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Abstract—Recently, deep reinforcement learning (RL) ap-
proaches have been adopted to optimize financial portfolios with
the objective of maximizing total profits while reducing potential
risks by spreading investment capital across a variety of assets.
Despite achieving great advances in the trade-off between profits
and risks, the existing deep RL-based frameworks rarely consider
practical trading constraints when making decisions in real-
world financial markets, which cannot fulfill the customized re-
quirements of specific users and may violate market regulations.
Accordingly, a Multi-Agent and Self-Adaptive trading framework
for Constrained portfolio optimization, namely the MASAC,
is proposed in which the deep RL-based agent dynamically
explores profit-maximization policies while the heuristic-based
agent conducts min-conflict search to ensure the generated
trading strategies satisfying all concerned constraints. Through
sharing knowledge within the trading system, the agents of
the proposed framework cooperatively produce new portfolios
that can maximize overall profits while satisfying all investor
requirements throughout the trading period. The experimental
results reveal the advantages of the MASAC framework against
many state-of-the-art approaches in investment performance and
trading constraint satisfaction on the challenging data sets of
real-world markets.

Index Terms—Trading System, Financial Portfolio Optimiza-
tion, Risk Management, Deep Reinforcement Learning

I. INTRODUCTION

Portfolio optimization, as one of the active research topics
in the field of computational finance, aims at maximizing
the overall returns and reducing investment risks through
dynamically adjusting the investment weights of assets in a
portfolio to adapt to the ever-changing financial market over
the trading period. However, except for balancing the returns
and risks, in fact that there are many trading constraints to be
considered in the real-world markets to fulfil the requirements
of government regulations and investor preferences. Therefore,
making the trade-off between investment returns, potential
risks, and trading constraints can be a very challenging task
in Constrained Portfolio Optimization Problems (CPOP).

Conventionally, fund managers make trading decisions
based on their intuition and past experiences, yet it may lead
to a biased strategy due to subjective judgments. Following
modern portfolio theory [1], the CPOP is formulated as a
mathematical programming problem and optimized by dy-
namic programming solvers [2]. Nevertheless, dynamic pro-
gramming solvers restrict the form of constraints and fail
to forecast the future trends of asset prices from historical
data. Recently, deep or reinforcement learning (DL/RL) has
achieved great success in many practical financial applications

including order execution [3], high-frequency trading [4], and
pair trading [5], among which many studies [6], [7] have
attempted to utilize DL/RL-based approaches to learn the price
movement of assets as well as the correlations between assets
in a portfolio under the highly volatile financial markets. Yet in
many cases, even if those DL/RL-based approaches are good
at learning profitable trading strategies, they cannot effectively
handle trading constraints due to the increased difficulty of
policy training when optimizing different objectives in the
same reward function, especially together with multiple types
of constraints or the non-differentiable constraints, thus those
approaches cannot be customized for different investors and
are inapplicable in real-world trading systems.

To overcome the above pitfalls, a novel Multi-Agent and
Self-Adaptive trading framework for Constrained portfolio
optimization, namely the MASAC, is proposed in this work
in which a cooperative agent-based scheme is adopted to
carefully balance the trade-off between the overall returns,
potential short-term risks, and the satisfaction of multiple
trading constraints during the whole trading period. The deep
RL-based agent of the MASAC framework captures the under-
lying trend patterns of each asset and the correlations between
involved assets from historical price data, dynamically gener-
ating new portfolio weights with high long-term profit expec-
tations for adapting to the volatile financial markets. Based
on the priori knowledge provided by the RL-based agent,
the cooperating heuristic-based agent namely the EGENET+
exploits the neighboring area of the generated portfolios, trying
to find a minimum change of the generated portfolios such that
the trading decision can satisfy all the assigned constraints
while maintaining the expectations of high long-term profits.
Besides, the constraint conflict information in the heuristic-
based agent is returned to the deep RL-based agent to guide
solving difficult constraints. The main contributions of the
proposed framework are summarized as follows.

1) Compared with the existing approaches, the MASAC
framework achieves a good balance between investment
performance and practical trading constraints in real-
world trading by the cooperation between two agents.

2) There is no limit to the types of constraints and no need
to retrain the RL models when changing trading require-
ments. Therefore, the MASAC can customize trading
strategies for investors with different requirements.

3) As a flexible and practical trading framework, the user



can conveniently apply the MASAC to various financial
products in different financial markets around the world.

II. RELATED WORKS

Traditional Portfolio Optimization. Conventionally, many
investors adopted trend-tracking strategies [8] to decide buying
or selling assets. The follow-the-winner strategies [9] prefer to
invest the well-performing assets in the past period while the
follow-the-loser strategies [10], [11] believe that the worse-
performing assets will rise back to the normal soon. However,
the financial market is ever-changing, thus those trading strate-
gies may not be adaptive to different market states.
Solver-based Portfolio Optimization. As aforementioned,
through formulating the CPOP as a dynamic programming
problem, there are many powerful solvers [12]–[14] that can
be applied to solve CPOP. Yet some trading constraints involve
special items like the L1-norm, or the constraints cannot be
even defined in formulas. This may not be dealt with by
traditional solvers. Moreover, those solvers lack the ability to
estimate the future price trends of assets from historical data.
Deep Reinforcement Learning-based Portfolio Optimiza-
tion. Deep reinforcement learning, as one of the widely used
portfolio optimization techniques in recent years, demonstrates
great potential for capturing both the future trend patterns
of asset prices and the correlations between assets. The
convolution-based trading framework [15] tries to optimize
portfolio weights and reduce turnover rates while [7], [16]
investigate the effects of investment risks and transaction
costs with a recurrent-convolution framework. Followed by
the success of attention-based architectures, [6], [17] present
two transformer-based models to optimize asset allocation by
the relation attention and sequential attention mechanisms.
With the rapid development of multi-agent RL systems, there
are other studies [18], [19] investigating the potential use
of multiple intelligent agents to cooperatively work in the
field of portfolio management, among which [18] proposes
different agents to maximize returns and manage short-term
risks. However, the previous RL-based approaches do not take
into account practical trading constraints, or only consider one
constraint such as investment risks or margin requirements.

III. METHODOLOGY

A. Problem Formulation

The CPOP aims to maximize overall returns while satisfying
all given trading constraints during the trading period T .

max

T∑
t=1

log (r⊤t at−1 + 1)

s.t. CSTRj,t,∀j ∈ J, ∀t ∈ T,

(1)

where at−1 ∈ RN is the weight vector of assets at time t− 1,
rt ∈ RN is the daily return rates of assets in a portfolio,
and CSTRj,t denotes the jth constraint at t. As described
in [20], seven government regulations and investor require-
ments are presented by mathematical formulas and added to
the trading constraints in this paper, including 1) Short-term

risk constraint based on the variance of Markowitz model [1]
for reducing huge losses in a short time; 2) Holding constraint
that manages the range of investment weights of specific stocks
in terms of investor preference; 3) Cardinality constant that
diversifies investment risks by restricting the minimum and
maximum number of assets in a portfolio at t; 4) Turnover
constraint that keeps the consistency of trading behaviors and
subject to regulatory restrictions through managing the total
trading quantities of assets in each transaction; 5) Class con-
straint that manages the investment range of a subset of assets
recommended by investors; 6) Industry constraint that restricts
the total weights of assets in the same industry; 7) Small
capitalization constraint that limits the investment proportion
in the stocks with a relatively small market capitalization. The
types of constraints include linear constraints, second-order
cone constraints, and L1-norm constraints.

B. The Overview of the Trading System
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Fig. 1. The System Architecture of the Proposed MASAC Framework

To overcome the pitfall of the existing portfolio optimiza-
tion approaches on balancing the expectations of long-term
returns and trading constraints satisfaction throughout the
trading period, a Multi-Agent and Self-Adaptive framework
for Constrained portfolio optimization namely the MASAC is
proposed in this work. Through the clear division of works to
optimize different objectives and the close cooperation to share
valuable information, the two agents, namely the deep RL-
based agent and heuristic-based agent, construct a new agent-
based RL scheme to dynamically generate trading signals to
adapt to the ever-changing financial markets.

The overall system architecture of the MASAC framework
is shown in Fig. 1. Unlike the constraint conflict as a penalty
item is integrated into the loss function in most of the DL
or RL-based portfolio management approaches to simulta-
neously optimize investment returns and trading constraints,
the MASAC framework as a divide-and-conquer approach
separates the two optimization tasks to different agents in
which the deep RL-based agent focuses on maximizing the
overall returns while the heuristic-based agent fine-tunes the
trading strategies for satisfying the trading constraints assigned
by investors. First of all, the deep RL-based agent learns the
price movement of assets and the correlations between assets



by capturing the valuable patterns of historical price data,
continuously producing portfolio weights aRL to ultimately
achieve higher long-term profits. Then, the heuristic-based
agent receives and transforms investor instructions to trading
constraints. After that, according to the priori knowledge
aRL, the heuristic-based agent executes the min-conflict local
search around the promising space recommended by the RL-
based agent such that the newly revised portfolio a with
the minimum changes ∆a can satisfy all constraints while
maintaining the relatively high long-term returns expected
by the RL-based agent as possible. With the utilization of
constraint conflict information provided by the heuristic-based
agent, it is worth noting that the cooperation mechanism of the
MASAC can further guide the RL-based agent to adaptively
explore more promising regions for avoiding local minima
and reach a new balance between portfolio performance and
difficult constraint satisfaction. More specifically, the heuristic-
based agent indicates the constraints which may be difficult to
solve at the current market states by itself, and then the RL-
based agent can help explore the possible solutions to satisfy
such constraints by assigning extra penalties and different
sampling probabilities of training samples.

C. The EGENET+ Solver for Constraint Satisfaction
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Fig. 2. An Illustration of the Enhanced Search Scheme

Originally, the EGENET [21] was designed for continuous
constrained problems like graph colouring optimization by
using min-conflict heuristic search. In this paper, an enhanced
version of EGENET, namely the EGENET+, working as the
heuristic-based agent in the MASAC framework, is proposed
to collaborate with the RL-based agent for further enhancing
the ability to solve different types of trading constraints. To
reduce the modifications of the portfolio aRL

t for maintaining
the expectations of long-term returns by the RL-based agent
while satisfying all trading requirements, the EGENET+ tries
to minimize the compensated action ∆at such that all con-
straints can be satisfied. As illustrated in Fig. 2, the aRL

i,t is
set to the start point of the search. The EGENET+ alternately
conducts the forward and backward search (the black arrows)
until finding a feasible solution ∆a′i,t. Subsequently, the search
step size and the search boundary of variable i are shrunk to
the shadow region in green as the area outside of the green-
shaded area does not exist a solution that is less than ∆a′i,t.
After conducting a more fine-grained search (the red arrows),
the EGENET+ will recognize a smaller compensated action
∆a′′i,t that can fulfill all constraints. Finally, the best ∆at is
returned to produce the final portfolio at.

D. The Guided Learning for Trading Policy Optimization
In general, portfolio optimization can be formulated as a

partially observable Markov decision process in multi-period

trading and optimized by deep reinforcement learning with
its remarkable ability on sequential decision-making prob-
lems. The observable states include the open, high, low,
and close price of assets in a portfolio. The main objective
of the RL-based agent is to maximize the overall returns
Lr(θ1) =

1
T

∑T
t=1 log (r

⊤
t at−1 + 1) and explore the solutions

to handle difficult constraints Lc(θ2) =
1
T

∑T
t=1

Jsat,t

Jt
. Thus,

the customized reward function of the RL-based agent is
depicted as L(θ1, θ2) = λ1Lr(θ1) + λ2Lc(θ2), where λ1

and λ2 are the learning weights of reward items to select
conservative or aggressive strategies, Jsat,t is the number of
satisfied constraints and Jt is the total number of constraints
at t. Besides, the sampling probability of the training sample
k is updated as Prk =

Jk−Jsat,k∑M
m=1 Jm−Jsat,m

, where M is the total
number of training samples. By adaptively adjusting Prk, the
RL-based agent of the MASAC is guided to focus on the
samples with more violated trading constraints, which helps to
escape from local minima and attains a better balance between
trading performance and constraint satisfaction.

IV. EXPERIMENTS

A. Experimental Settings

Two real-world data sets of S&P 500 and Dow Jones In-
dustrial Average (DJIA) indexes from January 2014 to March
2024 are collected to compare the performance of the MASAC
and other state-of-the-art approaches, among which the first
five-year data for training, subsequent two-year data for val-
idating, and the last three-year data for testing. The top 10
stocks of a market index are selected to construct the portfolio
in terms of their market capitalization. All the reported results
are averaged over 5 runs for reducing randomness impacts.
To compare the performance of the MASAC, 11 state-of-the-
art methods based on different optimization techniques are
selected, including 1) Three traditional approaches: EG [9],
PAMR [10], and RMR [11]; 2) Three solver-based methods:
XPRESS [14], GUROBI [13], and CPLEX [12]; and 3) Five
deep RL-based frameworks: DPM [15], PPN [16], RAT [17],
DT [7], and MASA [18]. Besides, four widely used metrics
in previous works [15], [18] including Annual Return (AR),
Maximum Drawdown (MDD), Sharpe Ratio (SR), and Volatil-
ity (Vol) are adopted to evaluate investment performance. Also,
to evaluate the comparative methods in handling multiple
constraints, two popular metrics in the constraint satisfaction
area are selected. The Feasible Day (FD) is the number of
trading days satisfying all constraints in the trading period
T while the Constraint Satisfaction (CS) rate is the average
number of satisfied constraints per day.

B. Performance Analysis

Table I compares both constraint satisfaction and investment
performance of the MASAC framework against the state-of-
the-art approaches in the S&P 500 and DJIA markets. The
trading period of the test set is 814 days in which the portfolios
generated by the MASAC satisfy all constraints in 576.8 days
in S&P 500 and 765.4 days in DJIA, and meet more than
6 out of 7 constraints per day, whereas the best benchmark



TABLE I
THE PERFORMANCE OF WELL-KNOWN APPROACHES AGAINST THE MASAC FRAMEWORK ON THE S&P 500 AND DJIA INDEXES

Markets S&P 500 DJIA
Models FD↑ CS↑ AR(%) ↑ MDD(%) ↓ SR↑ Vol↓ FD↑ CS↑ AR(%) ↑ MDD(%) ↓ SR↑ Vol↓

EG 0 0.65 20.28 36.75 0.79 0.2352 0 0.87 14.64 19.70 0.81 0.1594
PAMR 0 2.30 -5.40 59.25 -0.17 0.4070 0 2.27 -34.30 79.98 -1.29 0.2783
RMR 0 2.36 -12.01 67.41 -0.29 0.4696 0 2.28 -13.17 63.55 -0.54 0.2733

XPRESS 88 5.29 20.21 38.80 0.60 0.3109 110 6.07 5.55 23.47 0.22 0.1767
GUROBI 42 4.85 20.54 38.88 0.61 0.3120 69 5.80 5.87 22.81 0.24 0.1765
CPLEX 60 4.98 20.23 38.90 0.60 0.3111 84 5.89 5.87 23.43 0.24 0.1766
DPM 0 0.77 16.19 41.27 0.61 0.2415 0 0.96 14.92 18.13 0.82 0.1622
PPN 0 1.22 23.29 38.70 0.85 0.2470 0 0.90 13.90 18.54 0.82 0.1499
RAT 0 0.67 19.53 35.92 0.78 0.2283 0 0.89 14.11 18.84 0.81 0.1528
DT 0 2.97 11.88 45.55 0.37 0.2728 0.2 3.21 2.68 31.32 0.05 0.1829

MASA 0 1.81 18.90 26.72 0.82 0.2102 0.2 2.14 16.27 18.86 0.90 0.1617
MASAC 576.8 6.11 25.32 35.33 0.98 0.2411 765.4 6.89 13.98 14.94 0.84 0.1475

algorithm only satisfies all constraints at most 110 trading
days and around 6 constraints per day. This significantly
demonstrates the ability of the proposed framework to solve
different types of trading constraints at the same time. On
the other hand, as the example in S&P 500 market, the
MASAC achieves the highest AR at 25.32%, the highest SR at
0.98, and the second-best MDD at 35.33%. The solver-based
methods have poor profits due to the lack of ability to estimate
future returns while the deep RL-based methods cannot handle
multiple constraints. For instance, the MASA focuses on risk
management but fails to handle other constraints, achieving
the best MDD but lower returns. Moreover, as shown in
DJIA, the MASAC satisfies more trading constraints, yet it
obtains lower returns since some profitable opportunities are
sacrificed. Fig. 3 shows the heatmap of the satisfaction rates of
constraints where the higher satisfaction rate is represented by
the darker square. The MASAC demonstrates a strong capacity
to handle different types of constraints, while other methods
usually fail to deal with specific types of constraints.
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Fig. 3. A Comparison of the Satisfaction Rates of Constraints

V. CONCLUDING REMARKS

Portfolio optimization has been studied for a few decades.
Yet the existing approaches mainly focus on maximizing
portfolio returns but rarely consider the practical trading
constraints, which cannot be adapted to investors with different
preferences in real-world trading. To fill the research gap,
a Multi-Agent and Self-Adaptive framework for Constrained
portfolio optimization, namely the MASAC, is proposed where
an RL-based agent and a heuristic-based agent cooperatively
generate trading strategies for maximizing overall returns
while satisfying all concerned trading requirements. The simu-
lation results reveal that the MASAC well balances investment

performance and practical trading requirements in real-world
datasets. More importantly, the proposed trading system sheds
light on many financial applications and products.
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