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Distributed Inference with Variational Message

Passing in Gaussian Graphical Models:

Trade-offs in Message Schedules and

Convergence Conditions

Bin Li, Nan Wu, and Yik-Chung Wu

Abstract

Message passing algorithms on graphical models offer a low-complexity and distributed paradigm

for performing marginalization from a high-dimensional distribution. However, the convergence behav-

iors of message passing algorithms can be heavily affected by the adopted message update schedule. In

this paper, we focus on the variational message passing (VMP) applied to Gaussian graphical models

and its convergence under different schedules is analyzed. In particular, based on the update equations of

VMP under the mean-field assumption, we prove that the mean vectors obtained from VMP are the exact

marginal mean vectors under any valid message passing schedule, giving the legitimacy of using VMP

in Gaussian graphical models. Furthermore, three categories of valid message passing schedules, namely

serial schedule, parallel schedule and randomized schedule are considered for VMP update. In the basic

serial schedule, VMP unconditionally converges, but could be slow in large-scale distributed networks.

To speed up the serial schedule, a group serial schedule is proposed while guaranteeing the VMP

convergence. On the other hand, parallel schedule and its damped variant are applied to accelerate VMP,

where the necessary and sufficient convergence conditions are derived. To allow nodes with different

local computation resources to compute messages more flexibly and efficiently, a randomized schedule

is proposed for VMP update, and the probabilistic necessary and sufficient convergence conditions are
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presented. Finally, numerical results and applications are presented to illustrate the trade-offs in the ease

and speed of convergence.

Index Terms

Variational message passing, distributed inference, message schedule, convergence analysis, Gaus-

sian graphical models

I. INTRODUCTION

Computing the means of marginal distributions from a high-dimensional Gaussian distribution

is an essential task in many distributed inference applications [1]–[4]. For example, in distributed

peer-to-peer rating on d items (such as movies, goods and services) over social networks, the

final rating xi ∈ Rd of user i after incorporating its own initial rating yi ∈ Rd and those of other

users can be found by solving the optimization problem [1]

min
{xi}ni=1

n∑
i=1

αi∥xi − yi∥22 +
∑
k>i

ωik∥xi − xk∥22, (1)

where αi ≥ 0 denotes the confidence of the initial rating, and ωik ≥ 0 denotes the closeness

between user i and user j. Since the objective function of (1) is quadratic with respect to {xi}ni=1,

the solution of (1) can be obtained by computing the marginal means of the high-dimensional

Gaussian distribution

p(x) ∝ exp

{
−1

2
xTJx+ hTx

}
, (2)

where x ≜ [xT
1 ,x

T
2 , · · · ,xT

n ]
T , J is a matrix composing of sub-blocks given by Jii = (αi+∑

k>i ωik)I and Jik = −ωikI for i ̸= k, and h = [α1y
T
1 , α2y

T
2 , · · · , αny

T
n ]

T . Other applications

having the formulations in the form of (1) include consensus propagation [2], distributed quadratic

function optimization [3], and network synchronization [4].

On the other hand, many distributed minimum mean square error (MMSE) or linear MMSE

estimation problems can be interpreted as finding the marginal means of a high-dimensional

Gaussian distribution with the form of (2). For example, in downlink transmission with distributed

beamforming [5], the transmitted signal from all base stations has the form x = KHT (HHT +

βI)−1s, where s ≜ [s1, s2, · · · , sN ]T with si denoting the symbol intended for user i, H is the

downlink channel matrix from all base stations to all users, and K, β are parameters depending

on the optimality criterion for transmit beamforming design. By using Woodbury matrix identity,
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it can be proved that computing the symbol vector to be transmitted is equivalent to computing

the mean of (2) when J = HTH + βI and h = KHT s (details given in Appendix A). Similar

settings also appear in distributed data detection in multi-user multi-input multi-output systems

[6] and cloud radio access networks [7], or as a key subtask in many distributed nonlinear

inference problems, including state estimation in electric power systems [8], and cooperative

localization [9].

For a high-dimensional Gaussian distribution, the exact means of the marginal distributions can

be obtained by the direct matrix inversion method. However, with the computational complexity

of matrix inversion being cubic in the number of variables, the direct matrix inversion method

is computationally costly in large-scale problems. Moreover, the direct matrix inversion method

requires gathering the information matrix and potential vector of a high-dimensional Gaussian

distribution. Thus it is not scalable for data distributed in large-scale networks, as in the above

mentioned applications [1]–[9].

Due to their distributed nature and low complexity, message passing algorithms are widely

used for approximate Bayesian inference on graphical models. Gaussian belief propagation

(BP) [10] is a popular message passing algorithm for computing the marginal means of a

high-dimensional Gaussian distribution. Other options include variational inference (VI) [11],

expectation propagation (EP) [12], and approximate message passing (AMP) [13]–[15]. While

there are many different types of message passing algorithms, a common challenge is that the

convergence behavior is difficult to analyze and may be restrictive in the class of convergent

models. In particular, the convergence analysis of Gaussian BP has been analyzed in [3], [10],

[16]–[18], in which conditions such as walk-sumability or pairwise-normalizability are required.

For AMP, although it is applicable to a wide range of prior distributions, its convergence typically

requires the transform matrix in the linear equation containing independent and identically

distributed (i.i.d.) elements [19]. Recent more advanced variants of AMP, namely orthogonal

AMP [20], vector AMP [21] and memory AMP [22], [23] expand the class of transform matrix

to right-unitarily-invariant matrices [22]–[24]. However, AMP-type algorithms are still far from

being applicable to arbitrary transform matrix.

An apparent exception is the variational message passing (VMP) [25], [26], which is based

on VI and has a simple message update rule. In general VI, instead of taking the intractable

integrals involved in computing the exact marginal distributions, a variational distribution within

a given family distribution is used to approximate the target distribution, where the Kullback-
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Leibler (KL) divergence is used to measure the closeness of the variational distribution and the

target distribution [27]. By minimizing this KL divergence under the mean-field assumption, the

optimal variational marginal distributions can be obtained under a cyclic block update. Due to the

sequential block update, VI is guaranteed to converge in such update schedule [28], which makes

VI widely used in computing approximate marginal distributions of a complex joint distribution

in many applications, including cooperative localization [29], [30], tensor decomposition [31],

[32], channel estimation and data detection [33], [34].

However, if cyclic coordinate update is applied to a distributed network, this means only one

node can be updated at a time. Obviously, this would lead to slow convergence and introduce long

latency in distributed and large-scale networks. To speed up the convergence, parallel schedule is

adopted for VMP in the context of sensors’ self-localization [29] and distributed receiver design

in extra-large scale MIMO systems [34]. However, the convergence of VMP under parallel

schedule is no longer guaranteed. One may wonder besides the sequential update (which is slow

but convergence guaranteed) and parallel update (which is fast but may diverge, making the

computation useless), is there other message update schedule that is between these two extreme

cases? As the first endeavor to rigorously study VMP schedules and its implication, this paper

focuses on the Gaussian graphical models, which find many practical applications in its own

right.

In particular, we first prove that if VMP converges in Gaussian graphical models under a valid

message schedule, the mean vectors of the converged variational marginal distributions are the

exact marginal mean vectors, giving the legitimacy of applying VMP in Gaussian models. In

order to find the optimal variational marginal distributions using VMP, serial schedule, parallel

schedule and randomized schedule are considered. In the basic serial schedule, the VMP is

guaranteed to converge unconditionally. However, the basic serial schedule takes a long time in

waiting for message update, which is not efficient in large-scale distributed networks. To this end,

a group serial schedule with convergence guarantee is proposed for VMP update and achieves

a faster convergence than the basic serial schedule.

To further accelerate the VMP convergence and allow the nodes update more frequently in

large-scale distributed networks, parallel schedule is applied to VMP update and the correspond-

ing convergence condition is derived. Since VMP may diverge in parallel schedule, damping

could be applied in parallel schedule to improve convergence, and a feasible set of damping

factors is derived. Recognizing that serial schedules and parallel schedule (with or without
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damping) are periodic update schedules, VMP is proved to converge at a linear rate if it converges

in these schedules. Furthermore, a randomized schedule with lower computational complexity

and communication overhead is proposed for VMP update. With the interpretation of probabilistic

damping, the necessary and sufficient convergence conditions are derived in probabilistic sense.

Finally, the newly established theories on VMP convergence are corroborated by numerical

results and applications, illustrating the trade-offs between convergence speed and applicability

of different schedules.

The rest of the paper is organized as follows. In Section II, the general convergence properties

of VMP in Gaussian graphical model are analyzed. In Section III, convergence-guaranteed models

and schedules are presented. In Section IV, parallel schedule and its variants are considered with

their convergence conditions analyzed. Section V studies the convergence rate and presents a

summary of various message schedules. Numerical results and applications are presented in

Section VI. Finally, conclusions are drawn in Section VII.

Notations: Scalars, vectors, matrices and sets are denoted by lower-case letters, bold lower-

case letters, bold upper-case letters and calligraphic upper-case letters, respectively. ∥a∥2 denotes

the ℓ2 norm of a, and ∥A∥∞ denotes the ℓ∞ induced matrix norm. The notation AT denotes the

transpose of A and the notation A ≻ 0 means A is positive definite. A(i, j) denotes the element

of A in the i-th row and j-th column while Aij denotes the block element of A in the i-th row

partition and j-th column partition. The notation |A| denotes the matrix taking element-wise

absolute value of A, while ρ(A) denotes the largest absolute eigenvalue of A. The notation

blkdiag(A1,A2, · · · ,An) denotes a block diagonal matrix with the main diagonal blocks being

A1,A2, · · · ,An. The notation ‘A \ B’ means all the elements in A except the elements in B.

For the multivariate Gaussian distribution of a real vector x with mean vector µ and covariance

matrix Σ, we denote it as x ∼ N (x;µ,Σ) or p(x) = N (x;µ,Σ).

II. VMP IN GAUSSIAN GRAPHICAL MODEL AND ITS CONVERGENT POINT PROPERTIES

Given a high-dimensional Gaussian distribution of a random vector x ∈ RN written in the form

of (2), the task is to compute the mean vectors of the marginal distributions of x’s subvectors in a

distributed way. For a random vector x, it can be partitioned into n non-overlapping subvectors,

where 1 ≤ n ≤ N . Denoting the i-th (1 ≤ i ≤ n) subvector of x as xi ∈ Rdi , we have

x ≜ [xT
1 ,x

T
2 , · · · ,xT

n ]
T and

∑n
i=1 di = N . For any possible partitioning of x, there always exists
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a pairwise factorization

p(x)∝
n∏

i=1

exp

{
−1

2
xT
i Jiixi+hT

i xi

}
︸ ︷︷ ︸

fi(xi)

∏
(i<k,k∈Bi)

exp
{
−xT

k Jikxi

}︸ ︷︷ ︸
fik(xi,xk)

, (3)

where Jik ∈ Rdi×dk is the (i, k)-th block of the matrix J, h has the subvectors {hi ∈ Rdi}ni=1

such that h ≜ [hT
1 ,h

T
2 , · · · ,hT

n ]
T , and Bi ≜ {k ̸= i|Jik ̸= 0}. Equation (3) can be interpreted

as a Gaussian graphical model, where the i-th node represents the variable xi and the direct

neighbors of node i are xk with k ∈ Bi.

Directly using the matrix inverse method, we obtain the mean vector of p(x) being µ = J−1h

and the covariance matrix Σ = J−1. Then the xi’s marginal distribution p(xi) can be obtained as

a Gaussian distribution with the mean vector µ(1 +
∑i−1

k=1 dk :
∑i

k=1 dk) and covariance matrix

Σ(1 +
∑i−1

k=1 dk :
∑i

k=1 dk, 1 +
∑i−1

k=1 dk :
∑i

k=1 dk). However, the computational complexity of

taking matrix inverse for a large-scale matrix J is huge and is cubic with respect to N . Moreover,

if different {xi}ni=1 are distributed in disparate locations, the direct inversion method requires an

additional step of gathering information to a central processing unit. Thus, it is not scalable in

large-scale distributed setting.

Due to the distributed and low complexity nature, message passing algorithms are promising

for computing the marginal distributions of a high-dimensional Gaussian distribution. Gaussian

BP is a widely used message-passing algorithm for calculating the marginal distributions of a

high-dimensional Gaussian distribution. However, Gaussian BP is not guaranteed to converge

in loopy graphs [10], making it not necessarily applicable in every practical scenario. Another

popular message-passing algorithm is variational message passing (VMP), which is a variant

of variational inference. In this paper, we investigate VMP for Gaussian graphical model, re-

vealing the trade-offs in different message passing schedules and the corresponding convergence

properties.

The underlying principle of VMP is based on variational inference, which calculates ap-

proximate marginal distributions under the mean-field assumption and is always guaranteed to

converge in a cyclic update order of the variational marginal distributions. In variational inference,

a variational distribution q(x) is used to approximate the target distribution p(x), and the optimal

q(x) is sought by minimizing the Kullback-Leibler (KL) divergence between q(x) and p(x) given
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by

DKL(q(x)||p(x)) =
∫
q(x) ln

q(x)

p(x)
dx. (4)

To facilitate the computation of the marginal distributions of q(x), the mean-field approximation

q(x) =
∏n

i=1 qi(xi) is usually adopted, where qi(xi) is treated as an approximation to the marginal

distribution p(xi). With the pairwise factorization in the form of (3), the optimal q⋆i (xi) that

minimizes the KL divergence in (4) with other {qk(xk)}k ̸=i held fixed can be shown to be [28,

Equation 10.9]

q⋆i (xi)=
fi(xi)

Zi

∏
k∈Bi

exp

{∫
qk(xk) ln fik(xi,xk)dxk

}
, (5)

where Zi is a normalization constant. It can be observed that the update of q⋆i (xi) depends

on {qk(xk)}k∈Bi
, which are the variational distributions of xi’s directly connected neighboring

variables. Thus, q⋆i (xi) for different i can be updated alternatively, and the process resembles a

message passing mechanism on the graphical model.

Generally, VMP under an arbitrary message update schedule can be written as

q
(t)
i (xi) =


fi(xi)
Zi

∏
k∈Bi

exp
{∫

q
(τ ik(t−1))

k (xk) ln fik(xi,xk)dxk

}
if i ∈ St

q
(t−1)
i (xi) otherwise

(6)

where q
(t)
i (xi) means the variational distribution of xi after the t-th iteration, St (t ∈ N+) is

a set describing which xi would be updated at the t-th iteration, and 0 ≤ τ ik(t − 1) ≤ t − 1

denotes which previous version of the variational distribution of xk is being used for the update

of the variational distribution of xi at the t-th iteration. Thus specifying St and τ ik(t − 1) for

all t, k, i determine a message schedule. For any message schedule, we can have the following

proposition.

Proposition 1 Gaussian-form Messages: For any Gaussian initialization {q(0)i (xi)}ni=1, the vari-

ational distributions {q(t)i (xi)}ni=1 for all t ≥ 0 are always Gaussian under any message schedule.
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Proof: For any Gaussian initialization q
(0)
i (xi) = N (xi;µ

(0)
i ,Σ

(0)
i ), according to (6), with

straightforward mathematical manipulations, we obtain the result at the first iteration as

q
(1)
i (xi) =


fi(xi)
Zi

∏
k∈Bi

exp
{∫

q
(τ ik(0))

k (xk) ln fik(xi,xk)dxk

}
if i ∈ S1

q
(0)
i (xi) otherwise

=

N (xi;J
−1
ii hi −

∑
k∈Bi

J−1
ii Jikµ

(0)
k ,J−1

ii ) if i ∈ S1

N (xi;µ
(0)
i ,Σ

(0)
i ) otherwise.

Therefore, q(1)i (xi) = N (xi;µ
(1)
i ,Σ

(1)
i ), where µ

(1)
i = J−1

ii hi−
∑

k∈Bi
J−1
ii Jikµ

(0)
k and Σ

(1)
i = J−1

ii

if i ∈ S1, or µ(1)
i = µ

(0)
i and Σ

(1)
i = Σ

(0)
i otherwise. This means that {q(t)i (xi)}ni=1 are Gaussian

distributions for t = 1. Now for t ≥ 1, suppose that q(τ)i (xi) = N (xi;µ
(τ)
i ,Σ

(τ)
i ) for all i and

τ ≤ t. Then at the (t+ 1)-th iteration, we obtain

q
(t+1)
i (xi) =


fi(xi)
Zi

∏
k∈Bi

exp
{∫
q
(τ ik(t))

k (xk) ln fik(xi,xk)dxk

}
if i ∈ St+1

q
(t)
i (xi) otherwise

=

N (xi;J
−1
ii hi −

∑
k∈Bi

J−1
ii Jikµ

(τ ik(t))

k ,J−1
ii ) if i ∈ St+1

N (xi;µ
(t)
i ,Σ

(t)
i ) otherwise.

(7)

This implies that q(t+1)
i (xi) is also a Gaussian distribution. By induction, we have proved that

{q(t)i (xi)}ni=1 for all t ≥ 0 are always Gaussian for any Gaussian initialization {q(0)i (xi)}ni=1.

From (7), it is observed that the covariance matrices of the variational marginal distributions

are fixed at {J−1
ii }ni=1. Thus, the VMP in Gaussian graphical model consists of only updating

the mean vectors using

µ
(t+1)
i =

J−1
ii hi−

∑
k∈Bi

J−1
ii Jikµ

(τ ik(t))

k if i ∈ St+1

µ
(t)
i otherwise

(8)

for all i and t ≥ 0, where µ
(t+1)
i is the mean vector of q(t+1)

i (xi). This is different from Gaussian

BP, where both mean vector and covariance matrix are updated at each iteration. It turns out that

the covariance matrix J−1
ii is generally not the exact covariance matrix of p(xi) and overconfident.

But one may wonder if the mean vector in (8) converges to the exact marginal mean vector of

p(xi) when t→ ∞.

Before we answer this question, we have to clarify that the message passing schedule under

consideration should be a valid one in the sense that each node is updated infinitely often and
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old messages of each node should be purged out of the network as t→ ∞. Mathematically, we

have the following definition.

Definition 1 Valid Message Schedule: A valid message passing schedule should satisfy limT→∞
∑T

t=1 ISt(i) →

∞ and limt→∞ τ ik(t) → ∞ for all k, i, where ISt(i) takes the value of one if i ∈ St and zero

otherwise.

Under a valid message schedule, we formalize the correctness of the mean vectors of the

variational distributions if VMP converges as follows.

Theorem 1 Correctness of the Converged Mean Vectors:For the VMP updated by (8), if it

converges under a valid message schedule, the converged µ
(t)
i equals to the exact marginal

mean vector of p(xi) for all i.

Proof: From Proposition 1, {q(t)i (xi)}ni=1 in each iteration are in Gaussian form. Thus, if the

VMP algorithm converges under a valid message schedule, the converged variational marginal

distributions are also in Gaussian form and we denote the converged distribution as q(∞)
i (xi) =

N (xi;m
(∞)
i ,V

(∞)
i ). Since the VMP is derived under the mean-field assumption, the joint varia-

tional distribution of the whole vector x would be q(∞)(x) =
∏n

i=1 q
(∞)
i (xi) = N (x;m(∞),V(∞))

with m(∞) ≜ [m
(∞)T
1 ,m

(∞)T
2 , · · · ,m(∞)T

n ]T and V ≜ blkdiag(V(∞)
1 ,V

(∞)
2 , · · · ,V(∞)

n ). Substi-

tuting the expressions of q(∞)(x) and p(x) into (4), after straightforward mathematical manipu-

lations, we obtain

DKL(q
(∞)(x)||p(x)) =− 1

2
ln |JV(∞)|+ 1

2
Tr(JV(∞))

+
1

2
(m(∞) − J−1h)TJ(m(∞) − J−1h) + constant. (9)

Since each update of q⋆i (xi) in (5) is the global optimum when other {qk(xk)}k∈Bi
are fixed, the

gradient of (9) with respect to m
(∞)
i should be zero. Furthermore, if the VMP converges, the

gradient of (9) with respect to all {m(∞)
i }ni=1 would be zero. That is,

∂DKL(q
(∞)(x)||p(x))
∂m(∞)

= J(m(∞) − J−1h) = 0. (10)

Due to J ≻ 0, we obtain m(∞) = J−1h, which implies that {m(∞)
i }ni=1 are the exact marginal

mean vectors of {p(xi)}ni=1.

Theorem 1 states that the mean vectors of the variational distributions are indeed the exact

marginal mean vectors that we intend to find (i.e., VMP in Gaussian graphical model achieves
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Bayesian optimality if it converges). This gives the legitimacy of using VMP in Gaussian

graphical models. This result is general in the sense that it holds for any message passing

schedule as long as it is a valid one, and if the VMP converges.

III. CONVERGENCE GUARANTEED GRAPHICAL MODEL STRUCTURES AND MESSAGE

SCHEDULES FOR VMP

A. Convergence Guaranteed Graphical Models

Given that the converged mean vectors in Gaussian VMP is the correct marginal mean

vectors, the next important question is when would VMP converges in Gaussian graphical

models? Notice that (8) can be interpreted as an asynchronous relaxation of the vector µ(t) ≜

[µ
(t)T
1 ,µ

(t)T
2 , · · · ,µ(t)T

n ]T with the update equation

µ(t) = Bµ(t−1) + d, (11)

where the iteration matrix B has the nonzero block element Bik = −J−1
ii Jik for all i = 1, 2, · · · , n

and k ∈ Bi, and the block vector d has the block element di = J−1
ii hi. Then, by using the

Asynchronous Convergence Theorem [35, p.431], we have ρ(|B|) < 1 is a sufficient convergence

condition for (8) under any valid message passing schedule and any initialization µ(0) ∈ RN ,

where |B| denotes the matrix with the element-wise absolute value of B. In the following, two

classes of information matrix J, namely diagonally dominant and walk-summable, are proved

to guarantee ρ(|B|) < 1. Although diagonally dominant and walk-summable conditions have

been proved to be sufficient conditions for the convergence of Gaussian BP, the proofs for the

sufficiency of these conditions for VMP convergence are totally different.

Proposition 2 Diagonal Dominance: If J is a diagonally dominant matrix and {Jii}ni=1 are

diagonal matrices, VMP on Gaussian graphical model converges under any valid message

schedule.

Proof: If Jii is a diagonal matrix, J−1
ii is also a diagonal matrix, whose diagonal elements

J−1
ii (k, k) = 1/J(κ, κ) with κ ≜

∑i−1
m=1 dm + k and k = 1, 2, · · · , di. For the κ-th row of |B|,
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we have ∑
j ̸=κ

|B(κ, j)| =
∑
j∈Bi

dj∑
d=1

| − J−1
ii (k, k)Jij(k, d)|

=
∑
j∈Bi

dj∑
d=1

1

J(κ, κ)
|J(κ,

j−1∑
m=1

dm + d)|=
∑
j ̸=κ

1

J(κ, κ)
|J(κ, j)|. (12)

The last equality is due to Jij = 0 for j /∈ Bi ∪ i. If J is a diagonally dominant matrix,

then
∑

j ̸=κ |J(κ, j)| < J(κ, κ), which implies
∑

j ̸=κ |B(κ, j)| =
∑

j ̸=κ 1/J(κ, κ)|J(κ, j)| < 1.

Therefore, we obtain ∥|B|∥∞ < 1. Since ρ(|B|) is less than any induced matrix norm [35,

Proposition A.20], we obtain ρ(|B|) < 1, which leads to convergence of VMP under any valid

message schedule.

Proposition 3 Walk-Summability: If J is walk-summable with di = 1 for all i = 1, 2, · · · , n,

VMP on Gaussian graphical model converges under any valid message schedule.

Proof: Since any Gaussian model can be normalized easily with J(i, i) = 1, it leads to

J = I−R, where R has zero diagonal elements and off-diagonal elements such that R(i, j) =

−J(i, j). The walk-summability implies that ρ(|R|) < 1 [16]. On the other hand, when di = 1

for all i = 1, 2, · · · , n, the iteration matrix B has the element B(i, k) = −J(i, k)/J(i, i). Due to

J(i, i) = 1, we have B(i, k) = −J(i, k). Thus we obtain B = R. If ρ(|R|) < 1, then ρ(|B|) < 1,

which leads to convergence of VMP under any valid message schedule.

Propositions 2 and 3 reveal that there are some subclasses of Gaussian graphical models where

VMP always converge no matter what message passing schedule we use as long as it is a valid

one. Then, by Theorem 1, the correct marginal mean vectors can be obtained in these cases. But

as B is dictated by the system setting and usually not under our control, a natural question is

if ρ(|B|) < 1 is not satisfied, is there any way to construct the message passing schedules such

that the VMP converges. Next two subsections would be dedicated to this question.

B. Basic Serial Schedule

The most basic form of serial schedule is to update one of {q(t)i (xi)}ni=1 at each iteration,

and {q(t)i (xi)}ni=1 are updated cyclically. Without loss of generality, we consider St = {k|k =

mod(t, n)} and τ ik(t − 1) = t − 1 for all t ≥ 1, where mod(t, n) means the modulus of t with

respect to n. It is noted that the update of {q(t)i (xi)}ni=1 in the basic serial schedule can be viewed

as the result of a coordinate descent algorithm in functional form for finding the minimum of
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the KL divergence in (4). Thus {q(t)i (xi)}ni=1 converge to a local optimum of the KL divergence

[27] as t → ∞, which equivalently implies that the mean vectors {µ(t)
i }ni=1 in (8) converge in

the basic serial schedule. Further with Theorem 1, the mean vector µ
(t)
i converges to the exact

mean vector of p(xi) for all i.

In the basic serial schedule, VMP is guaranteed to converge no matter how many components

the random vector x is partitioned. However, given a vector variable x of length N , the larger

number of subvectors, the longer an update cycle would be. On the other hand, as the compu-

tational complexity at each update step is cubic with respect to the dimension di for the update

of µ(t)
i using (8), there exists a trade-off between the complexity of updating the mean of each

subvector and the number of update steps in an update cycle. For example, taking n = 1 means

there is no partitioning of the vector x (this case actually is equivalent to direct matrix inversion

method), while taking n = N means the vector x is partitioned such that each component is

a scalar. Convergence is guaranteed under the basic serial schedule for both partitions, but the

number of update steps in a cycle is 1 in the former case and N in the latter case. On the other

hand, each update step for the former case requires a matrix inversion of size N × N , while

there is no matrix inverse in the latter case.

Notice that as the indexing of different subvectors is arbitrary, the above conclusion is valid

for any cyclic update schedule being a permutation of {1, 2, · · · , n}. In fact, it allows different

update orders at different update cycles, as long as each of the {xi}ni=1 is updated once in each

cycle. However, no matter what update order we choose in a cycle, since only one component

of {qi(xi)}ni=1 is updated at a time in the basic serial schedule, it is not difficult to figure that

the convergence of VMP could be slow. Each node would wait a long time for other nodes’

update, which is not efficient in large-scale distributed networks. To speed up the convergence,

we introduce a group serial schedule in the next subsection.

C. Group Serial Schedule

In certain applications, e.g., peer-to-peer rating and distributed localization, how x is parti-

tioned into xi is governed by the system setting, and not under our control. In this case, we

wonder if there is any update schedule that is faster than the basic serial schedule but still

guarantees VMP convergence. To design such schedule, we first define a new class of schedule,

called group serial schedule as follows.



13

Definition 2 Group Serial Schedule: All the subvectors {xi}ni=1 are divided into multiple groups,

and only the variational distributions of subvectors belonging to the same group would be

updated at the same time, while the variational distributions of subvectors in different groups

are updated alternatively in a cyclic manner.

Note that the basic serial schedule can be viewed as a special case of group serial schedule

with n groups, where each group only contains one subvector. In group serial schedule, there

exist many different choices of grouping of {xi}ni=1. However, not all groupings guarantee VMP

convergence. Thus the key problem is to identify a rule to group the subvectors {xi}ni=1 such

that VMP is convergent.

Recognizing that in VMP with basic serial schedule, the update of qi(xi) minimizes the KL

divergence in (4) when other {qk(xk)}k ̸=i are fixed, thus we have the monotonically decreasing

property: DKL(
∏n

k=1 q
(t)
k (xk)||p(x)) ≤ DKL(

∏n
k=1 q

(t−1)
k (xk)||p(x)) for all t ≥ 1. Inspired by

this underlying principle in the basic serial schedule, we propose a subclass of group serial

schedule that guarantees the KL divergence in (4) monotonically decreases.

Suppose that all the {xi}ni=1 are divided into m groups with the indices of nodes belonging

the j-th group collected by Cj , where xi belongs to the j-th group if and only if i ∈ Cj . If

the grouping is constructed such that the random variables within each group are conditionally

independent when the variables in other groups are observed, we have the following conclusion.

Theorem 2 Convergence Guaranteed Group Serial Schedule: In a group serial schedule with

the random variables within a group being conditionally independent when variables in other

groups are observed, {µ(t)
i }ni=1 in (8) converge to the exact marginal mean vectors of {p(xi)}ni=1

for any initialization µ
(0)
i ∈ Rdi when t→ ∞.

Proof: Since all random variables within each group are conditionally independent, for any

i ∈ Cj , we have Bi∩Cj = ∅. In other words, the direct neighbours of xi will not be put in the set Cj
if i ∈ Cj . This also implies that the update equation of q(t)i (xi) in (6) with i ∈ Cj does not depend

on q(t−1)
k (xk) for k ∈ Cj . Thus, minimizing the function DKL(

∏
i∈Cj qi(xi)

∏
k/∈Cj q

(t−1)
k (xk)||p(x))

with respect to {qi(xi)}i∈Cj at the same time is equivalent to minimizing the function DKL(qi(xi)
∏

k∈Cj\{i} q
(t)
k (xk)

∏
k/∈Cj q

(t−1)
k (xk)||p(x))

with respect to {qi(xi)}i∈Cj one at a time. Since basic serial update is convergent, group serial

update is also convergent. Further with Theorem 1, {µ(t)
i }ni=1 converge to the exact marginal

mean vectors when t→ ∞.
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Theorem 2 gives a desired group serial schedule that guarantees the convergence of {µ(t)
i }ni=1.

The key task is to divide all the subvectors into multiple groups such that all random variables

corresponding to each group are conditionally independent when variables in other groups are

observed. This can be viewed as a graph coloring problem, in which each node denotes a variable

of xi with i ∈ {1, 2, · · · , n} and no two adjacent nodes are of the same color. In the view of

graph coloring, there exists a minimum group number, which may be hard to find. While having

the minimum number of groups would speed up the convergence, it is not required to find the

optimal group number in the proposed group serial schedule. Thus some heuristic algorithms

[38] for graph coloring can be applied to find the groups {Cj}mj=1 easily.

Remark: Note that serial message schedule and group serial schedule are also convergence

guaranteed for VMP in non-Gaussian models, such as those in localization application [29], [36],

[37]. Especially, the group serial schedule is a modification to the basic serial schedule that can

be adopted easily. This opens up many opportunities in speeding up VMP in a wide range of

applications.

IV. VMP CONVERGENCE CONDITIONS IN PARALLEL AND RANDOMIZED MESSAGE

SCHEDULES

Although group serial schedule improves the convergence speed from the basic serial schedule,

in each time instant, there are only a small number of nodes (compared to the total number of

nodes) in the graphical model are being updated. This is especially true if the average number of

direct neighbors of each node is large, leading to a substantial number of groups. If we can update

all the nodes at every iteration, it is expected the convergence speed would be fast. However, in

general parallel update, there is no guarantee of convergence of VMP. In this section, we derive

the convergence conditions for parallel update schedule and its variants.

A. Parallel Schedule

In parallel schedule, all {q(t)i (xi)}ni=1 are updated at each iteration and each update is based on

the latest updated result from the last iteration, which means St ≜ {1, 2, · · · , n} and τ ik(t−1) =

t−1 for all i, k and t ≥ 1. It can be interpreted as an extreme form of group serial schedule where

there is only one group and it contains all variables. However, since parallel schedule does not

satisfy the conditionally independent requirement in Theorem 2, it does not necessarily converges.

To derive the convergence condition of parallel schedule, we notice that the corresponding update
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equation for µ(t) ≜ [µ
(t)T
1 ,µ

(t)T
2 , · · · ,µ(t)T

n ]T is given by µ(t) = Bµ(t) + d, i.e., (11), the

convergence condition is presented in the following proposition.

Proposition 4 Necessary and Sufficient Convergence Condition in Parallel Schedule: {µ(t)
i }ni=1

converge to the exact marginal mean vectors of {p(xi)}ni=1 for any initialization µ
(0)
i ∈ Rdi in

parallel schedule if and only if ρ(B) < 1.

Proof: For the linear update equation in (11), using [35, Proposition 2.6.1], µ(t) converges

for any initialization µ(0) ∈ RN if and only if ρ(B) < 1. If µ(t) converges, further with Theorem

1, we obtain that {µ(t)} in parallel schedule would converge to the exact marginal mean vectors.

Proposition 4 gives the necessary and sufficient convergence condition of VMP under parallel

schedule. Due to the general property that ρ(B) ≤ ρ(|B|), we have ρ(B) < 1 if ρ(|B|) < 1.

This indicates that the convergence condition of VMP in parallel schedule is less stringent than

that for any valid schedule.

B. Parallel Schedule with Damping

VMP in parallel schedule would diverge if ρ(B) ≥ 1. To improve the convergence of VMP

in parallel schedule, we could introduce damping, which modifies the update equation of µ(t)

in (11) as

µ(t) = r(Bµ(t−1) + d) + (1− r)µ(t−1)

= (rB+ (1− r)I)µ(t−1) + rd, (13)

where r ̸= 0 is a damping factor. For the update equation of µ(t) in (13), it has a similar form as

the update equation in parallel schedule. Therefore, using [35, Proposition 2.6.1], we obtain that

the damped µ(t) converges for any initialization µ(0) ∈ RN if and only if ρ(rB+ (1− r)I) < 1.

Moreover, the converged value µ(∞) in damped VMP should satisfy (13), i.e.,

µ(∞) = (rB+ (1− r)I)µ(∞) + rd, (14)

which can be rewritten as

r((B− I)µ∞ + d) = 0. (15)

Since r ̸= 0, we must have (B − I)µ(∞) + d = 0, which is equivalent to µ(∞) = Bµ(∞) + d.

This implies that the converged vector µ(∞) in damped VMP is the same as that in parallel
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schedule. Therefore, the damped µ(t) converges to the exact marginal mean vector if and only if

ρ(rB+ (1− r)I) < 1. In the following proposition, the appropriate value of the damping factor

r is derived.

Proposition 5 Necessary and Sufficient Convergence of Damped Mean Vector: The damped

µ(t) converges to the exact mean vector of p(x) for any initialization µ(0) ∈ RN if and only if

there exists a damping factor r such that

r ∈


( 2
1−max

k
λk
, 0) if λk > 1 for all k = 1, 2, · · · , N,

(0, 2
1−min

k
λk
) if λk < 1 for all k = 1, 2, · · · , N,

where λk is the k-th eigenvalue of the matrix B.

Proof: First, we prove that the eigenvalues {λk} of B are real numbers. For notational

convenience, we denote a block matrix D ≜ [blkdiag(J11,J22, · · · ,Jnn)]
−1. The matrix B can be

rewritten as B = I−DJ. Let λ̄k and v̄k be the k-th eigenvalue and the corresponding eigenvector

of DJ, respectively. Then we have DJv̄k = λ̄kv̄k. If both sides of this equation are multiplied by

D− 1
2 , we obtain D

1
2Jv̄k = λ̄kD

− 1
2 v̄k, which can be rewritten as D

1
2JD

1
2D− 1

2 v̄k = λ̄kD
− 1

2 v̄k.

Thus, λ̄k and D− 1
2 v̄k can be viewed as the eigenvalue and the corresponding eigenvector of

D
1
2JD

1
2 . With the block diagonal structure of D and a positive-definite matrix J, it could be

easily verified that the matrix D
1
2JD

1
2 is symmetric. Therefore, the matrix D

1
2JD

1
2 only has

real eigenvalues, which implies that {λ̄k} are real numbers. Since {λ̄k} are also the eigenvalues

of DJ, we obtain that the matrix DJ only has real eigenvalues. With B = I−DJ, we have the

eigenvalues of B as λk = 1 − λ̄k for k = 1, 2, · · · , n. Since {λ̄k} are real numbers, {λk} are

also real numbers.

On the other hand, we obtain the k-th eigenvalue of rB + (1 − r)I as rλk + (1 − r). The

condition ρ(rB + (1 − r)I) < 1 is satisfied if and only if |rλk + (1 − r)| < 1, or equivalently

(rλk+(1−r))2 < 1, for all k. Directly solving the inequality, we obtain the following results: a)

If λk > 1, 2
1−λk

< r < 0. b) If λk = 1, r = ∅. c) If λk < 1, 0 < r < 2
1−λk

. Therefore, if λk > 1

for all k = 1, 2, · · · , n, in order to guarantee convergence, the damping factor should satisfy

r ∈ (max
k

2
1−λk

, 0). Since 2
1−λk

is an increasing function when λk > 1, max
k

2
1−λk

= 2
1−max

k
λk

. If

λk < 1 for all k = 1, 2, · · · , n, in order to guarantee convergence, the damping factor should

satisfy r ∈ (0,min
k

2
1−λk

). Since 2
1−λk

is an increasing function when λk < 1, min
k

2
1−λk

= 2
1−min

k
λk

.

Otherwise, the damping factor that guarantee convergence does not exist.



17

From Proposition 5, even when VMP in parallel schedule diverges, damped VMP will converge

if the feasible set of damping factor is non-empty. In fact, Proposition 5 is a generalization of

Proposition 4 since ρ(B) < 1 implies −1 < λk < 1 for all k. According to Proposition 5, the

allowable damping factor r ∈ (0, 2
1−min

k
λk
). Due to −1 < λk < 1 for all k = 1, 2, · · · , n, we

obtain 2
1−min

k
λk
> 1. Thus (0, 1] is a subset of (0, 2

1−min
k

λk
), and r = 1 is always included in the

set of allowable damping factors. The above analysis also indicates that the damping factor r is

not limited to the classical damping assumption r ∈ (0, 1).

C. Randomized Schedule as a Probabilistic Damping

Note that damping could improve the VMP convergence under parallel schedule but requires all

the components {q(t)i (xi)}ni=1 being updated at each iteration. This leads to frequent computation

and communication for each node, which is not efficient if these nodes have different local

computation and communication resources. To reduce the computation burden of some nodes or

allow some nodes update more frequently than the others, we propose a randomized schedule,

which allows each node to independently update or not update the message with a predefined

probability. If one node does not update the message at an iteration, there is no need to retransmit

old messages to neighboring nodes at this iteration, which reduces the communication overhead

of the whole network as well as the computational complexity.

In particular, in randomized schedule, whether q(t)i (xi) is updated at the t-th iteration is deter-

mined by a Bernoulli random variable ψ(t)
i , where Pr(ψ(t)

i = 1) = pi and Pr(ψ(t)
i = 0) = 1− pi

with pi ∈ (0, 1]. If ψ(t)
i = 1, then i ∈ St and q

(t)
i (xi) will be updated. Otherwise, q(t)i (xi)

will be maintained as q
(t)
i (xi) = q

(t−1)
i (xi). Furthermore, if pi = 1 for all i = 1, 2, · · · , n,

randomized schedule reduces to parallel schedule. According to the strong law of large numbers,

Pr(limT→∞
∑T

t=1 ISt(i) → ∞) = 1. This implies that randomized schedule is a valid message

passing schedule with probability 1.

Under randomized schedule, the update equation of µ(t)
i can be written as

µ
(t)
i =ψ

(t)
i (J−1

ii hi−
∑

k∈Bi

J−1
ii Jikµ

(t−1)
k )+(1−ψ(t)

i )µ
(t−1)
i , (16)

from which we obtain the update equation of µ(t) as

µ(t) = Ψ(t)(Bµ(t−1) + d) + (I−Ψ(t))µ(t−1), (17)

where Ψ(t) ≜ blkdiag(ψ(t)
1 I1, ψ

(t)
2 I2, · · · , ψ(t)

n In) and Ik is a dk × dk identity matrix. Since the

update equation of µ(t) in (17) includes random variables, µ(t) becomes a random sequence.
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Therefore, the convergence needs to be defined probabilistically. In this paper, we study the

expectation convergence and mean-square convergence of µ(t) as follows.

Proposition 6 Necessary and Sufficient Convergence Condition of Randomized Schedule in

Expectation Sense: In randomized schedule, the expectation E{Ψ(k)}tk=1
[µ(t)] converge to the

exact marginal mean vector for any initialization µ(0) ∈ RN if and only if ρ (PB+ I−P) < 1,

where P = blkdiag(p1I1, p2I2, · · · , pnIn).

Proof: See Appendix B.

Comparing randomized schedule and parallel schedule with damping, we can see that ran-

domized schedule can be interpreted as a probabilistic damping. However, parallel schedule

with damping only uses one r to damp the update schedule while randomized schedule uses

a dedicated “damping” factor pi for xi. If we choose to use a single probability for all pi in

randomized schedule, the appropriate update probability to ensure expectation convergence can

be computed using the second case of Proposition 5 since the message update probability has

to take positive values.

Proposition 7 Necessary and Sufficient Convergence Condition of Randomized Schedule in

Mean-Square Sense: In randomized schedule, µ(t) converges to the exact marginal mean vector

in mean-square sense for any initialization µ(0) ∈ RN if and only if ρ(Φ) < 1, where Φ ≜

blkdiag(I1 ⊗ Γ1, I2 ⊗ Γ2, · · · , In ⊗ Γn)((B − I) ⊗ (B − I)) + (PB − P) ⊗ I + I ⊗ (PB −

P) + I⊗ I. In the above expression, Γk is a N ×N diagonal matrix with the nonzero elements

Γk(i, i) = pk for all i = 1 +
∑k−1

k′=1 dk′ , · · · ,
∑k

k′=1 dk′ and otherwise Γk(i, i) = pkpj with

i = 1 +
∑j−1

k′=1 dk′ , · · · ,
∑j

k′=1 dk′ and j ̸= k.

Proof: See Appendix C.

V. CONVERGENCE RATE ANALYSIS AND SUMMARY

A. Convergence Rate

Note that basic serial schedule, group serial schedule, parallel schedule, and damped parallel

schedule use a periodic update of {µ(t)
i }ni=1. In particular, for the basic serial schedule, if node

i is updated using (8) at time t, the update equation can be written as

µ(t) = A(i)µ(t−1) + c(i), (18)
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where A(i) is a block matrix with the nonzero block elements A
(i)
kk = Idk for k ̸= i and

A
(i)
ij = −J−1

ii Jij for j ∈ Bi, and c(i) is a block vector with a nonzero block c
(i)
i = J−1

ii hi. If we

focus on µ(t) after every n updates (i.e., at t = n(l − 1)-th iteration with l ∈ N+), the update

equation of µ(t) at the (t = nl)-th iteration can be written as

µ(nl)=
n∏

i=1

A(n−i+1)µ(n(l−1))+
n∑

i=1

n∏
k>i

A(n−k+i+1)c(i). (19)

Similarly, for the group serial schedule, the one step update (8) can be written as

µ(t) = E(j)µ(t−1) + p(j) (20)

where the block matrix E(j) has the nonzero blocks E
(j)
ik = −J−1

ii Jik for i ∈ Cj , k ∈ Bi and

E
(j)
ii = I for i /∈ Cj , and the block vector p(j) has the nonzero blocks p

(j)
i = Jiihi for i ∈ Cj . If

we focus on t being a multiple of m, i.e., t = ml with l ∈ N+, we have

µ(ml) =
m∏
j=1

E(m−j+1)µ(m(l−1)) +
m∑
j=1

m∏
k>j

E(m+j−k+1)p(j). (21)

Generalizing from (19) and (21), the update equation with any periodic schedule can be written

as

µ(T l) = ΞTµ
(T (l−1)) + qT , (22)

for some ΞT and qT , where T denotes the period of a serial update. Note that parallel schedule

can be seen as a periodic update with T = 1. Furthermore, the damped parallel schedule update

equation (13) is also in the same form of the periodic update equation in (22). With the update

equation (22), if it converges, it is shown in the following proposition that the mean vector µ(T l)

for l ∈ N+ converges at a linear rate.

Proposition 8 Linear Convergence Rate in Periodic Update Schedule: For the VMP periodic

update schedule described by (22), if it converges, µ(T l) for l ∈ N+ converge linearly to the

exact marginal mean vectors when l → ∞.

Proof: If the VMP converges, according to Theorem 1, liml→∞µ(T l) = limt→∞ µ(t) = µ∗ =

J−1h. Moreover, µ∗ satisfies the equality in (22), i.e.,

µ∗ = ΞTµ
∗ + qT . (23)

Taking the difference between (22) and (23), we obtain

µ(T l) − µ∗ = ΞT (µ
(T (l−1)) − µ∗). (24)
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As we assume the VMP converges, we must have ρ(ΞT ) < 1, and there exists a matrix norm

∥·∥ such that ∥ΞT∥ < 1. Taking such a norm on both sides of (24), we get ∥µ(T l) − µ∗∥ ≤

∥ΞT∥∥µ(T (l−1)) − µ∗∥. Thus we obtain

lim
l→∞

∥µ(T l) − µ∗∥
∥µ(T (l−1)) − µ∗∥

≤ ∥ΞT∥ < 1, (25)

which indicates that µ(T l) for l ∈ N+ converges linearly to µ∗.

Using Proposition 8, we can conclude that VMP in basic serial schedule, group serial schedule,

parallel schedule and damped parallel schedule all converge linearly to the true marginal mean

of p(xi) for all i. On the other hand, for the probabilistic schedule, since its update equation

(17) after expectation would in the form of (22), Proposition 8 indicates that the expectation of

VMP under the randomized schedule converges linearly.

For damped VMP, when the allowable set of r in Proposition 5 is non-empty, one may wonder

is there any r that is more favorable than others? The following proposition gives an answer.

Proposition 9 Faster Convergence: When the damping factor set is non-empty, damping factor

r that leads to a smaller ∥rB+ (1− r)I∥2 has a lower convergence upper bound.

Proof: Taking the difference between (13) and (14), we have µ(t) − µ(∞) = (rB + (1 −

r)I)(µ(t−1)−µ(∞)). Thus we can obtain µ(t)−µ(∞) = (rB+(1−r)I)t(µ(0)−µ(∞)). Applying ℓ2

norm to the above equation, and using the property ∥Ax∥2 ≤ ∥A∥2∥x∥2, we have ∥µ(t)−µ(∞)∥2
∥µ(0)−µ(∞)∥2

≤

∥rB + (1 − r)I∥t2. Therefore, if r is chosen such that ∥rB + (1 − r)I∥2 is smaller, the upper

bound of ∥µ(t) − µ(∞))∥2 will converge to zero faster.

Proposition 9 indicates that we should choose a r that leads to the smallest ∥rB+ (1− r)I∥2
to ensure the fastest decrease of the convergence bound. Furthermore, even parallel schedule is

valid (i.e., r = 1 is inside the allowable set of r according to Proposition 5), it is worthwhile to

explore if there is a r that leads to smaller ∥rB + (1 − r)I∥2 such that the convergence speed

is faster. Therefore, damped VMP not only has the potential for converting a non-convergent

parallel schedule to a convergent one, by properly choosing the damping factor r, the convergence

speed can also be accelerated. Since ∥rB + (1 − r)I∥22 is a quadratic function with respect to

r, the r that leads to the minimum ∥rB + (1 − r)I∥2 can be easily found. More evidence and

discussion will be provided in the simulation section.
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Table I: A summary of convergence conditions for VMP in different message schedules.

Schedule Convergence Condition Sufficiency or

Necessary

Any valid schedule

Any one of the following conditions is satisfied:

sufficiency
(1) ρ(|B|) < 1

(2) J is diagonally dominant with Jii being diagonal matrices (Proposition 2)

(3) J is walk-summable (Proposition 3)

Basic serial schedule Convergence guaranteed unconditionally -

Group serial schedule
Any group of variables being conditionally independent when variables in other

-
groups are observed (Theorem 2)

Parallel schedule ρ(B) < 1 (Proposition 4) both

Parallel schedule

with damping

ρ(rB+ (1− r)I) < 1 (Proposition 5) both

Randomized schedule
Expectation convergence: ρ (PB+ I−P) < 1 (Proposition 6)

both
Mean-square convergence: ρ(Φ) < 1 (Proposition 7)

B. Summary of the Studied Schedules

In summary, three categories of message schedules, including serial, parallel, and randomized

message schedules, are described for VMP and their convergence properties are analyzed. A

comparison of message schedules and their convergence conditions is further illustrated in Table

I. Here are some suggestions for choosing a proper message schedule of VMP in practice. If

the convergence condition of VMP in damped parallel schedule is satisfied, damped parallel

schedule is preferred due to its fast convergence (further optimizing the damping factor r to

accelerate the convergence is possible). If the allowable damping factors include positive values

in the range (0, 1], we could replace damped parallel schedule by randomized schedule. This

would save communication overhead and computational complexity compared to damped VMP,

but the convergence speed may not be as fast as that of damped parallel schedule if the optimal

r in damped parallel schedule is a negative value. If VMP diverges in parallel schedule with

damping and randomized schedule, we can at least adopt serial schedule for VMP. A group serial

schedule with all random variables within each message group being conditionally independent

when other groups of variables are observed guarantees the convergence of VMP, and accelerates

the convergence compared to the basic serial schedule. Finally, if VMP converges in any of these

schedules, it is guaranteed to converge to the exact marginal mean vectors.

The complexity of VMP depends on the mean vector update of the variational marginal
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Fig. 1. An example of Gaussian Markov random field.

distributions, and requires d3i +(2|Bi|+1)d2i multiplications and |Bi| additions for each variable

xi ∈ Rdi . For different schedules, the variables will be updated in different orders or probabilities.

Therefore, different schedules have the same complexity for each variable update, and their

complexities differ only in the number of iteration to reach convergence. Furthermore, according

to the complexity of AMP-type algorithms analyzed in [23, Table II], VMP has a similar

complexity as AMP and the Bayes optimal memory AMP.

VI. NUMERICAL RESULTS AND APPLICATIONS

A. Gaussian Markov Random Field

Consider a Gaussian Markov random field as shown in Fig. 1. The corresponding information

matrix J has ones along its diagonal and the (i, j)-th position being the coefficient on the link

between xi and xj . If there is no link between xi and xj , the corresponding position in J is zero.

It can be verified that such a J is positive-definite if −0.4550 ≤ γ ≤ 0.3892. In the following,

we take γ = 0.2, 0.36,−0.4 as examples. As each variable in Fig. 1 is a scalar, we have dk = 1.

Moreover, we consider h = [1, 1, 1, 1, 1]T and the initialization µ(0) = [0, 0, 0, 0, 0]T . In group

serial schedule, the nodes in Fig. 1 with the same color belong to the same group. These partition

groups satisfy the condition that all variables in each group are conditionally independent when

the variables in other groups are observed. According to Theorem 2, the VMP under group serial

schedule would converge and the means of the converged variational distributions are the exact

marginal means. It can be verified that rB + (1 − r)I is a Hermitian matrix for any r, which

leads to ∥rB+(1− r)I∥2 = ρ(rB+(1− r)I). The relative error e(t) = ∥µ(t)−µ∗∥2
∥µ∗∥2 from the true
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Fig. 2. Spectral radii versus damping factor r or update probability pi when γ = 0.2.

marginal mean is used to measure the correctness and convergence of µ(t) in different schedules.

Further illustrations and discussions are as follows.

1) γ = 0.2: Since J is a diagonally dominant matrix when γ = 0.2, according to Proposition

2, we must have ρ(|B|) < 1, which is further verified in Fig. 2. Together with Theorem 1,

the mean vectors obtained by (8) would converge under any valid message schedule. Therefore,

VMP in basic serial schedule (denoted by Basic Serial VMP), group serial schedule (denoted

by Group Serial VMP), parallel schedule (denoted by Parallel VMP) and randomized schedule

(denoted by Randomized VMP) all converge. Various spectral radii required for convergence

verification listed in Table I are also shown in Fig. 2, and it can be seen that all spectral radii

are smaller than one.

The relative errors of µ(t) obtained from VMP under different update schedules are shown

in Fig. 3. It can be seen that all considered schedules have their relative errors decrease to
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Fig. 3. Relative error e(t) when γ = 0.2.

very small value when iteration number increases, showing they converge, with the basic serial

schedule converges the slowest while the parallel schedule converges the fastest. In between,

we have the group serial schedule improves on the basic serial schedule, but still slower than

damped parallel schedule and randomized schedule. Furthermore, it is observed that the damped

VMP with optimal r = 1.04 (identified from Fig. 2 with the smallest spectral radius) converges

faster than parallel schedule without damping. Gaussian BP converges much faster than all VMP

schedules because Gaussian BP updates both the mean vector and covariance in each iteration,

while VMP only updates the mean vector. Note that Gaussian BP is guaranteed to converge in this

setting, as J being diagonally dominant is a sufficient condition for Gaussian BP convergence.

2) γ = 0.36: From Fig. 4, it is observed that ρ(|B|) > 1 in this setting, thus VMP does not

necessarily converge given any valid message schedule. But fortunately, ρ(B) < 1 in this case, so

VMP would converge in parallel schedule. Furthermore, Fig. 4 shows that both the expectation

and mean-square convergence conditions for randomized VMP are satisfied for any p ∈ (0, 1].
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Fig. 4. Spectral radii versus damping factor r or update probability pi when γ = 0.36.

The convergence of VMP under various schedules is numerically verified in Fig. 5. Notice that

with a direct verification, the necessary and sufficient convergence condition of Gaussian BP in

[18, Theorem 1] is not satisfied. This explains that Gaussian BP diverges in Fig. 5.

3) γ = −0.4: In Fig. 6, since ρ(|B|) > 1, VMP may not be guaranteed to converge in any

valid message schedule. Moreover, since ρ(B) > 1 in this case, according to Proposition 4,

parallel VMP will diverge. Fortunately, from Fig. 6, we can see that there is a wide range of pi

or r that would make the corresponding spectral radii smaller than one. This means that parallel

schedule with damping or randomized schedule would converge if we choose the damping factor

or the update probability properly. In particular, according to Proposition 5, the range of r that

make the damped VMP convergent is r ∈ (0, 0.9864). For randomized VMP, Fig. 6 indicates

that the expectation convergence requires p ∈ (0, 0.9864) and the mean-square convergence

requires p ∈ (0, 0.9815). The convergence behaviors of VMP under various schedules are further
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Fig. 5. Relative error e(t) when γ = 0.36.

demonstrated in Fig. 7, which is consistent with that predicted by the theories. Notice that through

numerical calculation, the necessary and sufficient convergence condition of Gaussian BP in [18,

Theorem 1] is not satisfied. Thus Gaussian BP does not converge in Fig. 7.

B. Distributed Peer-to-Peer Rating

In social networks, the ratings on product items are likely to affect users’ choices. We may

share our ratings on certain items while at the same time affected by the ratings posted by others.

This corresponds to the peer-to-peer rating problem in (1), whose solution can be obtained by

computing the marginal means of p(x) in (2). Thus the peer-to-peer rating problem can be solved

by VMP.

To illustrate this application, we generate a network with n = 100, di = 2, ωik being uniformly

distributed from 0 to 1 if there exists a relation between user i and user k and equaling to zero

otherwise, and 5% of users do not have initial ratings with αi = 0 while αi = 1 for other users.
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Fig. 6. Spectral radii versus damping factor r or update probability pi when γ = −0.4.

Fig. 8 shows an example network of peer-to-peer rating. In Fig. 8, different colors are used

to denote the node grouping in group serial schedule, where the nodes having the same color

belong to the same group. The grouping is obtained by using a graph coloring algorithm [38].

It can be directly verified that J for the network in Fig. 8 is a diagonally dominant matrix

with diagonal block matrices {Jii}ni=1. According to Proposition 2, we obtain ρ(|B|) < 1, which

implies that VMP converge in any valid message schedule. This is numerically verified in Fig. 9,

which shows the relative error of the estimated marginal mean vectors of VMP in different

schedules. In particular, since the network in Fig. 8 is large, basic serial schedule can be very

slow. Group serial schedule improves the convergence speed significantly, while the parallel

schedule without damping or with damping factor r = 1.03 converges faster. On the other hand,

for the damped parallel schedules, through direct computation, we obtain the allowable damping

factor r ∈ (0, 1.2294) according to Proposition 5, and the r that minimizes ∥rB + (1 − r)I∥2
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Fig. 7. Relative error e(t) when γ = −0.4.

is r = 1.03. From Fig. 9, it can be seen that the setting r = 0.75 converges slower than that

of r = 1.03, which verifies the prediction from Proposition 9. For the randomized schedule, we

considered two variations. The first one uses pi = 0.75 for all i, while the second one draws

each pi from uniform distribution between (0.5, 1). It is observed that randomized VMP schedule

with pi = 0.75 for all nodes converges almost at the same speed as that of the damped VMP.

Furthermore, it is found that randomized schedule with the same message update probability for

all nodes converges slightly faster than diverse message update probabilities among nodes.

C. Distributed Downlink Beamforming

Consider a cellular network of N cells, where users within a cell do not interfere with each

other and each particular channel is assigned to only one user. However, user interference may

come from other cells. It is assumed that intercell interference only comes from immediate
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Fig. 8. Peer-to-peer network and group partition.

neighboring cells. In distributed downlink beamforming, multiple base stations (BSs) cooperate

to transmit the information to multiple users.

The received signals of users can be written in a vector form

y = Hx+ n, (26)

where x ≜ [x1, x2, · · · , xN ]T ∈ CN with xn being the transmitted signal at BS n, y ≜

[y1, y2, · · · , yN ]T ∈ CN with yi being the recevied signal at user i, and n ≜ [n1, n2, · · · , nN ]
T ∈

CN with ni being the complex Gaussian noise with zero mean and variance σ2. The matrix

H ∈ CN×N denotes the downlink channel matrix with H(i, j) being the channel coefficient

from BS i to user j. For the complex-valued equation in (26), it is equivalent toℜ{y}
ℑ{y}


︸ ︷︷ ︸

ỹ

=

ℜ{H} −ℑ{H}

ℑ{H} ℜ{H}


︸ ︷︷ ︸

H̃

ℜ{x}
ℑ{x}


︸ ︷︷ ︸

x̃

+

ℜ{n}

ℑ{n}


︸ ︷︷ ︸

ñ

, (27)
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Fig. 9. Relative error e(t) of peer-to-peer rating application.

where ℜ{·} and ℑ{·} denotes the real part and imaginary part, respectively.

In the simulations, we consider a hexagonal network of N = 49 cells and the transmit beam-

former with the form KH̃T (H̃H̃T + βI)−1 [5]. Thus the transmitted signal x̃ = KH̃T (H̃H̃T +

βI)−1s̃, where s̃ = [ℜ{s}T ℑ{s}T ]T denotes the intended signal to users. Following [5], it is

assumed that {si}Ni=1 are i.i.d. complex Gaussian variables with zero mean and unit variance.

Moreover, in the simulations, we set K = 1 and β = N/SNR = 7, where SNR = Pt

σ2 = 7 with

Pt denotes the power constraint imposed on the transmit beamformer. Furthermore, H(i, j) is

a complex Gaussian variable with zero mean and unit variance if there exists a link between

BS i and user j. The VMP under different schedules will stop when the relative error is less

than 10−6 or the maximum iteration 10000 is achieved. The results in this section are obtained

through 10000 independent random channel realizations.

To illustrate the convergence probabilities and convergence speeds under different schedules,

Fig. 10 shows the cumulative distribution function (CDF) of minimum iteration number that
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guarantees e(t) < 10−6. As expected, VMP under basic serial schedule and group serial schedule

converge with 100% probability. Although VMP in parallel schedule and Gaussian BP could

converge faster than VMP in serial schedules, they only converge in less than 50% of the

trials. However, for the damped VMP with r = 0.95 or randomized VMP with pi = 0.95, they

increase the convergence probabilities significantly, albeit cannot reach 100%. On the other hand,

if damped VMP with r = 0.7 or randomized VMP with pi = 0.7 is used, it is observed that

both damped VMP and randomized VMP not only reach 100% convergence probability, but also

achieve much faster convergence speeds than parallel VMP. This is due to the proper selection

of the damping factor r that accelerates VMP convergence as discussed in Proposition 9 and

randomized VMP can be treated as probabilistic damped VMP. The simulation results clearly

show the trade-off between chance and speed of convergence in VMP under different message
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passing schedules

VII. CONCLUSIONS

In this paper, VMP was adopted to compute the marginal means in Gaussian graphical

models under different message update schedules. To establish the legitimacy of using VMP,

it was proved that if VMP converges, the means of the converged VMP are the exact marginal

means. In order to find the optimal variational marginal distributions, serial schedule, parallel

schedule and randomized schedule were applied to VMP. The VMP in basic serial schedule is

always guaranteed to converge but could be slow in convergence. To accelerate the VMP with

convergence guarantee, group serial schedule with all variables in each group being conditionally

independent when other groups of variables are observed was proposed. On the other hand,

parallel schedule updates each node’s message at each iteration, offering an efficient update

in distributed and large-scale networks. However, parallel schedule might not converge in a

particular Gaussian graphical model. To enlarge the class of models where parallel schedule

would converge, damping was applied, and a set of feasible damping factors was derived.

Furthermore, randomized schedule, where only a random subset of the variational marginal

distributions were updated in each iteration, was introduced to reduce the computation and

communication overheads. With the interpretation of probabilistic damping, the necessary and

sufficient convergence conditions of random schedule was established in expectation sense

and mean square sense. Numerical results and applications were presented to corroborate the

convergence properties of various schedules, illustrating the trade-offs between the speed and

ease of convergence.

APPENDIX

A. Proof of the transmitted symbol vector equivalent to the mean vector of a Gaussian model

The mean of a high-dimensional Gaussian distribution with J = HTH+ βI and h = KHT s

can be computed by

m = J−1h = (HTH+ βI)−1KHT s (28)

= Kβ−1(β−1HTH+ I)−1HT s. (29)
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According to Woodbury matrix identity (I + UV)−1U = U(I + VU)−1, by setting U = HT

and V = β−1H, we have

(β−1HTH+ I)−1HT = HT (β−1HHT + I)−1. (30)

By substituting (30) into (29), we obtain

m = Kβ−1HT (β−1HHT + I)−1s (31)

= KHT (HHT + βI)−1s, (32)

which is the downlink transmitted symbol vector in distributed beamforming in [5].

B. Proof of Proposition 6

From (11), we obtain the converged mean vector µ∗ = (I−B)−1d. It can easily verified that

µ∗ satisfies (17) as

µ∗ = Ψ(t)(Bµ∗ + d) + (I−Ψ(t))µ∗. (33)

Taking the difference between (17) and (33), we obtain

µ(t) − µ∗ =
(
Ψ(t)B+ I−Ψ(t)

) (
µ(t−1) − µ∗) (34)

=
∏t−1

k=0

(
Ψ(t−k)B+I−Ψ(t−k)

)(
µ(0)−µ∗) . (35)

Taking the expectation on both sides of (35), we get

E{Ψ(k)}tk=1

[
µ(t) − µ∗] = ∏t−1

k=0
EΨ(t−k)

[
Ψ(t−k)B+I−Ψ(t−k)

](
µ(0)−µ∗) . (36)

This is due to the i.i.d. property of {ψ(t)
i }ni=1 for all t. Since EΨ(t−k) [Ψ(t−k)B+I−Ψ(t−k)] =

EΨ(t−k) [Ψ(t−k)]B+I−EΨ(t−k) [Ψ(t−k)] and EΨ(t−k) [Ψ(t−k)] = P with P = blkdiag(p1I1, p2I2, · · · , pnIn),

we obtain EΨ(t−k) [Ψ(t−k)B+I−Ψ(t−k)] = PB+I−P. Further taking the limit on both sides of

(36), limt→∞ E{Ψ(k)}tk=1

[
µ(t)

]
−µ∗=limt→∞ (PB+I−P)t

(
µ(0)−µ∗). Therefore, limt→∞ E{Ψ(k)}tk=1

[
µ(t)

]
converges to µ∗ for any initialization µ(0) ∈ RN if and only if limt→∞ (PB+ I−P)t = 0, which

is satisfied if and only if ρ (PB+ I−P) < 1.
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C. Proof of Proposition 7

First, taking the difference between (17) and (33), we obtain

µ(t) − µ∗ =
(
Ψ(t)B+ I−Ψ(t)

) (
µ(t−1) − µ∗) . (37)

Denoting Ξ ≜ Ψ(t)B+ I−Ψ(t) and further taking the Kronecker product on both sides of (37),

we get

(µ(t) − µ∗)⊗ (µ(t) − µ∗) = (Ξ⊗Ξ)
(
(µ(t−1) − µ∗)⊗ (µ(t−1) − µ∗)

)
. (38)

Taking the expectation on both sides of (38) with respect to {Ψ(k)}tk=0, it leads to

E{Ψ(k)}tk=1

[(
µ(t) − µ∗)⊗ (

µ(t) − µ∗)] = EΨ(t)[Ξ⊗Ξ]E{Ψ(k)}t−1
k=1

[
(µ(t−1)−µ∗)⊗(µ(t−1)−µ∗)

]
,

(39)

where Ξ only depends on Ψ(t) and µ(t−1)−µ∗ depends on {Ψ(k)}t−1
k=1. Since the iterative equation

of E{Ψ(k)}tk=1
[(µ(t)−µ∗)⊗(µ(t)−µ∗)] in (39) is a linear equation, E{Ψ(k)}tk=1

[(µ(t)−µ∗)⊗(µ(t)−

µ∗)] converges to zero for any initialization µ(0) ∈ RN if and only if ρ(EΨ(t) [Ξ⊗Ξ]) < 1 [35,

Proposition 2.6.1].

Next, we prove that E{Ψ(k)}tk=1
[∥µ(t) − µ∗∥22] converges to zero for any initialization µ(0) ∈

RN if and only if E{Ψ(k)}tk=1
[(µ(t) − µ∗) ⊗ (µ(t) − µ∗)] converges to zero. On one hand, if

E{Ψ(k)}tk=1
[(µ(t) − µ∗) ⊗ (µ(t) − µ∗)] = 0, then E{Ψ(k)}tk=1

[(µ
(t)
i − µ∗

i )(µ
(t)
j − µ∗

j)] = 0 for all

i, j = 1, 2, · · · , N . By taking i = j, we obtain E{Ψ(k)}tk=1
[(µ

(t)
i −µ∗

i )
2] = 0 for all i = 1, 2, · · · , N ,

which implies E{Ψ(k)}tk=1
[∥µ(t)−µ∗∥2] = 0. On the other hand, if E{Ψ(k)}tk=1

[∥µ(t)−µ∗∥2] = 0, it

implies E{Ψ(k)}tk=1
[(µ

(t)
i −µ∗

i )
2] = 0 for all i = 1, 2, · · · , N . Using the Cauchy–Schwarz inequality,

we have |E{Ψ(k)}tk=1
[(µ

(t)
i −µ∗

i )(µ
(t)
j −µ∗

j)|2 ≤ E{Ψ(k)}tk=1
[(µ

(t)
i −µ∗

i )
2]E{Ψ(k)}tk=1

[(µ
(t)
j −µ∗

j)
2] = 0,

which implies E{Ψ(k)}tk=1
[(µ

(t)
i −µ∗

i )(µ
(t)
j −µ∗

j)] = 0. Therfore, we have E{Ψ(k)}tk=1
[(µ(t)−µ∗)⊗

(µ(t) − µ∗)] = 0.

With the results from the above two paragraphs, it can be concluded that E{Ψ(k)}tk=1
[∥µ(t) −

µ∗∥22] converges to zero for any initialization µ(0) ∈ RN if and only if ρ(EΨ(t) [Ξ⊗Ξ]) < 1,

i.e.,

ρ
(
EΨ(t)

[
(Ψ(t)B+I−Ψ(t))⊗(Ψ(t)B+I−Ψ(t))

])
< 1, (40)

where EΨ(t) [(Ψ(t)B + I − Ψ(t)) ⊗ (Ψ(t)B + I − Ψ(t))] = EΨ(t) [Ψ(t) ⊗ Ψ(t)]((B − I) ⊗ (B −

I))+ (EΨ(t) [Ψ(t)](B− I))⊗ I+ I⊗ (EΨ(t) [Ψ(t)](B− I))+ I⊗ I. Further, we obtain EΨ(t) [Ψ(t)⊗

Ψ(t)] = blkdiag(I1 ⊗ Γ1, I2 ⊗ Γ2, · · · , In ⊗ Γn), where Γk is a N × N diagonal matrix with



35

the nonzero elements Γk(i, i) = pk for all i = 1 +
∑k−1

k′=1 dk′ , · · · ,
∑k

k′=1 dk′ and otherwise

Γk(i, i) = pkpj with i = 1+
∑j−1

k′=1 dk′ , · · · ,
∑j

k′=1 dk′ and j ̸= k. Further with EΨ(t) [Ψ(t)] = P,

we get EΨ(t) [(Ψ(t)B+I−Ψ(t))⊗(Ψ(t)B+I−Ψ(t))] = blkdiag(I1⊗Γ1, I2⊗Γ2, · · · , In⊗Γn)((B−

I)⊗(B−I))+(PB−P)⊗I+I⊗(PB−P)+I⊗I. Therefore, E{Ψ(k)}tk=1
[∥µ(l)−µ∗∥22] converges to

zero for any initialization µ(0) ∈ RN if and only if ρ(blkdiag(I1⊗Γ1, I2⊗Γ2, · · · , In⊗Γn)((B−

I)⊗ (B− I)) + (PB−P)⊗ I+ I⊗ (PB−P) + I⊗ I) < 1.
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