
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, X 2024 2

RIS-Aided Cooperative Mobile Edge Computing:
Computation Efficiency Maximization via Joint

Uplink and Downlink Resource Allocation
Zhenrong Liu, Graduate Student Member, IEEE, Zongze Li,

Yi Gong, Senior Member, IEEE, and Yik-Chung Wu, Senior Member, IEEE

Abstract—In mobile edge computing (MEC) systems, the
wireless channel condition is a critical factor affecting both
the communication power consumption and computation rate
of the offloading tasks. This paper exploits the idea of coop-
erative transmission and employing reconfigurable intelligent
surface (RIS) in MEC to improve the channel condition and
maximize computation efficiency (CE). The resulting problem
couples various wireless resources in both uplink and down-
link, which calls for the joint design of the user association,
receive/downlink beamforming vectors, transmit power of users,
task partition strategies for local computing and offloading, and
uplink/downlink phase shifts at the RIS. To tackle the challenges
brought by the combinatorial optimization problem, the group
sparsity structure of the beamforming vectors determined by
user association is exploited. Furthermore, while the CE does not
explicitly depend on the downlink phase shifts, instead of simply
finding a feasible solution, we exploit the hidden relationship
between them and convert this relationship into an explicit
form for optimization. Then the resulting problem is solved via
the alternating maximization framework, and the nonconvexity
of each subproblem is handled individually. Simulation results
show that cooperative transmission and RIS deployment can
significantly improve the CE and demonstrate the importance
of optimizing the downlink phase shifts with an explicit form.

Index Terms—Mobile edge computing (MEC), reconfigurable
intelligent surface (RIS), computation efficiency, user association,
cooperative transmission.

I. INTRODUCTION

Mobile users have long been recognized as resource-limited

compared to static clients and servers. At any given cost

and technology level, weight, size, battery life, ergonomics,

and heat dissipation severely limit computational resources in

terms of processor speed, memory size, and storage capacity.

On the other hand, a wide range of emerging computation-

intensive applications, such as mobile virtual reality and

augmented reality, call for an unprecedented demand for

data computing and processing in mobile users. To liberate

the resource-limited users from heavy computation workloads

and provide them with high-performance computing services,

mobile edge computing (MEC) promotes the use of computing

capabilities at the edge servers attached to the wireless access

points (APs) [1], [2]. In this way, users’ computation-intensive

tasks can be offloaded to the nearby APs, and the results are

delivered back to the users after the computation is done at

the edge servers. Unlike cloud computing, whose vision is

to centralize computation, storage, and network management

in a remote cloud center distant from the end users, MEC

pushes computing resources, network control, and storage

to the network edges [3]. This dramatically reduces latency,

mobile energy consumption, and communication overhead of

the network backhaul, thus overcoming the key challenges for

materializing the 5G vision.

As the focus in MEC shifts from pure communications

to communication-assisted computation, it is important to

consider optimizing the computation efficiency [4], which is

the computing capability (in terms of computation rate) of

the MEC system divided by power spent on computing and

communications [5]. However, increasing computing capabil-

ity and decreasing power consumption are two conflicting

goals. For example, if users are not offloading their tasks

to the edge but computing them locally, power can be saved

from communications, but the computation rate would be very

low. On the contrary, if all users offload the tasks to the edge

servers for computation, it causes high energy consumption for

data offloading and results downloading, but the computation

capability will be enhanced. Neither of these extremes is

a good solution since they result in a waste of resources.

Balancing the computation rate and the power consumption

is a central problem in wireless MEC systems [6]–[8].

A well-known strategy for reducing downlink transmission

energy is to have multiple APs cooperatively serve each

user [9]–[11]. Different from the cellular systems, in wire-

less MEC, the data in downlink cooperative transmission is

the computation results from users’ offloaded data [12]. To

enable cooperative transmission, the APs must either share

the computation results of their respective users or each AP

compute the results independently. Unfortunately, the com-

putation results exchange between APs alone would cost 15

ms (for a lightly loaded network) to 50 ms (for a heavily

loaded network) [13], [14], thus impractical for the latency-

critical MEC applications such as mobile virtual reality and

augmented reality, whose recommended total latency is around

20 ms [15]. Under the scenario that each cooperating AP

independently computes the result for a serving user, more

participating APs means more computation energy is spent

in the hope of trading for less downlink transmission energy.

This raises the fundamental question of which APs should be

associated with which user. If the channel from a particular

user k to an AP n is in bad condition, AP n should not
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cooperatively serve the user k since the offloading energy from

user k to AP n will be huge, thus lowering the computation

efficiency. But if we are too conservative in choosing APs for

cooperation, it defeats the original purpose of improving the

quality of downlink transmission. Therefore, user association

is critical to the overall MEC system’s computation efficiency.

Besides cooperative transmission, another recent technology

that could help to increase computation efficiency is reconfig-

urable intelligent surfaces (RISs). The motivation for incor-

porating RIS into MEC is driven by its remarkable capability

to configure the wireless environment and thus improve the

offloading rate and reduce transmission energy. Furthermore,

RIS offers the advantage of being cost-effective and easy to

deploy, making RIS particularly suitable for enhancing the

uplink performance of MEC systems. By capitalizing on these

benefits, the integration of RIS into the MEC framework holds

great promise.

In this paper, we propose to use both RIS and cooperative

transmission to improve the computation efficiency of an MEC

system. In particular, we formulate the computation efficiency

maximization problem by considering both the uplink and

downlink transmission power consumption, and the local and

offloaded computation power consumption. Since user associ-

ation in the proposed MEC system couples with the design of

receive and downlink beamforming vectors (i.e., if a user is

not selected to be served by a particular AP, the corresponding

receive and downlink beamforming vectors should be all-zero

vectors), the resulting optimization problem is an intertwined

design of user association, power partition parameters for

computation offloading, receive and downlink beamforming

vectors, and receive/downlink phase-shift matrices at the RIS

with the practical phase shift model. Further with the fact that

user association is a non-convex and combinatorial problem,

the overall optimization problem is difficult to solve.

To address the challenge of the combinatorial optimiza-

tion problem, we exploit the group sparsity structure of the

receive/downlink beamforming vectors and merge the user

association design into the beamforming variables. In addition,

we observe that although the downlink phase-shift matrix

does not appear in the objective function, it indirectly affects

power consumption. This inspires us to exploit their hidden

relationship to optimize the downlink phase-shift matrix with

an explicit form instead of simply finding a feasible one.

With the above two ideas, the optimization problem is solved

under the alternating maximization (AM) framework. How-

ever, each of the subproblems is still non-convex. Tailoring

to the different natures of non-convexity, these subproblems

are handled by the tightest convex relaxation, Dinkelbach’s or

quadratic transformation, and the penalty method, respectively.

Extensive simulation results show that the proposed RIS-aided

cooperative MEC system outperforms systems without RIS

or cooperative transmission. At the same time, optimizing

the downlink phase shifts with an explicit form can further

improve the system’s performance.

The rest of the paper is organized as follows. The system

model and the computation efficiency maximization problem

are formulated in Section II. The discrete user association

variable is handled in Section III. Section IV maximizes the
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Fig. 1. The RIS-aided MEC system.

computation efficiency under the AM framework. Simulation

results are presented in Section V. Finally, a conclusion is

drawn in Section VI.

Notations: We use boldface lowercase (e.g., h) and up-

percase letters (e.g., G) to represent vectors and matrices,

respectively. The transpose, conjugate, conjugate transpose,

and diagonal matrix are denoted as (·)T, (·)∗, (·)H and diag(·),
respectively. The symbol ℜ(·) denotes the real component of

a complex number. The n × n identity matrix is denoted as

In and the entries of a matrix X is denoted by (X)ij . The

complex normal distribution is denoted as CN . The ℓ2-norm of

a vector is denoted as ‖·‖2 and the Frobenius norm of a matrix

is denoted as ‖·‖F. [a]+denotes max(0, a). We use 1{·} to

denote the indicator function which outputs 1 if the condition

{·} is satisfied and outputs 0 otherwise. In the rest of this

paper, the superscripts U and D refer to uplink and downlink,

respectively, and the letters d and r in the subscripts stand for

the direct link and the reflected link, respectively. Finally, the

set of a variable is denoted by {variable}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a RIS-aided MEC system as shown in Fig.

1, in which there are N APs, K single-antenna users, and

an M -element RIS. Each AP is attached to an MEC edge

server and equipped with L antennas. Each user has a limited

power budget P c
k in Watt (W) but has intensive computation

tasks to deal with. In practice, if the computation task is

too complicated to be completed by a user (possibly due to

excessive power or time involved), part of the task should

be delegated to the edge server. Hence, a partial offloading

mode is adopted. Partial offloading is designed to cope with

computation tasks with data partition, in which tasks can be

arbitrarily divided to facilitate parallel operations at users for

local computing and offloading to the APs for edge computing

[16]. We use time division duplex protocol and adjust RIS

phase shifts between uplink and downlink to reconfigure

the propagation environment in real-time via a control link

between RIS and APs [17]. To guarantee the quality of services

provided to users, it is assumed that multiple APs in the uplink

transmission can successfully receive each user’s data, en-

abling computation repetition at different edge servers and thus

creating multiple copies of the computation results at different
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APs [18]. These copies in turn enable cooperative downlink

transmission among the APs on delivering the computation

results. By exploiting existing channel estimation approaches

[19], the global channel state information is assumed to be

available at the APs.

For uplink transmission, let N = {1, . . . , N}, K =
{1, . . . ,K}, and M = {1, . . . ,M} denote the index sets of

APs, users, and reflecting elements, respectively. In a specific

time slot, let sUk ∈ C with zero mean and unit variance denote

the information symbol of user k for the offloading task, and

pUk ∈ R denote the transmit power of user k. The signal

received at AP n can be expressed as

yU
n =

∑

k∈K

ιUnk

√

pUk s
U
k + zU

n , ∀n ∈ N , (1)

where ιUnk ∈ CL×1 is the equivalent baseband channel from

user k to AP n and zU
n ∼ CN

(
0, σ2

nIL

)
is the receiver noise

at AP n with σ2
n being the noise power. With the deployment

of an RIS, the equivalent baseband channel from user k to AP

n consists of direct and reflected links. Therefore, ιUnk can be

modeled as

ιUnk = hU
d,nk +

(

GU
n

)H

Θ
UhU

r,k, ∀k ∈ K, n ∈ N , (2)

where hU
d,nk ∈ CL×1,hU

r,k ∈ CM×1, and GU
n ∈ CM×L

denote the channels from user k to AP n, from user k to the

RIS, and from the RIS to AP n, respectively. The uplink RIS

matrix Θ
U = diag

(

ρ(θU1 )e
jθU

1 , . . . , ρ(θUM )ejθ
U

M

)

∈ CM×M

is a diagonal matrix, where ρ(θUm) is the amplitude reflection

coefficient that is a function of uplink phase shift at the mth

RIS element θUm ∈ [0, 2π), and can be expressed as [20]

ρ
(
θUm
)
= (1− βmin)

(

sin
(
θUm − φ

)
+ 1

2

)α

+βmin, ∀m ∈M,

(3)

with βmin ≥ 0, φ ≥ 0, and α ≥ 0 are parameters related to

the specific circuit implementation.

We consider the linear beamforming strategy and denote

vU
nk ∈ CL×1 as the receive beamforming vector of AP n for

decoding sUk . AP n only decodes user k’s transmitted symbol

sUk if it belongs to the set of AP with indices Ak ⊆ N , which

are responsible for computing the partial computation tasks

for user k. If n ∈ Ak, the received signal at AP n for user k,

denoted by ŝUnk ∈ C, is given by

ŝUnk =
(
vU
nk

)H
ιUnk

√

pUk s
U
k +

(
vU
nk

)H ∑

l 6=k,l∈K

ιUnl

√

pUl s
U
l

+
(
vU
nk

)H
zU
n , ∀k ∈ K.

(4)

For the offloading task, we introduce a power partition

parameter ak ∈ [0, 1] for user k, and pUk = akP
c
k represents the

power used for data offloading. Correspondingly, the uplink

signal-to-interference-plus-noise ratio (SINR) observed at AP

n for user k is thus given by

γUnk
(
{ak},v

U
nk, {θ

U
m}
)

=

pUk

∣
∣
∣
∣

(
vU
nk

)H
(

hU
d,nk+

(

GU
n

)H

Θ
UhU

r,k

)∣
∣
∣
∣

2

∑

l 6=k,l∈K
pUl

∣
∣
∣
∣

(
vU
nk

)H
(

h
U
d,nl+

(

GU
n

)H

Θ
Uh

U
r,l

)∣
∣
∣
∣

2

+σ2
n

∥
∥vU

nk

∥
∥
2

2

,

∀n ∈ Ak, k ∈ K.
(5)

After performing the computation tasks, the APs coopera-

tively transmit the computation results to the corresponding

users through downlink wireless channels. We assume the

downlink transmission starts simultaneously from all serving

APs in our cooperative transmission protocol1. Let {Ak}
denote the task selection strategy, sDk ∈ C with zero mean

and unit variance denote the symbol intended for user k, and

vD
nk ∈ CL×1 denote the downlink beamforming vector from

AP n to user k. The signal transmitted by AP n, denoted as

xD
n ∈ C

L×1, is a summation of beamformed symbols for all

users with n ∈ Ak, i.e., xD
n =

∑

{k|n∈Ak,k∈K} v
D
nks

D
k , ∀n ∈

N . Then, the signal received by user k is expressed as

yDk =
∑

n∈N

1{n∈Ak}

(
ιDnk
)H

vD
nks

D
k

+
∑

l 6=k

∑

n∈N

1{n∈Al}

(
ιDnk
)H

vD
nls

D
l + zDk , ∀k ∈ K,

(6)

where zDk ∈ C is the AWGN at user k with zero mean and

variance σ2
k, and ιDnk ∈ CL×1 is the equivalent baseband

channel from AP n to user k. Similar to (2), ιDnk is expressed

as

ιDnk = hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k, ∀k ∈ K, n ∈ N , (7)

where hD
d,nk ∈ C

L×1,hD
r,k ∈ C

M×1, and GD
n ∈ C

M×L denote

the channels from AP n to user k, from the RIS to user k,

and from AP n to the RIS, respectively. Furthermore, ΘD =

diag
(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)

∈ CM×M is the downlink

RIS matrix with θDm ∈ [0, 2π). Based on the above equation,

the SINR observed by user k ∈ K in the downlink transmission

is given by

SINRD
k

(
{vD

nk}, {θ
D
m}
)

=

∣
∣
∣
∣
∣

∑

n∈N 1{n∈Ak}

(

hD
d,nk+

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nk

∣
∣
∣
∣
∣

2

∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N1{n∈Al}

(

hD
d,nk+

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nl

∣
∣
∣
∣
∣

2

+σ2
k

,

1During the downlink phase, APs can employ alignment procedures to
transmit only the finished bits across all the APs for a specific user at this
time slot, and any remaining bits can be transmitted in the subsequent time
slot’s downlink phase.
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=

∣
∣
∣
∣
∣

∑

n∈N

(

h
D
d,nk+

(

GD
n

)H

Θ
Dh

D
r,k

)H

vD
nk

∣
∣
∣
∣
∣

2

∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N

(

hD
d,nk+

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nl

∣
∣
∣
∣
∣

2

+ σ2
k

,

(8)

where the second equality holds because AP n does not

transmit data to user k by setting vD
nk = 0 if n /∈ Ak.

Remark 1. Given the coverage area of RIS in an experimental

system [21], as well as the density/coverage area of the

base station in 5G NR [22], [23], utilizing a single RIS for

multiple MEC servers is possible in practical deployments.

This assumption is also widely accepted in RIS-aided MEC

research [24], [25].

Remark 2. The RIS model described by (3) can be switched

to the simultaneously transmitting and reflecting (STAR-) RIS

model, thus enabling serving both users at the transmission

and reflection side [26]. The resulting problem is simpler than

the adopted practical phase shift model since the amplitude

coefficients and phase shifts of the STAR-RIS are not coupled.

B. Offloading Model

In our system model, the communication rate of user k
offloaded to AP n is

Rnk

(
{ak},v

U
nk, {θ

U
m}
)
=B log2

(
1 + γUnk

(
{ak},v

U
nk, {θ

U
m}
))
,

∀k ∈ K, n ∈ N ,
(9)

where B is the bandwidth of the system. However, due to users

offloading to multiple APs through multicast transmission, for

user k, its communication rate is determined by the slowest

rate among all the APs they are connected to. This is mathe-

matically expressed as minn∈Ak
Rnk. Each user is allocated

a data transmission time tk, and the average computation

rate for user k is expressed as (tk minn∈Ak
Rnk)/T , where

T represents the time slot length. After data uploading to

AP n, a computation frequency fnk is allocated to each

user k. If Ck is the amount of required computing resource

(i.e., the number of CPU cycles) for computing 1-bit of the

user k’s input data, then we can calculate the maximum

computation time among all the connected APs for user k’s

task as (Cktk minn∈Ak
Rnk)/minn∈Ak

fnk.

As for the case of local computing, the dynamic voltage

and frequency scaling technique is adopted by all users for in-

creasing the computation energy efficiency through adaptively

controlling the CPU frequency used for computing [27]. In

particular, the computation energy consumption of user k ∈ K
can be expressed as Tκkf

2
k , where fk is the local computation

frequency, κk is the effective capacitance coefficient of user k.

Also, as (1−ak)P c
k is the allocated power for local computing,

we have T (1 − ak)P c
k = Tκkf

2
k , and thus we can calculate

fk as fk =
√
((1− ak)P c

k ) /κk, ∀k ∈ K. The computation

rate of user k for local computing is then given by

Rloc
k (ak) =

fk
Ck

=
1

Ck

√

(1 − ak)P c
k

κk
, ∀k ∈ K. (10)

C. Power Consumption and Latency Model

The power consumption of each user’s computation task

includes both that used in local computing and computation at

APs for offloaded tasks. To be specific, at user k, (1− ak)P
c
k

W will be used for local computing [28]. In terms of the

edge computation at the AP n, the average computation power

is given as
(
(Cktk minn∈Ak

Rnk/fnk)f
2
nkκn

)
/T . Therefore,

the total computation power consumption for all APs and users

is given by
∑

k∈K

∑

n∈Ak
(Cktkfnkκn minn∈Ak

Rnk) /T +
∑

k∈K(1− ak)P
c
k .

In terms of communication power consumption, it consists

of the power consumed by the users in the data offloading and

APs in the downlink transmission. The total data offloading

power consumption is
∑

k∈K p
U
k =

∑

k∈K akP
c
k , while the

downlink transmit power consumption from all the APs to

a specific user k is represented by
∑

n∈Ak

∥
∥vD

nk

∥
∥
2

2
. There-

fore, the total communication power consumption for both

uplink and downlink transmissions is given by
∑

k∈K akP
c
k +

∑

k∈K

∑

n∈Ak

∥
∥vD

nk

∥
∥
2

2
. Combining both computation and

communication power consumption, the overall system power

consumption can be expressed as

Ptotal

(
{Ak},

{
vD
nk

}
, {vU

nk}, {fnk}, {ak}, {tk}, {θ
U
m}
)
=
∑

k∈K

P c
k

+
∑

k∈K

∑

n∈Ak

∥
∥vD

nk

∥
∥
2

2
+
∑

k∈K

∑

n∈Ak

(Cktkfnkκn minn∈Ak
Rnk)

T
.

(11)

Assuming the minimum required task’s data size for user k
is denoted as Uk bits [29]. Since local computing is ongoing

during the entire time slot, the number of computed bits is

TRloc
k [5], and the remaining data bits for offloading is Uk −

TRloc
k . Then the offloading latency for user k plus computation

latency at AP n is calculated as

τnk = (Uk − TR
loc
k )/min

n∈Ak

Rnk + (Uk − TR
loc
k )/fnk, (12)

where the first term represents data offloading latency, and the

second term accounts for computation latency at the AP.

D. Problem Formulation

In the proposed RIS-aided MEC system, there exists a

fundamental tradeoff between the quality of service and the

system power consumption. Specifically, with computation

replication, more APs performing the same task improves

the downlink diversity gain by exploiting cooperative trans-

mission, at the cost of increasing the computation power

consumption. To strike a good balance between communica-

tion power consumption, computation power consumption, and

computation rate, we aim to maximize computation efficiency,

defined as the ratio of total computation rate to total power

consumption. This leads to the optimization problem being

formulated as (13).

In the formulated problem, (13c) indicates that for each

user k, the latency among all APs serving that user must be

less than a threshold χ < T . (13d) implies that for user k
to perform uplink offloading, the subsequent downlink SINR

must exceed the specified threshold γDk for reliable reception
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P0 : max
{vU

nk},{v
D

nk},{Ak},{fnk},

{θU

m},{θD

m},{ak},{tk}

∑K
k=1 tk minn∈Ak

Rnk

(
{ak},vU

nk, {θ
U
m}
)
/T +

∑K
k=1 R

loc
k (ak)

Ptotal

(
{Ak},

{
vD
nk

}
, {vU

nk}, {fnk}, {ak}, {tk}, {θ
U
m}
) , (13a)

s.t. ak ∈ [0, 1], ∀k ∈ K, (13b)

τnk ≤ χ, ∀k ∈ K, ∀n ∈ Ak, (13c)

1{ak 6=0}SINRD
k

(
{vD

nk}, {θ
D
m}
)
≥ 1{ak 6=0}γ

D
k , k ∈ K, (13d)

∑

k∈K

∥
∥vD

nk

∥
∥
2

2
≤ PD

n,max, ∀n ∈ N , (13e)

vU
nk = vD

nk = 0, ∀n /∈ Ak, k ∈ K, (13f)

Θ
U/D = diag

(

ρ(θ
U/D
1 )ejθ

U/D
1 , . . . , ρ(θ

U/D
M )ejθ

U/D
M

)

, ∀m ∈ M, (13g)

tk + (Cktk min
n∈Ak

Rnk)/min
n∈Ak

fnk ≤ T, ∀k ∈ K, (13h)

∑

k∈K

fnk ≤ fn, fnk ≥ 0, ∀k ∈ K, ∀n ∈ N . (13i)

of computation results. An indicator function exists in (13d)

since if the user is determined not to offload, the downlink

SINR does not matter. In this case, both sides of the constraint

become zero, and the constraint is satisfied automatically.

PD
n,max in (13e) denote the maximum transmit power of AP

n in the downlink. (13f) specifies that if n /∈ Ak, AP n does

not decode user k’s data in the uplink (i.e., vU
nk = 0) and

subsequently would not transmit computation results to user k
in the downlink (i.e., vD

nk = 0). (13f) reveals that the full set

of the beamforming vectors {vU
11, · · · ,v

U
NK ,v

D
11, · · · ,v

D
NK}

has a special structure where some components in the set are

simultaneously zero. Constraint (13h) ensures the user’s data

transmission and computation time do not exceed the time

slot length. Further, (13i) limits the cumulative computational

frequency fnk for each user k to not surpass AP n’s total

computational frequency fn [29]. Notice that in the formulated

problem, the norm ‖vU
nk‖ does not matter as vU

nk only appears

in the objective function through Rnk, and from (5), vU
nk

appears in both the numerator and denominator of the SINR

expression.

Efficiently solving P0 is a highly challenging endeavor.

Firstly, P0 is intricate due to its general non-convexity in

both the objective function and constraints, compounded by

the non-differentiability from the maximin optimization struc-

ture within minn∈Ak
Rnk and minn∈Ak

fnk. Secondly, since

discrete variables are involved in {Ak}, this makes P0 a

combinatorial optimization problem. While brute force and

randomized search algorithms are widely accepted techniques

for solving the combinatorial optimization problem, they are

not desirable solutions as brute force search is computationally

prohibitive due to the exponential complexity [30] while

randomized search lacks solution quality guarantee [31], [32].

Thirdly, since variable {θDm} does not appear in the objective

function but indirectly affects the objective value through

(13d), it is nontrivial to derive an optimal solution for {θDm}.
In the subsequent sections, we begin by transforming the

maximin optimization problem into a more tractable form.

Following that, we leverage on the distinctive structure of the

beamforming vectors to address the discrete variable {Ak}
within P0, thus simplifying the subsequent algorithm design.

Remark 3. In the proposed system, we assume that users de-

termine the parameter γDk based on their specific requirements

and is independent of the optimization variable ak as in [33],

[34]. This is because the number of bits uploaded to the AP

does not directly relate to the number of bits in the downlink

in wireless MEC for applications such as image classification

and video tracking [35].

III. TRANSFORMATION OF MAXIMIN OPTIMIZATION AND

HANDLING DISCRETE VARIABLE IN P0

The objective function of P0 is non-differentiable due to

the maximin optimization structure, which is embedded in the

terms minn∈Ak
Rnk in the objective function and the terms

minn∈Ak
Rnk and minn∈Ak

fnk within the constraints (13h).

To address this, we reformulate it as follows:

P1 :

max
{vU

nk},{v
D

nk},{fnk},

{Ak},{θ
U

m},{θD

m},{tk}

{Rk},{ak},{f
min

k }

∑K
k=1 tkRk/T+

∑K
k=1R

loc
k (ak)

Ptotal

(
{Ak}, {Rk},

{
vD
nk

}
, {fnk}, {tk}

) ,

(14a)

s.t. (13b)− (13g), (13i),

tk + (CktkRk)/f
min
k ≤ T, ∀k ∈ K, (14b)

Rk ≤ min
n∈Ak

Rnk

(
{ak},v

U
nk, {θ

U
m}
)
, ∀k ∈ K, (14c)

fmin
k ≤ min

n∈Ak

fnk, ∀k ∈ K, (14d)

where Rk and fmin
k are introduced as auxiliary variables. Note

that P1 and P0 are considered equivalent since to maximize the

objective function, the value of Rk and fmin
k needs to be set

equal to minn∈Ak
Rnk

(
{ak},vU

nk, {θ
U
m}
)

and minn∈Ak
fnk,

respectively [36], [37].
Regarding the discrete variable {Ak}, notice that it has an

intrinsic connection with the group sparsity structure of the

beamforming vectors. Specifically, vU
nk and vD

nk will be zero
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at the same time if n /∈ Ak or non-zero at the same time if n ∈
Ak. This inspires us to impose a value restriction on the mixed

ℓ1,2 norm [35],[38]:
∑N

n=1

∑K
k=1

∣
∣‖[(vD

nk)
T (vU

nk)
T]‖2

∣
∣ to

enforce the group sparsity structure. In this formulation,

the outer ℓ1-norm induces sparsity, while the inner ℓ2-norm

is responsible for forcing all coefficients in the beamform-

ing group [(vD
nk)

T (vU
nk)

T] to be zero. By doing so, we

do not have to explicitly optimize the task selection strat-

egy {Ak}. Instead, {Ak} can be determined by the group

sparsity pattern of the beamforming vectors, i.e., Ak =
{
n | [(vD

nk)
T (vU

nk)
T] 6= 0, n ∈ N

}
.

Next, to leverage the sparsity structure for more efficient

problem-solving, we need to transform the constraints (13c),

(14c) and (14d), which involve the variable {Ak}. The equiv-

alent transformation for the latency constraints (13c) is given

by

1{vD

nk 6=0}

(

Uk − TRloc
k

Rk
+
Uk − TRloc

k

fnk

)

≤1{vD

nk 6=0}χ,

k ∈ K, n ∈ N ,

(15)

which is obtained by putting the expression for τnk from equa-

tion (12) into (13c). In (15), the indicator function signifies that

for user k, if AP n is not in Ak, its latency is disregarded (as

both sides of the inequality in (15) become 0, automatically

satisfying the constraint). Similarly, for (14c) and (14d), we

can equivalently transform them as

1{vD

nk 6=0}Rk ≤ 1{vD

nk 6=0}Rnk, k ∈ K, n ∈ N , (16)

and

1{vD

nk
6=0}f

min
k ≤ 1{vD

nk
6=0}fnk, k ∈ K, n ∈ N , (17)

respectively. Therefore, the transformed problem of P1 is given

by

P2 : max
{vU

nk},{v
D

nk},{Rk},

{fnk},{θ
U

m},{θD

m},

{ak},{f
min

k },{tk}

∑K
k=1tkRk/T+

∑K
k=1R

loc
k (ak)

Ptotal

(
{Rk},

{
vD
nk

}
, {fnk}, {tk}

) ,

(18a)

s.t. (13b), (13d), (13e), (13g),

(13i), (14b), (15), (16), (17),
N∑

n=1

K∑

k=1

∣
∣‖[(vD

nk)
T (vU

nk)
T]‖2

∣
∣ ≤ β (18b)

for some β > 0 and Ptotal

(
{Rk},

{
vD
nk

}
, {fnk}, {tk}

)
can be

equivalently rewritten as

Ptotal

(
{Rk},

{
vD
nk

}
, {fnk}, {tk}

)
=
∑

k∈K

P c
k

+

N∑

n=1

K∑

k=1

1{vD

nk
6=0}

(
∥
∥vD

nk

∥
∥
2

2
+

(CktkRkfnkκn)

T

)

,

(19)

where an indicator function is used in the second term due to

a change from summation over Ak to summation over all n.

Finally, to address the non-convex constraints (16), we

employ the logarithmic barrier function 1
w log(−x) to replace

the inequality and move it as a penalty term

P2w : max
{vU

nk},{v
D

nk},{Rk},

{fnk},{θ
U

m},{θD

m},

{ak},{f
min

k },{tk}

∑K
k=1tkRk/T+

∑K
k=1 R

loc
k (ak)

Ptotal

(
{Rk},

{
vD
nk

}
, {fnk}, {tk}

)

+
1

w

∑

k

∑

n

1{vD

nk
6=0} (log(Rnk −Rk)) ,

(20)

s.t. (13b), (13d), (13e), (13g),

(13i), (14b), (15), (17), (18b).

As w increases towards infinity, P2w becomes equivalent to P2

[37]. Therefore, we implement a strategy for solving a series

of progressively penalized problems. This approach involves

starting with w at a small value and incrementally increasing it

by a factor ϑ > 1. For each subsequent problem with a higher

value of w, we utilize the solution of the previous penalized

problem as the initialization. This iterative process continues

until w reaches a pre-set threshold value.

Upon merging the task selection strategy {Ak} into the

beamforming vectors design, we note that the objective func-

tion in P2w is in a fractional structure. In the subsequent

section, we will employ quadratic and Dinkelbach’s transfor-

mation techniques [38] to convert the problem into a series of

concave subproblems, thus enabling efficient solutions.

IV. MAXIMIZING COMPUTATION EFFICIENCY BY

OPTIMIZING P2w

Since the optimization variables in P2w are strongly coupled

in the objective function, it is difficult to solve P2w directly.

To this end, we optimize P2w under the AM framework.

The main idea of the AM is to alternately optimize one

block of variables at a time while keeping the others fixed

[39]. Specifically, we partition the optimization problem P2w

into seven subproblems and solve them in an AM fash-

ion. This section will cover the optimization with respect

to {vU
nk}, {v

D
nk}, {fnk, f

min
k }, {θUm}, {ak} and {Rk, tk}. The

next section will be dedicated to the optimization of {θDm}.

A. Optimizing Variables {vD
nk}

When other variables are fixed, the subproblem for updating

{vD
nk} is

min
{vD

nk}

N∑

n=1

K∑

k=1

1{vD

nk 6=0}

(
(CktkRkfnkκn)

T
+
∥
∥vD

nk

∥
∥
2

2

)

, (21a)

s.t. 1{ak 6=0}SINRD
k

(
{vD

nk}, {θ
D
m}
)
≥ 1{ak 6=0}γ

D
k , k ∈ K,

(21b)
∑

k∈K

∥
∥vD

nk

∥
∥
2

2
≤ PD

n,max, ∀n ∈ N , (21c)

1{vD

nk 6=0}

(

Uk − TRloc
k

Rk
+
Uk − TRloc

k

fnk

)

≤ 1{vD

nk 6=0}χ,

k ∈ K, n ∈ N ,
(21d)

1{vD

nk 6=0}Rk ≤ 1{vD

nk 6=0}Rnk, k ∈ K, n ∈ N , (21e)
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1{vD

nk
6=0}f

min
k ≤ 1{vD

nk
6=0}fnk, k ∈ K, n ∈ N , (21f)

N∑

n=1

K∑

k=1

∣
∣‖[(vD

nk)
T (vU

nk)
T]‖2

∣
∣ ≤ β. (21g)

Since an arbitrary phase rotation of vector vD
nk does not affect

the SINR constraints (21b), we can replace the non-convex

constraints (21b) with second-order cone (SOC) constraints

[40]:

1{ak 6=0}

√
√
√
√
∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N

(
ιDnk
)H

vD
nl

∣
∣
∣
∣
∣

2

+ σ2
k

≤ 1{ak 6=0}
1

√

γDk

ℜ

(
∑

n∈N

(
ιDnk
)H

vD
nk

)

, ∀k ∈ K.

(22)

For the objective function in (21), we identify that it has

an indicator function which is equivalent to a weighted group

ℓ0-"norm" of
[(
vD
11

)T
, · · · ,

(
vD
1K

)T
, · · · ,

(
vD
NK

)T
]T

, as given

by
∑N

n=1

∑K
k=1 1{vD

nk 6=0}, with weights (CktkRkfnkκn)/T+
∥
∥vD

nk

∥
∥
2

2
[41], and it is non-convex. As group ℓ1-

norm is the tightest convex relaxation to group ℓ0-

"norm", the objective function of (21) can be relaxed as
∑N

n=1

∑K
k=1

∥
∥vD

nk

∥
∥
2

(

(CktkRkfnkκn) /T +
∥
∥vD

nk

∥
∥
2

2

)

. Fur-

thermore, considering the constraints (21d), (21e) and (21f),

because the ℓ0-"norm" and ℓ1-norm are always non-negative,

replacing the ℓ0-"norm" with the ℓ1-norm will not change the

relationship of the inequality. Therefore, the constraints (21d),

(21e) and (21f) can be transformed into equivalent forms as

∥
∥vD

nk

∥
∥
2

(

Uk − TRloc
k

Rk
+
Uk − TRloc

k

fnk

)

≤
∥
∥vD

nk

∥
∥
2
χ,

k ∈ K, n ∈ N ,

(23)

∥
∥vD

nk

∥
∥
2
Rk ≤

∥
∥vD

nk

∥
∥
2
Rnk, k ∈ K, n ∈ N , (24)

and
∥
∥vD

nk

∥
∥
2
fmin
k ≤

∥
∥vD

nk

∥
∥
2
fnk, k ∈ K, n ∈ N , (25)

respectively.
Therefore, the transformed problem of (21) is given as

min
{vD

nk}

N∑

n=1

K∑

k=1

∥
∥vD

nk

∥
∥
2

(
(CktkRkfnkκn)

T
+
∥
∥vD

nk

∥
∥
2

2

)

,

s.t. (21c), (21g), (22), (23), (24), (25).

(26)

Since (26) is a convex optimization problem, it can be directly

solved via the interior-point method [42]. Theoretical results

from [43] show that the optimal solution to (26) provides a

feasible solution to (21).

B. Optimizing Variables {fnk} and {fmin
k }

Regarding the optimization of {fnk} and {fmin
k }, the sub-

problem is given as

min
{fnk},{f

min

k }

N∑

n=1

K∑

k=1

1{vD

nk 6=0}

(
tkRk

T
fnkκnCk

)

s.t. (13i), (14b), (15), (17).

(27)

By multiplying both sides of the constraint (15) by fnk and

both sides of the constraint (14b) by fmin
k , these constraints

are transformed into linear constraints in terms of fnk and

fmin
k , respectively. Consequently, this manipulation renders the

optimization problem (27) as a convex optimization problem,

which can be efficiently solved using the interior-point method.

C. Optimizing Variables {vU
nk}

Considering P2w, when the remaining variables are held

fixed, the subproblem for updating {vU
nk} is

max
{vU

nk}

1

w

∑

k

∑

n

1{vD

nk 6=0} log(Rnk

(
vU
nk

)
−Rk), (28a)

s.t.

N∑

n=1

K∑

k=1

∣
∣‖[(vD

nk)
T (vU

nk)
T]‖2

∣
∣ ≤ β. (28b)

Since Rnk

(
vU
nk

)
has a fractional structure, we employ a

quadratic transform to reconfigure it as

max
{vU

nk},s

1

w

∑

k

∑

n

1{vD

nk 6=0}log(log2
(
Qnk(v

U
nk)
)
−Rk), (29a)

s.t.

N∑

n=1

K∑

k=1

∣
∣‖[(vD

nk)
T (vU

nk)
T]‖2

∣
∣ ≤ β, (29b)

where

Qnk(v
U
nk) = 1 + 2Re(snkp

U
k (ι

U
nk)

HvU
nk)

−snk




∑

l 6=k

pUl
(
vU
nk

)H
ιUnl(ι

U
nl)

HvU
nk+σ

2
n(v

U
nk)

HvU
nk



sHnk
(30)

and s = {snk} is the set of auxiliary variables introduced

through the quadratic transformation. Then iteratively solving

(29) can obtain a stationary point of (28). In particular, when

{vU
nk} are held fixed, the optimal snk is given by

s⋆nk=
pUk
(
vU
nk

)H
ιUnk

(
∑

l 6=k p
U
l

(
vU
nk

)H
ιUnl(ι

U
nl)

HvU
nk+σ

2
n(v

U
nk)

HvU
nk

) . (31)

On the other hand, when s is fixed, (29) becomes a convex

problem with respect to vU
nk. This is because Qnk(v

U
nk) is a

concave function with respect to vU
nk, and the composition of

log and Qnk(v
U
nk) preserves concavity. Since the subproblem

for solving vU
nk is a convex optimization problem, it can be

efficiently solved using the interior-point method.

D. Optimizing Variables {θUm}

When it comes to the uplink RIS reflecting coefficients

design, the subproblem for updating {θUm} is given by

max
{θU

m}

1

w

∑

k

∑

n

1{vD

nk 6=0} log(Rnk

(
{θUm}

)
−Rk), (32)

where we substitute (13g) in the objective function. Since (32)

is an unconstrained optimization problem with a differentiable

objective function, it can be readily solved by the gradient



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, X 2024 9

descent method. To be specific, the update of θUm at the ith

iteration is given by

θUm(i+ 1) = θUm(i)

+ I(i)
( 1

w

∑

n∈N

∑

k∈K

1{vD

nk 6=0}
∇θU

m
Rnk

(
θUm(i)

)

Rnk ({θUm})−Rk

)

,
(33)

where I(i) is the step size chosen by the Armijo rule to guar-

antee convergence [44] and∇θU
m
Rnk

(
θUm(i)

)
is the gradient of

Rnk

(
θUm
)

at point θUm(i) as given by (34). By updating {θUm}
based on (33), it is guaranteed to converge to a stationary point

of the problem (32).

E. Optimizing Variables {ak}

In terms of variable {ak}, when other variables in P2w are

fixed, the subproblem for updating {ak} is

max
{ak}

∑K
k=1 tkRk/T +

∑K
k=1R

loc
k (ak)

∑N
n=1

∑K
k=1 1{vD

nk 6=0}
(CktkRkfnkκn)

T

+
1

w

∑

k

∑

n

1{vD

nk 6=0} log(Rnk ({ak})−Rk),

(35a)

s.t. ak ∈ [0, 1], ∀k ∈ K, (35b)

1{ak 6=0}SINRD
k

(
{vD

nk}, {θ
D
m}
)
≥ 1{ak 6=0}γ

D
k , k ∈ K,

(35c)

1{vD

nk 6=0}

(

Uk − TRloc
k

Rk
+
Uk − TRloc

k

fnk

)

≤1{vD

nk 6=0}χ,

k ∈ K, n ∈ N .
(35d)

By identifying that (35c) is a weight ℓ0-"norm" as introduced

in IV-A, we equivalently transform it as

‖ak‖2 SINRD
k

(
{vD

nk}, {θ
D
m}
)
≥ ‖ak‖2 γ

D
k , k ∈ K. (36)

Next, as {ak} in Rnk({ak}) also possesses a fractional struc-

ture, akin to our treatment of {vU
nk}, we also apply quadratic

transformation:

max
{ak},o

∑K
k=1 tkRk/T +

∑K
k=1 R

loc
k (ak)

∑N
n=1

∑K
k=1 1{vD

nk 6=0}
(CktkRkfnkκn)

T

+
1

w

∑

k

∑

n

1{vD

nk 6=0} log(Dnk({ak})−Rk),

s.t. (35b), (35d), (36),

(37)

where o refers to the collection of {onk} and Dnk({ak}) is

given as

Dnk({ak})=log2

(

1 + 2onk
√

akP c
k

∣
∣
∣

(
vU
nk

)H
ιUnk

∣
∣
∣

−o2nk

(
∑

l 6=k

alP
c
l

∣
∣
∣

(
vU
nk

)H
ιUnl

∣
∣
∣

2

+σ2
n‖v

U
nk‖

2

))

.

(38)

Similar to (29), when {ak} is held fixed, the optimal onk can

be directly given by

o⋆nk =
akP

c
k

∣
∣
∣

(
vU
nk

)H
ιUnk

∣
∣
∣

2

∑

l 6=k alP
c
l

∣
∣
∣

(
vU
nk

)H
ιUnl

∣
∣
∣

2

+ σ2
n

∣
∣vU

nk

∣
∣
2
. (39)

When o is fixed, (37) is a convex problem with respect to ak,

and therefore, the optimal solution can be efficiently found

using the standard numerical method.

F. Optimizing Variables {Rk} and {tk}

Regarding the optimization of {Rk} and {tk}, the subprob-

lem is given as

max
{Rk},{tk}

∑K
k=1 tkRk/T +

∑K
k=1 R

loc
k

∑N
n=1

∑K
k=11{vD

nk 6=0}
(
tkRk

T fnkκnCk

)

+
1

w

∑

k

∑

n

1{vD

nk 6=0} (log(Rnk −Rk))

︸ ︷︷ ︸

:=e({Rk})

,
(40a)

s.t. tk + (CktkRk)/f
min
k ≤ T, ∀k ∈ K, (40b)

(35d).

Then applying Dinkelbach’s transformation to separate the

numerator and denominator, we have

max
{Rk},{tk},

z

1

w
e ({Rk}) +

K∑

k=1

(
tkRk

T
+Rloc

k

)

−z

(
N∑

n=1

K∑

k=1

1{vD

nk 6=0}

(
tkRk

T
fnkκnCk

))

,

s.t. (35d), (40b),

(41)

where z is the auxiliary variable. Similarly, when {Rk} and

{tk} are fixed, the optimal z is given by the iterative update

rule of the Dinklebach transform as

z⋆ =

∑K
k=1 tkRk/T +

∑K
k=1 R

loc
k

∑N
n=1

∑K
k=11{vD

nk 6=0}
(
tkRk

T fnkκnCk

) . (42)

With other variables fixed, the subproblem for updating

{Rk} is given as

max
{Rk}

1

w
e ({Rk}) +

K∑

k=1

(
tkRk

T
+Rloc

k

)

− z

(
N∑

n=1

K∑

k=1

1{vD

nk 6=0}

(
tkRk

T
fnkκnCk

))

,

s.t. (35d), (40b).

(43)

The constraints (35d) can be linearized by multiplying both

sides of the constraint by Rk. This transformation converts

the optimization problem (43) into a convex one, which can

then be solved using standard numerical methods.

Finally, regarding {tk}, with other variables are fixed, the
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∇θU
m
Rnk

(
θUm(i)

)
= Re

(

ψm(i)
(
1 + γUnk

)
ln 2

(
2pUk

(
vU
nk

)H
ιUnk (Knkk)m,m

∑

l 6=k p
U
l

∣
∣
∣

(
vU
nk

)H
ιUnl

∣
∣
∣

2

+σ2
n

∥
∥vU

nk

∥
∥
2

2

−
pUk

∣
∣
∣

(
vU
nk

)H
ιUnk

∣
∣
∣

2∑

l 6=k 2p
U
l

(
vU
nk

)H
ιUnl (Knkl)m,m

(
∑

l 6=k p
U
l

∣
∣
∣

(
vU
nk

)H
ιUnl

∣
∣
∣

2

+σ2
n

∥
∥vU

nk

∥
∥
2

2

)2

))
(34)

where Knkl =
(

GU
n

)∗ (
vU
nk

)∗
(

hU
r,l

)T

and ψm(i) = jejθ
U

m(i)
(

βmin + 2−α(1− βmin)
(

1 + sin (θUm(i)− φ)
)α)

+

α2−αejθ
U

m(i)(1− βmin)
(

1 + sin(θUm(i)− φ)
)α−1

cos(θUm(i)− φ).

subproblem for updating {tk} is given as

max
{tk}

K∑

k=1

(
tkRk

T
+Rloc

k

)

− z

(
K∑

k=1

N∑

n=1

1{vD

nk 6=0}

(
tkRk

T
fnkκnCk

))

,

s.t. (40b).

(44)

It is important to note that the optimization problem (44) is a

linear programming problem. Therefore, it can be solved using

standard numerical methods.

V. DESIGNING {θDm} BEYOND A RANDOM FEASIBLE

POINT IN P2w

Unlike other variables in P2w, {θDm} does not appear in

the objective function of P2w. This absence of dependence

often leads to a misconception that any {θDm} satisfying

constraint (13d) would be a valid solution, as has been done

in previous works [45]–[47]. However, it is known that an

optimized RIS together with properly designed beamforming

vector {vD
nk} at the APs can help to construct a high-quality

channel link, thus reduce the downlink transmission power at

APs while satisfying the SINR constraints (13d). This intuition

contradicts to simply finding a feasible solution for (13d).

Recognizing that the variables {θDm} work cooperatively

with {vD
nk} to reduce the downlink transmission power, we

resort to the optimization problem (21) that updates {vD
nk}.

More insight can be revealed by noticing that {θDm} are hidden

in Θ
D and is coupled with vD

nk in the SINR constraints (22)

(an equivalent SOC form of (13d)). We can potentially obtain

a better solution of (21) by adjusting {θDm} such that the active

constraints in (22) are turned into inactive constraints2 [48].

Motivated by the fact that the difference between the right-

hand-side and the left-hand-side of equation (22) is bigger

than zero if the constraint is inactive and equals zero if it

is active, we compute the minimum differences between the

right-hand-side and the left-hand-side of the equation (22)

among the K users. Then, we tune the {θDm} such that

the minimum difference is maximized, giving the following

2If the equality holds, the constraint is active (tight), otherwise inactive.

maximin optimization problem:

max
{θD

m}
min
k∈K,
ak 6=0

1
√

γDk

ℜ

(
∑

n∈N

(

hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nk

)

−

√
√
√
√
∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N

(

hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nl

∣
∣
∣
∣
∣

2

+ σ2
k,

(45a)

s.t. Θ
D = diag

(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)

,

∀m ∈M, (45b)

where we expressed ιDnk as hD
d,nk+

(

GD
n

)H

Θ
DhD

r,k according

to (7).

By introducing a slack variable y, the above optimization

problem can be recast as [49]

max
{θD

m},y
y, (46a)

s.t.
1

√

γDk

ℜ

(
∑

n∈N

(

h
D
d,nk +

(

GD
n

)H

Θ
Dh

D
r,k

)H

vD
nk

)

−

√
√
√
√
∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N

(

hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nl

∣
∣
∣
∣
∣

2

+σ2
k≥y,

⋂

k∈K,ak 6=0

{k},

(46b)

Θ
D = diag

(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)

, ∀m ∈ M.

(46c)

Furthermore, to deal with the non-convexity introduced by

the practical phase shift model in (46c), we treat Θ
D as

an auxiliary variable and resort to the penalty-based method

by adding an equality constraint-related penalty term to the

objective function of (46), yielding the following optimization

problem

max
{θD

m},ΘD,y
y

− µ
∥
∥
∥Θ

D − diag
(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)∥
∥
∥

2

F
,

(47a)

s.t. (46b),
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Algorithm 1: Penalty-based Algorithm for Solving

(45)

Input : {vD
nk} and set µ > 0.

while∥
∥
∥Θ

D − diag
(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)∥
∥
∥

2

F
> ǫ1

do
while The fractional increase of the objective value

of (47) is above ǫ2 do

Update θDm by solving (48) with fixed Θ
D and

y.

Update Θ
D and y by solving (49) with fixed

θDm.
end

Update the penalty coefficient µ← ̺µ.
end

(

Θ
D
)

i,j
= 0, ∀i 6= j, (47b)

where µ > 0 is a penalty parameter for controlling the

constraint violation of (46c) [50] and constraints (47b) is to

restrict the non-diagonal entries of Θ
D are to be zero. It is

observed that {θDm} can be updated with fixed Θ
D and y. On

the other hand, ΘD and y can be updated in parallel when

{θDm} are fixed. This motivates us to apply the AM method to

solve (47) efficiently.

For any given Θ
D and y, the subproblem for optimizing

{θDm} is

max
{θD

m}
−µ
∥
∥
∥Θ

D − diag
(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)∥
∥
∥

2

F
,

(48)

which is an unconstrained optimization problem with a dif-

ferentiable objective function, and it can be readily solved by

the gradient descent method. On the other hand, for any given

{θDm}, the subproblem for optimizing Θ
D and y is

max
ΘD,y

y − µ
∥
∥
∥Θ

D − diag
(

ρ(θD1 )e
jθD

1 , . . . , ρ(θDM )ejθ
D

M

)∥
∥
∥

2

F
,

s.t. (46b), (47b).
(49)

Noticing that (46b) are convex constraints since they are SOC

constraints that composite with affine function. This makes

the optimization problem (49) a convex problem and can be

directly solved via the interior-point method. The entire proce-

dure for solving (45) is summarized in Algorithm 2, where we

employ an increasing penalty strategy to successively enforce

the constraint of (45b). Initially, µ is set to be a sufficiently

small value. By gradually increasing the value of µ by a factor

̺ > 1, we can maximize the original objective function and

obtain a solution that satisfies the equality constraints in (45b)

within a predefined accuracy.

VI. FINDING INITIAL FEASIBLE POINTS AND

COMPLEXITY ANALYSIS

Sections IV and V describe how to solve P2w for a fixed

w. To enforce the log barrier, the penalty weight w should be

increased progressively after P2w is solved with a particular w.

This leads to Algorithm 2 for solving the overall problem P2,

with the last line corresponding to the increase of w. Once

we solve P2w for a particular w, the solution would act as

the initialization for the next P2w with a larger w. However,

a natural question arises regarding the initialization for P2w

for the first selected w. Since a feasible point for P2 is also a

feasible point for P2w with any w, the following section will

find a feasible point of P2.

A. Finding Initial Feasible Points

Given the complicated constraints of P2, it is not easy to find

a feasible point. Inspired by [51], [52], we propose an effective

heuristic method to address this challenge. The idea is to

address a modified feasibility problem. This involves allowing

violations of the selected constraints in the original problem

while penalizing them within the objective function of the

modified feasibility problem. Subsequently, these violations

gradually decrease through the optimization process and fade

away, ultimately leading to a feasible solution for the original

problem. Particularly, let us consider the modification of the

feasibility problem of P2 as in (50), where we penalized the

downlink SINR constraints (13d). Maximizing the objective

function in (50) enhances downlink SINR and reduces con-

straint violations in (13d). If the objective function value of

(50) surpasses zero, it signifies the violations disappear, and

the solution of (50) is a feasible solution for P2.

Solving (50) involves a straightforward process. Initially, we

generate random values for {θUm}, {θ
D
m}, and {ak}. Following

this, we generate {vD
nk} and adjust their scaling to satisfy the

conditions in (13e). By utilizing {vD
nk}, {θ

U
m}, {θ

D
m} and {ak},

{vU
nk}, {Rk}, {fnk}, {fmin

k } and {tk} are determined to ad-

here to the equalities stipulated in equations (13i), (14b), (15),

(16), (17) and (18b). With this initial set of optimization vari-

ables established, we can initiate an iterative AM procedure to

tackle the optimization problem (50). To begin with, when the

other variables are held fixed, each individual variable in (50)

exhibits convex behavior in the objective function, which is

a summation of SOCs. Moreover, concerning the nonconvex

constraints, the strategies for transforming them into convex

constraints have been given in Sections IV-A through V. As

a result, all subproblems of the variables can be transformed

into convex forms and subsequently solved. This enables the

utilization of the AM procedure to solve (50) efficiently, and

the details of these steps are omitted for brevity.

B. Complexity Analysis of the Proposed Algorithm

The computational complexity of Algorithm 2 primarily

comes from solving problems (28) and (21), which aim to

design {vU
nk} and {vD

nk}, respectively, as well as the downlink

RIS reflecting coefficients {θDm}, and problem (35) for opti-

mizing the power partition parameters {ak}. The complexity

associated with resolving (28) and (21) is estimated to be

O((NKL)3.5), based on the complexities of solving convex

problems using the interior point method [53]. Similarly, the

task of optimizing {ak} is estimated to have a computational

complexity of O(K3.5), following the same computational

approach. The complexity of employing Algorithm 1 via the
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max
{vU

nk},{v
D

nk},{Rk},{fnk},

{θU

m},{θD

m},{ak},{f
min

k },{tk}

∑

k∈K

‖ak‖2




1

√

γDk

ℜ

(
∑

n∈N

(

hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nk

)

−

√
√
√
√
∑

l 6=k

∣
∣
∣
∣
∣

∑

n∈N

(

hD
d,nk +

(

GD
n

)H

Θ
DhD

r,k

)H

vD
nl

∣
∣
∣
∣
∣

2

+ σ2
k,





+

s.t. (13b), (13e), (13g), (14b), (13i), (15), (16), (17), (18b)

(50)

Algorithm 2: Algorithm for Solving P2

Input : Initial {vD
nk}, {ak},{Rk}, {tk}, {θUm}, {θ

D
m},

{fnk},{fmin
k } and w > 0.

while Stopping criterion is not satisfied do

while Stopping criterion is not satisfied do
Update s using equation (31).

Update {vU
nk} by solving (29) with fixed s.

end

while Stopping criterion is not satisfied do
Update o using equation (39).

Update {ak} by solving (37) with fixed o.
end

while Stopping criterion is not satisfied do

Update {θUm} using equation (33).

end

Update {vD
nk} by solving (26).

Update {fnk} and {fmin
k } by solving (27).

while Stopping criterion is not satisfied do
Update z using equation (42).

Update {Rk} by solving (44) with fixed z and

{tk}.
Update {tk} by solving (43) with fixed z and

{Rk}.
end

Update {θDm} by Algorithm 1.

Update the penalty coefficient w ← ϑw.
end

penalty-based method is approximated as O(M3.5). If we

denote the number of iterations for solving problems (28),

(21), and (35) as I1, I2, and I3, respectively, and those for

Algorithm 1 as I4, then the total computational complexity is

given as O(I((I1+I2)(NKL)3.5+I3K3.5+I4M
3.5)), where

I represents the total number of iterations within Algorithm

2.

VII. SIMULATION RESULTS

In this section, we present simulation results to verify

the effectiveness of our proposed algorithm. Under a three-

dimensional Cartesian coordinate system, we consider a sys-

tem with 10 APs and 20 users uniformly and randomly

distributed in a square region of 200 m × 200 m. An RIS

with 20 reflecting elements is located at the 3-dimensional

coordinate (100, 0, 15). In addition, the APs are with height

30 m, while the users are with height 1 m.

Rician fading channel model is considered for all

channels to account for both the line-of-sight (LoS)

and non-LoS (NLoS) components [54]. For example,

the AP-RIS channel can be expressed as Gx
n =

√

LAR(d)
(√

κAR

1+κAR
GLoS

n +
√

1
1+κAR

GNLoS
n

)

, where κAR

is the Rician factor representing the ratio of power between the

LoS path and the scattered paths, GLoS
n is the LoS component

modeled as the product of the unit spatial signature of the

AP-RIS link [54], GNLoS
n is the Rayleigh fading components

with entries distributed as CN (0, 1), LAR(d) is the distance-

dependent path loss of the AP-RIS channel, and x ∈ {U,D}.
We consider the following distance-dependent path loss model

LAR(d) = 100.3E0

(
d
d0

)−αAR

, where E0 is the constant path

loss at the reference distance d0 = 1 m, d is the Euclidean

distance between the transceivers, αAR is the path loss ex-

ponent, and 100.3 accounts for a 3 dBi gain at each element

of the RIS since it reflects signal only in its front half-space

[55]. Since the RIS can be practically deployed in LoS with

the AP, we set αAR = 2 and κAR = 30 dB [45]. In addition,

other channels are similarly generated with αAU = 3.67 and

κAU = 0 (i.e., Rayleigh fading to account for rich scattering)

for the AP-user channel, αRU = 2.5 and κRU = 3 for the RIS-

user channel. We consider a system with a bandwidth 10 MHz
and E0 = −30 dB. The effective noise power for the APs and

users are σ2
n = −60 dBm and σ2

k = −50 dBm, respectively.

Unless specified otherwise, other parameters are set as follows:

PD
n,max = 1 W, P c

k = 0.5 W, Ck = 200 cycles/bit, κk =
κn = 10−25, fn = 1.2 × 109 bits/s, T = 0.5 s, χ = 0.4 s
and Uk = 350 Kb [4], [56]. For the proposed algorithm, we

set µ = 10−3, ̺ = 1.003, ǫ1 = 0.1, ǫ2 = 0.01, and the

convergence threshold in terms of the relative increment in the

objective value as 10−3. The simulation results are obtained

by averaging over 100 simulation trials.

We compare the proposed algorithm with the following

benchmarks.

• Without-RIS: Without the deployment of an RIS, the

equivalent channels in (2) and (7) contain only the direct

link, i.e., hU
r,k = hD

r,k = 0, ∀k.

• Without cooperative transmission (denoted as Without-

CT): In this case, we assume that each user is served by

only one AP. For each user, the AP with the best channel

condition is selected.

• Without RIS and cooperative transmission (denoted as

Without-RIS-CT): In this case, we assume that each user

is served by only one AP without the assistance of an

RIS.
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• Proposed algorithm based on solving Feasibility Problem

of {θDm} (denoted as AM-FP): Instead of optimizing {θDm}
by our algorithm, in this case, we only find a feasible

solution for {θDm} that satisfied (13d). This benchmark is

designed to reveal the necessity of the proposed criterion

for optimizing {θDm} in (45).

• Proposed algorithm without l12-norm (denoted as AM-

Exhaustive Search (AM-ES)): In this case, we do not

eliminate the variable {Ak} by exploiting the group spar-

sity structure of the beamforming vectors but search over

all the possibilities of {Ak}. This benchmark is designed

to reveal the efficiency of our proposed algorithm.

We first study the relationship between the feasibility ratio

[46] of the problem (13) and the target SINR γDk with

different benchmarks. The feasibility ratio of the problem

(13) is defined as
number of feasible simulations for (13)

the total number of simulations
. As

the target SINR requirements become more stringent, i.e.,

larger values of γDk , the feasibility ratio of the problem (13)

is expected to decline. As shown in Fig. 2a, we observe

that Without-RIS-CT and Without-CT almost fail to maintain

feasibility in those settings with a target SINR higher than

10 dB, while Without-RIS, AM-FP, and proposed algorithm

can still maintain feasibility with a high probability. Com-

paring cooperative transmission and RIS, we observed that

including cooperative transmission leads to a better feasibility

ratio than including an RIS. This can be seen from the fact that

Without-RIS can provide more than a 10 dB gain compared

with Without-RIS-CT, while the improvement of Without-CT

from Without-RIS-CT is less than 3 dB. Obviously, including

both RIS and cooperative transmission (proposed algorithm

and AM-FP) has the highest feasibility ratio, with the proposed

algorithm having an even higher feasibility ratio than the AM-

FP. This shows the importance of optimizing {θDm}, rather than

simply finding a feasible solution for it.

Next, the superiority of our proposed algorithm in terms of

computation efficiency is shown in Fig. 2b. Under a wide range

of SINR requirements, it is observed that the system without

cooperative transmission achieves much worse computation

efficiency than other schemes. The Without-RIS scheme has a

40% performance improvement compared with the Without-

RIS-CT scheme. A similar amount of gain can also be ob-

served when comparing AM-FP and Without-CT. The feasi-

bility ratio and computation efficiency results demonstrate that

cooperative transmission in wireless communication systems

can dramatically boost the SINR and, in turn, increase the

overall computation efficiency. For the schemes with an RIS,

the proposed algorithm provides at least a 14% improvement

in computation efficiency over AM-FP. Such a performance

gain comes from the fact that the AM-FP only finds a feasible

solution of {θDm}, while the proposed algorithm optimizes

{θDm} to improve the computation efficiency further. To make

this more explicit, Fig. 3 shows the achieved computation

efficiency in the first 16 iterations of the proposed algorithm

and AM-FP under a specific channel realization. It is observed

that the proposed algorithm outperforms AM-FP in every

iteration. This shows the proposed algorithm’s effectiveness

in inactivating the active constraints that impede an increase
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in the objective value, as discussed in Section V.
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Fig. 3. Convergence behaviors of both proposed algorithm and AM-
FP.

To further show the complexity advantage of the proposed

algorithm, we compare it with AM-ES. As shown in Fig.

4a and Fig. 4b, with the number of APs and users increase,

the proposed algorithm saves the computation time to a large
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extent compared with the AM-ES (e.g., more than 10 times

differences with 8 APs and 12 users, in Fig. 4a and Fig. 4b,

respectively), and the advantage becomes more prominent as

K or N increases. On the other hand, Fig. 4c and Fig. 4d

show that the proposed algorithm achieves almost the same

computation efficiency as the AM-ES, and the performance

gap is less than 5%. It is also noted that in Fig. 4c and 4d, the

total computation efficiency increases as the number of users

and APs increases, but the increase diminishes. If we divide

the total computation efficiency by the number of users and

APs, the average computation efficiency will decrease as the

number of APs and users increases. The diminishing returns

on average computation efficiency suggest that the number of

APs and users in the proposed system need not be arbitrarily

large to obtain a favorable computation efficiency. A similar

phenomenon on the system’s efficiency is also exhibited in

[57], [58].

In Figure 5, we present a comparison of the sparsity struc-

ture of the downlink beamformer obtained by the proposed

method and the AM-ES algorithm. Each subfigure represents

the downlink beamforming vectors of a specific AP, where

the user index is on the horizontal axis and the antenna

index is on the vertical axis. The heatmap is generated by

taking the absolute value of the beamforming vectors in a

particular channel realization, and the color intensity shows

the magnitude of the absolute value. For brevity, we only

illustrate the results for 6 APs. It can be observed that both

methods yield a sparse structure in the downlink beamforming

vectors, which aligns with the intuition described in Section

III. Furthermore, the solution of AM-ES has a more sparse

structure than our proposed method since it reflects the optimal

sparsity structure by enumerating the associations of APs

and users, while our proposed method induces the sparsity

structure by the group norm. The above observation explains

the performance gap between our proposed method and AM-

ES.

To visualize the division of computation load between

offloading and local computation, we investigate how the

optimal power partition parameter varies with the distance

between the user and RIS in Fig. 6. In our scenario, we

consider two users and two APs, with one user located at

a fixed distance of 20 m from the RIS and the other from

20 to 60 m away. For the user with high power budgets

(P c
k = 1 or 0.5 W), we observe that the optimal strategy is to

allocate more power to computation offloading as the distance

increases. This is because computation offloading can provide

a higher computation efficiency than local computation, and

as the distance increases, the user needs to spend more power

on data offloading. In contrast, for a user with a low power

budget (P c
k = 0.3 W), the optimal power partition parameter

first increases as the distance increases. However, as it reaches

the maximum value of 1, it starts to decline as the distance

increases. The rise in the optimal power partition parameter

at the first segment is due to the same reason as users with

a high power budget. However, as the distance increases

further, a limited power budget cannot support high-speed

data transmission in computation offloading, and computa-

tion offloading becomes less computation efficient than local

computing. Thus, we observe a decline in the optimal power

partition parameter at the second segment. As for the case of

P c
k = 0.1 W, the optimal power partition parameter declines

as the distance increases. The simulation results demonstrate

that the optimal power allocation strategy for maximizing the

computation efficiency depends on the user’s power budget

and the distance between the RIS and the user. In general,

the optimal power partition parameter first increases as the

distance increases before reaching its maximum value of 1 and

then decreases as the distance increases. The optimal power

partition parameter curve will shift to the right if the power

budget is abundant, while the curve will shift to the left if the

budget is small.

In Fig. 7, we show how the number of APs (N ), users (K),

and RIS’s reflecting elements (M ) would affect the average

number of APs serving each user in user association. In Fig.

7(a), it is evident that as the number of users increases, there

is an upward trend in the average number of APs serving each

user. This can be attributed to the increased downlink interfer-

ence caused by more users. Therefore, increasing the number

of APs per user can reduce downlink power consumption and

enhance the overall system computation efficiency. In Fig.

7(b), we can observe that the increasing number of reflecting

elements reduces the average number of APs serving each user.

This is because the increased elements of RIS improved the

channel condition, allowing the system to satisfy the user’s

downlink QoS with fewer associated APs. In Fig. 7(c), as

the number of APs increases, the average number of APs

serving each user increases from 2.45 to 3.4 initially, then

levels off after reaching 25 APs. This phenomenon occurs

because having more APs per user reduces the downlink’s

power consumption at first. However, as the number of APs

per user keeps growing, this power-saving effect becomes less

pronounced, and it is outweighed by the power consumption

resulting from the additional computation load of extra APs.

As a result, the proposed algorithm would not further increase

the association of APs and users.

Finally, in Fig. 8, we compare the computation efficiency

versus the number of reflecting elements M . As M increases,

the computation efficiency increases moderately in both the

proposed algorithm and AM-FP. It is worth mentioning that the

performance gaps between the proposed algorithm and AM-

FP are getting more prominent as the number of reflecting

elements increases, indicating that the proposed algorithm is

especially appealing when the RIS is equipped with a large

number of elements.

VIII. CONCLUSION

In this paper, an RIS-aided mobile edge computing system

with a cooperative transmission framework was proposed.

Specifically, the computation efficiency was maximized via the

joint design of user association, receive/downlink beamform-

ing vectors, power partition parameters, and uplink/downlink

phase-shift matrices. For an efficient algorithm design, the

alternating maximization framework was employed. To handle

the discrete user association variables, group l12-norm was

adopted to enforce group sparsity and merge user association
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Fig. 4. Performance comparison with the AM-ES with target SINR equals 10 dB. The number of users in (a) and (c) is 20, while the number
of APs in (b) and (d) is 10.

into the receive/downlink beamforming vectors. Furthermore,

although the objective function does not explicitly depend

on the downlink phase-shift matrix, we leverage their hidden

relationship to convert it into an explicit form for optimization.

This approach enables us to fully exploit the potential of the

RIS rather than simply finding a feasible solution of the down-

link phase-shift matrix that could be more optimal. Numerical

results demonstrated that cooperative transmission and RIS

could significantly improve the computation efficiency and

feasibility ratio. At the same time, the proposed approach

for optimizing downlink phase shifts can further promote this

improvement.
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