., Ma, L., Yang, B., Gao, L., Liu, X., Ma, Y.: Tri-miprf: Tri-mip

representation for efficient anti-aliasing neural radiance fields. In: ICCV (2023) 4
18. Huang, Y.H., Sun, Y.T., Yang, Z., Lyu, X., Cao, Y.P., Qi, X.: Sc-gs: Sparse-

controlled gaussian splatting for editable dynamic scenes. In: CVPR (2024) 4
19. Insafutdinov, E., Dosovitskiy, A.: Unsupervised learning of shape and pose with

differentiable point clouds. In: NeurIPS (2018) 4
20. Jambon, C., Kerbl, B., Kopanas, G., Diolatzis, S., Drettakis, G., Leimkühler, T.:

Nerfshop: Interactive editing of neural radiance fields. PACMCGIT (2023) 4
21. Katsumata, K., Vo, D.M., Nakayama, H.: An efficient 3d gaussian representation

for monocular/multi-view dynamic scenes. arXiv:2311.12897 (2023) 4
22. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for

real-time radiance field rendering. TOG (2023) 1, 4, 10, 11, 12

16 Z. Zhang et al.

23. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. TOG (2017) 3, 9

24. Kopanas, G., Philip, J., Leimkühler, T., Drettakis, G.: Point-based neural render-
ing with per-view optimization. In: Computer Graphics Forum (2021) 4

25. Kratimenos, A., Lei, J., Daniilidis, K.: Dynmf: Neural motion factorization for real-
time dynamic view synthesis with 3d gaussian splatting. arXiv:2312.00112 (2023)
4

26. Kulhanek, J., Sattler, T.: Tetra-nerf: Representing neural radiance fields using
tetrahedra. In: ICCV (2023) 4

27. Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3d gaussian representation
for radiance field. In: CVPR (2024) 4

28. Levoy, M.: Efficient ray tracing of volume data. TOG (1990) 4
29. Lin, C.H., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense

3d object reconstruction. In: AAAI (2018) 4
30. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.

In: NeurIPS (2020) 4
31. Lu, T., Yu, M., Xu, L., Xiangli, Y., Wang, L., Lin, D., Dai, B.: Scaffold-gs: Struc-

tured 3d gaussians for view-adaptive rendering. In: CVPR (2024) 4
32. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3d gaussians: Tracking

by persistent dynamic view synthesis. arXiv:2308.09713 (2023) 4
33. Max, N.: Optical models for direct volume rendering. TVCG (1995) 4
34. Max, N., Chen, M.: Local and global illumination in the volume rendering integral.

Tech. rep. (2005) 4
35. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.:

Nerf in the dark: High dynamic range view synthesis from noisy raw images. In:
CVPR (2022) 5

36. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020) 3, 4, 9

37. Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv:2312.13299 (2023) 4

38. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. TOG (2022) 4, 10

39. Navaneet, K., Meibodi, K.P., Koohpayegani, S.A., Pirsiavash, H.: Compact3d:
Compressing gaussian splat radiance field models with vector quantization.
arXiv:2311.18159 (2023) 4

40. Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3d gaussian splat-
ting for accelerated novel view synthesis. In: CVPR (2024) 4

41. Niemeyer, M., Manhardt, F., Rakotosaona, M.J., Oechsle, M., Duckworth, D.,
Gosula, R., Tateno, K., Bates, J., Kaeser, D., Tombari, F.: Radsplat: Radiance
field-informed gaussian splatting for robust real-time rendering with 900+ fps.
arXiv preprint arXiv:2403.13806 (2024) 14

42. Philip, J., Deschaintre, V.: Floaters no more: Radiance field gradient scaling for
improved near-camera training. In: EGSR (2023) 5, 9

43. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: ICCV (2021) 4

44. Reiser, C., Szeliski, R., Verbin, D., Srinivasan, P., Mildenhall, B., Geiger, A., Bar-
ron, J., Hedman, P.: Merf: Memory-efficient radiance fields for real-time view syn-
thesis in unbounded scenes. TOG (2023) 4

Pixel-GS 17

45. Ren, L., Pfister, H., Zwicker, M.: Object space ewa surface splatting: A hardware
accelerated approach to high quality point rendering. In: Computer Graphics Fo-
rum (2002) 4

46. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense
depth priors for neural radiance fields from sparse input views. In: CVPR (2022)
4

47. Sainz, M., Pajarola, R.: Point-based rendering techniques. Computers & Graphics
(2004) 4

48. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast conver-
gence for radiance fields reconstruction. In: CVPR (2022) 4

49. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. TIP (2004) 9

50. Warburg, F., Weber, E., Tancik, M., Holynski, A., Kanazawa, A.: Nerfbusters:
Removing ghostly artifacts from casually captured nerfs. In: ICCV (2023) 4

51. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: Synsin: End-to-end view synthesis
from a single image. In: CVPR (2020) 4

52. Wu, G., Yi, T., Fang, J., Xie, L., Zhang, X., Wei, W., Liu, W., Tian, Q., Wang,
X.: 4d gaussian splatting for real-time dynamic scene rendering. In: CVPR (2024)
4

53. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. In: CVPR (2022) 4

54. Yan, Z., Low, W.F., Chen, Y., Lee, G.H.: Multi-scale 3d gaussian splatting for
anti-aliased rendering. In: CVPR (2024) 4

55. Yang, J., Pavone, M., Wang, Y.: Freenerf: Improving few-shot neural rendering
with free frequency regularization. In: CVPR (2023) 5

56. Yang, Z., Yang, H., Pan, Z., Zhang, L.: Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. In: ICLR (2024) 4

57. Yang, Z., Gao, X., Sun, Y., Huang, Y., Lyu, X., Zhou, W., Jiao, S., Qi, X., Jin, X.:
Spec-gaussian: Anisotropic view-dependent appearance for 3d gaussian splatting.
arXiv:2402.15870 (2024) 4

58. Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3d gaussians
for high-fidelity monocular dynamic scene reconstruction. In: CVPR (2024) 4

59. Yariv, L., Hedman, P., Reiser, C., Verbin, D., Srinivasan, P.P., Szeliski, R., Barron,
J.T., Mildenhall, B.: Bakedsdf: Meshing neural sdfs for real-time view synthesis.
In: SIGGRAPH (2023) 4

60. Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable
surface splatting for point-based geometry processing. TOG (2019) 4

61. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. In: ICCV (2021) 4

62. Yu, Z., Chen, A., Huang, B., Sattler, T., Geiger, A.: Mip-splatting: Alias-free 3d
gaussian splatting. In: CVPR (2024) 4

63. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018) 9

	Pixel-GS: Density Control with Pixel-aware Gradient for 3D Gaussian Splatting

