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ABSTRACT

A new thermomechanical (TM) coupled finite-discrete element method (FDEM) model, incorporating
heat conduction, thermal cracking, and contact heat transfer, has been proposed for both continuous and
discontinuous geomaterials. This model incorporates a heat conduction model that can accurately
calculate the thermal field in continuous—discontinuous transition processes within a finite element
framework. A modified contact heat transfer model is also included, which accounts for the entire
contact area of discrete bodies. To align with the finite strain theory utilized in the FDEM mechanics
module, the TM coupling module in the model is based on the multiplicative decomposition of the
deformation gradient. The proposed model has been applied to various scenarios, including heat con-
duction in both continuous and discontinuous media during transient states, thermal-induced strain and
stress, and thermal cracking conditions. The thermal field calculation model and the TM coupling model
have been validated by comparing the numerical results with experiment findings and analytical solu-
tions. These numerical cases demonstrate the reliability of the proposed model convincingly, making it
suitable for use across a wide range of continuous and discontinuous media.

© 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Thermomechanical (TM) coupling has become a significant
concern in underground engineering due to its intricate influencing
mechanisms. In hot dry rock (HDR) formations, fractures induced
by high temperatures play a vital role in maximizing thermal en-
ergy extraction efficiency. Likewise, in the field of underground
energy storage, comprehending the thermal response of sur-
rounding rock is essential for the design of underground caverns
utilized in gas storage systems, compressed air energy storage, and
storage of hydrogen or carbon dioxide. In deep geological disposal
of radioactive waste, the decay of nuclear materials releases sig-
nificant heat, causing dynamic temperature fluctuations that affect
stress and deformation distribution in the surrounding rocks. The
occurrence of fractures is highly undesirable as it creates potential
pathways for the transport of radionuclides into the biosphere.
Hence, accurate calculation of thermal loads and prediction of
thermally induced cracks are of utmost significance for the design,
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construction, and safe maintenance of underground space exploi-
tation. Three primary numerical approaches are used to calculate
the coupling of TM processes, deformation and fracture in rocks:
continuum-based methods, discontinuity-based methods and
hybrid approaches. These methods facilitate a comprehensive
analysis of the TM response of rocks and assist in informed engi-
neering decision-making. The choice of analysis depends on ma-
terial characteristics and research objectives.

Continuum-based approaches have played a crucial role in the
early stages of thermal fracturing research. The finite element
method (FEM) discretizes a domain into small elements, estab-
lishes a mathematical model based on node variable vector, stiff-
ness matrices, and external load vector, and solves algebraic
equations to calculate the temperature field distribution. Tang et al.
(2016) proposed a thermo-damage method under the FEM frame-
work to tackle thermal-induced cracking in brittle solids. However,
FEM relies on the assumption of continuum mechanics and faces
challenges in accurately representing the behavior of multiple
cracks, thereby limiting its effectiveness in simulating thermal
fracturing and fragmentation. To overcome these limitations, re-
searchers introduced a continuum approach based on phase field
theory, which can account for the brittle fracture development in
thermo-elastic-plastic materials (Miehe et al., 2015a, b). While this
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approach shows promise, it comes with the limitation of requiring
ultra-fine meshing to accurately represent the fracture topology,
which subsequently leads to substantial computational expenses
(Li et al., 2022). Furthermore, the phase field method, being a
continuous approach, does not provide an explicit representation of
cracks, which could potentially lead to inaccurate calculations of
crack velocity in dynamic fracture situations. In contrast, the peri-
dynamic method offers a significant advantage, as its governing
equation remains effective even across discontinuities. Wang et al.
(2018) proposed a TM coupling model for rocks, aiming to study the
thermal cracking problems based on peridynamics theory. How-
ever, it is worth noting that conventional peridynamic models
exhibit higher computational costs compared to methods based on
classical theories, primarily due to their inherent nonlocal nature
(Bazazzadeh et al., 2020). Numerical methods specialized in the
study of fracture problems, for instance, the boundary element
method and its extension, i.e. dual boundary element method and
displacement discontinuity method (Abdollahipour et al., 20163, b;
Haeri et al., 2013), are further developed to incorporate coupling
effects (Giannopoulos and Anifantis, 2005; Rinne et al., 2013).
Abdollahipour and Fatehi Marji (2020) proposed a thermo-
hydromechanical model based on the displacement discontinuity
method to couple the fracturing, temperature, and fluid pressure
effects. Besides, the extended finite element method (Fu et al,
2022) is also a promising method for deep underground engi-
neering that has been modified to consider the influence of tem-
perature (Liu et al., 2014; Zeng et al, 2020). Despite their
advancements, these approaches do not account for the impact of
thermal contacts of discontinuous materials, such as the interaction
between fracture walls or heat resistance arising from contact be-
tween discrete parts.

To address the constraints of continuum-based approaches,
discontinuous-based approaches have gained significant attention
for simulating thermal cracking in geomaterials. The discrete
element method (DEM) is a prominent example of these ap-
proaches. By introducing a thermal conduction module into the
bonded-particle model, thermal fracturing simulation in geo-
materials was realized by Xia (2015) for circular particles and by
André et al. (2017) for spherical particles. However, most of the
current particle-based DEM models adopt excessively simplistic
isothermal assumptions. In addition, these models have used cir-
cular/spherical particles, with their outcomes influenced by the
particle size and the structural distribution characteristics of the
particles in the numerical model, and the contact area calculation
remains a complex problem.

Block-based DEM, such as the universal distinct element code
(UDEC), presents additional challenges for simulating heat transfer
between elements since subdividing contact zones may introduce
computational inaccuracies and necessitate very small time-steps
in temperature field calculations. Discontinuous deformation
analysis (DDA) employs discrete blocks and joints to model tem-
perature field interactions (Shahami et al., 2019), allowing for the
simulation and calculation of temperature distributions in complex
geomechanical systems. Jiao et al. (2015) proposed a TM coupling
model to investigate the thermal stress-induced fracturing in rocks
within the DDA framework. To reduce the extensive contact anal-
ysis in DDA, Choo et al. (2016) proposed a combined DDA-FEM that
used FEM mesh for major parts of domain and only a few DDA
blocks are required. As a result, the computational cost is reduced
by a large amount since only the block boundaries require contact
analysis (Choo et al., 2016). Nevertheless, DDA methods treat heat
conduction calculations separately from the mechanical calcula-
tions. Even when cracks have formed, the calculation mesh used for
heat conduction still retains shared nodes along the cracks (Yan
et al, 2021a). As a result, the temperature across the cracks
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remains consistent, and the impact of cracking on the temperature
field is not accounted for. Furthermore, it is essential to calibrate the
DEM microscopic parameters to match the macroscopic mechani-
cal and thermal properties of the material before conducting formal
numerical simulations, which remains a challenge for researchers.

In contrast to the aforementioned approaches, the combined
finite-discrete element method (FDEM) is a novel method that in-
tegrates continuum mechanics concepts with DEM algorithms
(Munjiza et al., 1995; Mahabadi et al., 2012; Zhao et al., 2014). FDEM
is an ideal numerical approach to capture progressive damage and
failure processes in brittle materials, which makes it a suitable
numerical solution to deep underground engineering applications,
such as HDR geothermal systems, deep oil reservoirs, and geolog-
ical disposal of radioactive waste (Sun et al., 2022; Cai et al., 2023;
Wang et al., 2021). Taking HDR geothermal systems as an example,
it involves three major steps, i.e. reservoir reconstruction, cold
water injection, and hot water (steam) extraction. The injection
pressure and the large temperature differences between the in-
jection water and the reservoir will possibly generate fractures in
the host rocks (Cui and Wong, 2022). Benefiting from the nature of
FDEM, it can accurately simulate the fracturing behavior in reser-
voir reconstruction and production of HDR systems. Besides, by
using a TM coupled FDEM model, heat transfer calculations in both
continuous and discontinuous media can be performed, while also
addressing the continuum-discontinuum transition process.
Therefore, the evolution of fracture state in reservoirs can be
simulated during production.

Based on FDEM, Yan and Zheng (2017), Yan et al. (20193, b), and
Yan and Jiao (2020) proposed several TM coupling models for
thermal fracturing simulation in geomaterials. Nevertheless, heat
conduction is only considered within a single solid in these ap-
proaches, while the heat transfer during contact is ignored, which
limits their utilization in discontinuous geomaterials. Yan et al.
(2021b) subsequently developed a thermal contact algorithm
based on earlier heat conduction FDEM models. However, the
above-mentioned TM coupled FDEM models predominantly rely on
the small strain assumption, which is inadequate for handling large
deformation issues. To address these limitations, researchers (Jou-
lin et al, 2020a; Wang et al., 2021) proposed thermal stress
expression under the finite deformation configuration, which can
function in large deformation FDEM simulations with thermal
fracturing. It is worth noting that the studies mentioned above
predominantly applied a discrete equation system to indepen-
dently calculate the temperature of nodes in computational do-
mains. This approach does not align with the continuum
characteristic of heat conduction in intact rocks, potentially leading
to inaccuracies in the temperature field. Joulin et al. (2020b) uti-
lized a thermal field calculation model comprising two indepen-
dent parts: a FEM-based heat conduction module for continuum
and a DEM-based heat contact module for discontinuum. However,
this method is unable to handle the continuous-discontinuous
transition processes in thermal field calculation under quasi-static
and dynamic conditions. Therefore, a heat conduction/contact
approach that considers the continuous-discontinuous transition
process should be developed to achieve the TM coupling simulation
of the rock deformation — fracture — failure process. Additionally,
current heat transfer calculations for thermal contact are mainly
based on a single edge of the contact area, rather than the entire
overlapping region (Wang et al., 2021; Yan et al., 2021b). This
approach may introduce severe inaccuracies when applied to
multi-body contact simulations in geomaterial particles or
discontinuum.

To address the aforementioned challenges, this study proposes a
new thermal field calculation scheme and an overlapping region-
based contact heat transfer algorithm. These advancements will
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contribute to achieving the TM coupling simulation of rock defor-
mation, fracture, and the failure process. The rest of this paper is
structured as follows. Section 2 provides a brief overview of the
FDEM theory. Section 3 introduces the new heat transfer model for
FDEM. The TM coupling model is presented in Section 4. Finally, a
few numerical verification examples are shown in Section 5.

2. Overview of the FDEM

The computational domain in the FDEM approach is discretized
into solid elements and joint elements without thickness. Within
this framework, solid elements exclusively undergo elastic defor-
mation, and their computational process is conducted under the
finite element framework. Conversely, damage and fracture occur
exclusively in joint elements, which are governed by cohesive zone
models. The no binary search (NBS) algorithm and a contact force
calculation method based on the potential-based penalty function
approach are employed to address discrete elements (Munjiza and
Andrews, 1998). Only a concise overview of the FDEM is provided
here, with comprehensive and in-depth explanations of its basic
principles available in the literature (Fukuda et al., 2020; Sun et al.,
2020; Wu et al., 2022, 2023).

2.1. Governing equation and numerical integration

The governing equation of FDEM is based on Newton’s second
law, which can be expressed as
Mu+Cu +fint(u) :fext (1)
where M is the mass matrix; C is the damping matrix; and f2%(a)
and f*** are the internal and external forces, respectively.

The nodal velocity and displacement of solid elements are
updated using the explicit central difference approach:

£+AL) 2F i(t).At
m

( _
v; =V + 2)
xlgtmt) _ xlgr) n Ul(r) At
where ZF(,” is the total nodal force, m is the nodal mass, and At is
the time interval.

2.2. Constitutive model of the joint element

In FDEM, the yield and failure status of a joint element is
determined by its deformation, i.e. joint opening o and joint slip s.
Typical failure modes include Mode I (tension, opening), Mode II
(shear, sliding), and mixed Mode I-II:

(1) Mode I failure. In the original state, the opening of joint el-
ements is a negative value, indicating that the joint elements
are in a compression state. With the gradual increase of
opening, the normal cohesive force rises accordingly. The
critical value o, of the opening occurs when the normal
cohesive force attains its maximum, which corresponds to
the tensile strength of the joint, f.. Subsequently, the joint
element undergoes a yield state. When the opening reaches
the residual opening oy, the joint element fails and forms a
tensile fracture.

(2) Mode II failure. With the increasing sliding displacement, the
tangential cohesive force rises accordingly and reaches its
maximum, corresponding to the peak shear strength of the
joint, when s reaches the critical value s,. When the sliding
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displacement is larger than s, the joint element enters a
yield state. Once the sliding displacement reaches s, shear
failure occurs, and the tangential cohesive force decreases to
the residual shear strength.

(3) Mixed Mode I-II failure. Except for Mode I and Mode Il failure,
when the joint displacement is smaller than o; and s;, mixed
Mode I-II failure occurs, and the residual displacement can be
very significant. Therefore, an elliptical function is utilized to
govern the mixed failure mode subjected to both tensile and
shear stresses simultaneously:

0—0p
or — Op

3)

2

s—s

(o=o) (=2
St —Sp

2.3. Contact detection and contact force

The NBS algorithm (Munjiza and Andrews, 1998) can be
explained as follows: First, the two-dimensional (2D) computa-
tional domain is meshed into numerous equal-sized square cells.
Next, each discrete element is mapped to its corresponding square
cell, and contact detection is performed only within that specific
square cell and its adjacent cells. This approach eliminates unnec-
essary contact detection between distant elements, significantly
improving computational efficiency.

FDEM incorporates a distributed contact force approach that
considers the size and shape of the overlapping boundary between
contact pairs. In this context, a contact element and a target
element form a contact pair, while the overlapping area is denoted
as S. A potential function is defined for triangular elements. The
potential of any point P in a triangular element is shown below:

. (3A1 34, 3A;
o(P) = min (1. %270

where A; (i = 1, 2, 3) denotes the area of the corresponding sub-
triangle shown in Fig. 1; and ¢ equals one at the centroid and zero
on the boundary.

For an infinitesimal area dA on the contact area, the potential
differs between the contact and target elements. Based on the

(4)

df
Bt

Fig. 1. Schematic diagram of the potential and contact force.
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potential difference between these two elements, the contact force
of dA from the target element to the contact element is as follows:

dfn = pn(gradec(Pc) — grade(P))dA (5)

where df, is the normal contact force generated by dA; grad de-
notes the gradient; p; is the normal contact penalty parameter; P,
and P; are the positions of dA in the contact and target elements,
respectively; and ¢. and ¢ are the potentials at the point in the
contact and target elements, respectively. By integrating Eq. (5)
over the entire overlapped area, the total contact force of the
entire contact area can be calculated.

The relative displacement of the interaction edge between the
contact element and target element is the sliding distance ds. Its
initial value is zero and gradually increases with the deformation of
the computational domain. In triangular elements, the tangential
contact force depends on tangential penalty parameters p; and ¢s in
the beginning. When ds reaches a critical value, the tangential
contact force is determined according to Coulomb friction as
follows:

0s .
= ——min

=1

(prh|ds], onfr) (6)

where h is the element edge length, ¢, is the normal force on
interaction edge, and f; is the frictional coefficient.
3. Heat transfer model for FDEM
3.1. Basic theory for heat conduction
Fourier’s law of heat conduction and the law of conservation of

energy are combined to create the thermal diffusion governing
equation:

oT _ T o Q ﬂ qx
pcp&_ vVig+s= {ax aquy +s (7)
L
| 9x | Fexx kxy} ox _
q_[CIy}_ [kyx kyy || @ T=-bvi (®)
oy

where s is the heat source, T is the temperature, t is the time, x and y
are the coordinates, k is the thermal conductivity, p is the density,
and cp is the heat capacity.

Then, we can obtain the following expression:

(9)

This equation is widely used for 2D transient heat conduction. If
the thermal conductivity is isotropic and remains unchanged in
computational domain, Eq. (9) in 2D is simplified to

pcpg—f = VI(DVT) +s

[ETL T
ox2  oy?

where k = k/(pcp) is the thermal diffusivity. The thermal diffusivity
matrix of isotropic material is as follows:

s

o _
at

N

e (10)

k O

0 « (11)
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3.2. Finite element discretization

The computational domain @ is discretized into finite elements,
and the domain boundary is denoted as I'. We choose here the
triangular element with the following shape function:

1
Ni(x,y) :z—Ae(Cli-FbiX-FCiJ’) (12)

where g;, b, and c; are the coefficients related to node i; and Ae is the
area of the element. Using N to represent shape functions of an
element, we have

N(x,y) = [N1(x,y) Nz2(x,y) N3(x,y)] (13)

Then, the shape function is utilized to map the node variable T;
to the continuous variable T:

T
T,
T3

T(x.y) = Ni(x,y) Na(x,y) N3(X7Y)]{ =NT (14)

Substituting T into Eq. (9), we can then obtain the following
expression:

pcp% (NT) = VI(DVN)T + s (15)

Multiplying Eq. (15) by the weighting functions and integrating

over the computational domain Q° yields

' 1O _
/ A) poNT S (NT)dxdy =

/ / NV (DVN)Tdxdy + / / NTsdxdy (16)
Q° Q°

Applying integration by parts of the above equation over Q° and
applying Green’s theorem yields the following expression:

{ / / pcpNTNdxdy}ng { / / VNT(DVN)dxdy | T
Q° ot Q°

= / / NTsdxdy + f NTq"nds
o I

where q is the given heat flux, and n is the outer normal vector. The
second item on the right-hand side of Eq. (17) represents the
Neumann boundary condition.

The simplified form of Eq. (17) is as follows:

(17)

or

M- +KT = P (18)

where the heat capacity matrix, thermal conductivity matrix, and
thermal load vector are as follows:

M = / / pcpNTNdxdy
Q(’

K - / / YNT(DVN)dxdy
QE

P = / / NTsdxdy + ?{ NG nds
o I

The shape function derivatives are shown below:

(19)
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0x 0x 0x
WNED = | ony N, o (20)
ay ay ay

To solve the transient heat transfer problem, it is also necessary
to discretize the time derivative in Eq. (18) by finite difference
method:

Tn+1 _T"

n+1
At + KT

M =P (21)
where T is the function value at the next time step n + 1, and T"
is the known value at the current time step n. Rearranging Eq. (21),

we can obtain the following expression:

n+1 _ M n
)T = HT +P
In the FDEM model, both the joint heat exchange component and
contact heat transfer component are taken into consideration. Joint
elements are inserted between the solid elements to account for
heat conduction in the material. When heat conduction occurs
within the material modeled by the FDEM, the transfer of heat from
one element to its neighboring element must pass through the joint
element connecting them. As a result, the joint elements play a
crucial role in the heat conduction within solid material in the
FDEM method. To accurately capture the impact of joint elements,
the joint heat exchange component is introduced. This component
represents the heat conduction process through the boundaries of
solid elements and is incorporated into the global right-hand vector
of thermal loads, denoted as P.

On the other hand, when two discrete solids with different
temperatures contact at a specific region, heat is transferred
through their contact area, influencing the heat conduction within
the solids. To reflect this mechanism, the contact heat transfer
component is added to the global right-hand vector of thermal
loads P to reflect the contribution of other solids to the heat
conduction.

When a fracture occurs, two solid elements debond and the
joint element between them breaks. Simultaneously, the joint heat
exchange component also fails, representing the transformation of
the heat conduction mode from continuum to discontinuum in the
local region. Heat conduction between these two discrete solid
elements will occur through contact heat transfer via the contact
heat transfer component. Consequently, these two heat conduction
components facilitate the entire heat transfer process, transitioning
from continuum to discontinuum using the FDEM method.

The global right-hand vector of thermal loads in FDEM method
can be written as

<AMt+K (22)

P— Pinter jLPct (23)
where P™€T js the joint heat exchange component, and P is the
contact heat transfer component.

Eq. (23) can be rewritten as the form of the assembly of
elements:
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P = pinter N p
e e
inter

Plinter _ f}eq'

inter .
N,dT

(24)

ct

PiCt = %eq.
r

3.3. Heat transfer between adjacent elements

The joint heat exchange component can be expressed as follows:

n; .
inter __ inter,n
P; = E p;

; (25)
n=1

where n; is the number of joint elements in which node i is

involved.

In conventional FEM and similar methods, heat exchange be-
tween adjacent solid elements occurs automatically via shared
nodes. However, in the FDEM approach, adjacent elements will be
separated to enable the modeling of the progressive damage pro-
cess, resulting in no shared nodes. Instead, these elements transfer
heat through joint elements until a fracture occurs.

We assume that there is no loss of heat flow when traversing the
discontinuity. The heat flow at the boundary of adjacent elements
can be determined:

T~

1

q.

1

= —qf = kAT = Ii(T - T;)
where AT denotes the temperature difference between two adja-
cent elements, and k; represents the interfacial heat conductivity
that is utilized to characterize the heat transferring capacity of the
discontinuous interface.

The heat flux into the node of the adjacent solid element via the
joint element is as follows:

inter,1234 _ 1
P :§7§ qdl

(26)

(27)

3.4. Heat transfer between contact elements

This section introduces the calculation of heat transfer through
contact element pairs. The contact heat transfer component for
finite elements is formulated as

Pt = ip

n=1

ct,n
; (28)
where n. is the number of times that node i is in contact with other
elements.

For an element, the heat flux of unit cross-section area in the i
direction is shown below:

oT

— ki
an

gi = (29)
Assuming a linear distribution of temperature across the
element, the temperature gradient remains constant throughout

the element and follows the below expression:
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oT 1 foT

— === (30)

an . Aan

where A is the contact area.
Applying Gauss’s divergence theorem, Eq. (30) can be rewritten

as

oT

o (31)

1

where [’ is the boundary of the contact area.

The heat flow on the overlapped area of the contact element and
target element, q. and q, are calculated respectively. According to
the superposition principle, the local net heat flow is determined
as:

n.
a -l alfy] (32)
where n; and n; are the outward normal vectors.
The total transferred heat on the contact area is
P = he [ qan (33)
JA

where hc is the thermal contact conductance coefficient as the non-
ideal contact possesses thermal contact resistance.

Contact transferred heat is assigned to the nodes of target (A, B,
C) and contact (0, 1, 2) triangular elements by using the shape
function. For instance, Na, Np, and N¢ are the shape functions of
nodes A, B, and C in the target element, respectively, and meet the
following relationship:

NA+NB+NC:1
0<Ny<1
0<Ng<1
0<Nc<1

(34)

In this case, we set the barycenter G of the overlapped area as the
equivalent action point. Based on the coordinates of G, N4, Ng, and
Nc can be calculated as follows:

_ Spac

~ SBcG N Sace
Ny ,Np = Sanc

— = ; 35
Sasc Sagc’ (35)

The shape functions of the contact element Ny, N; and N, are
defined similarly to Eq. (35) and calculated with the help of the
barycenter G.

The allocation of the contact heat to the nodes of the contact
element and target element can be calculated as follows:

|

4. TM coupling model covering thermal fracture

ct,n

p;

ct,n

= ptIN, NJ|™M| i=ABC j=01.2 36
pj] p[l ]]|:nj:|(l ,77] 77) ()

4.1. Multiplicative decomposition of deformation gradient

Based on the concept of multiplicative decomposition of the
deformation gradient (Vujosevic and Lubarda, 2002), the total
deformation gradient F can be split into a thermal component Fr
and an elastic component Fe:
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F = FrF. (37)

where Fr and F, can be expressed as follows (Joulin et al., 2020a;
Wang et al., 2021):

}

where « is the thermal expansion coefficient; I is the identity ma-
trix; and Fe; and Fe ¢ are the matrices describing the element bases
in the initial and current local frames, respectively:

Fr
Fe

(1 + aAT)I
Fec+F,}

(38)

Xi1 —Xio  Xi2 — Xjo
Fc,i =
Yi1r = Yio Yi2 —Yio
(39)
Xc1 — X0 Xc2 — Xco
F&C =
Ye1 =Yoo Y2 —Yeo
Eq. (37) can be rewritten as follows:
F = (1+aAT)Fe (40)

4.2. Thermal stress

The left Cauchy—Green strain tensor B can be obtained ac-
cording to the deformation gradient:

B = BiB. = FF' (41)

where Br is the thermal component, and B. is the elastic compo-
nent. They can be calculated as

}

We can obtain the Green—St. Venant strain tensor E based on B
and I

By = FrF}

(42)
B. = F.F!

B-1
E==>- (43)
The Cauchy stress T can be determined by
det(F,;) ) (det(Fec) det(Fe;)
T=2 : = — — == 44
Het(Fee)E T2\ det(Foy) ~det(Feq) )T T2 (44

where u and 4 are the Lamé coefficients; Cp is the dissipative
component of the stress (Xiang et al., 2009), which can be
expressed as
Cp = 21D (45)
where 71 denotes the viscosity; and D is the rate of deformation
matrix and formulated as

L+
)

(46)

where L means the velocity gradient, and L = FF~!.
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4.3. TM coupling process

The flowchart shown in Fig. 2 displays the overall algorithm
scheme of the TM coupling model.
For the coupling scheme, it can be divided into two parts:

(1) T->M part

(i) Temperature changes will induce thermal deformation
and thermal stress.

(ii) Thermal-induced stress may cause thermal fracturing,
which may change the mechanical properties of
materials.

(2) M—-T part

(i) Given that mechanical changes are assumed to exert a
minimal impact on temperature variations, this is based
on the understanding that energy alterations in quasi-
static mechanical scenarios tend to be negligible (Guo
et al., 2023).

(ii) Fracturing and contacts in the mechanical module will
affect the heat transfer process in solid elements and
joint elements, and subsequently change the thermal
field.

( » Begin : )
T

‘ Apply boundary conditions

\ 4
Heat transfer
through contacts

Heat transfer
through joints

Heat transfer in
solid matrix

A4
’ Update thermal field

;

Thermal-elastic deformation
and thermal stress

A
Calculate stress/strain and
cracking

i l i

Contact detection and nodal force
caused by the contact force

!

Update the velocity and coordinates of the
node according to Newton's second law

_Final time step?

lTrue

(" End )

Fig. 2. The flowchart of the calculation procedure in the TM-FDEM model.
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Table 1

Numerical parameters of rectangular plate for transient heat conduction.
Numerical parameters Value
Mesh size (m) 0.05
Element quantity 244
Time step (s) 1x1077
Density, p (kg/m?) 2000
Elastic modulus, E (GPa) 50
Poisson’s ratio, v 0.25
Thermal conductivity, k (W/(m °C)) 10

Heat capacity, ¢, (J/(kg °C)) !

Fig. 3. Numerical model setup for heat conduction in transient states.

By using the explicit time integration scheme with fine time-
step size, the TM model can precisely capture the interaction be-
tween mechanical and thermal fields.

5. Verification examples
5.1. Heat conduction in transient states

To verify the accuracy of the novel TM model under transient
conditions, the temporal variations of temperature in a rectangular
plate were examined. A simulation of transient heat conduction
was conducted and compared with an analytical solution to assess
its reliability. The rectangular plate, with dimensions of 1 m in
length and 0.25 m in width, starts with an initial temperature of
0 °C. The left side of the plate maintains a constant O °C, while the
right boundary is set to a constant 100 °C. The top and bottom
boundaries of the model are considered adiabatic. Specific nu-
merical parameters for this case are provided in Table 1, and the
numerical model is illustrated in Fig. 3.

The analytical solution for temperature field of this case is
shown below:

X
T(x,t) = Ty + (Tg — TL)T

2 & TRcosmr T, -
+;Z{ exp(

anﬂ'zt)
+
=1

AT, i’: 1 {

kel | exp

m m:02m+1

I2
t] } (47)
where x is the distance from the left boundary.

The temperature distributions in the rectangular plate during
transient states at different time points (t =2 s,10 s, 20 s, and 50 s)
are displayed in Fig. 4a. The heat transfer is observed to occur from
the high-temperature end to the low-temperature end, with the
heated region expanding gradually over time (from 2 s to 50 s).
Fig. 4b illustrates a comparison between numerical and analytical
results of the thermal field, revealing excellent agreement and
thereby validating the reliability of the present model for modeling
the transient TM response.

(2m + 1)mx
l

—k(2m +1)*n?

s 2
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Fig. 4. Temperature results in rectangular plate at different times: (a) Temperature fields (in °C); and (b) Comparison between analytical and numerical results.

5.2. Heat conduction in multi-bodies

To investigate the heat conduction capabilities of this model in
both continuous (intragranular) and discontinuous (intergranular)
media, a simulation was conducted to analyze the heat transfer
process within a multi-body rock heap system. In this simulation, a
rectangular container (0.5 m in width, and 0.7 m in height) with its
base at a temperature of 100 °C and its two side panels at a tem-
perature of 0 °C was studied, as shown in Fig. 5. Inside the
container, 61 unevenly distributed rock blocks were placed, initially
at a temperature of 0 °C, with an average size of 0.07 m. The entire
model was divided into 3249 triangular elements. Table 2 lists the
numerical setting parameters.

To quantitatively analyze the thermal field of the rock blocks
within the container, a vertical straight monitoring line was posi-
tioned at a distance of 0.195 m from the left side panel. Additionally,
8 monitoring points were positioned around the line, as depicted in
Fig. 5.

Fig. 6 illustrates the evolution of the thermal field within the
multi-body system. Initially, a temperature rise was observed only
in the bottom layer rock blocks directly in contact with the heating
panel, as shown in Fig. 6a. Furthermore, due to varying contact
areas between the bottom layer rocks and the heating panel, the
rate of temperature increase differed. Rock blocks with larger
contact areas exhibited a more pronounced temperature rise. As
contact heat transfer continued (time steps ranging from 10,000 to
1,050,000), heat gradually propagated from the bottom to the top of
the assembly, resulting in an overall temperature increase for all
rock blocks within the container.

Fig. 7a depicts the evolution of temperature along the moni-
toring line, displaying a gradual increase in temperature from the
bottom to the top. After 1,050,000 time steps, the temperature of
the block located at the bottom of the multi-body system ap-
proaches 100 °C. In contrast, the temperature at the top of the
multi-body system only begins to rise after 700,000 time steps,
ultimately reaching 3.2 °C at 1,050,000 time steps.

Fig. 7b illustrates the evolution of temperatures at the moni-
toring points. At any given moment, the temperature is higher at
the monitoring points closer to the heating plate, and lower at
points farther away. The temperature at each monitoring point
gradually increases over time, albeit with a diminishing rate of
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0.5m

Fig. 5. Numerical model setup for heat conduction in multi-bodies.

Table 2

Numerical parameters of multi-bodies for transient heat conduction.
Numerical parameter Value
Mesh size (m) ~0.015
Time step (s) 1x1077
Density, p (kg/m?) 2500
Elastic modulus, E (GPa) 10
Poisson’s ratio, v 0.25
Thermal conductivity, k (W/(m °C)) 100
Heat capacity, ¢, (J/(kg °C)) 70
he 0.5

increase. Taking the lowest point, point 1, as an example, its tem-
perature rises from 0 °C to 70 °C over 300,000 time steps, after
which the rate of temperature increase (dT/dt) approaches zero. In
summary, the simulation validates the reliability of the present
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Fig. 7. Temperature distribution in multi-bodies: (a) Thermal field along the monitoring line at different time steps; and (b) Temperature evolution at the monitoring points with
time.

thermal contact model in accurately simulating internal heat Table 3

transferring within a multi—body system. Numerical parameters for temperature change induced stress and strain simulation.
Parameter Value
5.3. Stress and strain induced by temperature change Density, p (kg/m?) 2300
Elastic modulus, E (GPa) 751
After verifying the reliability of the model in computing the Poisson’s ratio, » 0311
thermal field, this case aims to validate its mechanical field accu- Tensile strength, f; (MPa) 30
racy. Assuming a square sheet with unconstrained boundaries and Internal cohesion, ¢ (MPa) , 50
initial £ T Ivi diff AT Mode I fracture energy release rate, G; (J/m~) 100
an initia tempe{ature of To, applying a temperature difference AT, Mode Il fracture energy release rate, Gy (J/m?) 100
the thermal strain/stress induced within the sheet due to temper- Fracture penalty, p; (GPa) 375
ature variation is calculated. The analytical solution for thermal Thermal conductivity, k (W/(m °C)) 26
stress and strain for this problem is shown below: Heat capacity, ¢, (J/(kg °C)) 700
Thermal expansion coefficient, a ((°C)~") 3x10°°
Exx — &‘yy = OéAT
E A (48) Considering a square sheet with a length of 2 m, two transient
Oxx = Oyy = 7, ®AT temperature change conditions are taken into account: AT = 100 °C
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and AT = —100 °C. The present TM coupled model is applied to
simulate this problem, and the numerical model is discretized into
3708 triangular elements with an average element size of 0.05 m.
The detailed mechanical and thermal parameters are provided in
Table 3. Some parameters are determined according to the litera-
ture (Yan and Zheng, 2017; Wang et al., 2021).

Table 4 presents numerical simulation results for thermal strain
and stress, which demonstrate good agreement with the analytical
solutions. This agreement provides strong evidence for the accu-
racy of the coupled model in effectively addressing problems
involving TM coupling. Fig. 8 presents a displacement vector dia-
gram of the numerical simulation results. As shown in Fig. 8a, an
increase in temperature leads to the outward expansion of the
square sheet, with larger deformations observed at the outer
boundaries, while the displacement at the center is the smallest.
Conversely, Fig. 8b indicates that a decrease in temperature causes
the square sheet to contract inward, resulting in greater de-
formations at the outer edges. Similarly, limited or even no
displacement is observed at the center of the square plate. These
findings qualitatively and quantitatively validate the effectiveness
of this coupling model.

5.4. Thermal stress in steady states

As shown in Fig. 9, for a hollow thick-walled cylinder with inner
and outer radii a and b, Dirichlet boundary conditions are applied at
the inner and outer boundaries with temperatures of T, and Tp,
respectively. Analytical solutions for temperature and stress in this
problem can be found in the literature (Noda, 2018):

In(b/r) In(a/r)
T = TnG/a) * nasb) »
_ Ea(Tq —Ty) [In(b/r) bz/rz !
ar(r) = 2(1—-») |In(b/a) bz/az 1 (49)
- Ea(Ta—Tb) ln(b/r)_-l b2 r2+1
ag(r) = 2(1—v) In(b/a) bz/a2 -1

We utilize the current approach to simulate the problem and
compare it with the analytical solutions. The discretization of the
hollow cylinder is performed using 4927 triangular elements, as
shown in Fig. 9. The simulation employs a time step of 8 x 10~% .
The TM parameters and boundary settings used in the simulation
are shown in Table 5. The temperature, and radial and tangential
thermal stresses after thermal stabilization of the system are
depicted in Figs. 10—12, respectively. Notably, there is a significant
consistency between the simulated results and analytical solutions,
which attests to the capability of the proposed model in modeling
coupled TM problems.

Table 4
Comparison of analytical and numerical solutions.
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Fig. 9. Numerical model of the thick-wall cylinder.

Table 5

Mechanical and thermophysical parameters for hollow thick-walled cylinder.
Numerical parameter Value
Inner radius, a (m) 0.03
Outer radius, b (m) 0.15
Inner temperature (°C) 100
Outer temperature (°C) 0
Elastic modulus, E (GPa) 20
Density, p (kg/m?) 2500
Poisson’s ratio, v 0.2
Thermal expansion coefficient, o ((°C)~") 1.8 x 10~
Heat capacity, ¢, (J/(kg °C)) 10

5.5. Thermal fracturing validation

After validating the stress field against the analytical solution,
the next step is to validate the thermal fracturing behavior. To

Temperature (°C) exx eyy Oxx Ty
Analytical Numerical Relative Analytical Numerical Relative Analytical Numerical  Relative Analytical Numerical  Relative
error (%) error (%) (Pa) (Pa) error (%) (Pa) (Pa) error (%)
100 3x10% 29x10% 333 3x10% 29x10* 3.33 327 x 107 3.18 x 107 275 327 x 107 3.18 x 107 275

-100

~3x107% —29x 107% 3.33

—3x107% —29x107* 3.33

—3.27 x 107 —3.18 x 107 2.75 ~327 x 107 -3.18 x 107 2.75
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achieve this, the hollow cylinder is discretized using a mesh
composed of 3304 uniformly sized finite elements, each with a size
of 0.007 m. Numerical computations are conducted with an inte-
gration time step of 1 x 10~/ s. The specific material properties and
boundary settings are provided in Table 6. Some parameters are
determined based on the literature (Joulin et al., 2020; Wang et al.,
2021).

The simulation results are represented in Fig. 13. The top row
displays the maximal principal stress (¢1), followed by the crack
pattern in the second row, and the temperature field in the third
row. Notably, the initial cracks emerge along the outer boundary of
the cylinder and gradually extend towards the cylinder center. The
observed fracture pattern closely resembles the experimental
findings (Wanne and Young, 2008) depicted in Fig. 14, which also
show straight fractures from the outer boundary to the center of the
cylinder. The discrepancy in the number of cracks is primarily due
to the heterogeneity of the experiment material.

5.6. Thermal shock-induced cracking

This section presents a simulation of a thermal shock-induced
fracturing experiment. As depicted in Fig. 15a, several ceramic
discs with a diameter of 13 mm and thickness of 1 mm were stacked
together, with their upper and lower surfaces covered by two thick
circular plates to prevent direct contact between the disc surfaces
and water. The stacked discs are heated to the specified tempera-
ture and maintained at that temperature for 30 min. Four experi-
mental groups are conducted at temperatures of 250 °C, 300 °C,
400 °C, and 500 °C, respectively. Subsequently, the heated discs are
rapidly immersed in cold water (15 °C). This thermal shock expo-
sure causes thermal cracks to initiate from the boundary and
propagate towards the center of the specimen (Liu et al., 2015).
Utilizing the current numerical model, thermal shock cracking
behavior is studied through simulation of the experiment. A com-
parison is then conducted between the numerical results and the
experimental findings. The numerical model is discretized using a
total of 5020 uniform finite elements with a size of 0.0005 m, as
depicted in Fig. 15b. The parameters utilized for the numerical case
are presented in Table 7.

As depicted in Fig. 16, the temperature of the disc gradually
decreases from the periphery towards the center, causing thermal
shock-induced tensile stress fractures to initiate at the disc’s pe-
riphery and develop centripetally in the radial direction. Fig. 17
shows that under various temperature conditions, the thermal
shock fracture patterns in numerical simulations closely match
those observed in experiments. The cracks are evenly distributed
around the circumference, with their lengths alternating in a
clockwise direction. Longer cracks are interspersed with shorter
cracks. A quantitative comparison of the fracture quantities from
numerical simulations and experiments is presented in Fig. 18. Both
the experimental and simulation results demonstrate that the total

Table 6

Numerical parameters for thermal fracturing validation.
Parameters Value
Elastic modulus, E (GPa) 20
Poisson’s ratio, v 0.25
Density, p (kg/m?) 2500
Internal cohesion (MPa) 20
Tensile strength (MPa) 10
Fracture normal energy release rate (J/m?) 100
Fracture shear energy release rate (J/m?) 100
Fracture penalty number (GPa) 100
Thermal expansion coefficient, « ((°C)~1) 1.8 x 107>
Heat capacity, ¢, (J/(kg °C)) 10
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Fig. 13. Numerical results of thermal cracks in the model (inner radius 0.03 m, and outer radius 0.15 m) at different times.

Fig. 14. Signals of acoustic emission associated with the thermal cracking of the hollow
cylinder (inner radius 0.03 m, and outer radius 0.15 m) (Wanne and Young, 2008).

number of fractures increases as the maximum heating tempera-
ture rises.

6. Discussion

The benefit of using TM coupling models lies in their ability to
incorporate the effects of temperature on the mechanical proper-
ties of geomaterials in geological engineering research
(Abdollahipour and Fatehi Marji, 2020). Some insights are provided
by the present study.

From the microscopic perspective in Section 5.3, temperature
increase and decrease will cause the microelements of material to
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Fig. 15. Diagram of the thermal shock specimen: (a) Experiment setting; and (b)
Numerical model meshing scheme.

Table 7

Numerical parameters for thermal shock-induced cracking.
Parameter Value
Elastic modulus, E (GPa) 370
Poisson’s ratio, v 0.22
Density, p (kg/m?) 3980
Tensile strength (MPa) 180
Thermal conductivity (W/(m °C)) 35
Heat capacity (J/(kg °C)) 850
Thermal expansion coefficient, a ((°C)~") 7.5 x 107>

expand and contract, respectively. However, if the deformation of
microelements is restrained, such a tendency of expansion and
contraction will induce extra compressive and tensile stress inside
the material. Generally, geomaterials are susceptible to tensile
stress, and thus, even small tensile stress will cause damage, like
microcracks, to the material. It is well documented that
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Fig. 17. Comparison of crack pattern: (a) Results of present method; and (b) Experimental results (Liu et al., 2015).
macroscopic mechanical parameters, such as elastic modulus and 28 T T
strength, are affected by the internal damage of the material (Haeri
et al., 2014). Therefore, a restrained cooling process will lead to the 2% | Experiment
degradation of macroscopic mechanical parameters of Present method
geomaterials. sl i
On the other hand, the expansion behavior resulting from g
temperature increases can have both positive and negative effects g
on geomaterials. For instance, in the case of rocks, the initial min- £ 22r 1
eral particle expansion leads to the closure of microcracks and S
micropores, and an increase in the normal stress along particle E 20 1
interfaces. Consequently, the mechanical properties of rocks may g
experience a slight improvement under a mild temperature range =18t 4
(from room temperature to 200 °C), as has been well articulated by
Wong et al. (2020). However, if the temperature keeps increasing, 16 |
the thermal expansion mismatch among mineral particles can
generate tensile or shear stress within the materials. Once these - | |
stresses reach a critical level, the material’s integrity becomes 250 300 400 500

compromised, resulting in a decline in mechanical properties.

From the macroscopic perspective, as discussed in Sections 5.5
and 5.6, the thermal gradient caused by temperature increase and
decrease can result in additional stresses and the formation of
fractures within the material. Consequently, the mechanical prop-
erties may become compromised or even lost due to these
macroscopic fractures.

The above findings and insights suggest that the present TM
coupling model, which accounts for the effects of temperature on
the mechanical properties of geomaterials from perspectives of
both microscopic mechanisms and the macroscopic phenomena,
holds promise for further research in temperature-sensitive

4666

Temperature (°C)

Fig. 18. Thermal shock-induced crack quantity of numerical and experimental results
at various maximum temperatures.

engineering applications such as HDR, deep oil reservoirs, and
geological disposal of radioactive waste. Investigating the impact of
temperature on the macroscopic mechanical properties of geo-
materials is a complex and intricate issue. A systematic approach to
studying this problem, which combines multiple experimental
methods combined with the present TM coupling model, will be
the future research direction.
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7. Conclusions

Recognizing the significant potential of FDEM in simulating
geotechnical engineering problems, a novel TM coupled FDEM has
been proposed for geomaterials, incorporating heat conduction,
thermal cracking, and contact heat transfer. The following conclu-
sions can be drawn:

(1) To ensure precise calculation of the temperature field under
quasi-static and dynamic conditions, a heat conduction
model accounting for continuous-discontinuous transition
processes within a finite element framework is incorporated,
together with the modified contact heat transfer model that
integrates the entire contact area of discrete bodies.

(2) To align with the finite strain theory used in the FDEM me-
chanics module, the TM coupling module in the model is
based on the multiplicative decomposition of the deforma-
tion gradient.

(3) The TM coupled FDEM model was applied to simulate
various scenarios, such as heat conduction in both contin-
uous and discontinuous materials under transient states,
thermally induced strain and stress, and thermal cracking
problems.

(4) To validate the accuracy of the thermal field calculation
model and the TM coupling model, the numerical results
were compared with experimental findings and analytical
solutions, demonstrating good agreement. These numerical
examples convincingly demonstrate the robust reliability of
the proposed model, making it suitable for versatile appli-
cations across a broad range of continuous and discontinuous
geomaterials.
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