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Abstract—Federated learning (FL) opens a new promising
paradigm for the Industrial Internet of Things (IoT) since it can
collaboratively train machine learning models without sharing
private data. However, deploying FL frameworks in real IoT
scenarios faces three critical challenges, i.e., statistical hetero-
geneity, resource constraint, and fairness. To address these chal-
lenges, we design a fair and efficient FL. method, termed FedASA,
which can address the challenge of statistical heterogeneity in
resource-constrained scenarios by determining the shared archi-
tecture adaptively. In FedASA, we first present a cell-wised shared
architecture selection strategy, which can adaptively construct the
shared architecture for each device. We then design a cell-based
aggregation algorithm for aggregating heterogeneous shared ar-
chitectures. In addition, we provide a theoretical analysis of the
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federated error bound, which provides a theoretical guarantee
for the fairness. At the same time, we prove the convergence of
FedASA at the first-order stationary point. We evaluate the perfor-
mance of FedASA through extensive simulation and experiments.
Experimental results in cross-location scenarios show that FedASA
outperformed the state-of-the-art approaches, improving accuracy
by up to 13.27% with better fairness and faster convergence and
communication requirement has been reduced by 81.49%.

Index Terms—Internet of Things, mobile edge computing,
personalized federated learning, resource constraint, statistical
heterogeneity.

1. INTRODUCTION

ITH the advancement of mobile computing technology
W and the Internet of Things (IoT), industrial digitization
and intelligence are rapidly progressing [1], [2], [3]. Intelligent
applications in mobile edge computing (MEC) systems are
supported by widely deployed edge devices (e.g., sensors) [4],
[5]. As the number of sensors deployed increases, the data
collected grows exponentially, resulting in a larger accumulation
of data at the network edge (e.g., gateways and switches) [6],
| 7]. However, the network bandwidth burden is an obstacle to
uploading data to the cloud for centralized learning [8], [9], [10].
Federated learning (FL) [11] emerges as a solution, allowing
edge devices to train machine learning models collaboratively
without transmitting private data to the parameter server. As
such, FL has many promising applications in IoT, such as human
activity recognition [12], [13], fault diagnosis [14], [15], [16],
[17], and augmented reality [18].

In MEC, the conventional FL framework consists of two
main steps, including training on the local device and model
parameter aggregation on the parameter server. Specifically,
each device (i.e., the FL worker) uses the gradient descent
algorithm to update the model locally and then sends the updated
model parameters to the parameter server. The parameter server
aggregates the received model parameters by FedAvg [11] and
sends the aggregated model to each device for a new round
of training. After multiple rounds of training, a trained global
model is obtained. This framework demonstrates exemplary
performance in ideal settings that include sufficient computing
and communication resources on the local device, independent
and identically distributed data across devices.
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However, in practical IoT scenarios, the following challenges
should be considered to achieve an effective and efficient FL
framework. Statistical heterogeneity. In IoT scenarios, sta-
tistical heterogeneity can be categorized into cross-domain
and cross-location. In [14], the data collected from a specific
environment is referred to as a device domain, and all de-
vices together constitute cross-domain. Cross-domain hetero-
geneity is caused by the monitored devices (e.g., production
machines) [14], [15], where devices with varying demands
operate at different environments. Similarly, cross-location het-
erogeneity is due to the location of monitoring devices (e.g.,
sensors) [19], such as the differences in the locating of sensors on
devices. Resource constraint. Different from datacenters with
ample communication resources, in [oT, the communication
resources of edge devices are limited [20]. The training process
of FL usually requires frequent pushing and pulling of model
parameters. Furthermore, as model architectures scale up (e.g.,
transformers [21]), transmitting the entire model architecture
between parameter server and local devices leads to heavy com-
munication requirements (e.g., network bandwidth). Fairness.
Due to the statistical heterogeneity, there are significant accuracy
differences among edge devices [22]. In [23], fairness is used
to measure these differences, and a lower standard deviation of
accuracy indicates higher fairness. To achieve an effective FL
framework, it is necessary to ensure fairness across devices. Note
that improving average accuracy while also enhancing fairness
is a challenging task, as it requires boosting the performance of
all edge devices.

Existing works in the literature that address statistical hetero-
geneity in FL have fallen into the data-based and the model-
based categories. Data-based methods focus on constructing
independent and identically distributed datasets to reduce the
heterogeneity. In contrast, model-based methods aim to adapt
statistical heterogeneity from model architecture or parameter
optimization. For data-based methods, Zhao et al. [24] proposes
to share a small portion of the global data with each device.
FedGen [25] learns a global generator to generate pseudo data
and then sends it to each device to manage local updates.
FedFTG [26] learns a generator that generates pseudo data with
the same distribution as that of each device to optimize the update
of the global model. However, transferring data between param-
eter server and local devices causes additional communication
overhead and privacy risks. There are two types of model-based
methods based on their purpose: single-model methods and
multi-model methods. Single-model methods focus on training
a better global model, while multi-model methods look at pro-
ducing customized models for each local device. Single-model
methods care more about the convergence and performance
of the global model, e.g., FedProx [27], SCAFFOLD [28],
which align the local model with the global model. Conversely,
multi-model methods pay more attention to the performance of
the model in each device and try to train personalized models.
FedFomo [29] computes the first-order approximations of the
optimal model weighted combination for each device. Ditto [23]
proposes to add a global regularization factor when training
personalized models. However, the above methods do not con-
sider the communication resource limitation of the local device.

TABLE I
THE COMPARISON OF THE PREVIOUS WORKS AND OURS

Solutions | Statistical heterogeneity | Resource constraint | Fairness

FedFomo [29]
FedPer [30]
Ours

FedAvg [11] X F X
FedProx [27] v X X
FedGen [25] v X X
FedFTG [26] v X X
Ditto [23] v X v
v X v

v/ v X

v v v

FedPer [30] reduces communication overhead by uploading
only the base layer, while achieving model personalization by
retaining a local personalized layer. Table I presents a com-
parison of the previous works and ours. In short, none of the
aforementioned works have addressed these challenges in real
10T scenarios.

In this paper, we aim to address two problems: (i) What are the
main statistical heterogeneity factors among edge devices in IoT
scenarios? (ii) How do we address statistical heterogeneity while
considering resource constraints and fairness in IoT scenarios?
For problem (i), our empirical results reveal that cross-location
issues can lead to more severe statistical heterogeneity than the
widely studied cross-domain issues. The existing methods that
can alleviate statistical heterogeneity have different performance
degradation when facing cross-location issues in IoT scenarios.
These phenomena motivate us to explore new solutions. For
problem (ii), to address the cross-location issues in resource-
constrained IoT scenarios, we propose FedASA, a fair and
efficient personalized federated learning scheme with adaptive
shared architecture. On the one hand, shared architectures learn
shared features between local devices, which reduces feature
drift across devices. On the other hand, reducing the uploading
of unnecessary model architectures can significantly reduce the
communication overhead. In addition, we perform a theoretical
analysis that provides guarantees for the fairness of FedASA.

The contributions of our work are summarized as follows:

® To the best of our knowledge, this is the first work that con-

siders the cross-location issues in resource-constrained IoT
scenarios. Our empirical results show that the similarity
among data in the cross-location scenario is significantly
lower than that in the cross-domain scenario, and the ex-
isting federated learning methods suffer from performance
degradation in the cross-location scenario.

® We design a fair and efficient personalized FL. method

called FedASA, which can address the challenge of statisti-
cal heterogeneity in resource-constrained IoT scenarios by
determining the shared architecture adaptively according
to the heterogeneity of devices.

® We provide a theoretical analysis of the federated error

bound, which provides the theoretical guarantee for the
fairness of FedASA. At the same time, we prove the
convergence of FedASA at the first-order stationary point.
® We evaluate the performance of FedASA through exten-
sive simulation and experiments. We demonstrate that
FedASA outperforms the state-of-the-art approaches in
cross-location scenarios, improving accuracy by up to



13.27% with better fairness and faster convergence, and
communication requirement has been reduced by 81.49%.
The rest of this paper is organized as follows. Section II pro-
vides motivation and problem formulation. FedASA is proposed
in Section III. The theoretical analysis is given in Section IV.
Evaluation is presented in Section V. Related works are re-
viewed in Section VI, followed by the concluding remarks in
Section VIIL

II. MOTIVATION AND PROBLEM FORMULATION
A. Motivation

According to FL [11], we consider that there exists a pa-
rameter server and K local devices cooperating to complete a
classification task 7 = (D, F), where D is the distribution on
X x Y C R? x Rand F represents a set of mappings from input
space X to output space . Each device owns Dy, = {x;,y;} zN:kp
Dy, € Dy, to complete a subtask T = (D, Fy), where Ni
is the number of samples. For device k, the actual loss is
Li(wi) £ E (g g, [((fx(2;wy),y)] where fi € Fj, and £(-)
is a loss function. In practice, the empirical loss ﬁk(wk) =
Nik SN [0 (243 wy), ys)] is often used as an estimate of the
loss. Therefore, the optimization objective w* of FL satisfies

K
w" = argmin L(w) = arg miankﬁk(w), (1)

where wjy € Wy is the model parameter of fj and py is the
weighting factor, pi > 0, Zlepk =1, such as p; = %,
where N = S| Nj.

Statistical heterogeneity across IoT devices is generated by
various factors, including work conditions (e.g., rotating speeds
and loads) and monitoring locations. Statistical heterogeneity
caused by diverse working conditions across devices has been
extensively studied, named the cross-domain issues [14], [15].
In this paper, we refer to the statistical heterogeneity caused by
various monitoring locations across devices as the cross-location
issues. Note that cross-domain issues are caused by monitored
devices (e.g., production machines), and cross-location issues
are caused by monitoring devices (e.g., sensors).

We investigate 12 different industrial data from three mon-
itoring locations, including A, B, and C, and four levels of
loads, including 0, 1, 2, and 3, in the CWRU dataset [31]
as detailed in Section V (numbered from Ag to Cz). Similar
to [16], in the CWRU dataset, we first convert the raw signal into
frequency domain data by fast Fourier transform (FFT) (refered
to Section III-A). We then roughly evaluate the similarities
among 12 different data (referred to Fig. 1) by computing the
cosine similarity of the transformed frequency domain data. It
is observed that at the same location, the similarities of the data
are more than 87.5%, whereas the similarities of the data among
different monitoring locations are less than 85%. Among them,
locations A and C are the most dissimilar pair, and locations B
and C are the most similar pair, but the similarity is still less than
85%. The cross-location issues are demonstrated to bring more
severe statistical heterogeneity than cross-domain.
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Fig. 1. The cosine similarities among 12 devices with various working con-
ditions and monitoring locations.
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Fig. 2. Performance comparison between same-location and cross-location.

Moreover, Fig. 2 shows the cross-device model accuracy in
the same monitoring location (same-location) and different mon-
itoring locations (cross-location). We compared six approaches,
including local-only, FedAvg [11], FedProx [27], DiagNet [14]),
Ditto [23], FedPer [30]. Experimental results show that these ap-
proaches exhibit good performance in cross-domain situations.
However, their diagnostic accuracy is reduced in cross-location
scenarios. Among them, FedProx shows the largest variation
in accuracy, with a drop of 17.75% and FedPer, with the least
drop in accuracy of 4.83%. Clearly, it is necessary to solve the
cross-location issues.

For statistical heterogeneity, the trained global model w*
cannot meet the personalized requirements of the local de-
vice [32], [33]. Therefore, the optimization objective of per-
sonalized model {w} }X | [34]is

K
, W) = argmin Zpkllk(wk). 2)

{wetis, p—1

(w7, ws, ...

Note that during the training process of personalized FL, the
model parameters of the local device are still uploaded to the
server for federated aggregation. Yet, the global optimization is
changed to the personalized optimization of each device.

B. Communication Overhead

To deploy an effective and efficient FL framework in real IoT
scenarios, we face the problem of resource constrained devices,
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including limited computing and communication resources [20].
Note that the limitation of communication resources is the pri-
ority in this paper. Fig. 3 shows three different sharing schemes
of the local model in FL. The all-sharing scheme (referred
to Fig. 3(a)) shares all layers of the local model, which is
used in most FL approaches [11], [14], [23], [27]. Customized
model parameters allow these solutions to cater to the specific
requirements of different devices and minimize the impact of
statistical heterogeneity. Nevertheless, according to the experi-
mental results of Section II-A, they are unsuitable for addressing
the cross-location issuesin IoT scenarios. In addition, as the local
model becomes larger and larger, the communication overhead
brought by the all-sharing scheme cannot be ignored. The G-
sharing scheme (as shown in Fig. 3(b)) shares only the lowest
G layers of the local model. Typically, G is predetermined and
fixed in the training process. This baseline is similar to several
existing personalized FL approaches [30], [35]. The G-sharing
scheme is indeed able to reduce the communication overhead,
even that introduced by a fully connected layer. According to the
experimental results of Section II-A, G-sharing has the prospect
of adapting to the cross-location issues. However, G is crucial for
the local device, and determining the optimal G brings additional
computation and communication overhead. On the other hand,
due to the effects of statistical heterogeneity, especially for
cross-location issues, a fixed upload architecture for all devices
may be a suboptimal solution.

To further exam our idea, we conducted a simple experiment
in CWRU dataset. As shown in the Fig. 4, o to a4 indicates
that the number of shared layers is increasing. Experimental
results show that when the data only comes from location C, the
optimal shared layers is o3, which means more shared layers,
and as monitoring locations increase, the number of shared

layers required by devices decreases. In more complex hetero-
geneous scenarios, reducing the requirement for shared layers
may be possible. Therefore, heterogeneous shared architectures
are required, and it is necessary to design shared architectures
adaptively according to the heterogeneity of devices. As shown
in Fig. 3(c), our goal is to propose an adaptive-sharing scheme,
which adaptively determines the shared architecture for each
device according to the dataset of the local device.

In general, (2) can be solved by gradient descent algo-
rithms [11], such as mini-batch gradient descent (mini-batch
SGD). For the mini-batch SGD, an iteration represents that the
local device performs gradient descent on a mini-batch of data.
One round of local updates consists of multiple iterations. After
around of local updates, the local device pushes the local model
witt = wh — VL (w') (1 is the learning rate) to the server
for aggregation.

Note that the communication overhead of FL is determined
by the size of transmitted model parameters [36]. Assuming that
in round ¢, for device k, the bandwidth requirement C,’i can be
formulated by

Cr. = CO(wy},), 3)

where the size of the model parameters w, is directly propor-
tional to CO(-). FedASA reduces the communication overhead
by reducing the size of the transmitted model parameters.

C. Problem Formulation

Statistical heterogeneity can lead to significant variation in
model performance across devices. From the perspective of
profit, the local device cares more about the performance of
the private model than the average performance of all devices
or the best. Therefore, more attention should be paid to fairness
among devices while improving the average performance. Fol-
lowing [23], [37], the fairness of the model can be defined as
follows

Definition 1 (Fairness): When comparing the fairness of
the two models, we consider that the fairer one has more
uniform performance across devices, i.e., for w; and wo, if
std({Lx(w1) ) < std({L(wa)}E ), where std(-) is the
standard deviation, then w1 is fairer than w-.

FedASA ensures that devices have similar performance levels,
reducing the impact of fairness barriers. To realize personaliza-
tion, FedASA divides the local model into shared and personal-
ized architecture. Let fi = gi o hg, where g € Gy represents
the shared architecture, hy € Hj, is the personalized architec-
ture, and the parameters of gy is 0 € Oy, and the parameters
of hy is ¢;, € ®y,. Therefore, our optimization objective is

K
(67,¢") = argmin > ppLi(Bk o By), “)
{0k,b1} i1 k=1
where 6" = (07,05,...,0%), " = (¢7,d5, ..., P ). Simi-
larly, (3) is rewritten as
Ci =CO(8). (5)
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Overview of FedASA. The training procedure consists of the following steps: (1). Data preprocessing. (2). Local training on private data. (3). Each

device uploads the trained model parameters to the parameter server. (4). The parameter server adaptively determines the global shared architectures by cell-wised
alignment. (5). The parameter server updates the hyper-model by cell-based aggregation and sample the trained local model parameters. (6). Each device downloads
the updated model parameters. Repeat (2)-(6) until the model converges or meets the accuracy requirements.

TABLE II
A SUMMARY OF IMPORTANT NOTATIONS

Notation Description
D Distribution on X x Y C R? x R
F Set of mappings from input space X’ to output space )
Dy, Dataset for device k
w Global model
wy Local model of device k
0 Shared architecture of device k
(038 Personalized architecture of device k
Pk Weighting factor
Onp(-) Hyper-model
O Global loss
2 () Empirical loss
K Total number of devices
T Total number of communication rounds
Cr. Bandwidth resource budget of device k
C}i Bandwidth consumption of device k in ¢-th round
n Learning rate

Assuming that for device k, the total communication resource
budget is Cy,. Accordingly, we formulate the problem as follows:

K
Jnin k:1pk£k(0k o ¢y),
Li(0F 0 @) — Li(0} 0 B;) < e,
C]tc < Ckv
s.t. 6)
std({Lr(0} o })}) < &2,
vk € [K],

where €1, €5 > 0 are the predefined threshold (close to zero) and
we use k € [K| represent k € {0,1,...,K}. Some important
notations in this paper are listed in Table II.

III. PERSONALIZED FEDERATED LEARNING WITH ADAPTIVE
SHARED ARCHITECTURE

As illustrated in Fig. 5, we present an overview of FedASA.
It consists of two main steps: data preprocessing and model
training. Specifically, the workflow of FedASA is as follows:
(i) The server initializes the global model parameters and local
device training epochs F, which are broadcast to all devices.
Each device performs data preprocessing. (ii) After local train-
ing, each device sends the trained model parameters to the pa-
rameter server. (iii) The server uses cell-wised alignment to iden-
tify the shared architectures and then updates the hyper-model
through cell-based aggregation. (iv) The server broadcasts the
sampled local device parameters to each device. (v) Repeat ii-iv
until the model converges or meets the accuracy requirements.
In the following, we first give the data preprocessing of FedASA.

A. Data Preprocessing

In IoT scenarios, it is common practice to train a model
directly using sensor signals to reduce the dependence on expert
knowledge [16], [17]. Note that we analyze the case where
local labels are uniformly distributed. We exclude the case
where the local labels are non-uniformly distributed from our
considerations. Statistical heterogeneity across devices only
comes from cross-domain and cross-location issues. For each
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device, the private dataset contains all types of signals to build a
multi-classification task and each signal is divided into samples
of length 1024.

Since the raw vibration signals only represent the time domain
(referred to Fig. 6(a)) and their phases are different, the cosine
similarities among the devices are very low, less than 3% in
CWRU dataset. In Section II-A, the FFT is used to convert
raw signals to obtain frequency domain signals (referred to
Fig. 6(b)). The FFT algorithm is used for calculating the discrete
Fourier transform (DFT) of a sequence. The DFT is obtained by
decomposing a series of values into components of different
frequencies. Let @ = (z9,...,25-1) be a signal. The DFT is

defined by (7),
S-1
Xg=Y mee /5 d=0,... 91, (7
s=0
where €27/ is a primitive S-th root of 1.

B. Cell-Wised Alignment

To facilitate training, FedASA simplifies the model archi-
tecture to a cell-based architecture. As shown in Fig. 7, the
residual-based cell comprises a convolutional layer followed by
a pooling layer, with equal input and output feature dimensions.
Each local model contains two convolutional layers, M cells
and FC layers, identical to the hyper-model architecture shown in

Fig. 7. This design has two advantages. Firstly, it ensures that the
feature dimension of the output of each cell is the same, which
makes it simpler to divide heterogeneous architectures. Sec-
ondly, due to the residual structure, it prevents the degradation of
deep network models. In order to determine the adaptive model
architecture, the auxiliary model trained from the parameter
server’s auxiliary dataset is essential. In IoT scenarios, collecting
anauxiliary datasetis a simple task because each batch of devices
is tested before being sold. In our experience, the auxiliary data
can come from only one monitoring location and the trained
auxiliary model can perform poorly with only 78.12%. Note that
the auxiliary model and hyper-model have similar architectures.
The auxiliary model contains L cells, whereas the hyper-model
contains M cells (L < M). Since the shared architectures across
devices are heterogeneous, we introduce a hyper-model to assist
aggregation. Specific details for aggregation can be found in the
cell-based aggregation algorithm. Fig. 7 displays the architecture
of these models.

Note that FedASA adaptively determines the shared archi-
tecture g; based on the private dataset in each device. In the
real-world FL scenarios, achieving this goal is challenging.
Fortunately, the auxiliary dataset D, and auxiliary model g4,
of the parameter server are available. To address this challenge,
we propose a cell-wised alignment algorithm, which takes the
output features of the cells as the criterion. After uploading all
local models, they are processed by the auxiliary dataset to
capture output features from each cell. The auxiliary model’s
output features are aligned with the client model’s. Note that
the optimal sharing architecture must satisfy both accuracy and
communication resource requirements. Directly selecting the
minimum alignment distance may be biased, which may cause
additional communication overhead for the local device. Let the
auxiliary model g%, contain £ cells, and the local model g
contain m cells, then the optimal alignment cell m; is

‘gﬁum(m7 OGUI) - gin(w, 016)“27

my, = argmin Ezep
me[M]

st. £e[L], C. <Cy, (8)

aux

where ¢ is a hyperparameter. Furthermore, m* = (m}, m3,
..., mj ) is referred to as the alignment vector, which is used to
record the shared architecture in the next round.

C. Cell-Based Aggregation

Statistical heterogeneity can cause shared architectures to
have varying numbers of cells, which are stochastically exposed
to the datasets of devices. As such, naively using FedAvg [11] for
aggregation is not feasible since it is designed to aggregate the
same architecture. For this reason, we propose a cell-based ag-
gregation algorithm, where the update experience of the cell de-
termines the weight of the update. Let O = {0g, 01,02, ...,00}
be the set of operators involved in aggregation, e.g. the convo-
lutional layer and cell. Let 6(0g) be the parameters of the two
convolutional layers and 0(o,,) be the parameters of the m-th



Algorithm 1: The FedASA Algorithm.

Input: Communication resources budget for each device C,
training round 7', auxiliary dataset D, auxiliary model
Jauz» alignment rounds ¢

Output: 67, ¢}

1: Initialize the devices” model parameters 09, ¢2,
hyper-model parameters 021, ()

2: At Parameter Server:
3:fort=1,2,...,T do
4. if t <ty then
5: Receive w!, forall k € [K]
6: mz = arg minme[M] E”gﬁux(m; eauﬂc) -
g (x; 0),)||? //Refer to (8)
7: Collect the alignment vector m*
8: else
9: Receive 6}, for all k € [K]
10: end if
11:  if S(0)0 then
12: 0,0 (0) = > iy ZK Nt 0! (0) //Refer to (9)
13: else
14: 0 (0) = 6},,,(0) //Refer to (9)
15: end if
16: Sample updated shared models 8"*!
17: Broadcast 81! to all devices
18: end for
19: At Device k:
20:fort=1,2,...,T do
21:  Receive 6}, from the Parameter Server

22: 6 =
23 ¢t =g,

— 1y VL(0k o ¢y,) /Refer to (13)
- n}zVﬁk(gk o ¢;,) //Refer to (13)

24: Send 02“ to the Parameter Server
25: end for
cell. Forall o € O,
Berl( ) Zk 1 ZK Nt gt ( ) S(O) > 07 (9)
P 0! hp(0); otherwise,

where Oflp(~) are the parameters of hyper-model in round ¢,
0.(-) are parameters of device k in round ¢, N},  is the number
of samples using operator o in round ¢, and S(0) denotes the
frequency of using the operator o during a round of updates.
An operator in the hyper-model is updated only if it has been
used more than once. Finally, if an operator (such as operator
0p) is used in all devices, then (9) degenerates into FedAvg.
Specifically, FedASA is a generalization of FedAvg, where the
average is performed independently for each operator rather than
for the full architecture.

Sampling: After the hypermodel update, the parameter server
has completed one round of updates. Delivering the hyper-model
directly is inappropriate as each device only needs the same
model parameters as the shared architecture, which incurs ad-
ditional communication overhead. We can sample the updated
shared architectures of devices by using an alignment vector
m* = (mj,ms,....,m}).

TABLE III
TwoO EXAMPLES

Example soft label hard label GT cross-entropy Ly (+)

1 0 1 1.23 242
AN

2 3 3 0.85 1.42

== B
o 1 2 3

Example 1 shows low confidence and Example 2 shows high confidence.
GT stands for the groundtruth label.

D. Algorithm Description

Although classification tasks with cross-entropy would in-
tuitively bring improvement, unfortunately, we cannot directly
access supervision information of the target tasks [12]. For a
given sample z¥ from device k, we have

s = softmax(h(g(z¥))), (10)

where s¥ is a soft label of z¥. Meanwhile, a hard label for z¥ is
generated by one-hot encoder

h¥ = one_hot(max(sF)).

Y

If the model prediction vectors with high confidence, soft labels
may be more useful for model updating. If the prediction is not
confident enough, the hard labels can be used to optimize the
model update. High and low confidence examples are shown in
Table III. Replacing with the hard label at the proper time can
improve the model [38]. To balance the soft label and hard label,
we define the following loss function:

Ek(gk o ¢y)
1 & ete
= ]1{1/1 =c} (log = & €5> o 312)
N chzl €7e

whereé’:—z,c1 sy log sy, .and C'is
the number of categories.

During local training, ¢;, and 6}, of the model are merged to
wy,. Assuming that the gradient descent algorithm is used for

model optimization, then for device k,

0, = 0}, — 0y VL (0k 0 ¢y,
t+1 _ d’t
k — Vi

is the entropy of s¥

N (13)
— MV Ly (0 0 Py),

where 7, is the learning rate of 8, and 7, is the learning rate of
.

To sum up, for device k, the algorithm for each round of
updates is: (i) Initialize the devices’ model parameters 69, ¢%
or receive the updated o (ii) ¢} and @ are trained locally
for E epochs regarding (13). (iii) Send the trained 0% to the



parameter server. For the server, the algorithm for each round
of updates is: (i) Receive all updated 0’,;. (i) If t = 1 perform
to determine the optimal m™ by cell-wised alignment otherwise
skip this step. (iii) Update hyper-model 02;1(-) through cell-
based aggregation. (iv) Sample updated shared models 0?‘1
by m*. (v) Send 0};“ to all devices. Follow this loop for
multiple rounds of training until the model converges or reaches
the accuracy requirements. The detailed algorithm is referred
to as Algorithm 1. Algorithm 1 begins with estimating the
communication resources budget for each device Cy, the setting
of training round 7", and the collection of auxiliary dataset Dy,
and auxiliary model g, . Line 1 is the initialization of the local
model parameters 6%, ¢% and hyper-model parameters 02p(-).
At the parameter server, lines 4-8 are used to perform cell-wised
alignment and to collect the alignment vectors m*. Lines 11-16
are used to perform cell-based aggregation and sample updated
shared models 0'™!. Line 17 is used to broadcast 8*! to all
devices. At device k, line 21 is used to receive the updated 6.
Lines 22-23 are used to update the local model parameters 0}?1,
@i Line 24 is used to send 0% to the parameter server.

IV. THEORETICAL ANALYSIS

FedASA divides local model architectures into shared and
personalized architectures, which is similar to domain adap-
tation. According to the theory of federated domain adapta-
tion [34], [39], we performed a theoretical analysis of FedASA.
In this section, we first analyze the federal error bound of
FedASA, and then provide the convergence analysis. Note that
error is a statistical object, and we use loss to quantify the
negative effect of error.

A. Federated Error Bound

In supervised learning, given a set of training samples, the
goal is to find the optimal function f* € F by minimizing the
error on the test set. However, this relies on the assumption
that the training and test sets are independent and identically
distributed. In actual production, this assumption requires a lot
of cost for data preprocessing. Domain adaptation aims to solve
the problem of inconsistent data distribution.

In typical domain adaptation, we are referring to a labeled
source domain D; and an unlabeled target domain Ds. The
objective is to find a function f € F that minimizes the gen-
eralization error Ly = E5 )p, [((f(x;w),y)] of the target
domain. In [40], with a probability of at least 1 — J, we get
the following error upper bound

L2(f) < L2(6) + 5drar(Dy, D)

Ideal Joint Error

N 4\/2dlog(2m) +log 2
m

+ A, (14)

Disparity Difference

where § € (0,1), A = L1(f*) + L2(f*) is a constant, and for
f,f € F, @ is the XOR function, then FAF is equivalent to

f(x) ® f'(x). (14) shows that the target domain error is related
not only to the source domain error but also to the ideal joint
error and disparity difference. Subsequent domain adaptation
theorems, such as [34], [39], are based on (14).

FL involves a series of independent and identically dis-
tributed devices, which differs from classical domain adaptation.
Multi-source domain adaptation faces the following challenges:
(1) There are multiple devices, and data sharing is limited among
each other. (ii) The adaptation effects can vary among devices
due to statistical heterogeneity. Fortunately, in FL, a powerful
parameter server is available. In FL, K devices work together to
train a generalization model that can adapt to device 7. Similarly,
ensemble learning (EL) aims to create a generalization model
that can adapt to the new device, e.g., a weighted ensemble.
But which one is better? In this brief analysis, we will com-
pare them in terms of error bounds. According to the above
analysis, the target domain error is related not only to the
source domain error but also to ideal joint error and disparity
difference. Obviously, FL and EL are similar in the latter two
parts, so their source domain errors are considered. In FL, the
source domain error is Lry, = E(Zle P fr), while in EL, it
is Lpr, = Zlepk/l(fk). If the loss function is convex, then
it is obvious Lpy < Lp. However, the loss function £(-)
often satisfies L-smooth (referred to Definition 2). For L-smooth
functions, the lower bound of L£(-) is a hyperplane, and its
upper bound is a quadratic function. Its upper bound is convex,
and its lower bound also satisfies Lr;, < Lg. So, we can get
Lrr < Lgr,, which means FL achieves a minor error bound
when obtaining the objective function f*.

Next, we provide various federated error bounds. According
to Theorem 2 of [41], let D = Z?zlkak be the mixture
distribution of all devices, and the corresponding mixture error
is £(-). With a probability of at least 1 — d, the following error
upper bound can be obtained:

)<L (Z]%flc) + Zpk ( drar(Dy, D;) -H»k)

A 2dlog(2Km) + log 2
Km '

where A = Li(f*) + L (f%).

The loss upper bound (15) is only suitable for all-sharing
scenarios. In [34], Regatti et al. divided the local model into the
base layer uy and the top layer vy. The globally optimal vy, is
defined as 0 = arg min,, L£5(-). The local optimal vy, is defined
as vy, = arg min,, Lp, (-). With a probability of at least 1 — J,
the following loss upper bound can be obtained:

5)

K
szkdeF(D1;Dk) + |y — AL

=1

Ly (0) — Ly(vy) <

(16)

where 1, and Ay, represent the error constants when vy, is global
optimal and local optimal, respectively. The loss upper bound
(16) focuses on the top layer v, but we focus more on the
shared architecture gj. For device k, gj, is sampled from the



hyper-model g. Let the global optimal model g* satisfy £(g*) =
S prLi(g)), and then we have the following theorem:

Theorem 1: Let the VC-dimension of the function space G
be d and the number of local samples be m. The estimate of the
disparity difference between the two devices is dgag(D;, D;).
For any § € (0,1) and gx € G, with a probability of at least
1 — 4, we have

. 1 K .
Li(gi) < L{9) + 5 >, Prdgag(Dr, D)
Disparity Difference
4\/2dlog(2Km) + log 2 Lroan
Km
Ideal Joint Error
where 1* = L(g*) + Li(g").

Proof: According to (15), we can get

(ZPka) + Zpk < dgag(Dy, Di) —H»k)

A 2dlog(2Km) + log 2
Km

=L(g ZpkdgAg(DmD )

k 1

2dlog(2Km) + log 2
+ 4\/ om Zpk)\k

Moreover, if the global optimal model g* satisfies L(g*) =
S prLi(gy), and also define A* = £(g*) + Li(g*), then
(18) can be rewritten as:

(18)

~ 1 K A
Lilg) L9)+5 ), Prdoag(Dy, Di)

Disparity Difference

A 2dlog(2Km) + log 2
Km

+ A

19)

Ideal Joint Error

|
Note that the error bound presented in Theorem 1 is a gener-
alized version of (15). In FedASA, the cell-wised alignment
scheme makes the extracted features among g exhibit high
similarity. Clearly, compared with (15), the error bound of
FedASA is minor, which means that the standard deviation of
loss across devices is minor. According to Definition 1, FedASA
offers better fairness.

B. Convergence Analysis

Let w denote the concatenation of (6, ¢). First, we introduce
related definitions and assumptions.

Definition 2: A differentiable function f(z) is called L-
smooth, iff it has a Lipschitz continuous gradient, i.e., iff

dL < oo such that
IVf(x1) — Vf(x2)|| < L@y — @2, Vo1, T2 € RY,

Assumption 1: The global loss function L£(-) satisfies L-
smooth, i.e., Vwi, ws € R4,

(20)

E(wl) — E(’IUQ) S <V£('w2),'w1 — ’LU2H2.

2n

L
—wz) + 5”“’1

Assumption 2: The expected squared norm of stochastic gra-
dients is uniformly bounded, i.e., Vk € [K], Vt € [T, 3G, such
that

E||VL(w")|* < G*. (22)

Assumption 3: The gradient VL(w') = S0 pp VL (w')

is bounded, i.e., 3a0 such that

VL(wTE(VL(w!)) > a||VL(w?)||?

Assumption 1 is commonly present in multiple federated
learning approaches, including FedProx [27] and FedCMA [34].
Assumption 2 restricts the gradient’s scope during the update.
Assumption 3 ensures that V £(w") is an estimate of V £(w"). If
and only if @ = 1, we have V.£(w") as the unbiased estimation
of VL(w').

We then introduce several useful lemmas to enhance our
comprehension of the theory.

Lemma I1: With Assumption 2, for aggregated model £(w"),
we have,

(23)

E||VL(w)|?* < K*G? (24)
Proof: Using VL(w) =

tion 3, we can get

SN piVLp, (wy) and Assump-

2

K
IVL@w")? = || Y peVLk(w")
k=1
<|VL (wh) + VLo (w?) + - + VL (w)]?
< K| VL (wh)|?
<k* = argmax VL, (wt)) (25)
k
Take expectation of both sides,
E[|VE(w!)|? < K2B|[V £ (")
< K?G? (26)

|

Lemma 2: If L(-) is L-smooth, then with Assumptions 1 and
3, we have,

E[L(w"™*")] < E[L(w")]

1
— nal V()| + S LKA G?

27)

Proof: Using the smoothness property of £(+) from Assump-
tion 1, we can get

Lw"h) < L(w') + (VL(w"), w'™ —w")



L
+ Flhot+ - wf?

= L(w'") —nVL(w")TVL(w')

Ln? 4
+ VL@ 28)

Take expectation of both sides,

E[£(w'*1)] < E[L(w")] — VL (w!) E[VL(w")
+ g9 2w
< E[L‘(w

)] = nal| VL (w")|*

)|I?
—na||VL(w

Ln? A
+ T”EHVﬁ(wt

< E[L(w")] plls

1
+ 5L772K2G2 (29)

[ |
Theorem 2: Let Assumptions 1,2 and 3 hold and after running
the algorithm with 7" rounds, we have

T-1
||V£

D

t=0

Ol E[C(wo)] — L(w")
nal

1
+ —LnK>G>.
2a
(30)
Proof: Take the expectation of both sides of (29),

E[L(w"™)] < E[L(w")] — naE|VL(w")|* + %LUQWGQ
3D

Adjust the inequality sign of (31),

naB|VL(w!)|? < BIL(w")] ~ BIL(w! )] + 5 LK
(32)
Applyt =0,1,...,T — 1into (32), and add both sides of these
inequalities,
T-1
nay E|VL(w")|* < E[L(w”)]-E[L(w")]
t=0

1
+ 5LT?72K2G2

< E[L(w®)] - L(w") + %LTT)2K2G2
(33)

Let us divide both sides of this inequality by naT’,

Z HVE

2 0y] _ *
O BEGR - L) | Ly o
a

naT
(34)

Note that if E[£(w")] — £(w*) = M, FedASA converges to

a first-order stationary point when 7 = #%Gz .

server

edge
servers

Fig. 8. Network prototype system.

TABLE IV
DESCRIPTIONS OF CWRU DATASET

Dataset Label 0O 123 4 5 6 7 8 9
CWRU Fault location N IR IR IR BR BR BR OR OR OR
Fault size (mil) NA 7 14 21 7 14 21 7 14 21

V. EVALUATION
A. Experimental Settings

We carried out our experiments on a prototype system to sim-
ulate a real industrial scenario. The prototype system comprises
a parameter server and four edge servers. Each edge server has
three virtual environments simulating a total of 12 local devices
(referred to Fig. 8). The dataset of each device is collected
beforehand. The server has an Intel(R) Xeon(R) Silver 4210R
CPU and NVIDIA GeForce RTX 3090. The operating system
is Ubuntu 20.04. The deep learning models are trained with
Pytorch at version 1.12.0.

Dataset: The rolling element bearing dataset from the Case
Western Reserve University (CWRU) is collected by sensors
deployed at the edge [31]. Sensors are placed on mechanical de-
vices to collect vibration signals in real time. The CWRU dataset
includes drive-end (named as location A), fan-end (named as
location B), and basic acceleration (named as location C) data
which are from three monitoring locations. Four bearing health
states are considered, including normal state (N), inner race fault
(IR), ball fault (BR), and outer race fault (OR). Each fault type
has three fault diameters of 7, 14, and 21 mils. The specific
dataset descriptions are shown in Table I'V.

Methods for comparison: Several methods have been imple-
mented to evaluate the superiority of FedASA. In particular, we
focus on the comparison of the following methods:

® Local-only is a baseline method. In this method, each edge

device performs model training solely using local dataset.
® FedAvg [11] is one of the most famous algorithms in FL,
with edge devices sharing the same model architecture.

® FedProx [27] utilizes {5 regularization to constrain the up-

dates of edge devices to mitigate statistical heterogeneity.
For FedProx, we set the hyperparameter p to 0.01.



TABLE V
DEVICE TASKS SETTINGS

Dataset  Task id  Rotating speeds Load  Location
o,

CWRU TI-TI2 1748 5 g
1724 3

® FedPer [30] is a typical G-sharing method that addresses
statistical heterogeneity through personalized layers.

e Ditto [23] employs {5 regularization to preserve the as-
sociation between the global architecture and the local
architectures. For Ditto, we set the hyperparameter A to
0.01.

Tasks & hyperparameters: We evaluate these methods in
resource-constrained scenarios with 12 devices on various learn-
ing tasks. Table V provides a summary of the configuration
of the local dataset. The CWRU dataset encompasses 12 tasks
(each device completes one task), each corresponding to four
levels of rotating speeds and load, multiplied by three monitoring
locations. In the experimental setting, we utilize locations A & B
to denote that the dataset is sourced from location A and location
B. Similar configurations include locations A & C, locations B
& C, and locations A & B & C. As the default configuration, we
set the local batch size to 32, the local training epochs to 5, and
the global training rounds to 200. Each device is given 1,000
samples, which is split into 80% trainset and 20% testset. The
model architecture used by the compared methods is consistent
with that of the hyper-model. AI models are updated by the
Adam optimizer with a learning rate of 2 x 10~*. In FedASA,
the number of cells for the auxiliary model and hyper-model is
L = M = 4 . The auxiliary data on the parameter server comes
from location A, and the accuracy of the auxiliary model is only
78.12%.

B. Performance Evaluation

Firstly, we compared the performance of different baseline
methods in cross-location scenarios (referred to Table VI). Fig. 9
illustrates the accuracy of six FL tasks across the four cross-
location scenarios. FedASA outperforms other baseline meth-
ods, regardless of their monitoring locations, with an average
accuracy of greater than 96% and better fairness (the standard
deviation is less than 2.5%).

Among baseline methods, the accuracy of local-only remains
below 60% with a larger standard deviation. The reason is
that the dataset of each device cannot train a high-performing
model. In addition, FedAvg and FedProx have demonstrated
effective diagnostic performance at locations B & C due to the
more extensive similarity between B and C (referred to Fig. 1).
The accuracy of FedProx is 86.67% from location B. Yet, this
accuracy reduces to 81.13% (referred to Fig. 9)(a) from two
locations and further drops to 68.92% (referred to Fig. 9(b))
from three locations. This is because constraint of the update
of devices cannot achieve personalized performance. With the
increase in monitoring locations, the performance of FedAvg,

Locations A & B Locations A & C
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Fig. 9. Accuracy comparison in cross-location scenarios.

FedProx, Ditto, and FedPer declined. The accuracies of Ditto and
FedPer drop by 8.75% and 4.83%, respectively, from location
B to locations A & B & C. It is demonstrated that all-sharing
and G-sharing schemes cannot solve the cross-location issues.
As shown in Table VI, the model memory usage of FedASA is
limited to only 10.46K to 59.87K, significantly lower than that
of all-sharing and G-sharing schemes. FedASA can reduce the
bandwidth requirement by 81.49% compared to the all-sharing
scheme.

Fig. 10 shows the performance comparison of different meth-
ods in three monitoring locations. It can be observed that
FedASA outperforms other methods in both accuracy and con-
vergence speed. FedASA achieves an average test accuracy of
97.44% and converges with only 80 rounds of global training.
Local-only achieves an accuracy of 51.78% with slow conver-
gence (referred to Fig. 10(a)). Compared with local-only, the
accuracies of FedAvg and FedProx are 70.22% and 68.92%,
respectively, proving that the FL schemes can improve diagnos-
tic performance. However, their performance is still affected by
the cross-location issues. Ditto achieves 84.17% test accuracy,
and FedPer achieves 91.42% test accuracy, but they require 200
global training rounds. For them, the cross-location issues not
only reduce the diagnostic accuracy but also slow down the
model convergence.

C. Fixed Shared Architectures

Inspired by the G-sharing scheme, Table VI and Fig. 11 show
the accuracy comparison of different fixed shared architectures.
«p to ay represent the number of cells in the shared architecture
from O to 4. Table VI shows that the fixed shared architecture is
a good choice for one monitoring location since the accuracies
are similar from ag to vy, with an accuracy greater than 93%.



TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CWRU DATASET

CWRU Dataset (mean+std %)

Methods Modelt = B C R A &C B&C A E B & Params (K)?
Local-only - 51.17+33.85 55.50+38.55 49.92+32.97 53.08+£36.29 52.79428.79 56.504+38.34 51.784+33.38 323.43
FedAvg [11] all 82.58+1.32 83.254+3.59 86.75+3.44 83.38+3.77 71.88+7.43 86.58+4.95 70.22+9.38 323.43
FedProx [27] all 81.17+2.27 86.671+2.53 84.08+4.56 81.13+6.56 68.79+6.70 85.08+6.34  68.92+10.73 323.43
Ditto [23] all 86.33+3.85 92.92+4.15 85.421+7.66 91.00+£8.00 82.751+8.76 93.58+4.79 84.17+9.57 323.43
FedPer [30] G 94.92+1.64 96.25+2.17 96.83+1.89 93.00+£3.10 92.29+4.34 94.33+3.08 91.42+3.77 322.14

FedASA ada 96.08+0.79 96.75+2.19 98.00+£1.20 96.50+1.59 97.21+1.83 97.00£1.00 97.44+2.20 [10.46, 59.87]
g G 95.92+1.28 97.33+0.82 98.17+£0.99 95.13+4.00 95.58+2.52 96.83+1.50 96.14+2.64 10.46
aq G 95.92+1.53 98.00+0.53 98.17+0.69 96.33+1.36 96.04+1.38 97.08+1.48 96.61+2.01 22.82
a2 G 94.9242.10 96.92+2.38 98.33+0.78 95.71+1.46 96.58+2.34 97.25+1.83 96.47+1.63 35.17
as G 93.4242.06 97.25+1.69 98.50+£1.38 93.21+£3.59 93.88+2.34 96.83+1.99 95.89+2.47 47.52
ay G 95.33+1.87 96.92+1.09 97.00£1.35 90.88+4.48 93.50+2.74 95.17£2.81 93.97+2.86 59.87

A ada 95.50+1.80 97.92+0.95 95.42+1.65 95.46+2.04 96.54+2.44 96.75+2.38 96.39+2.56  [10.46, 59.87]

A ada 95.00+2.09 96.83+1.67 98.25+0.76 96.21+2.45 96.21+1.91 97.42+1.40 97.00+£2.29  [10.46, 59.87]

2 ada 96.08+0.79 96.75+2.19 98.00+1.20 96.50+1.59 97.21+1.83 97.00+1.00 97.44+2.20 [10.46, 59.87]

U3 ada 94.08+1.75 98.00+2.35 97.92+1.09 95.79+2.92 95.92+2.96 96.25+1.75 96.31+£2.30  [10.46, 59.87]

0y ada 95.50+2.46 97.08+2.10 98.50+1.17 95.92+2.65 96.37+2.50 96.33+1.96 97.33+1.52  [10.46, 59.87]

1. In the sharing scheme for the models participating in the aggregation, "all" denotes the all-sharing scheme, "G" denotes the G-sharing scheme, and

"ada" represents the adaptive-sharing scheme.
2. Memory for the shared architecture.
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Fig. 10.  Performance comparison in three monitoring locations.

Fig. 11(a) shows that at locations A & B, the optimal archi-
tecture, o1, achieved an accuracy of 96.33%, while the worst
architecture, oy, is 90.88%. The difference between the two
is 5.45%. At locations A & C, this discrepancy is 3.08% (as
depicted in Fig. 11(b)), at locations B & C, it is 2.08% (as
shown in Fig. 11(c)), and at locations A & B & C, it is 2.64%
(in Fig. 11(c)). We have observed that the optimal architecture
varies across different scenarios, with discrepancies reaching up
to 5.45%. The reason is that each heterogeneous environment
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Fig. 11.  Accuracy comparison of different shared architectures.

requires a customized sharing architecture. Therefore, in cross-
position scenarios, fixed-sharing schemes require additional
training to search for the optimal number of cells.

D. Hyperparameter Analysis

Table VI and Fig. 12 show the performance comparison of
different architectures of the auxiliary model. ¢ to ¢, represent
the number of cells in the auxiliary model from 0 to 4. At
locations A & B, locations A & C, and locations A & B &
C, the optimal hyperparameter is ¢o (referred to Fig. 12(a),
(b), and (d)). As shown in Fig. 12(c), at locations B & C,
the optimal hyperparameter is /1. Note that FedASA is not
sensitive to the hyperparameter ¢, and the accuracy is similar
among different values. The largest discrepancy is observed in
locations A & C, amounting to 1.29%. And the smallest variation
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Fig. 12.  Accuracy comparison for different hyperparameters.

is found in locations A & B, with only 1.04%. The reason is that
the shared architecture of FedASA can adaptively learn global
shared features, reducing differences among devices.

E. Visualization Display

In this subsection, the global features extracted from the
shared architectures of different devices are visualized. In par-
ticular, the t-SNE method [42] is used to visualize different
features. Each label is assigned a specific numerical reference as
shown in Table V. Models with good classification performance
exhibit characteristics of small intro-group variance and large
inter-group variance, meaning that the same numbers are closer
together while different numbers are placed farther apart. At
locations A, B, or C, different digital colors are used to indicate
various working conditions. At locations A & B & C, different
colors represent separate monitoring locations. As shown in
Fig. 13, FedASA demonstrates exceptional classification per-
formance, with the visualization results showing clear demar-
cations of the ten categories. We have observed that FedASA
exhibits a relatively more considerable intro-group variance
when processing samples of healthy status (labeled as 0). This
is primarily due to the impact of cross-domain heterogeneity
on the healthy samples. Although this effect is less significant
compared to cross-location, a certain degree of heterogeneity
exists among the samples. As illustrated in Fig. 13(a), FedASA
achieves superior classification performance at location A com-
pared to others, which can be attributed to the fact that the
auxiliary dataset originates from location A.

VI. RELATED WORK

Federated learning in IoT: With the rise of network band-
width burden, deploying centralized learning frameworks in IoT
scenarios faces several challenges. FL is emerging as a solution

(a) Location A (b) Location B

(¢) Location C (d) Locations A & B & C

Fig. 13.  Feature visualization by the t-SNE method.

that enables joint model training without sharing local data.
Mothukuri et al. [43] proposed an FL-based anomaly detection
approach to recognize intrusion in IoT networks by decentral-
ized on-device data. Cui et al. [44] introduced a blockchain-
empowered decentralized and asynchronous FL framework for
anomaly detection in [oT systems. Wang et al. [45] proposed a
regional federated learning framework to measure the reliability
of vehicles. Cheng et al. [13] proposed a prototype-guided
FL framework for human activity recognition. Yao et al. [14]
proposed a federated transfer learning framework to address the
low data regimes in machine fault diagnosis. Zhang et al. [16]
proposed dynamic validation and self-supervision to improve
the performance of federated fault diagnosis. However, FL de-
ployment on edge devices faces challenges such as communica-
tion constrains, heterogeneous devices, efc.

Federated learning with communication constrains: FL is
widely deployed on mobile and IoT devices to achieve in-
telligence. The limitations of communication on these edge
devices are often experienced as a bottleneck. Existing meth-
ods for saving communication resources include two cate-
gories: training multiple local iterations before global aggre-
gation and model compression [20], [46]. The first category
reduces the communication overhead by allowing devices to
perform multiple epochs of local updates instead of commu-
nicating frequently [5], [8], [47], [48]. The second category
is to reduce the communication overhead of each round by
model compression, so as to reduce the total communication
overhead [10], [49], [50]. Different from them, FedASA aims
to adaptively determine the shared architecture for uploading
according to the heterogeneity of devices, reducing communi-
cation overhead by avoiding unnecessary uploading of model
architectures.

Federated learning with heterogenous devices: Considering
heterogeneous edge devices, FL with heterogeneous devices has
been extensively studied in recent studies [51], [52]. Heterogene-
ity across devices includes resource and statistical heterogeneity.
Resource heterogeneity is a straggler issue caused by differ-
ent computing resources of devices, and several asynchronous



strategies have been proposed to address the straggler issue [51],
[53], [54], [55]. To address statistical heterogeneity, existing
works are divided into data-based methods and model-based
methods. Data-based methods focus on constructing indepen-
dent and identically distributed datasets among devices to re-
duce the heterogeneity among local datasets [24], [25], [26].
Model-based methods aim to improve the performance of global
or personalized models [27], [28], [52], [56], [57]. Different
from them, FedASA aims to address the challenges (e.g. statis-
tical heterogeneity, resource constraint, fairness) in a real loT
scenario.

VII. CONCLUSION

In this paper, we investigated the essential challenges of
deploying FL frameworks in real IoT scenarios, i.e., statistical
heterogeneity, resource limitations, and fairness. Specifically,
the cross-location issues have been demonstrated to introduce
more statistical heterogeneity than the cross-domain issues. To
address these challenges, we proposed FedASA, a fair and effi-
cient FL. method, which can address the challenge of statistical
heterogeneity in resource-constrained scenarios by determining
the shared architecture adaptively. In FedASA, we first pro-
posed a cell-wised alignment algorithm, which can adaptively
determine the shared architecture according to the degree of
heterogeneity of each device. We then proposed a cell-based
aggregation scheme that aggregates heterogeneous shared archi-
tectures. In addition, we provided a theoretical analysis of the
federated error bound, which provides a theoretical guarantee
for the fairness of FedASA. At the same time, the convergence
of FedASA at the first-order stationary point has been proved.
Finally, we evaluated the performance of FedASA through ex-
tensive simulation and experiments, and experimental results
demonstrated that FedASA outperformed the state-of-the-art
approaches with better fairness, faster convergence, and less
communication requirement.
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