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TPepPro: Peptide-Protein Interaction Prediction Model
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Key Points

« TPepPro fills in the puzzle of peptide-targeted peptide-protein interaction prediction modeling with a machine learning approach.
« TPepPro successfully surpassed former relative models by 8.1% in terms of accuracy (more indicators in the manuscript)

« Firm Interactions that absent in the dataset was successfully detected by TPepPro with experimental evidence.
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Abstract

Motivation: Peptides and their derivatives hold potential as therapeutic agents. The rising interest in developing peptide drugs is evidenced by
increasing approval rates by the FDA of USA. To identify the most potential peptides, study on peptide-protein interactions (PepPls) presents a
very important approach but poses considerable technical challenges. In experimental aspects, the transient nature of PepPls and the high flexi-
bility of peptides contribute to elevated costs and inefficiency. Traditional docking and molecular dynamics simulation methods require substan-
tial computational resources, and the predictive accuracy of their results remain unsatisfactory.

Results: To address this gap, we proposed TPepPro, a Transformer-based model for PepPl prediction. We trained TPepPro on a dataset of
19,187 pairs of peptide-protein complexes with both sequential and structural features. TPepPro utilizes a strategy that combines local protein
sequence feature extraction with global protein structure feature extraction. Moreover, TPepPro optimizes the architecture of structural featur-
ing neural network in BN-RelLU arrangement, which notably reduced the amount of computing resources required for PepPls prediction.
According to comparison analysis, the accuracy reached 0.855 in TPepPro, achieving an 8.1% improvement compared to the second-best
model TAGPPI. TPepPro achieved an AUC of 0.922, surpassing the second-best model TAGPPI with 0.844. Moreover, the newly developed
TPepPro identify certain PepPls that can be validated according to previous experimental evidence, thus indicating the efficiency of TPepPro to

detect high potential PepPlIs that would be helpful for amino acid drug applications.
Availability and implementation: The source code of TPepPro is available at https://github.com/wanglabhku/TPepPro.

1 Introduction

Peptide-protein interactions (PepPls) refer to interactions be-
tween proteins and peptide molecules that are ubiquitous in
living organisms and involved in many biological processes.
The specificity and biological activity of peptides make them
a good starting point for new treatments. Identifying accurate
PepPls is critical to the invention of such treatments, but de-
termining PepPls experimentally is often time-consuming and
expensive. Predicting whether they have interactions is of
great significance for the development of peptide drugs. To
address this problem, numerous computational methods have
been developed to predict the relationship between proteins
and peptides (Cunningham et al. 2020).

Recently, rapidly developing deep learning techniques have
provided viable solutions for modelling protein-ligands or
protein—protein interactions (PPIs) with better accuracy while
requiring fewer computational resources (Liu et al. 2018,
Tang et al. 2023, Yang et al. 2023a). However, the advance-
ment in machine learning has not yet significantly impacted
PepPI research. To date, in silico research targeting peptides
has primarily focused on peptide-protein docking or molecu-
lar dynamic simulations (Keeble ez al. 2019, Lee et al. 2019,
Johansson-Akhe ez al. 2020, Sunny and Jayaraj 2022).
Predictions based on conventional docking have been
reported to fail biologically activity tests (Cole et al. 2005,
Ramirez and Caballero 2016). Previous studies have utilized
machine learning methods that widely applied in vision tasks
to construct PepPI models, such as Convolutional Neural
Network (CNN) (Ballester and Mitchell 2010, Yin et al.
2023). However, in terms of PepPls, features include not only
structural but also sequential.

Fortunately, artificial intelligence models have experienced
rapidly updated in recent years (Sinha et al. 2023, Yang et al.
2023b, Li et al. 2024). The advantage of Transformer in
amino acid sequence analysis is its ability to capture long-
distance dependencies and to effectively handle long sequence
data. Meanwhile, through the self-attention mechanism, it
can automatically learn the important features in the sequen-
ces and improve the prediction performance. Here, we em-
ploy a transformer-based model with enhanced capability to
comprehend contextual information in protein sequences and
to construct more accurate and reliable PepPI prediction
models. Moreover, in our study, we paid special attention to
whether the prediction results could be experimentally

validated. Despite the need for further experimental confir-
mation, we still find experimental evidence beyond the scope
of the training and testing sets to confirm the effectiveness of
the TPepPro model in practical applications.

Although there are growing interests in making peptide
drugs and increasing number of approved peptide therapies,
only a handful of work has been proposed to utilize machine
learning or deep learning-based methods to model PepPIs.
Hence, there is a pressing need for more advanced machine
learning or deep learning-based models with superior effi-
ciency for discovering PepPls, specifically tailored for predict-
ing PepPls. In this study, we propose a novel model named
TPepPro, that combines features extracted from both local
protein sequences and global protein structures. The TPepPro
system optimizes the architecture of structural featuring neu-
ral network with BN-ReLU (Batch Normalization—Rectified
Linear Unit). We applied a 5-fold cross-validation to evaluate
the performance of TPepPro as compared with other models,
including PIPR (Chen et al. 2019), SCNN (Wang et al. 2019),
and TAGPPI (Song et al. 2022). Our findings show an en-
hanced prediction accuracy of 0.855, a notable improvement
over TAGPPL, the second-best model which achieved 0.774,
and an increase of 8.1%. More importantly, the TPepPro
method can identify PepPIs, consistent with those validated in
previous experiments. Therefore, these findings demonstrate
the superior ability of our method to discover potential PepPls
that would be helpful for amino acid drug applications.

2 Materials and methods
2.1 Workflow of TPepPro

The TPepPro model proposed in this study uses an end-to-end
deep learning method. There are four modules in TPepPro
(Fig. 1): (i) Data pre-processing: Protein sequences are proc-
essed by ProtTrans, which is based on the Transformer archi-
tecture. This model has proven to be an excellent model on
encoding the syntax and semantics of protein sequences
(Elnaggar et al. 2022). The highest performance model of
ProtTrans, ProtT5_XL_half UniRef50-enc, is utilized in this
pipeline. Structural features are encoded as contact map. (ii)
Extracting local features of protein sequences using TextCNN
(Kim 2014). (iii) Extracting protein structural features using
TAGCN (Du et al. 2018). Compared with the original GCN,
TAGCN is chosen for its better performance and accuracy as
it uses a set of filters that are specific for each node. (iv)
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Figure 1. Architecture of TPepPro. (1) Data preprocessing: The amino acid sequences corresponding to proteins and peptides are encoded as vectors of
size L x 1024. Here, L represents the length of the protein/peptide amino acid sequence, and 1024 denotes that each amino acid is encoded into a vector
of 1024 dimensions. Additionally, distances between residues in the PDB-format protein and peptide structure files are calculated to obtain the contact
map files of proteins and peptides. (2) TextCNN module is utilized to extract local sequence features of proteins and peptides. (3) Extraction of protein and
peptide structural features: The TAGCN module is used to extract structural features through the contact map files of proteins and peptides. (4) Prediction
module: Finally, the local sequence features and structural features of the given protein-peptide pairs obtained from the above steps are fused before being
input into the prediction module. The generated prediction results undergo a sigmoid activation function for nonlinear transformation, resulting in an output
between 0 and 1. Based on a set threshold, here set as 0.5, the presence of interaction in the input peptide-protein pairs is determined. Pairs with output
results greater than or equal to 0.5 are considered to have interaction; pairs with output results less than 0.5 are deemed to have no interaction.

Prediction Model. In the training module, the Batch
Normalization layer was placed prior to the ReLU layer (loffe
and Szegedy 2015). This is because the BN layer can make the
mean of the input values to be 0 and the variance to be 1, alle-
viating the problem of vanishing gradient of the ReLU func-
tion to a certain extent. This setting helps to keep the gradient
passing efficiently while training the neural network, and to
improve the performance (Garbin et al. 2020).

2.2 Data collection

Five datasets are utilized in this study (Supplementary Table
S1), comprising: (i) The protein-peptide complex dataset
Propedia v2.3 (Martins ef al. 2023); (2) The human protein
dataset DIP (Zhao et al. 2022); (3) The yeast protein dataset
(Salwinski et al. 2004); (4) The neocoronavirus-human pro-
tein dataset (Yang et al. 2021). (v) The HIV-human protein
dataset (Yang et al. 2021). The protein-peptide complex
dataset from Propedia v2.3 serves as the primary dataset in
this research.

2.3 Data pre-processing
Developed by DeepMind Google, ProtTrans uses the self-
attention mechanism optimized for understanding the syntax
and semantics of protein sequences (Elnaggar et al. 2022).
ProtT5-XL-UniRef50 is chosen here for representing proteins
with vectors as it was the best performance among ProtTrans
models. To speed this step up, the model’s half-precision
mode is turned on, namely, ProtT5-XL-half-UniRef50-enc. It
was verified by Elnaggar et al. that this modification does not
compromise the performance.

As shown in Fig. 2, we firstly tokenize and encode the in-
put protein sequences. The encoded vectors are piped into

ProtT5-XL-half-UniRef50-enc model, creating context-aware
embeddings for each token. The vector representation of the
protein is therefore obtained with the output being
X € REX1024 [ represents the number of amino acids of the
input protein.

2.4 Strategy of extracting local feature of

protein sequence

This research adopts a TextCNN module for extracting local
sequence features of proteins (Zhao et al. 2022). The module
consists of three CNN layers and three max pooling layers.
This structure is designed to achieve effective feature extrac-
tion and classification of protein sequences through the com-
bination of CNNs and max pooling layers, while ensuring
computational efficiency and robustness at the same time.
Detailed extraction process is described below:

Firstly, ProtT5-XL-half-UniRef50-enc model is used to en-
code protein sequences into vector representations, denoted
as X € REX1024 Next, to ensure a fixed output vector size for
the TextCNN module, the maximum length of the protein
sequence L is set to be 1200. When a protein sequence is less
than 1200 in length, a zero-padding approach would be
applied to complement the sequence to fit 1200. Therefore,
the formatted vector as X € R1200%1024 i adopted as further
input of TextCNN.

The first convolutional layer of TextCNN has 128 output
channels and a convolutional kernel size of 3. The output
feature map has a size of 1198 x 128. This feature map was
then fed into a maximum pooling layer with a step size of 3,
resulting in another feature map of the protein with a size of
399 x128. The processes mentioned above are repeated
twice. Eventually, local feature vectors of size Fg € R1*128
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Figure 2. Protein amino acid embedding generation diagram. Protein sequences are first subjected to tokenization and positional encoding, followed by
generating context-aware embeddings for each amino acid using the ProtT5-XL-half-UniRef50-enc model, resulting in vector representations of

the proteins.

and F; € R'™128 will be output from TextCNN module as
the protein sequence features.

2.5 Extracting protein structure features

Protein structural features are extracted through the construc-
tion of a protein’s contact graph. First, a contact graph file of
the protein is constructed based on its structure file (PDB file).
Bio.PDB, a module in the BioPython package, is used to pro-
cess protein structure files in PDB format and calculate distan-
ces between residues (Hamelryck and Manderick 2003). The
contact graph is square shaped with dimensions L X L. From
this contact graph, we derive the Adjacency Matrix A and the
Node Feature Matrix X. The adjacency matrix, denoted as
A€ RV X L represents connections between nodes. A value
of 0 indicates no connection between two nodes, while a value
of 1 indicates the presence of a connection. The node feature
matrix, represented as X € RE-X1924 consists of feature vectors
of 1024 dimensions for each node.

Subsequently, the obtained adjacency matrix A and the
node feature matrix X are input into the TAGCN layer, a
variant of GCN. Traditional GCN sets K=1 after approxi-
mating filters with Chebyshev polynomials, while TAGCN
employs K filters to extract local features of varying sizes,
with K serving as a hyperparameter. K varies among filters,
ranging from 1 to K, akin to GoogleNet’s filters. The convo-
lution process of TAGCN is demonstrated as follows:

Here, the graph convolution on the first hidden layer is
demonstrated as an example, with the resulting pattern appli-
cable to any other hidden layers. In this demonstration, it is
assumed that C; features are mapped to each node.
Subsequently, the adjacency matrix underwent self-looping
and normalization:

A=D7:AD":. (1)

Gil} € RNxNi denote the form of fth graph filter. The con-
volution of a graph is the product of a matrix and a vector,
0 ()

namely, Gcfxc

fth map filter is:

. Therefore, the output feature map after the

G
() _ Z Gil})(xﬁl) +b]((l)1N1- (2)
c=1

In form (2): cf_Zk Ogc kak. gil}_k represents the

graph filter polynomial coefficients. b is the learnable bias.

1n, means all elements of the N- dlmensmnal vector are 1.

According to the CNN architecture, an additional nonlin-
ear operation would be employed after the convolution oper-
ation for each graph.

{0 =o(y)). (3)

Afterwards, the protein structural features extracted by
TAGCN are fed into the maximum pooling layer and the lin-
ear layer containing 128 neurons. This process ensures a
fixed number of outputs from the feature extraction module.
Finally, for a pair of protein spatial maps G; and G;j, we ex-
tract its structural feature vectors as Fy € R!*128
and Fgp € R1X128 respectively.

The convolution process of TAGCN at K =3 (Fig. 3) is il-
lustrated below. The feature map of each vertex is assumed
to contain one feature. Similarly, CNN, multiple channels are
formed from the features extracted by multiple filters in each
convolutional layer. Features extracted in fllter rangmg from
1 to 3 are denoted as g( (Alx 0 g() A%x and 8 f
Features extracted by the three fllters represent the relatlon—
ship between the vertices and their neighbors in different spa-
tial ranges. The new features of the green vertices in the
graph are obtained by linearly comblmng them. New features
of the Vertex are denoted as y;l) =g, ; Alx®h +g, 3( Ax(D 4
g A3 +b 1y

2.6 Prediction module

The local sequence features (Fs; and Fg;) and structural fea-
tures (Fg; and Fg) of the proteins obtained from the above
steps are fused in the prediction module, based on
the formulas:

Fgc] :(1_W)Fg]+WFsl- (4)
Fgclz(l_w)Fg2+WF52~ (5)

The fused features are connected and fed into the MLP
layer, which is stacked of three linear layers (FC layer). The
first two FC layers are followed by the BN function and
ReLU activation function. Whereas the prediction results
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generated by the last FC layer are nonlinearly transformed by
the Sigmoid activation function, obtaining an output that lies
between 0 and 1. A judgment of whether the input protein
pair interacts or not is then obtained based on the set thresh-
old. Here the threshold is set to 0.5. Namely, an output pre-
diction scores greater than or equal to 0.5 indicates that the
input protein pairs are interacting, and vice versa.

2.7 Evaluation metrics

Five-fold cross-validation is used to evaluate binary predic-
tion from seven criteria, namely accuracy (ACC), precision
(Prec), recall (Recall), specificity (Spec), F1-score (F1), Area
Under Curve (AUC), and the area under PRC curve (The area
under the precision-recall curve, AUPRC).

ACC =157 IZII\};?;L ™’ (6)
Prec= TJ;PH) , (7)
Recall= TP L EN (8)

Spec = TNT——TFP’ (9)
=

In the above formula: TP (True Positive) represents that
the prediction is positive, and the prediction is correct; TN
(True Negative) means that the prediction is negative, and
the prediction is correct. FP (False Positive) means that the
prediction is positive, but the prediction is incorrect; FN
(False Negative) indicates that the prediction is negative, but
the prediction is incorrect.

FP

R = ()
TP

TPR=Tp 12)

AUC is the area enclosed by the ROC curve and the x-axis,
the ROC curve x-axis is FPR (False Positive Rate), and the y
axis is TPR (True Positive Rate).

AUPRC is the area enclosed by the PRC curve and the
x-axis, the PRC curve x-axis is the recall (Recall), and the
y-axis is the precision (Prec).

2.8 Interpretability analysis

The interpretable analysis of the significant global features of
protein structure extracted by TAGCN involves the following
process: First, we load the amino acid sequences of the pro-
teins, along with their contact maps and encoded vector rep-
resentations. Next, we generate an adjacency matrix based
on the contact map and create a graph data structure, incor-
porating the protein-encoded vectors as node features. These
data are then input into the TAGCN model. The input graph
data undergoes processing through the TAGConv layers,
where graph convolution operations update the node fea-
tures, followed by a forward propagation to obtain the out-
put features processed by the TAGCN model. Finally, these
output features are passed through an attention mechanism
module to derive the corresponding attention scores, which
are then combined to calculate the node importance scores.

To interpret analysis of the crucial local features of protein
sequences extracted by TextCNN, we utilized visualizations
of the activation maps of the convolutional kernels. These
maps provide effective means to understand how TextCNN
captures features from the input data. In the context of
TextCNN, the activation maps illustrate the activation values
generated as the convolutional kernels slide over the protein
sequences. These activation values reflect the degree of
matching between the kernels and the local features at differ-
ent positions within the input sequence.

2.9 Model training

TPepPro takes the protein/peptide sequence features and pre-
dicts contact maps as input. We used the dgl libraries of
Python 3.7, PyTorch 1.5.1, and CUDA 10.1 to implement
TAGCN (Du et al. 2018). At the same time, the experiment
took advantage of the powerful computing of the GPU,
namely NVIDIA Quadro RTX, 24GB memory. The TPepPro
model was trained on 50 epochs on the protein-peptide com-
plex dataset using Adam optimizer, with a learning rate and
batch size of 0.001 and 32, respectively. To avoid overfitting,
BN technology is used during training. Other parameters
took the default values provided by PyTorch (Zhai
et al. 2023).

3 Results

The TPepPro model is composed of an investigation into the
effects of sequence encoding methods, graph CNN methods,
and the architecture of the neural network. Comparative
analyses are conducted between the TPepPro model and

(a) ® N o
Qo —
Nl L2
S Mo e Vi
( W, / )

Figure 3. Topology-Adaptive Graph Convolutional Network (TAGCN) convolution process with K=3.The central amino acid node aggregates features
from neighboring nodes within three hop distances (K=1,2,3), enabling the capture of both local and extended structural information.
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other state-of-the-art methods. The performance of the
TPepPro model on different datasets is examined using ROC
curves and PR curves. Finally, case studies of high-confidence
results are provided with experimental evidence.

3.1 Dataset

The protein-peptide complex dataset is from Propedia data-
base (http://bioinfo.dcc.ufmg.br/propedia2/index.php/down
load). The latest version v2.3 contains 49 300 protein-
peptide complexes. We treated protein-peptide complexes as
positive protein-peptide samples, and negative interactions
are constructed by randomly pairing protein-peptide pairs
and not present in positive dataset. There may be inconsisten-
cies between the number of amino acids in the contact dia-
gram generated from their corresponding structure files and
the number of amino acids in the embedding generated from
their original amino acid sequences. This discrepancy arises
from variations in the representation of the protein structure
and the raw amino acid sequence, potentially impacting the
analysis and interpretation of the data. At this time, the
amino acid embedding of the protein cannot correspond to
the amino acids in the contact map, and the amino acid verti-
ces in the diagram generated by the contact diagram cannot
obtain the corresponding amino acid expression, so that the
subsequent extraction of protein structure features cannot be
carried out. Therefore, we only selected proteins and peptides
whose amino acid numbers in the contact chart matched their
original amino acid numbers. As shown in Table 1, there
were 9594 pairs of positive peptide-protein complex samples
and 9593 pairs of negative samples, including 14 374 types
of valid proteins and 9594 valid peptides.

3.2 Evaluation on sequence coding strategy

To verify the robustness of the sequence coding method used in
this study, a set of comparative tests was designed. The com-
parison of the ProtT5_XL_half UniRef50-enc coding method
with SeqVec (Heinzinger et al. 2019), ProtXLNet, and
ProtBert-BFD (Elnaggar et al. 2022). To ensure the reliability

Table 1. Dataset statistics.

Jin et al.

of this experiment, the sequence coding strategy was controlled
as the sole variable. The model architecture used in this experi-
ment is TPepPro. Our data experiments compared the dataset
consists of protein-peptide complex that sourced from Propedia
v2.3. As shown in Fig. 4, model ProtT5_XL_half_UniRef50-
enc we used here ranked the first in all evaluate parameter. The
robustness of ProtT5_XL_half UniRef50-enc coding method
has been justified.

3.3 Evaluation on structural featuring strategy

To showcase the advantages of the graph CNN employed in
this study for extracting protein structural features, we con-
ducted a series of comparative experiments. The other graph
CNNs used for this purpose include GAT (Velickovié et al.
2018), APPNP (Gasteiger ef al. 2022), and GATV2 (Brody
et al. 2022), alongside the TAGCN (Du et al. 2018) utilized
in this research (where the graph CNN for protein structural
feature extraction is a single layer).

Utilizing the same dataset (protein-peptide complex), we
employed TPepPro for predictive modeling and facilitated di-
rect comparative analysis. As shown in Fig. 5, the prediction
accuracy achieved by GAT for extracting protein structural
features is 0.841, while that of APPNP stands at 0.826, and
for GATV2 it is 0.844. Our TPepPro method yields the high-
est prediction accuracy of 0.855, highlighting its efficacy in
extracting protein structural features.

3.4 Optimizing architecture of structural featuring
neural network

In this study, the BN function and ReLU were used to reduce
the overfitting of the model. Therefore, in this section,
comparative experiments were conducted to compare with
other functions: ReLU-Dropout, ReLU-BN, and BN_ReLU.
The results, as depicted in Fig. 6, show that the BN-ReLU
combination achieved the best performance.

Name Total number of samples

Types of protein

Types of peptide Positive samples Negative samples

Protein-peptide dataset 19187

14 374

9594 9594 9593

Performance Comparison of Different Sequence Encoding Methods
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Figure 4. Evaluation of different sequence coding methods. The horizontal axis represents statistical parameters of model accuracy. Colors represent
different models. The vertical axis values represent scores obtained by different models for evaluation.
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3.5 Comparison with state-of-the-art methods

The baseline method was outperformed by the TPepPro
model in binary interaction prediction. TPepPro focuses pri-
marily on the binary classification of whether query peptide
and the receptor protein interact with each other or not. In
this study, the classification performance of TPepPro was
compared with other state-of-the-art baseline methods, in-
cluding the TAGPPI model based on deep learning using local
sequence features and structural features of proteins for pre-
dicting PPIs (Song et al. 2022) the PIPR model based on deep
learning for PPI prediction, and a Siamese Convolutional
Neural Network (SCNN) model that excludes GRUs from
PIPR (Chen et al. 2019). All prediction methods were evalu-
ated on a benchmark dataset, with the four models assessed
on the protein-peptide complex dataset (Lei et al. 2021). As
indicated in Table 2, the TPepPro model achieved higher ac-
curacy and AUC values for predicting PepPIs compared to
the TAGPPI model (Song et al. 2022).

3.6 ROC curve and PR curve of various datasets
with different methods

We compared the performance of four models, PIPR, SCNN,
TAGPPI, and TPepPro. In multiple datasets, encompassing

protein-peptide complex, human, yeast, H[V-human protein,
and SARS-CoV-2-human protein datasets. Five-fold cross-
validation was executed on each dataset, and the predictions
from the five test sets generated for each model were
aggregated. Subsequently, ROC (Receiver Operating
Characteristic) curves and P-R (Precision-Recall) curves were
generated for each dataset. To better illustrate the improve-
ment in the performance of TPepPro by comparing it with
other methods, the five datasets were divided into two groups
to represent two different situations (Fig. 7). The first situa-
tion is exemplified by the yeast dataset, where existing mod-
els already perform well, with a mean AUC of 0.990 among
the three existing models. TPepPro still ranks highly with an
AUC of 0.994. Similar results were observed in the human
Protein dataset and the HIV-human dataset (Supplementary
Fig. S1). The other situation involves datasets where existing
models perform unsatisfactorily in predicting PepPIs yet
show great improvement with TPepPro. These datasets in-
clude the Propedia protein-peptide complex and the SARS-
CoV-2-human protein datasets (Supplementary Fig. S2).
From the ROC and PR curves, we found superior overall per-
formance of TPepPro model exhibits in prediction across all
five datasets as compared to the other three models.

Performance Comparison of Different Graph Convolutional Neural Networks
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Figure 5. Evaluation of different methods for extracting protein structural features. The figure legend is the same as Fig. 4.
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Figure 6. The combination of the Dropout/BN function and the ReLU function is used to evaluate the model performance sequentially.

Table 2. Comparison of TPepPro model with three other models on protein-peptide complex datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC
PIPR 0.755 0.741 0.785 0.771 0.762 0.816 0.785
SCNN 0.729 0.722 0.745 0.737 0.734 0.790 0.753
TAGPPI 0.774 0.751 0.824 0.724 0.785 0.844 0.819
TPepPro (ours) 0.855 0.836 0.884 0.827 0.859 0.922 0.909

Note: Bold font indicates the best result in the column.
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improved by TPepPro.

3.7 Evaluation TPepPro performance on
multiple datasets

To validate the applicability of TPepPro in other datasets, we
conducted additional evaluations using human, yeast, and
virus-human protein datasets. Such evaluations help us gain a
more comprehensive understanding of TPepPro performance
and its applicability cross different organisms. For evaluation
of different models on these diverse datasets, we can more ac-
curately evaluate their capabilities and accuracy, thereby fa-
cilitating its better application in real-world scenarios.

Tables 3-6 correspond to the experimental testing of
TPepPro and other methods using human proteins, yeast,
HIV-human proteins, and SARS-CoV-2-human protein data-
sets, respectively. From the experimental results, we conclude
that TPepPro not only performs better on the protein-peptide
complex dataset but also exhibits significantly better predic-
tion performance compared to other models. This pattern is
repeated on all five datasets. This indicates that TPepPro can
achieve excellent prediction from multiple datasets, and fur-
ther displays its reliability.

In addition, the AUCs obtained from the five datasets differ
from those in the ROC curves. This is because the TAGPPI
and TPepPro models calculate the AUCs separately for each
fold using the predicted fold, and then sums these AUCs.
Their average is treated as the final AUC value. However, the
AUC:s calculated for ROC curves are obtained by combining
the predictions of the five testing sets before computation. In
contrast, the AUCs in the tables from the PIPR and SCNN
models are the same as those obtained in the ROC curves

because their AUCs also use the same approaches, i.e. com-
bined predictions of the five sets before evaluation.

Furthermore, four times of 5-fold cross-validations have
been performed to increase the reliability of the tests. The
results from each round of the validation are remarkably sim-
ilar cross each fold. Moreover, the mean value of each evalu-
ation parameter is very close to each other as well
(Supplementary Table S5). This data indicates the stability
and reliability of the TPepPro model.

3.8 Interpretability analysis

The protein structures extracted using TAGCN were ana-
lyzed for interpretability of key global features. Taking pepti-
des 3eyu_Q, 1lalm_C, and protein P62861 as an example.
The node importance scores of each protein or peptide are
shown in Fig. 8. The first amino acid E and the last amino
acid A in 3eyu_Q, the first amino acid T in 1alm_C and the
seventh amino acid A in Protein P62861 show its importance
in their respective sequences. This result represents a high po-
tential for these amino acid sites that are likely to become
peptide-protein binding sites.

The TextCNN module extracts protein local sequence fea-
tures from high-dimensional protein global features that have
been encoded by the attention based ProtTrans model.
Therefore, TextCNN lacks a direct attention mechanism to
retrieve specific positions of the input sequences for interpret-
ability analysis of protein local sequence features extracted
by TextCNN. Therefore, the importance scores correspond-
ing to specific amino acids cannot be derived. Here, we visu-
alize the input vectors after passing through the first
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Table 3. Comparison of TPepPro with three other models on human datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC
PIPR 0.849 0.860 0.833 0.839 0.847 0.941 0.933
SCNN 0.937 0.927 0.948 0.947 0.937 0.983 0.981
TAGPPI 0.937 0.923 0.953 0.920 0.938 0.980 0.978
TPepPro (ours) 0.947 0.943 0.953 0.941 0.948 0.988 0.989
Note: Bold font indicates the best result in the column.

Table 4 Comparison of TPepPro with three other models on yeast datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC
PIPR 0.966 0.960 0.973 0.973 0.966 0.988 0.986
SCNN 0.958 0.963 0.952 0.952 0.957 0.988 0.986
TAGPPI 0.971 0.973 0.968 0.973 0.970 0.993 0.994
TPepPro (ours) 0.979 0.981 0.978 0.981 0.979 0.994 0.994
Note: Bold font indicates the best result in the column.

Table 5. Comparison of TPepPro with three other models on HIV-human protein datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC
PIPR 0.867 0.863 0.872 0.871 0.867 0.906 0.899
SCNN 0.875 0.886 0.861 0.865 0.873 0.933 0.935
TAGPPI 0.877 0.878 0.877 0.877 0.877 0.944 0.945
TPepPro (ours) 0.891 0.886 0.897 0.884 0.891 0.956 0.954
Note: Bold font indicates the best result in the column.

Table 6. Comparison of TPepPro with three other models on SARS-CoV-2-human protein datasets.

Model Accuracy Precision Recall Specificity F1-score AUC AUPRC
PIPR 0.663 0.662 0.667 0.665 0.664 0.679 0.649
SCNN 0.671 0.666 0.683 0.675 0.674 0.717 0.685
TAGPPI 0.703 0.692 0.738 0.667 0.713 0.776 0.742
TPepPro (ours) 0.747 0.733 0.807 0.687 0.759 0.833 0.821

Note: Bold font indicates the best result in the column.

convolutional layer instead. This is because the data represen-
tations in post-first convolution establish a more intuitive
connection with the original input data. Using the PODTC2
and P62861 proteins as examples, the top 20 absolute values
of activation values correspond to the activation maps shown
in Fig. 9. The darker the color and the further left the position
in the ranking, the higher the absolute value of the Activation
Value. The red bars indicate positions with high Activation
Values, suggesting a greater potential for these sites to serve
as binding sites for PepPlIs. Conversely, the more purple the
color and the further left the ranking of the bars, the smaller
the Activation Value, indicating that these positions are rela-
tively conserved and less likely to become interaction bind-
ing sites.

3.9 TPepPro can find valid new interactions

From the predictions, we found 1662 pairs of new PepPlIs
that are not present in the input dataset before
(Supplementary Table S2). The output of the TPepPro model
contains two confidence values, which respectively refer the
extent to which the model supports the presence (positive
confidence value) or absence (negative confidence value) of
interactions between sample pairs. Sixty-nine of them were
found to have a positive confidence value greater than or
equal to 0.99999, and more than 43% belong to humans.

Homo sapiens was chosen as the organism for case studies
for both peptide and protein, as we aim to find biologically
meaningful evidence. However, the pairs involving to differ-
ent species, including interactions between humans and vari-
ous viruses or bacteria, are also present in the predictions and
are worthy of investigation.

To validate the efficacy of the model and assess the practi-
cal biological relevance of the predicted outcomes, extensive
research was conducted on the predicted results. Utilizing our
custom-built package named TPepPro-filter for screening, 11
pairs of newly discovered high-confidence PepPIs were
extracted. Their original label in the database was 0 (no inter-
action) and the predicted label was 1 (interaction exits). They
all belong to H.sapiens with a confidence level greater than
or equal to 0.99999 (Supplementary Table S3). Docking for
each pair was carried out by ClusPro 2.0 to predict the inter-
action structure (Kozakov et al. 2017). All those 11 pairs
were predicted to exhibit interaction. Docking results can be
found in Supplementary Material S4 and Supplementary
Fig. S3.

The dataset used in this study is Propedia v2.3, which col-
lected published PepPIs from the Protein Data Bank on 15
November 2022. Therefore, the so-called new interactions
here include those not recorded in Propedia, as well as truly
novel interactions. Two cases of the former were found
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Figure 8. Heatmap of residue importance scores for global features of protein structures extracted by TAGCN.
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Figure 9. Activation map of local features of protein sequences extracted by TextCNN of protein PODTC2 and P62861.

through extensive database searching and literature research.
The two pairs of interactions were validated with experimen-
tal evidence (Table 7). At the same time, both pairs are
ranked the highest positive confidence value among all hu-
man samples.

The first pair of interaction 6v13_B (PDB ID of HLA-
DRB1) and 4ov5_L (HLA-A) was proved by Affinity
Capture-Mass Spectrometry experiment, which originated
from a pre-published dataset from Steve Huttlin et al. at
Harvard Medical School (Huttlin et al. 2015). The second
pair of experimentally confirmed interactions was between
3r85_B (BCL2L1) and 7m5c_B (BAK), which was more ex-
tensively reported. According to the database BioGRID 4.4
(Oughtred et al. 2021), there were 6 high-throughput and 10
low-throughput experimental evidences of the interaction be-
tween BCL2L1 and BAK (Griffiths e al. 1999, Degterev et al.
2001, Zhang et al. 2002, Whitfield et al. 2003, Rual ef al.
2005, Willis et al. 2005, Venkatesan et al. 2009, Rudner
et al. 2011, Trepte et al. 2015, Trepte et al. 2018, He et al.
2020, Luck et al. 2020, Huttlin et al. 2021, Li et al. 2021).

Detailed experiments include Affinity Capture-Luminescence,
Affinity Capture-Mass Spectrometry, Affinity Capture
Western Blotting, Fluorescence Resonance Energy Transfer,
PepPlIs, Reconstituted Complex Assay, and Two-Hybrid
Assay. Moreover, evidence of BCL2L2-BAK interaction was
found as well, including two high-throughput experimental
test using Two-Hybrid Assay (Holmgreen et al. 1999, Kim
et al. 2014) and two high-throughput experiment using
Affinity Capture-Western (Rolland et al. 2014, Luck
et al. 2020).

The two validated pairs provide evidence to support the ef-
fectiveness of our predictive model. The remaining nine pairs
have all passed the docking test, demonstrating a wide range/
scope of potential interactions that have yet to be experimen-
tally detected. Interestingly, four pairs in the results showed
no interaction in the initial dataset (original label was 0), yet
TPepPro predicted their existence with 100% confidence
(Supplementary Table S3 Sheet2). It is worth noting that the
first pair involves human protein and peptide from
Saccharomyces cerevisiae, and the fourth pair involves T4
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Table 7. Predicted new interactions which have experimental evidence.

Receptor Peptide Class_label Confidence_positive Predicted_label Receptor Gene Peptide Gene
6v13_B 4ov5_L 0 0.999999404 1 HLA-DRB1 HLA-A
3r85_B 7mSc_B 0 0.999998212 1 BCL2L BAK

bacteriophage and human. Therefore, the two pairs of novel
interactions predicted by TPepPro hold the potential for fur-
ther biological validation.

4 Discussion and conclusion

A Transformer-based module was utilized in TPepPro for
data preprocessing. Convolutional structures were employed
to simultaneously extract features from amino acid sequences
and contact maps describing the spatial structure of proteins.
Additionally, an overfitting prevention method, Batch
Normalization, was applied in the prediction part of the
model for PepPls prediction. It was proved that the perfor-
mance could be improved by replacing the Dropout function
with BN. The model architecture in TPepPro improves the ac-
curacy by 8.1% in predicting PepPls, as compared with the
second-best model TAGPPI.

It is noticed that although machine learning techniques
possess powerful computational capabilities, the authenticity
of in silico prediction has been under considerable debate.
Identification of potential PepPls is inherently complex and
challenging. In our study, TPepPro model displays its effec-
tiveness in discovery of novel PepPlIs that have been experi-
mentally validated. A total of 17 experimental evidence were
reported to support the accuracy of TPepPro system.
Therefore, TPepPro not only outperforms previously pub-
lished models in terms of accuracy, AUC, and other statistical
metrices, but it also demonstrates experimental feasibility.

The interpretability analysis of the key global features
extracted by TAGCN reveals amino acids with strong feature
importance, such as first amino acid E in 3eyu_Q. This find-
ing is significant for predicting peptide-protein binding sites.
Similar feature importance is also observed in the local se-
quence features of TextCNN. Unfortunately, the dimension-
ality reduction performed by the convolutional layers
hampers the mapping back to the original amino acid sequen-
ces. However, mapping the activation values back to the orig-
inal amino acids would provide substantial biological
insights. Ultimately, the models we explore will relate back to
biological questions regarding active and contact sites be-
tween peptides and proteins. Identifying amino acids with the
highest potential to become binding sites, along with rela-
tively conserved amino acid positions, will be meaningful for
studying protein-protein, protein-peptide, and peptide-
peptide interactions. Therefore, in the future, we will develop
methods for extracting local sequence features of proteins
that can be traced back to amino acids. We aim to conduct a
detailed interpretability analysis of both local features of pro-
tein sequences and global features of protein structures.

Furthermore, the PepPI model can be applied in drug re-
search. Researchers have implemented the pre-trained
TPepPro model on drug-target datasets. The resulting drug-
target interaction prediction model will possess the capability
to uncover novel interactions, to predict binding affinities,
and to identify potential drug candidates with high specific-
ity. By leveraging these capabilities, we can enhance the

efficiency of drug discovery processes and pave the way for
targeted therapies.

Supplementary data

Supplementary data are available at Bioinformatics online.
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