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We show that a quantum correlation p is in a face of the nonsignaling polytope with no local points if and
only if p has nonlocal content 1, if and only if p allows for a Greenberger-Horne-Zeilinger-like proof, and if
and only if p provides a perfect strategy for a nonlocal game. That is, face nonsignaling (FNS) correlations, full
nonlocality (FN), all-versus-nothing (AVN) proofs, and pseudotelepathy (PT) are equivalent. This shows that
different resources behind a wide variety of fundamental results are in fact the same resource. We demonstrate
that quantum correlations with FNS = FN = AVN = PT do not need to maximally violate a tight Bell inequality.
We introduce a method for identifying quantum FNS = FN = AVN = PT correlations and use it to prove
quantum mechanics does not allow for FNS = FN = AVN = PT neither in the (3, 3; 3, 2) nor in the (3, 2; 3, 4)
Bell scenarios. This solves an open problem that, because of the FNS = FN = AVN = PT equivalence, has
implications in several fields.

DOI: 10.1103/PhysRevResearch.6.L042035

Introduction. Bell nonlocality, i.e., the violation of Bell
inequalities [1], is one of the most fundamental predictions
of quantum mechanics (QM). Quantum nonlocal correlations
have a wide scope of applications, ranging from secure com-
munication [2] and randomness amplification [3] to reduction
of communication complexity [4] and self-testing of quan-
tum devices [5]. However, not all Bell nonlocal correlations
are equally powerful. Specific tasks require specific types of
correlations. Hereafter, we will focus on four types that have
attracted interest for different reasons.

Face nonsignaling correlations. Consider a bipartite Bell
scenario (|X |, |A|; |Y |, |B|), where x ∈ X and y ∈ Y are Al-
ice’s and Bob’s measurement settings, respectively, and a ∈ A
and b ∈ B are Alice’s and Bob’s measurement outcomes. A
Bell nonlocal correlation p(a, b|x, y) in this scenario is a point
outside the set of local correlations (the local polytope) and
inside the set of correlations satisfying nonsignaling (NS) (the
NS polytope) [6]. Using the results in [7,8], it can be proven
that neither QM [9] nor any theory that assigns probabilities
to sharp observables can attain a nonlocal vertex of a NS
polytope. Still, quantum Bell nonlocal correlations can be in
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a face of the NS polytope. There are two possibilities [10]:
either the Bell nonlocal correlation is in a face that contains
local points [10], see Fig. 1(a), or it is in a face that does
not contain local points, see Fig. 1(b). The Bell nonlocal
correlations of the second type are called face nonsignaling
(FNS). Why are FNS correlations so important? Some reasons
are the following:

(i) Most quantum Bell nonlocal correlations can be
classically simulated either by relaxing the assumption of
measurement independence [11] (and admitting that some
measurement settings may depend on hidden variables) or
by relaxing the assumption of parameter independence [11]
(and admitting that some outcomes may depend on spacelike
separated settings). However, there are quantum Bell nonlocal
correlations that cannot be classically simulated unless both
assumptions are totally removed [12]. It can be proven that
these Bell nonlocal correlations must be FNS or arbitrarily
close to it [12].

(ii) FNS correlations are fundamental for identifying the
principle that bounds quantum correlations [13], since a way
to obtain the quantum bounds is by noticing that the studied
scenario may be naturally linked to a larger scenario in which
QM allows for FNS correlations that imply bounds on the
smaller scenario [14,15].

(iii) FNS correlations opened up the possibility of perfect
randomness from seeds with arbitrarily weak randomness
[16].

Full nonlocality. One of the most widely used measures
of Bell nonlocality is the nonlocal content [22]. Given a NS
correlation p(a, b|x, y), consider all possible decompositions
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FIG. 1. (a) In the (2, 2; 2, 2) Bell scenario, pCHSH(a, b|x, y) is
the quantum correlations that maximally violates the Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality [17]. pCHSH(a, b|x, y) is far
from the faces of the NS polytope. pH(a, b|x, y) is the correlation
that corresponds to the optimal proof of Bell nonlocality of Hardy
[18]. pH(a, b|x, y) in a face of the NS polytope that contains a local
point [10]. (b) In the (3, 4; 3, 4) Bell scenario, there is a correlation
p(a, b|x, y) [19,20] that is in a face of the NS polytope that has no
local points [21].

of the form

p(a, b|x, y) = qL pL(a, b|x, y) + (1 − qL)pNL(a, b|x, y), (1)

in terms of local correlations pL(a, b|x, y) and Bell nonlocal
NS correlations pNL(a, b|x, y), with respective weights qL and
1 − qL, with 0 � qL � 1. The local content or local fraction
qmax

L of p(a, b|x, y) is the maximum local weight over all de-
compositions of the form (1). That is, qmax

L
.= max{pL,pNL} qL.

The nonlocal content is qmin
NL

.= 1 − qmax
L . The correlation is

local if and only if qmin
NL = 0. The correlation is said to have full

nonlocality (FN) [21] or strong nonlocality [23] if qmin
NL = 1.

For example, the maximum quantum violation of the CHSH
Bell inequality [17] has qmin

NL = √
2 − 1 ≈ 0.414.

FN is necessary for some quantum information tasks. For
example: (I) Improving the number of classical messages
that can be sent without error through a single use of a
classical channel [24], (II) device-independent quantum key
distribution (DI-QKD) based on perfect correlations [25], (III)
DI-QKD based on the magic square game [26], and (IV) some
types of DI-QKD based on parallel repetition [27,28].

All-versus-nothing proofs. The Einstein-Podolsky-Rosen
[29] argument suggesting the possibility of completing QM
with local hidden variables (LHVs) was based on perfect
correlations that allows the parties to predict with certainty
the outcome of the measurement of a distant party. For this
reason, the proofs of Bell’s theorem of impossibility of LHVs
that only use perfect correlations have a special status in foun-
dations of QM. Examples of such proofs are: (i’) the proofs
of Stairs [30] and Heywood and Redhead [31] based on the
Kochen-Specker theorem [32], (ii’) the proof of Greenberger,
Horne, and Zeilinger (GHZ) with four parties [33], (iii’)
Mermin’s simplification to three parties [34–37], (iv’) the “all-
versus-nothing” (AVN) proof with two parties [19–21,38–40],
and (v’) the proofs of Bell nonlocality based on stabilizers
of graph states [41]. The name AVN was coined by Mermin
[42] to designate those proofs in which the conflict between
QM and LHVs is evident by looking only at predictions with
certainty.

In the bipartite case, AVN proofs can be characterized
(see Appendix A within the Supplemental Material, SM [43])
as follows. A table of zeros for the (|X |, |A|; |Y |, |B|) Bell

scenario is a matrix with |X | × |A| rows and |Y | × |B|
columns containing either zeros or empty entries. A zero in
the entry (a, b|x, y) indicates that the probability of (a, b|x, y)
is zero. An AVN proof consists of a quantum correlation
that produces a table of zeros which cannot be realized by
any LHV model. Given S = SA ∪ SB, with SA = {(a|x)}x∈X,a∈A

and SB = {(b|y)}y∈Y,b∈B, a table of zeros is not realizable
by any LHV if, for every assignment f : S → {0, 1} sat-
isfying

∑
a f (a|x) = 1,∀x ∈ X , and

∑
b f (b|y) = 1,∀y ∈ Y ,

there is a pair {(a|x), (b|y)} for which f (a|x) = f (b|y) = 1
and p(a, b|x, y) = 0.

Pseudotelepathy. There is a form of Bell nonlocality that
plays a fundamental role in quantum computation and quan-
tum information. It is related to a specific type of nonlocal
games. A bipartite nonlocal game [44–47] is a 4-tuple G =
(X × Y, A × B, π,W ), where X (Y ) is the input set of the
first player, Alice (the second player, Bob), A (B) is the
corresponding set of outputs, π (X × Y ) is the distribution of
inputs, and W (X × Y × A × B) ∈ {0, 1} is the winning condi-
tion, i.e., the condition that inputs and outputs should satisfy
to win the game. Consequently, the winning probability of the
game is given by

ω(G) =
∑

x,y,a,b

π (x, y)p(a, b|x, y)W (a, b, x, y). (2)

The game G admits a perfect strategy or pseudotelepathy (PT)
[46,47] if there is a correlation p(a, b|x, y) that allows Alice
and Bob to win every round of G. That is, if W (a, b, x, y) =
1 for all (a, b|x, y) such that p(a, b|x, y) �= 0. Therefore, a
quantum strategy offers PT whenever the quantum winning
probability is ωQ(G) = 1, while using any classical strategy
(that does not involve communication between Alice and Bob)
the winning probability is ωC(G) < 1.

PT is crucial in: (I’) the proof of the quantum computa-
tional advantage for shallow circuits [48], (II’) the proof of
MIP∗ = RE [49], (III’) device-independent randomness gen-
eration in a network with untrusted users, since PT allows
to certify more local randomness (randomness known to one
party but not to the other) and in a more robust way than
standard Bell nonlocality [50], (IV’) multiple access channels:
if two senders that aim to transmit individual messages to a
single receiver have PT, then they can transmit information at
the maximal possible rate [51].

Equivalence. Our first result is the following.
Theorem 1. The following statements are equivalent:
(i) A quantum correlation p is face nonsignaling.
(ii) p has full nonlocality.
(iii) p allows for an all-versus-nothing proof.
(iv) p allows for a perfect (or pseudotelepathy) strategy.
Proof. The equivalence between (i) and (ii) follows from

the fact that the nonlocal content qmin
NL measures Bell nonlo-

cality relative to the local and NS polytopes so that qmin
NL takes

the value 1 if and only if p is in a face that has no local
points [since, otherwise, qmax

L (p) �= 0; for example, for pH in
Fig. 1(a), qmin

NL = 5
√

5 − 11 ≈ 0.18] (see Appendix B within
the SM [43]).

The equivalence between (iii) and (iv) follows from
the observation that a quantum correlation p yields quan-
tum winning probability 1 for the game G in which the
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winning condition is achieving (in each context asked by
the referee) all the zeros in the table of zeros of p, while
the classical winning probability is strictly smaller than 1,
if and only if the table of zeros of p cannot be realized
by any LHV variable model (see Appendix C within the
SM [43]).

The equivalence between (ii) [and (i)] and (iv) [and (iii)]
can be proven as follows. To prove that (iv) implies (ii), let
us observe that, by (iv), there is a game G for which there
is a quantum strategy (correlation) p that provides a winning
probability ω(p)(G) = 1 = ωNS(G), while ωC(G) < 1, where
ωNS(G) is the winning probability allowed by NS correlations.
Let us now consider any convex decomposition of p of the
form (1). Then, by the linearity of the winning probability in
Eq. (2),

ω(p)(G) = qLω(pL )(G) + (1 − qL)ω(pNL )(G), (3)

where ω(pL )(G) and ω(pNL )(G) are the winning probabili-
ties using the local correlation pL and the NS correlation
pNL, respectively. Since ω(p)(G) = 1 and 0 � ω(G) � 1,
then ω(pL )(G) = 1 whenever 0 < qL. This contradicts the
assumption that ωC(G) < 1. Therefore, qL = 0 in any con-
vex decomposition of p of the form (1). That is, qmax

L =
max{pL,pNL} qL = 0.

To prove that (ii) implies (iv), let us observe that, by (ii),
qmax

L (p) = 0. As shown in [52], the local content can be com-
puted by the following linear program:

qmax
L (p) = max

∑
i

qi

s.t.
∑

i

qiP
L
i � p

qi � 0 ∀i. (4)

Here, PL
i correspond to vertices of the local polytope and∑

i qiPL
i � p must be interpreted term by term. The dual of

this linear program can be written as follows:

min
I

tr(IT p)

s.t. tr
(
IT PL

i

)
� 1 ∀i

I � 0. (5)

Again, I � 0 must be interpreted term by term, and i runs
over all vertices of the local polytope. By the strong du-
ality theorem of linear programming [53], the dual and
primal optima are equal when one of the two problems has
an optimal solution [we have that minI tr(IT p) = qmax

L (p) =
0]. In other words, I defines a Bell expression tr(IT p)
whose minimum value in QM is the algebraic minimum
0 achieved by p, and whose minimum local value is �
1. Moreover, in order to achieve the algebraic minimum,
the Bell expression I (a, b, x, y) has to have coefficients
equal to zero for every p(a, b|x, y) > 0. This allows us to
reformulate the Bell inequality for I (a, b, x, y) as a non-
local game G with a PT strategy. The winning condition
of G is

W (a, b, x, y) =
{

1, if I (a, b, x, y) = 0
0, otherwise. (6)

FIG. 2. Pentagram used in the game to demonstrate that
games with PT strategies do not necessarily define tight Bell
inequalities.

That is, by taking the complement of I , we obtain the game G
with ωC(G) < 1 and for which p provides ω(p)(G) = 1 �.

FNS = FN = AVN = PT and Bell inequalities.
Gisin, Méthot, and Scarani [54] made the observation
that all known quantum PT strategies correspond to max-
imum violations of tight Bell inequalities. They also
raised the question of whether this is always the case.
Our Theorem 1 shows that this is in fact an important question,
as it does not only concern PT. Our second result answers the
question in its more general version.

Observation 1. Not all quantum FNS = FN = AVN = PT
correlations define tight Bell inequalities.

Proof. The proof uses Theorem 1 and a nonlocal game with
a PT strategy in the (5, 8; 5, 8) Bell scenario. Consider the
pentagram in Fig. 2. It has five edges and 10 vertices; four ver-
tices in each edge. In each round of the game G, Alice and Bob
are asked to output 1 or −1 to each of the four vertices of one
edge (not necessarily the same edge). That is, each party must
output four bits. The conditions to win G are the following:
(I) The product of the four outputs must be 1, except when
the edge is {A, B,C, D}. In this case, the product must be
−1. (II) If the parties are asked different edges, both parties
must output the same value for the vertex at the intersection
of the edges. (III) If the parties are asked the same edge,
Alice’s four outputs must be the same as Bob’s respective
outputs.

The classical winning probability is ωC(G) = 23
25 .

However, the quantum correlation p, produced with two
eight-dimensional systems in the state |ψ〉 = 1

2
√

2

∑7
i=0 |ii〉,

and measuring, on each eight-dimensional system,
A = X ⊗ Z ⊗ Z, B = Z ⊗ X ⊗ Z,C = Z ⊗ Z ⊗ X, D =
X ⊗ X ⊗ X, ab = I ⊗ I ⊗ Z, ac = I ⊗ Z ⊗ I, ad = X ⊗ I ⊗
I, bc = Z ⊗ I ⊗ I, bd = I ⊗ X ⊗ I , and cd = I ⊗ I ⊗ X ,
where X and Z are the corresponding Pauli matrices, and I is
the identity [42], gives ω(p)(G) = 1 and thus provides a PT
strategy.

However, the Bell inequality defined by the game G is
not tight. To show it, let us denote the inputs as follows:
0 : {A, B,C, D}, 1 : {A, ab, ac, ad}, 2 : {ab, B, bc, bd}, 3 :
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{ac, bc,C, cd}, and 4 : {ad, bd, cd, D}. Then, the Bell
inequality associated to G is

IG = p(A = A|0, 1)+p(A = A|1, 0)+ . . . + p(cd = cd|4, 3)

+
4∑

x=0

p(a = b|x = y) � 23, (7)

where, e.g., p(A = A|0, 1) is the probability that Alice’s and
Bob’s output for vertex A are equal when Alice’s input is 0
and Bob’s input is 1. p(a = b|x = y) is the probability that
Alice’s and Bob’s outputs are equal, one by one, when Alice’s
and Bob’s inputs are the same. Inequality (7) is saturated by
628 local vertices, which span a subspace of dimension 460.
However, the dimension of the NS space of the (5, 8; 5, 8)
Bell scenario is 1295. Therefore, inequality (7) is not
tight. �

The counterexample used in the proof is not an isolated
case. In (see Appendix D within the SM [43] ), we present
a general method for non-facet-preserving (i.e., non-tight-
preserving) lifting Bell inequalities in which it holds the
property that, if the original Bell inequality corresponds to
a game with a quantum PT strategy, then the lifted Bell
inequality still corresponds to a game with a quantum PT
strategy.

Where does FNS = FN = AVN = PT occur? Combining
Theorem 1 with previous results [44,54,55], we can conclude
that QM does not allow for bipartite FNS = FN = AVN
= PT with qubits (a qutrit-qutrit is the smallest quantum
system needed) [55], or if one of the parties has only two
settings [54], or if all measurements have two outcomes [44].
However, QM predicts correlations that are arbitrarily close to
FNS = FN = AVN = PT in (m, 2; m, 2) using a qubit-qubit
maximally entangled state when m tends to infinity [56]. The
question is: When does QM allow for bipartite FNS = FN
= AVN = PT with a finite number of settings? The simplest
example of quantum bipartite FNS = FN = AVN = PT known
occurs in (3, 4; 3, 4) [19–21,38–40]. But, is there any simpler
example?

Gisin, Méthot, and Scarani [54] made the observation
that no result excludes the possibility of quantum PT in the
(3, 3; 3, 2) Bell scenario. This led them to raise the ques-
tion of whether PT can happen in (3, 3; 3, 2). In the light
of the equivalences established by Theorem 1, this becomes
important in several fields and in relation to several prob-
lems. Our third result answers a more general version of this
question.

Theorem 2. Quantum mechanics does not allow for FNS
= FN = AVN = PT neither in the (3, 3; 3, 2) nor in the
(3, 2; 3, 4) Bell scenarios.

Proof. The proof is based on Theorem 1 and in the observa-
tion that AVN proofs require correlations whose table of zeros
cannot be realized by LHV models. The idea is to identify all
tables of zeros that cannot be realized classically unless one of
the zeros is removed and then check whether these tables can
be realized with a quantum correlation. We will refer to one
of such tables as a critical nonlocal table of zeros (CNTZ).
For example, a CNTZ in the (3, 2; 3, 3) Bell scenario is the

following:

y 0 1 2

x �
��a

b
0 1 2 0 1 2 0 1 2

0 0 0 0 _ _ _ _ _ _ _
1 _ _ _ _ _ 0 0 _ _

1 0 _ _ 0 _ _ _ _ _ _
1 _ _ _ _ _ 0 0 _ _

2 0 _ _ _ _ _ _ _ 0 0
1 _ _ _ 0 0 _ _ _ _

Note that it is impossible to find f : {(a|x)}x∈X,a∈A ∪ SB =
{(b|y)}y∈Y,b∈B → {0, 1} satisfying

∑
a f (a|x) = 1,∀x ∈ X ,

and
∑

b f (b|y) = 1,∀y ∈ Y , without having a pair
{(a|x), (b|y)} for which f (a|x) = f (b|y) = 1 and
p(a, b|x, y) = 0.

We wrote a Matlab program that produces all CNTZs,
modulo relabelings of inputs, outputs, and parties. The version
for (3, 3; 3, 2) is in Appendix E within the SM [43]. We run
this program on a high-performance computer and obtained
223 nonequivalent CNTZs for the (3, 3; 3, 2) Bell scenario.

To check the quantum realizability of each CNTZ, we used
the NPA hierarchy at level 1 (or 2). We found that none
of the CNTZs yielded a feasible solution to the correspond-
ing semidefinite programming (SDP) problem in the NPA
hierarchy.

Our program for producing all CNTZs relies on the struc-
ture of the Bell symmetric group (see Appendix F within
the SM [43]). The size of the Bell symmetric group grows
rapidly with the addition of more parties, inputs, or outputs.
Consequently, the program becomes computationally too de-
manding for applying it to the (3, 3; 3, 3) and (3, 4; 3, 3) Bell
scenarios. Nevertheless, for (3, 2; 3, 4), we still can handle it
by using, at a certain step of the program, a sub-group S′ of
the symmetric group S. This provides a faster convergence
and results of a manageable size for the subsequent checking
of the quantum realizability. See Appendix E within the SM
[43] for details. Again, none of the CNTZs in (3, 2; 3, 4) were
found to have a quantum realization. �

Theorem 2 implies that in (3, 3; 3, 2) and (3, 2; 3, 4) there
is a finite gap between the quantum set and the faces of the
NS polytope that do not contain local points. This leads to the
question of what is the maximum nonlocal content that can
be achieved in these scenarios. We have partially answered
this question for (3, 3; 3, 2). The local set for the (3, 3; 3, 2) is
fully described by a set of 25 classes of tight Bell inequalities
[52,57], the facets of the corresponding local polytope. Since
we have the half-space representation of the local polytope
(i.e., we have the local polytope defined as an intersection of
a finite number of half-spaces), we can calculate, for every
facet, the corresponding quantum bound (or an upper bound
of it) using the Navascués-Pironio-Acín (NPA) hierarchy [58].
First, we have confirmed that for every facet, the quantum
bound is strictly smaller than the NS bound. In addition, we
have computed the local, quantum, and NS bounds for each
facet (see Appendix G within the SM [43]). The maximum
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nonlocal content allowed by QM in (3, 3; 3, 2) maximally
violating a tight Bell inequality is qmin

NL = 0.598 (see Ap-
pendix G within the SM [43]).

Theorem 2 leads to the question of whether quantum FNS
= FN = AVN = PT is possible in (3, 3; 3, 3). Because of
the exponential complexity of the polytopes, the tools used
in the proof of Theorem 2 are not enough for answering
this question. Still, we have computed the NS and quantum
bounds for 4801183 classes of local facets in the (3, 3; 3, 3)
Bell scenario and found no example of FNS = FN = AVN =
PT (see Appendix H within the SM [43]). The lower bound
on the number of classes was computed using the tally, i.e.,
the frequency of distinct coefficients in each inequality, from
a total list of 8269146 facets. The quantum bounds were
obtained at level 1 + AB in the NPA hierarchy.

The method used to prove Theorem 2 is a useful tool in it-
self. The method can be expected to efficiently produce novel
quantum FNS = FN = AVN = PT correlations. Why is this
important? On the one hand, for the reasons mentioned in (i),
(ii), ..., (VI’) in the introduction. On the other hand, it is also
important for graph theory. The graph of exclusivity [8] of any
quantum FNS = FN = AVN = PT correlation has the prop-
erty that its independence number is strictly smaller than its
Lovász and fractional packing numbers, which are equal [59].
Only a few graphs are known with these properties [59]. Our
method provides a systematic way to identify new examples.
In addition, the method can help to solve another problem
[60] that, after the FNS = FN = AVN = PT equivalence,
turns out to have fundamental interest in many fields: Is FNS
= FN = AVN = PT possible with nonmaximally entangled
states?

Conclusions. We have shown that four different resources
that are crucial for a wide range of applications and results
in quantum information and quantum computing are actually
equivalent. The term “resource” is appropriate as FNS = FN
= AVN = PT can be quantified (e.g., with respect to the
number of local settings that can be removed while preserving
FNS = FN = AVN = PT or by the number of local settings

required), used, and consumed. The FNS = FN = AVN =
PT equivalence provides a unified perspective about problems
in several fields and allows us to combine different tools to
investigate this extreme form of Bell nonlocality.

We have also shown that not all quantum FNS = FN =
AVN = PT correlations define tight Bell inequalities. This
solves an open problem and shows that finding all quantum
FNS = FN = AVN = PT correlations is not easy even if
one has the complete description of the local set. We have
also solved another open question and demonstrated that QM
does not allow for FNS = FN = AVN = PT in (3, 3; 3, 2) and
(3, 2; 3, 4).

In addition, for proving the previous results, we have in-
troduced an efficient method for finding quantum FNS = FN
= AVN =PT correlations that is useful in different fields and
may help to solve several open problems. Whether FNS =
FN = AVN = PT is possible in (3, 3; 3, 3), (3, 3; 4, 2), or
(3, 4; 3, 3) remains an open problem.
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