IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, X 2024

RIS-Aided Cooperative Mobile Edge Computing:
Computation Efficiency Maximization via Joint
Uplink and Downlink Resource Allocation

Zhenrong Liu, Graduate Student Member, IEEE, Zongze Li,
Yi Gong, Senior Member, IEEE, and Yik-Chung Wu, Senior Member, IEEE

Abstract—In mobile edge computing (MEC) systems, the
wireless channel condition is a critical factor affecting both
the communication power consumption and computation rate
of the offloading tasks. This paper exploits the idea of coop-
erative transmission and employing reconfigurable intelligent
surface (RIS) in MEC to improve the channel condition and
maximize computation efficiency (CE). The resulting problem
couples various wireless resources in both uplink and down-
link, which calls for the joint design of the user association,
receive/downlink beamforming vectors, transmit power of users,
task partition strategies for local computing and offloading, and
uplink/downlink phase shifts at the RIS. To tackle the challenges
brought by the combinatorial optimization problem, the group
sparsity structure of the beamforming vectors determined by
user association is exploited. Furthermore, while the CE does not
explicitly depend on the downlink phase shifts, instead of simply
finding a feasible solution, we exploit the hidden relationship
between them and convert this relationship into an explicit
form for optimization. Then the resulting problem is solved via
the alternating maximization framework, and the nonconvexity
of each subproblem is handled individually. Simulation results
show that cooperative transmission and RIS deployment can
significantly improve the CE and demonstrate the importance
of optimizing the downlink phase shifts with an explicit form.

Index Terms—Mobile edge computing (MEC), reconfigurable
intelligent surface (RIS), computation efficiency, user association,
cooperative transmission.

I. INTRODUCTION

Mobile users have long been recognized as resource-limited
compared to static clients and servers. At any given cost
and technology level, weight, size, battery life, ergonomics,
and heat dissipation severely limit computational resources in
terms of processor speed, memory size, and storage capacity.
On the other hand, a wide range of emerging computation-
intensive applications, such as mobile virtual reality and
augmented reality, call for an unprecedented demand for
data computing and processing in mobile users. To liberate
the resource-limited users from heavy computation workloads
and provide them with high-performance computing services,
mobile edge computing (MEC) promotes the use of computing
capabilities at the edge servers attached to the wireless access
points (APs) [1], [2]. In this way, users’ computation-intensive
tasks can be offloaded to the nearby APs, and the results are
delivered back to the users after the computation is done at
the edge servers. Unlike cloud computing, whose vision is
to centralize computation, storage, and network management

in a remote cloud center distant from the end users, MEC
pushes computing resources, network control, and storage
to the network edges [3]. This dramatically reduces latency,
mobile energy consumption, and communication overhead of
the network backhaul, thus overcoming the key challenges for
materializing the 5G vision.

As the focus in MEC shifts from pure communications
to communication-assisted computation, it is important to
consider optimizing the computation efficiency [4], which is
the computing capability (in terms of computation rate) of
the MEC system divided by power spent on computing and
communications [5]. However, increasing computing capabil-
ity and decreasing power consumption are two conflicting
goals. For example, if users are not offloading their tasks
to the edge but computing them locally, power can be saved
from communications, but the computation rate would be very
low. On the contrary, if all users offload the tasks to the edge
servers for computation, it causes high energy consumption for
data offloading and results downloading, but the computation
capability will be enhanced. Neither of these extremes is
a good solution since they result in a waste of resources.
Balancing the computation rate and the power consumption
is a central problem in wireless MEC systems [6]-[8].

A well-known strategy for reducing downlink transmission
energy is to have multiple APs cooperatively serve each
user [9]-[11]. Different from the cellular systems, in wire-
less MEC, the data in downlink cooperative transmission is
the computation results from users’ offloaded data [12]. To
enable cooperative transmission, the APs must either share
the computation results of their respective users or each AP
compute the results independently. Unfortunately, the com-
putation results exchange between APs alone would cost 15
ms (for a lightly loaded network) to 50 ms (for a heavily
loaded network) [13], [14], thus impractical for the latency-
critical MEC applications such as mobile virtual reality and
augmented reality, whose recommended total latency is around
20 ms [15]. Under the scenario that each cooperating AP
independently computes the result for a serving user, more
participating APs means more computation energy is spent
in the hope of trading for less downlink transmission energy.
This raises the fundamental question of which APs should be
associated with which user. If the channel from a particular
user k to an AP n is in bad condition, AP n should not
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cooperatively serve the user k since the offloading energy from
user k£ to AP n will be huge, thus lowering the computation
efficiency. But if we are too conservative in choosing APs for
cooperation, it defeats the original purpose of improving the
quality of downlink transmission. Therefore, user association
is critical to the overall MEC system’s computation efficiency.

Besides cooperative transmission, another recent technology
that could help to increase computation efficiency is reconfig-
urable intelligent surfaces (RISs). The motivation for incor-
porating RIS into MEC is driven by its remarkable capability
to configure the wireless environment and thus improve the
offloading rate and reduce transmission energy. Furthermore,
RIS offers the advantage of being cost-effective and easy to
deploy, making RIS particularly suitable for enhancing the
uplink performance of MEC systems. By capitalizing on these
benefits, the integration of RIS into the MEC framework holds
great promise.

In this paper, we propose to use both RIS and cooperative
transmission to improve the computation efficiency of an MEC
system. In particular, we formulate the computation efficiency
maximization problem by considering both the uplink and
downlink transmission power consumption, and the local and
offloaded computation power consumption. Since user associ-
ation in the proposed MEC system couples with the design of
receive and downlink beamforming vectors (i.e., if a user is
not selected to be served by a particular AP, the corresponding
receive and downlink beamforming vectors should be all-zero
vectors), the resulting optimization problem is an intertwined
design of user association, power partition parameters for
computation offloading, receive and downlink beamforming
vectors, and receive/downlink phase-shift matrices at the RIS
with the practical phase shift model. Further with the fact that
user association is a non-convex and combinatorial problem,
the overall optimization problem is difficult to solve.

To address the challenge of the combinatorial optimiza-
tion problem, we exploit the group sparsity structure of the
receive/downlink beamforming vectors and merge the user
association design into the beamforming variables. In addition,
we observe that although the downlink phase-shift matrix
does not appear in the objective function, it indirectly affects
power consumption. This inspires us to exploit their hidden
relationship to optimize the downlink phase-shift matrix with
an explicit form instead of simply finding a feasible one.
With the above two ideas, the optimization problem is solved
under the alternating maximization (AM) framework. How-
ever, each of the subproblems is still non-convex. Tailoring
to the different natures of non-convexity, these subproblems
are handled by the tightest convex relaxation, Dinkelbach’s or
quadratic transformation, and the penalty method, respectively.
Extensive simulation results show that the proposed RIS-aided
cooperative MEC system outperforms systems without RIS
or cooperative transmission. At the same time, optimizing
the downlink phase shifts with an explicit form can further
improve the system’s performance.

The rest of the paper is organized as follows. The system
model and the computation efficiency maximization problem
are formulated in Section II. The discrete user association
variable is handled in Section III. Section IV maximizes the
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Fig. 1. The RIS-aided MEC system.

computation efficiency under the AM framework. Simulation
results are presented in Section V. Finally, a conclusion is
drawn in Section VL.

Notations: We use boldface lowercase (e.g., h) and up-
percase letters (e.g., G) to represent vectors and matrices,
respectively. The transpose, conjugate, conjugate transpose,
and diagonal matrix are denoted as (-)™, (-)*, ()" and diag(-),
respectively. The symbol R(-) denotes the real component of
a complex number. The n X n identity matrix is denoted as
I,, and the entries of a matrix X is denoted by (X);;. The
complex normal distribution is denoted as CA/. The £2-norm of
a vector is denoted as ||||2 and the Frobenius norm of a matrix
is denoted as ||-|[r. [a]"denotes max(0,a). We use 1y} to
denote the indicator function which outputs 1 if the condition
{-} is satisfied and outputs 0 otherwise. In the rest of this
paper, the superscripts U and D refer to uplink and downlink,
respectively, and the letters d and r in the subscripts stand for
the direct link and the reflected link, respectively. Finally, the
set of a variable is denoted by {variable}.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a RIS-aided MEC system as shown in Fig.
1, in which there are N APs, K single-antenna users, and
an M-element RIS. Each AP is attached to an MEC edge
server and equipped with L antennas. Each user has a limited
power budget P in Watt (W) but has intensive computation
tasks to deal with. In practice, if the computation task is
too complicated to be completed by a user (possibly due to
excessive power or time involved), part of the task should
be delegated to the edge server. Hence, a partial offloading
mode is adopted. Partial offloading is designed to cope with
computation tasks with data partition, in which tasks can be
arbitrarily divided to facilitate parallel operations at users for
local computing and offloading to the APs for edge computing
[16]. We use time division duplex protocol and adjust RIS
phase shifts between uplink and downlink to reconfigure
the propagation environment in real-time via a control link
between RIS and APs [17]. To guarantee the quality of services
provided to users, it is assumed that multiple APs in the uplink
transmission can successfully receive each user’s data, en-
abling computation repetition at different edge servers and thus
creating multiple copies of the computation results at different
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APs [18]. These copies in turn enable cooperative downlink
transmission among the APs on delivering the computation
results. By exploiting existing channel estimation approaches
[19], the global channel state information is assumed to be
available at the APs.

For uplink transmission, let N' = {1,....N}, K =
{1,...,K}, and M = {1,..., M} denote the index sets of
APs, users, and reflecting elements, respectively. In a specific
time slot, let sg € C with zero mean and unit variance denote
the information symbol of user %k for the offloading task, and
py € R denote the transmit power of user k. The signal
received at AP n can be expressed as

yS:ZLHk\/pgsg—l-zg, VnewnN, (1)

keKx

where ¢Y, € CE*1 is the equivalent baseband channel from
user k to AP n and 2Y ~ CN (0,021) is the receiver noise
at AP n with o2 being the noise power. With the deployment
of an RIS, the equivalent baseband channel from user & to AP
n consists of direct and reflected links. Therefore, ¢, can be
modeled as

H
W =h,.+(GY) @hl, vkeKneN, @

where hJ , € CLX1 nl, e CM*! and G} € CM*L
denote the channels from user k& to AP n, from user k to the
RIS, and from the RIS to AP n, respectively. The uplink RIS
matrix @Y = diag (p(@?)eﬂ'eg, . ,p(@%)eﬁ&) € CMxM
is a diagonal matrix, where p(6Y) is the amplitude reflection
coefficient that is a function of uplink phase shift at the m?!"
RIS element 0, € [0,27), and can be expressed as [20]
sin (0Y —¢) +1Y
P (97?1) = (1 - ﬂmin)(%) +Bmin7 Vm € Mv
3)
with Bmin > 0,¢ > 0, and « > 0 are parameters related to
the specific circuit implementation.

We consider the linear beamforming strategy and denote
vgk € CE>1 as the receive beamforming vector of AP n for
decoding sg AP n only decodes user k£’s transmitted symbol
s}j if it belongs to the set of AP with indices A;, C N, which
are responsible for computing the partial computation tasks
for user k. If n € Ay, the received signal at AP n for user k,
denoted by 3V, € C, is given by

. H H
S = (V) Lgk\/pgsg‘f‘(”gk) Z Lgl\/PzUSZU

I#k,lEKX 4)
+ (09" Y, VEek.

For the offloading task, we introduce a power partition
parameter ay, € [0, 1] for user k, and pg = ay P{ represents the
power used for data offloading. Correspondingly, the uplink
signal-to-interference-plus-noise ratio (SINR) observed at AP

n for user k is thus given by

o5k (e e, (O5)
H 2
(”gk)H (hg,nk‘f‘(Gg) eUhEk)’
H
o k)" (c1) et

Vn € Ak, k € K.

Py

2 )
2
03 [onill;

5)

After performing the computation tasks, the APs coopera-
tively transmit the computation results to the corresponding
users through downlink wireless channels. We assume the
downlink transmission starts simultaneously from all serving
APs in our cooperative transmission protocol!. Let {Ay}
denote the task selection strategy, sy € C with zero mean
and unit variance denote the symbol intended for user k, and
vgk € CE>1 denote the downlink beamforming vector from
AP n to user k. The signal transmitted by AP n, denoted as
D € CF*!, is a summation of beamformed symbols for all
users with n € Ay, ie., @) = 3 e, rek) VnkSks 0 €
N. Then, the signal received by user k is expressed as

yp = Z lineay (Lr?k)HkaSE
neN

3N Ly (15) T 0BsP 4 2P, VkeK,
I#k neN

(6)

where 2 € C is the AWGN at user k with zero mean and
variance o7, and ¢, € CI*! is the equivalent baseband
channel from AP n to user k. Similar to (2), t2, is expressed
as

H
L =hb+ (GN) OPhD, vkekneN,

where hy ., € CE¥1 RD € CM*1 and G)) € CM*L denote
the channels from AP n to user k, from the RIS to user k,
and from AP n to the RIS, respectively. Furthermore, eP =
diag (p(ﬁ?)eﬁ?, e ,p(ﬁ}?l)eje?f) € CMxM g the downlink
RIS matrix with #0 € [0,27). Based on the above equation,
the SINR observed by user k& € K in the downlink transmission
is given by

SINRY ({vyi}, {05 })
H

2
H
’ZneNl{neAk}(th,nk'i_(GS) G)Dh?,k> ,Ur?k

3
+o}

H

H
D1tk ZnENl{n6A1}<th,nk+ (GE) G)Dh?,k) C

'During the downlink phase, APs can employ alignment procedures to
transmit only the finished bits across all the APs for a specific user at this
time slot, and any remaining bits can be transmitted in the subsequent time
slot’s downlink phase.
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where the second equality holds because AP n does not
transmit data to user k£ by setting 'ng =0ifn ¢ A

Remark 1. Given the coverage area of RIS in an experimental
system [21], as well as the density/coverage area of the
base station in 5G NR [22], [23], utilizing a single RIS for
multiple MEC servers is possible in practical deployments.
This assumption is also widely accepted in RIS-aided MEC
research [24], [25].

Remark 2. The RIS model described by (3) can be switched
to the simultaneously transmitting and reflecting (STAR-) RIS
model, thus enabling serving both users at the transmission
and reflection side [26]. The resulting problem is simpler than
the adopted practical phase shift model since the amplitude
coefficients and phase shifts of the STAR-RIS are not coupled.

B. Offloading Model

In our system model, the communication rate of user k
offloaded to AP n is

Ry ({ak}v vgka {91{3}@}) =Blog, (1 + %Iijk ({ak}v ’ngv {9791}))
VkeK,neN,

(C))
where B is the bandwidth of the system. However, due to users
offloading to multiple APs through multicast transmission, for
user k, its communication rate is determined by the slowest
rate among all the APs they are connected to. This is mathe-
matically expressed as minyc 4, k. Each user is allocated
a data transmission time t;, and the average computation
rate for user k is expressed as (f; min,ea, Rnx)/T, where
T represents the time slot length. After data uploading to
AP n, a computation frequency f,; is allocated to each
user k. If C is the amount of required computing resource
(i.e., the number of CPU cycles) for computing 1-bit of the
user k’s input data, then we can calculate the maximum
computation time among all the connected APs for user k’s
task as (Oktk minge 4, Rnk)/minneAk k-

As for the case of local computing, the dynamic voltage
and frequency scaling technique is adopted by all users for in-
creasing the computation energy efficiency through adaptively
controlling the CPU frequency used for computing [27]. In
particular, the computation energy consumption of user k € K
can be expressed as Ty, fZ, where fj, is the local computation
frequency, xy, is the effective capacitance coefficient of user k.
Also, as (1—ay)Pf is the allocated power for local computing,
we have T'(1 — ag)P¢ = Tkyf7, and thus we can calculate
fe as fr = /(1 —ax)Pg) /KK, Vk € K. The computation
rate of user k for local computing is then given by

Je _ L
Cr  Cy

(1 —ag)Pg¢

Rloc _
K (ak) P

, Ykek. (10)

C. Power Consumption and Latency Model

The power consumption of each user’s computation task
includes both that used in local computing and computation at
APs for offloaded tasks. To be specific, at user k, (1 — ax) PY
W will be used for local computing [28]. In terms of the
edge computation at the AP n, the average computation power
is given as ((thk ming, e 4, Rnk/fnk)fgkmn) /T. Therefore,
the total computation power consumption for all APs and users
is given by >, ZnEAk (Cit fraktin minge 4, Ruk) /T +
D kerc(l—ar) Py

In terms of communication power consumption, it consists
of the power consumed by the users in the data offloading and
APs in the downlink transmission. The total data offloading
power consumption is Y., Py = > pcxc ax Py, while the
downlink transmit power consumption from all the APs to
a specific user k is represented by ZnGAk HkaH; There-
fore, the total communication power consumption for both
uplink and downlink transmissions is given by >, - ar P¢ +
D okek Dme A, oD, Hz Combining both computation and
communication power consumption, the overall system power
consumption can be expressed as

Plotal({Ak}’{ka}v {’ng}’ {fnk}a {ak}v {tk}’ {91{{1}) :ZPIS

keK
+ Z Z HkaHz _|_Z Z(C’ktkfnknn ?mneAk Rnk).
keEK neAy keKnc Ay (11)

Assuming the minimum required task’s data size for user k
is denoted as Uy, bits [29]. Since local computing is ongoing
during the entire time slot, the number of computed bits is
TR};’C [5], and the remaining data bits for offloading is Uy —
T RY*. Then the offloading latency for user & plus computation
latency at AP n is calculated as

Tak = (Uy = TRES)/ min Ruy + (Uy = TRE)/ far, (12)
n k

where the first term represents data offloading latency, and the
second term accounts for computation latency at the AP.

D. Problem Formulation

In the proposed RIS-aided MEC system, there exists a
fundamental tradeoff between the quality of service and the
system power consumption. Specifically, with computation
replication, more APs performing the same task improves
the downlink diversity gain by exploiting cooperative trans-
mission, at the cost of increasing the computation power
consumption. To strike a good balance between communica-
tion power consumption, computation power consumption, and
computation rate, we aim to maximize computation efficiency,
defined as the ratio of total computation rate to total power
consumption. This leads to the optimization problem being
formulated as (13).

In the formulated problem, (13c) indicates that for each
user k, the latency among all APs serving that user must be
less than a threshold xy < 7. (13d) implies that for user &
to perform uplink offloading, the subsequent downlink SINR
must exceed the specified threshold 7}3 for reliable reception
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Py max Zszr tk minpe 4, Rk ({ak} v A00}) /T + Zk L Rie (ax) (13a)
RN AN RTINS P ({Ae} {02, } Ao {far}, {an}, {tr}. {605,}) ’
{651,460} {ar} {tn}
s.t. ar €[0,1], VkeK, (13b)
Tk <X, VkeK, Vn € Ay, (13¢)
10,20} SINRY ({02, 1, {00}) > 1(0, 2078, k€K, (13d)
Z ||v13,€||2 < PP VREWN, (13e)
ke
vl =vD =0, Vn¢ A kek, (13f)
OY/P = diag (p(ef/D)ej"i”D, o p(0Y/P)ed ) Ym € M, (13g)
tr + (Cypty min R, in fo <T, VkeK, 13h
g+ ( Kt min k)/%%fk S (13h)
S fak < far far 20, VEEK,¥n €N, (13)

ke

of computation results. An indicator function exists in (13d)
since if the user is determined not to offload, the downlink
SINR does not matter. In this case, both sides of the constraint
become zero, and the constraint is satisfied automatically.
P)?max in (13e) denote the maximum transmit power of AP
n in the downlink. (13f) specifies that if n ¢ Ay, AP n does
not decode user k’s data in the uplink (i.e., vJ, = 0) and
subsequently would not transmit computation results to user k
in the downlink (i.e., 'ng = 0). (13f) reveals that the full set
of the beamforming vectors {v{;, -, v, P, v}
has a special structure where some components in the set are
simultaneously zero. Constraint (13h) ensures the user’s data
transmission and computation time do not exceed the time
slot length. Further, (13i) limits the cumulative computational
frequency f,; for each user k£ to not surpass AP n’s total
computational frequency f,, [29]. Notice that in the formulated
problem, the norm |[vY, || does not matter as vY, only appears
in the objective function through R, %, and from (5), vgk
appears in both the numerator and denominator of the SINR
expression.

Efficiently solving Py is a highly challenging endeavor.
Firstly, Pg is intricate due to its general non-convexity in
both the objective function and constraints, compounded by
the non-differentiability from the maximin optimization struc-
ture within min, e 4, Rnx and min,c 4, fnr. Secondly, since
discrete variables are involved in {A;}, this makes Py a
combinatorial optimization problem. While brute force and
randomized search algorithms are widely accepted techniques
for solving the combinatorial optimization problem, they are
not desirable solutions as brute force search is computationally
prohibitive due to the exponential complexity [30] while
randomized search lacks solution quality guarantee [31], [32].
Thirdly, since variable {#2} does not appear in the objective
function but indirectly affects the objective value through
(13d), it is nontrivial to derive an optimal solution for {62 1.
In the subsequent sections, we begin by transforming the
maximin optimization problem into a more tractable form.
Following that, we leverage on the distinctive structure of the

beamforming vectors to address the discrete variable {Aj}
within P, thus simplifying the subsequent algorithm design.

Remark 3. In the proposed system, we assume that users de-
termine the parameter ”y,? based on their specific requirements
and is independent of the optimization variable ay, as in [33],
[34]. This is because the number of bits uploaded to the AP
does not directly relate to the number of bits in the downlink
in wireless MEC for applications such as image classification
and video tracking [35].

III. TRANSFORMATION OF MAXIMIN OPTIMIZATION AND
HANDLING DISCRETE VARIABLE IN Py

The objective function of Py is non-differentiable due to
the maximin optimization structure, which is embedded in the
terms min,ec4, R,i in the objective function and the terms
min,c 4, Ryi and ming,c 4, fnr within the constraints (13h).
To address this, we reformulate it as follows:

Pll

Zk 1thk/T+Zk L R (ar)

{olp}s {'unk} {fur}s Plotal({-Ak} {Rk} {’Unk} {fnk} {tk})
{Ac} {0}, {GD}{tk}
{Ri}Aart L}

(14a)
s.t. (13b) — (13g), (13i),
ty + (CutpRy) /™ < T, Vk €K, (14b)
Ry < rrenn Rk ({a}, vy, {05}) . Vk € K, (14c)

finin < rrenn fok, VE€EK, (144d)
n

where Ry, and f} min are introduced as auxiliary variables. Note
that P; and Py are considered equivalent since to maximize the
objective function, the value of Rk and f" needs to be set
equal to minge, Rok ({ar}, v5y, {05}) and mingea, fo
respectively [36], [37].

Regarding the discrete variable { Ay}, notice that it has an
intrinsic connection with the group sparsity structure of the

beamforming vectors. Specifically, v nk and vnk will be zero
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at the same time if n ¢ Ay, or non-zero at the same time if n €
Ay,. This inspires us to im Bose a value restrlctlon on the mixed
{12 norm [35],[38]: o (w )Tll2| to
enforce the group spars1ty structure. In thls formulation,
the outer ¢;-norm induces sparsity, while the inner ¢5-norm
is responsible for forcing all coefficients in the beamform-
ing group [(v2)T (vY,)T] to be zero. By doing so, we
do not have to explicitly optimize the task selection strat-
egy {Ax}. Instead, { Ay} can be determined by the group
sparsity pattern of the beamforming vectors, ie., A =
{n][(@2)" WY)T1#0,neN}.

Next, to leverage the sparsity structure for more efficient
problem-solving, we need to transform the constraints (13c),
(14c¢) and (14d), which involve the variable { Ay }. The equiv-

alent transformation for the latency constraints (13c) is given
by

U _TRIOC
k k +

1 Uk — TRIkOC
{vni#0} Ry,

fnk

<
>—1{v5k¢0}x’ (15)
kek,neN,

which is obtained by putting the expression for 7, from equa-
tion (12) into (13c). In (15), the indicator function signifies that
for user k, if AP n is not in Ay, its latency is disregarded (as
both sides of the inequality in (15) become 0, automatically
satisfying the constraint). Similarly, for (14c) and (14d), we
can equivalently transform them as

1{v5k¢0}Rk < 1{v5k¢0}R"k7 kek,neN, (16)

and

"<l sopfak KEKMEN, (D)

1 { wD, ;ﬂ)} f Ilcn '
respectively. Therefore, the transformed problem of P; is given
by

Zk 1thk/T+Zk 1R10C (ax)

{vii}s {vnk} {Rk}7 PlOtdl({Rk} {'Unk} {f’n,k} {tk})
{far {053,460 1,
{ar} {0 {te}

PQZ

(18a)
s.t. (13b), (13d), (13e), (13g),
(131),(14b),(15),(16),(17),
N K
SO IR T Tl <8 (18b)

for some 8 > 0 and P ({Ri}, {v5, } . {fur}, {tx}) can be
equivalently rewritten as
-yn

Pow({Re}, {vie b {far}, {tr})
keEK

N K
2 (C tkRi [n fin)
£33 10, oy ([0 + OS] ),
n=1k=1

where an indicator function is used in the second term due to
a change from summation over Aj; to summation over all n.

19)

Finally, to address the non-convex constraints (16), we
employ the logarithmic barrier function % log(—2x) to replace

the inequality and move it as a penalty term

Zk 1thk/T+Zk L R (ar)

(00 {000 (). P ({Rkbs {00 b Lk, (1))
{Far}. 100 },{00 ),
{ax b LS {1}

1
5 ; > 1gup, 2o} (08(Rur = Ri)) .
(20)

P2w

s.t. (13b), (13d), (13e), (13g),
(13i), (14b), (15), (17), (18b).

As w increases towards infinity, P, becomes equivalent to Py
[37]. Therefore, we implement a strategy for solving a series
of progressively penalized problems. This approach involves
starting with w at a small value and incrementally increasing it
by a factor ¥} > 1. For each subsequent problem with a higher
value of w, we utilize the solution of the previous penalized
problem as the initialization. This iterative process continues
until w reaches a pre-set threshold value.

Upon merging the task selection strategy {Aj} into the
beamforming vectors design, we note that the objective func-
tion in Py, is in a fractional structure. In the subsequent
section, we will employ quadratic and Dinkelbach’s transfor-
mation techniques [38] to convert the problem into a series of
concave subproblems, thus enabling efficient solutions.

IV. MAXIMIZING COMPUTATION EFFICIENCY BY
OPTIMIZING Pa,,

Since the optimization variables in Py, are strongly coupled
in the objective function, it is difficult to solve Py, directly.
To this end, we optimize Py, under the AM framework.
The main idea of the AM is to alternately optimize one
block of variables at a time while keeping the others fixed
[39]. Specifically, we partition the optimization problem Py,
into seven subproblems and solve them in an AM fash-
ion. This section will cover the optimization with respect

o {og}s {vpi}s {Fan 70} {00}, {ax} and {Ry, tr}. The
next section will be dedicated to the optimization of {62 }.

A. Optimizing Variables {vD, }
When other variables are fixed, the subproblem for updating
{viy ) is

N K
Ctr Ri frkin
nin 33 105 oy ((CBBL) o2 ), 10

CHES g
S.t. l{a,ﬁgo}SINRE ({’ng}, {971%}) > l{ak;,go}")/;?, ke,

(21b)
3 0Bl < PP VR EN, 21c)
kex
U, — TR U, — TR
l{vgk;ﬁo}( I + Tor < 1{vgk¢o}x,
ke K,neN,
21d)

1{ ;éO}Rk < 1{1; ¢0}Rnka kek,neN, (2le)
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1{v5k¢0}flinin < 1{D5k¢0}fnk7 ke IC,TL S N, (21f)

N K
> lliwR)”

n=1k=1

(w3 12| < 8. 2lg)

Since an arbitrary phase rotation of vector ”Bk does not affect
the SINR constraints (21b), we can replace the non-convex
constraints (21b) with second-order cone (SOC) constraints
[40]:

IRNDS

1#£k

1
< 1{%#0}—1)% (Z (Ly?]g)H Bk) Vk e K.
\ Tk neN

For the objective function in (21), we identify that it has
an indicator function which is equivalent to a Weigrhted group

2
Z (Lgk)H vy +of

neN

(22)

lo-"norm" of {(v]fl)T, . (’U]ng)T, . (’URK)T} , as given
by 301 Yo Lgun, soy- With weights (Cuti R furin) / T+
||v5k||; [41], and it is non-convex. As group /;-

norm is the tightest convex relaxation to group {o-
"norm", the objective function of (21) can be relaxed as
S S 0Bl ((CxtiRifunrin) /T + [[0R]15) Fur-
thermore, considering the constraints (21d), (21e) and (21f),
because the fp-"norm" and ¢;-norm are always non-negative,
replacing the /p-"norm" with the ¢;-norm will not change the
relationship of the inequality. Therefore, the constraints (21d),
(21e) and (21f) can be transformed into equivalent forms as

Uy —TRY* Uy —TRYP
ol (B BT < ol vy
keK,neN,
llvnill, Bi < |vmklly Rak, ke K,neN, (24)
and '
2|l f < okl fors kEKREN, (29
respectively.
Therefore, the transformed problem of (21) is given as
N K
. D Crtr Ry frkkin 2
min 32 o (R

s.t.  (21c), (21g),(22),(23),(24), (25).

Since (26) is a convex optimization problem, it can be directly
solved via the interior-point method [42]. Theoretical results
from [43] show that the optimal solution to (26) provides a
feasible solution to (21).

B. Optimizing Variables { fnr} and {f™in}

Regarding the optimization of {f,} and {f"}, the sub-
problem is given as

N K LRy

min 1, (—fnknn0k>
(b L0 ;; om0l
), (17).

s.t. (13i), (14b), (15

27)

By multiplying both sides of the constraint (15) by f,; and
both sides of the constraint (14b) by f,?’i“, these constraints
are transformed into linear constraints in terms of f,; and

g’i“, respectively. Consequently, this manipulation renders the
optimization problem (27) as a convex optimization problem,

which can be efficiently solved using the interior-point method.

C. Optimizing Variables {v?, }

Considering Pg,,, when the remaining variables are held
fixed, the subproblem for updating {v7, } is

1
max - 3D 1,0y og(Ruk (v1)) = Ba), (280
k n

{”gk} w

N K
sty > llwn)"

n=1k=1

(v 2| < 8- (28b)

Since Ry (vy,,) has a fractional structure, we employ a
quadratic transform to reconfigure it as

AT st
ZZ!ll[(vD T (o) "] < 8, (29b)
n=1k=1

where

Qui (Vi) = 1+ 2Re(snkpy, (bg)  vik)
30

—Snk sz an () vyt on (V) ol s ¢

14k

and s = {s,} is the set of auxiliary variables introduced
through the quadratic transformation. Then iteratively solving
(29) can obtain a stationary point of (28). In particular, when
{vY,} are held fixed, the optimal s, is given by

H

. 0¥ (05" 1

Snk = H y U \H,U 2UHU'(3)
(Zl#kpl (o) e (en) ol 402 (vl ) Ho nk)

On the other hand, when s is fixed, (29) becomes a convex
problem with respect to v, . This is because Q,;(vY,) is a
concave function with respect to vgk, and the composition of
log and Q1 (vY,) preserves concavity. Since the subproblem
for solving vY, is a convex optimization problem, it can be
efficiently solved using the interior-point method.

D. Optimizing Variables {0}, }

When it comes to the uplink RIS reflecting coefficients
design, the subproblem for updating {6Y} is given by

_Zzl{v #o}log( i ({0m}) — Ri),

where we substitute (13g) in the objective function. Since (32)
is an unconstrained optimization problem with a differentiable
objective function, it can be readily solved by the gradient

max

32
{05} .
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descent method. To be specific, the update of 67 at the i*"
iteration is given by

O (i + 1) = 0,,,(1)
Vou R (07,(1)) (33)
” Yy Lm0} B (00 ) — Rk)’

neN kek

+Z(i)

where Z (i) is the step size chosen by the Armijo rule to guar-
antee convergence [44] and Vgu R,y (63, (4)) is the gradient of

Ry (05,) at point 6, (i) as given by (34). By updating {6}, }
based on (33), it is guaranteed to converge to a stationary point
of the problem (32).

E. Optimizing Variables {ay}

In terms of variable {ay}, when other variables in Py, are
fixed, the subproblem for updating {ay} is

Z? 1 te Ry /T + Zszl R}:C(ak)

max n
a (Crtr Ri frrkin)
{aw} Z =1 Zk 1 { Ek;ﬁo} T (352)
+ TS 0 o) loB(Ruk ({ax)) — R
k n
s.t. ar €1[0,1], Vkek, (35b)
L0, 20)SINRY ({00}, {00}) = Lia, 0170, k € K,
(35¢)
Uy — TR Uy — TR
<
1{”5;&‘60}( Ry, * Ink - 1{”5k¢0}x’
kek,neN.
(35d)

By identifying that (35¢c) is a weight £yp-"norm" as introduced
in IV-A, we equivalently transform it as

llak[ly SINRY ({vp}, {6203) > llaxll; i,

Next, as {ai} in Ry ({ax}) also possesses a fractional struc-
ture, akin to our treatment of {vY, }, we also apply quadratic
transformation:

max Z? LBk /T + ZkK 1 Rloc(ak)
(Crtp R frkkn
{ak},ozilzk 11{1} k;ﬂ)} Ktk kfk )

T in 51 (ug o} B(Dosln}) = ),
s.t. (35b), (35d), (36),

ke k. (36)

(37)

where o refers to the collection of {0, } and D, ({ax}) is
given as

Dyr({ax})=log, <1+20nk\/akp ‘ Vi) ok

0 (ZazPl |(w5) i|v2k||2>>.

1#£k

(38)

Similar to (29), when {ay} is held fixed, the optimal o,,;, can
be directly given by
H oo (2
ar Py (”gk) Lo
on = T > (39)
iz b ‘ (o) eS| + o2 vl

When o is fixed, (37) is a convex problem with respect to ag,
and therefore, the optimal solution can be efficiently found
using the standard numerical method.

F. Optimizing Variables { Ry} and {t\}

Regarding the optimization of { Ry} and {¢)}, the subprob-
lem is given as

Zk 1thk/T+Zk | Rp°

(R N ﬂzk Lo, 20} (5F FrktinCh)
(40a)
+ = ; Z Loy 2o} (log(Rnr — Ry)),
=e({Rx})
s.t.  tp + (thkRk)/flznin <T, Vkek, (40Db)

(35d).

Then applying Dinkelbach’s transformation to separate the
numerator and denominator, we have
1 tr Ry 1 )
max —e({Ry}) + + Ry°
{Rk}zv{tk}x w ({ k}) Z< T
N K 41)
ti Ry (
PRI Ca)]

k
st (35d), (40b),

where z is the auxiliary variable. Similarly, when {Rj} and
{ti} are fixed, the optimal z is given by the iterative update
rule of the Dinklebach transform as
Z* o Z?:l thk/T + Z? 1 RIUC (42)
TN K
> on—12p=11 {wpr ;ﬂ)}( £ fuktinCl)

With other variables fixed, the subproblem for updating
{R}} is given as

e ({Fe}) + Z (thk + R10C>
—2 <Z > Lop, 20} <%fnklinck>> 7 (43)

n=1k=1
s.t. (35d), (40b).

The constraints (35d) can be linearized by multiplying both
sides of the constraint by Rj. This transformation converts
the optimization problem (43) into a convex one, which can
then be solved using standard numerical methods.

max

{Ri}

Finally, regarding {t¢}, with other variables are fixed, the
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Y (i)

Vou Rk, (6,,(i)) = Re < (

Py ‘(”Sk)HL

1+ %Iijk) In2

( 2p (v9) " oY (B k)
3 (”gk "

2
D1k P Lgl‘ +o3 H%Hi
2pl ( nk)H Lgl (K"kl)m

(34)

(Zl;&k 2 ‘(”gk)

)

p)
" Lgl‘ +o3 H”Sk”i)

where Ko = (GY) (03,)° (h}{l)T and (i) = je RO (Buin + 27 (1 fin) (145 (050) = 6)) ) +

a—1

cos (0, (i) — ).

subproblem for updating {¢;} is given as

K

max (thk RIOC)
{tr} 1 T

K N

iRy, (44)

(Bt (Srnc))

k=1n=1
s.t. (40b).

It is important to note that the optimization problem (44) is a
linear programming problem. Therefore, it can be solved using
standard numerical methods.

V. DESIGNING {62} BEYOND A RANDOM FEASIBLE
POINT IN Py,

Unlike other variables in Pa,, {6#°} does not appear in
the objective function of Pg,. This absence of dependence
often leads to a misconception that any {62} satisfying
constraint (13d) would be a valid solution, as has been done
in previous works [45]-[47]. However, it is known that an
optimized RIS together with properly designed beamforming
vector {vD, } at the APs can help to construct a high-quality
channel link, thus reduce the downlink transmission power at
APs while satisfying the SINR constraints (13d). This intuition
contradicts to simply finding a feasible solution for (13d).

Recognizing that the variables {#2} work cooperatively
with {vD,} to reduce the downlink transmission power, we
resort to the optimization problem (21) that updates {”Ek}-
More insight can be revealed by noticing that {#2 } are hidden
in © and is coupled with vP, in the SINR constraints (22)
(an equivalent SOC form of (13d)). We can potentially obtain
a better solution of (21) by adjusting {62} such that the active
constraints in (22) are turned into inactive constraints” [48].

Motivated by the fact that the difference between the right-
hand-side and the left-hand-side of equation (22) is bigger
than zero if the constraint is inactive and equals zero if it
is active, we compute the minimum differences between the
right-hand-side and the left-hand-side of the equation (22)
among the K users. Then, we tune the {62} such that
the minimum difference is maximized, giving the following

2If the equality holds, the constraint is active (tight), otherwise inactive.

maximin optimization problem:

T o)

max min

WIS TP\
H o2
2 (h}ink + (GE) @Dh5k> D +o?,
1#k Inen
(45a)
s.t. OP = diag (p(@ll))ejellj, e ,p(@%)ejeﬁ) ,
Vm e M, (45b)

H
where we expressed D, as h(link—i- (GE) @DhEk according
to (7).

By introducing a slack variable y, the above optimization
problem can be recast as [49]

max  y,
{05}y

H
wn (3 (e (@) 0Pn) ok
ﬁ neN

(46a)

2
H H
- Z Z<th,nk+(G1?) ®Dh2k> v | +oi >y,
I#k |IneN
N {k
ke, ar#0
(46b)
©P = diag (p((a?)eﬂ"’?, . p(@%)ejegf) . VYme M.
(46¢)

Furthermore, to deal with the non-convexity introduced by
the practical phase shift model in (46c), we treat O as
an auxiliary variable and resort to the penalty-based method
by adding an equality constraint-related penalty term to the
objective function of (46), yielding the following optimization
problem

max 1
{6R}.eP.y

. . 2
—n HGD — diag (p(9]13)639?, p(ﬂ%)e]e%) HF :
(47a)

s.t. (46b),
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Algorithm 1: Penalty-based Algorithm for Solving
45
Input : {vD,} and set u > 0.
while
D . AD .AD 2
H@ — diag (p(@?)eﬂel Yo ,p(@%)eﬂeM) HF > €
do
while The fractional increase of the objective value
of (47) is above €3 do
Update A2 by solving (48) with fixed @ and

y.
Update ©" and y by solving (49) with fixed
6D
end
Update the penalty coefficient < opu.

end

(@D)_ =0, Vi#j, (47b)
i,
where ;1 > 0 is a penalty parameter for controlling the
constraint violation of (46¢) [50] and constraints (47b) is to
restrict the non-diagonal entries of OP are to be zero. It is
observed that {#°} can be updated with fixed ®" and 3. On
the other hand, ®® and y can be updated in parallel when
{0} are fixed. This motivates us to apply the AM method to
solve (47) efficiently.

For any given OP and 1y, the subproblem for optimizing

{60} is
. . 2
max —u|@P —diag (p(0P)e’" ..., (05 )|,
F

{60}

(48)
which is an unconstrained optimization problem with a dif-
ferentiable objective function, and it can be readily solved by
the gradient descent method. On the other hand, for any given
{621, the subproblem for optimizing ®® and y is

. . 2
max y—p H®D — diag (p(9?)639?, - ,p(%)e“’ﬁ) H :
(C] F

Y
s.t.  (46b), (47b).

(49)
Noticing that (46b) are convex constraints since they are SOC
constraints that composite with affine function. This makes
the optimization problem (49) a convex problem and can be
directly solved via the interior-point method. The entire proce-
dure for solving (45) is summarized in Algorithm 2, where we
employ an increasing penalty strategy to successively enforce
the constraint of (45b). Initially, 1 is set to be a sufficiently
small value. By gradually increasing the value of p by a factor
o > 1, we can maximize the original objective function and
obtain a solution that satisfies the equality constraints in (45b)
within a predefined accuracy.

VI. FINDING INITIAL FEASIBLE POINTS AND
COMPLEXITY ANALYSIS

Sections IV and V describe how to solve Ps,, for a fixed
w. To enforce the log barrier, the penalty weight w should be
increased progressively after Py, is solved with a particular w.

11

This leads to Algorithm 2 for solving the overall problem Po,
with the last line corresponding to the increase of w. Once
we solve Po,, for a particular w, the solution would act as
the initialization for the next Py, with a larger w. However,
a natural question arises regarding the initialization for Pg,,
for the first selected w. Since a feasible point for Py is also a
feasible point for Py, with any w, the following section will
find a feasible point of P.

A. Finding Initial Feasible Points

Given the complicated constraints of Py, it is not easy to find
a feasible point. Inspired by [51], [52], we propose an effective
heuristic method to address this challenge. The idea is to
address a modified feasibility problem. This involves allowing
violations of the selected constraints in the original problem
while penalizing them within the objective function of the
modified feasibility problem. Subsequently, these violations
gradually decrease through the optimization process and fade
away, ultimately leading to a feasible solution for the original
problem. Particularly, let us consider the modification of the
feasibility problem of Py as in (50), where we penalized the
downlink SINR constraints (13d). Maximizing the objective
function in (50) enhances downlink SINR and reduces con-
straint violations in (13d). If the objective function value of
(50) surpasses zero, it signifies the violations disappear, and
the solution of (50) is a feasible solution for Ps.

Solving (50) involves a straightforward process. Initially, we
generate random values for {6V}, {62}, and {ay}. Following
this, we generate {vgk} and adjust their scaling to satisfy the
conditions in (13e). By utilizing {vP, }, {65}, {62} and {a}},
{oY b ARk}, {far}s {1} and {tx} are determined to ad-
here to the equalities stipulated in equations (13i), (14b), (15),
(16), (17) and (18b). With this initial set of optimization vari-
ables established, we can initiate an iterative AM procedure to
tackle the optimization problem (50). To begin with, when the
other variables are held fixed, each individual variable in (50)
exhibits convex behavior in the objective function, which is
a summation of SOCs. Moreover, concerning the nonconvex
constraints, the strategies for transforming them into convex
constraints have been given in Sections IV-A through V. As
a result, all subproblems of the variables can be transformed
into convex forms and subsequently solved. This enables the
utilization of the AM procedure to solve (50) efficiently, and
the details of these steps are omitted for brevity.

B. Complexity Analysis of the Proposed Algorithm

The computational complexity of Algorithm 2 primarily
comes from solving problems (28) and (21), which aim to
design {vY, } and {vD, }, respectively, as well as the downlink
RIS reflecting coefficients {2}, and problem (35) for opti-
mizing the power partition parameters {ay}. The complexity
associated with resolving (28) and (21) is estimated to be
O((NKL)3%), based on the complexities of solving convex
problems using the interior point method [53]. Similarly, the
task of optimizing {aj} is estimated to have a computational
complexity of O(K?3?®), following the same computational
approach. The complexity of employing Algorithm 1 via the
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max
{vgk}v{vgk}a{Rk}a{fnk}v
{QSL},{951},{ak},{f]?“n},{tk}

1
> llaklly | —=
kek \/7e

%(Z

12

- H
(th,nk + (GB) eDhEk) vgk)
neN

X

£k

>

D D H Dy D "
<hd7nk+(Gn) Q) hr,k) wP,
neN

2 * (50)

+ o2,

st (13b), (13e), (13g), (14b), (13i), (15), (16), (17), (18b)

Algorithm 2: Algorithm for Solving P»

Input : Initial {02, }, {ar}.{Re}, {tx}, {05}, {65},
{Fur L0} and w > 0.

while Stopping criterion is not satisfied do

while Stopping criterion is not satisfied do

Update s using equation (31).

Update {v7, } by solving (29) with fixed s.

end

while Stopping criterion is not satisfied do
Update o using equation (39).

Update {ay} by solving (37) with fixed o.

end
while Stopping criterion is not satisfied do
| Update {6} using equation (33).

end

Update {vD, } by solving (26).

Update {fnx} and {f"} by solving (27).

while Stopping criterion is not satisfied do
Update z using equation (42).
Update { Rx} by solving (44) with fixed z and

{tr}.

Update {t;} by solving (43) with fixed z and

{ Rk}
end

Update {62} by Algorithm 1.
Update the penalty coefficient w < Jw.

end

penalty-based method is approximated as O(M3%). If we
denote the number of iterations for solving problems (28),
(21), and (35) as I;, I, and I3, respectively, and those for
Algorithm 1 as 14, then the total computational complexity is
givenas O(I((I1 +I2)(NKL)35+ I3 K35+ I, M35)), where
I represents the total number of iterations within Algorithm
2.

VII. SIMULATION RESULTS

In this section, we present simulation results to verify
the effectiveness of our proposed algorithm. Under a three-
dimensional Cartesian coordinate system, we consider a sys-
tem with 10 APs and 20 users uniformly and randomly
distributed in a square region of 200 m x 200 m. An RIS
with 20 reflecting elements is located at the 3-dimensional
coordinate (100,0,15). In addition, the APs are with height
30 m, while the users are with height 1 m.

considered for all
line-of-sight  (LoS)
[54]. For example,

Rician fading channel model is
channels to account for both the
and non-LoS (NLoS) components

the AP-RIS channel can be expressed as G, =
Lan(d) (/T2 G5 + [ Lo GN™S), whete nan

is the Rician factor representing the ratio of power between the
LoS path and the scattered paths, GI;OS is the LoS component
modeled as the product of the unit spatial signature of the
AP-RIS link [54], GN"S is the Rayleigh fading components
with entries distributed as CN(0,1), Lar(d) is the distance-
dependent path loss of the AP-RIS channel, and = € {U,D}.
We consider the following distance-dependent path loss model
Lar(d) = 10%3E, (d%) * Where Ey is the constant path
loss at the reference distance dy = 1 m,d is the Euclidean
distance between the transceivers, aar is the path loss ex-
ponent, and 10%-3 accounts for a 3 dBi gain at each element
of the RIS since it reflects signal only in its front half-space
[55]. Since the RIS can be practically deployed in LoS with
the AP, we set aar = 2 and kar = 30 dB [45]. In addition,
other channels are similarly generated with aay = 3.67 and
kavu = 0 (i.e., Rayleigh fading to account for rich scattering)
for the AP-user channel, agry = 2.5 and kgry = 3 for the RIS-
user channel. We consider a system with a bandwidth 10 MHz
and Ey = —30 dB. The effective noise power for the APs and
users are 02 = —60 dBm and o7 = —50 dBm, respectively.
Unless specified otherwise, other parameters are set as follows:
PP rax = LW, P = 05 W, Cr = 200 cycles/bit, kp =
Kn = 10725, f, = 1.2 x 10° bits/s, T = 0.5s, x = 0.4 s
and Uy = 350 Kb [4], [56]. For the proposed algorithm, we
set f = 1073, o = 1.003, 1 = 0.1, e = 0.01, and the
convergence threshold in terms of the relative increment in the
objective value as 1073, The simulation results are obtained
by averaging over 100 simulation trials.

We compare the proposed algorithm with the following
benchmarks.

o Without-RIS: Without the deployment of an RIS, the
equivalent channels in (2) and (7) contain only the direct
link, i.e., by}, = hyy =0, Vk.

o Without cooperative transmission (denoted as Without-
CT): In this case, we assume that each user is served by
only one AP. For each user, the AP with the best channel
condition is selected.

o Without RIS and cooperative transmission (denoted as
Without-RIS-CT): In this case, we assume that each user
is served by only one AP without the assistance of an
RIS.
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o Proposed algorithm based on solving Feasibility Problem
of {#P 1 (denoted as AM-FP): Instead of optimizing {62 }
by our algorithm, in this case, we only find a feasible
solution for {2} that satisfied (13d). This benchmark is
designed to reveal the necessity of the proposed criterion
for optimizing {62} in (45).

o Proposed algorithm without /2-norm (denoted as AM-
Exhaustive Search (AM-ES)): In this case, we do not
eliminate the variable {4} by exploiting the group spar-
sity structure of the beamforming vectors but search over
all the possibilities of {.Aj}. This benchmark is designed
to reveal the efficiency of our proposed algorithm.

We first study the relationship between the feasibility ratio
[46] of the problem (13) and the target SINR ~ with

different benchmarks. The feasibility ratio of the problem
(13) is defined as number of feasible simulations for (13)

the total number of simulations .
the target SINR requirements become more stringent, i.e.,

larger values of 'y,?, the feasibility ratio of the problem (13)
is expected to decline. As shown in Fig. 2a, we observe
that Without-RIS-CT and Without-CT almost fail to maintain
feasibility in those settings with a target SINR higher than
10 dB, while Without-RIS, AM-FP, and proposed algorithm
can still maintain feasibility with a high probability. Com-
paring cooperative transmission and RIS, we observed that
including cooperative transmission leads to a better feasibility
ratio than including an RIS. This can be seen from the fact that
Without-RIS can provide more than a 10 dB gain compared
with Without-RIS-CT, while the improvement of Without-CT
from Without-RIS-CT is less than 3 dB. Obviously, including
both RIS and cooperative transmission (proposed algorithm
and AM-FP) has the highest feasibility ratio, with the proposed
algorithm having an even higher feasibility ratio than the AM-
FP. This shows the importance of optimizing {#% }, rather than
simply finding a feasible solution for it.

Next, the superiority of our proposed algorithm in terms of
computation efficiency is shown in Fig. 2b. Under a wide range
of SINR requirements, it is observed that the system without
cooperative transmission achieves much worse computation
efficiency than other schemes. The Without-RIS scheme has a
40% performance improvement compared with the Without-
RIS-CT scheme. A similar amount of gain can also be ob-
served when comparing AM-FP and Without-CT. The feasi-
bility ratio and computation efficiency results demonstrate that
cooperative transmission in wireless communication systems
can dramatically boost the SINR and, in turn, increase the
overall computation efficiency. For the schemes with an RIS,
the proposed algorithm provides at least a 14% improvement
in computation efficiency over AM-FP. Such a performance
gain comes from the fact that the AM-FP only finds a feasible
solution of {62}, while the proposed algorithm optimizes
{62} to improve the computation efficiency further. To make
this more explicit, Fig. 3 shows the achieved computation
efficiency in the first 16 iterations of the proposed algorithm
and AM-FP under a specific channel realization. It is observed
that the proposed algorithm outperforms AM-FP in every
iteration. This shows the proposed algorithm’s effectiveness
in inactivating the active constraints that impede an increase
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in the objective value, as discussed in Section V.
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To further show the complexity advantage of the proposed
algorithm, we compare it with AM-ES. As shown in Fig.
4a and Fig. 4b, with the number of APs and users increase,
the proposed algorithm saves the computation time to a large
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extent compared with the AM-ES (e.g., more than 10 times
differences with 8 APs and 12 users, in Fig. 4a and Fig. 4b,
respectively), and the advantage becomes more prominent as
K or N increases. On the other hand, Fig. 4c and Fig. 4d
show that the proposed algorithm achieves almost the same
computation efficiency as the AM-ES, and the performance
gap is less than 5%. It is also noted that in Fig. 4c and 4d, the
total computation efficiency increases as the number of users
and APs increases, but the increase diminishes. If we divide
the total computation efficiency by the number of users and
APs, the average computation efficiency will decrease as the
number of APs and users increases. The diminishing returns
on average computation efficiency suggest that the number of
APs and users in the proposed system need not be arbitrarily
large to obtain a favorable computation efficiency. A similar
phenomenon on the system’s efficiency is also exhibited in
[57], [58].

In Figure 5, we present a comparison of the sparsity struc-
ture of the downlink beamformer obtained by the proposed
method and the AM-ES algorithm. Each subfigure represents
the downlink beamforming vectors of a specific AP, where
the user index is on the horizontal axis and the antenna
index is on the vertical axis. The heatmap is generated by
taking the absolute value of the beamforming vectors in a
particular channel realization, and the color intensity shows
the magnitude of the absolute value. For brevity, we only
illustrate the results for 6 APs. It can be observed that both
methods yield a sparse structure in the downlink beamforming
vectors, which aligns with the intuition described in Section
III. Furthermore, the solution of AM-ES has a more sparse
structure than our proposed method since it reflects the optimal
sparsity structure by enumerating the associations of APs
and users, while our proposed method induces the sparsity
structure by the group norm. The above observation explains
the performance gap between our proposed method and AM-
ES.

To visualize the division of computation load between
offloading and local computation, we investigate how the
optimal power partition parameter varies with the distance
between the user and RIS in Fig. 6. In our scenario, we
consider two users and two APs, with one user located at
a fixed distance of 20 m from the RIS and the other from
20 to 60 m away. For the user with high power budgets
(P¢=1o0r0.5 W), we observe that the optimal strategy is to
allocate more power to computation offloading as the distance
increases. This is because computation offloading can provide
a higher computation efficiency than local computation, and
as the distance increases, the user needs to spend more power
on data offloading. In contrast, for a user with a low power
budget (P; = 0.3 W), the optimal power partition parameter
first increases as the distance increases. However, as it reaches
the maximum value of 1, it starts to decline as the distance
increases. The rise in the optimal power partition parameter
at the first segment is due to the same reason as users with
a high power budget. However, as the distance increases
further, a limited power budget cannot support high-speed
data transmission in computation offloading, and computa-
tion offloading becomes less computation efficient than local
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computing. Thus, we observe a decline in the optimal power
partition parameter at the second segment. As for the case of
P; = 0.1 W, the optimal power partition parameter declines
as the distance increases. The simulation results demonstrate
that the optimal power allocation strategy for maximizing the
computation efficiency depends on the user’s power budget
and the distance between the RIS and the user. In general,
the optimal power partition parameter first increases as the
distance increases before reaching its maximum value of 1 and
then decreases as the distance increases. The optimal power
partition parameter curve will shift to the right if the power
budget is abundant, while the curve will shift to the left if the
budget is small.

In Fig. 7, we show how the number of APs (/V), users (K),
and RIS’s reflecting elements (M) would affect the average
number of APs serving each user in user association. In Fig.
7(a), it is evident that as the number of users increases, there
is an upward trend in the average number of APs serving each
user. This can be attributed to the increased downlink interfer-
ence caused by more users. Therefore, increasing the number
of APs per user can reduce downlink power consumption and
enhance the overall system computation efficiency. In Fig.
7(b), we can observe that the increasing number of reflecting
elements reduces the average number of APs serving each user.
This is because the increased elements of RIS improved the
channel condition, allowing the system to satisfy the user’s
downlink QoS with fewer associated APs. In Fig. 7(c), as
the number of APs increases, the average number of APs
serving each user increases from 2.45 to 3.4 initially, then
levels off after reaching 25 APs. This phenomenon occurs
because having more APs per user reduces the downlink’s
power consumption at first. However, as the number of APs
per user keeps growing, this power-saving effect becomes less
pronounced, and it is outweighed by the power consumption
resulting from the additional computation load of extra APs.
As a result, the proposed algorithm would not further increase
the association of APs and users.

Finally, in Fig. 8, we compare the computation efficiency
versus the number of reflecting elements M. As M increases,
the computation efficiency increases moderately in both the
proposed algorithm and AM-FP. It is worth mentioning that the
performance gaps between the proposed algorithm and AM-
FP are getting more prominent as the number of reflecting
elements increases, indicating that the proposed algorithm is
especially appealing when the RIS is equipped with a large
number of elements.

VIII. CONCLUSION

In this paper, an RIS-aided mobile edge computing system
with a cooperative transmission framework was proposed.
Specifically, the computation efficiency was maximized via the
joint design of user association, receive/downlink beamform-
ing vectors, power partition parameters, and uplink/downlink
phase-shift matrices. For an efficient algorithm design, the
alternating maximization framework was employed. To handle
the discrete user association variables, group lj3-norm was
adopted to enforce group sparsity and merge user association
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into the receive/downlink beamforming vectors. Furthermore,
although the objective function does not explicitly depend
on the downlink phase-shift matrix, we leverage their hidden
relationship to convert it into an explicit form for optimization.
This approach enables us to fully exploit the potential of the
RIS rather than simply finding a feasible solution of the down-
link phase-shift matrix that could be more optimal. Numerical
results demonstrated that cooperative transmission and RIS
could significantly improve the computation efficiency and
feasibility ratio. At the same time, the proposed approach
for optimizing downlink phase shifts can further promote this
improvement.
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