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ABSTRACT
Despite the promising benefits that ride-sharing offers, there has been a lack of re-
search on the benefits of high-capacity ride-sharing services. Prior research has also
overlooked the relationship between traffic volume and the degree of traffic con-
gestion and emissions. To address these gaps, this study develops an open-source
agent-based simulation platform and a heuristic algorithm to quantify the benefits
of high-capacity ride-sharing with significantly lower computational costs. The sim-
ulation platform integrates a traffic emission model and a speed-density traffic flow
model to characterize the interactions between traffic congestion levels and emis-
sions. The experiment results demonstrate that ride-sharing with vehicle capacities
of 2, 4, and 6 passengers can alleviate total traffic congestion by approximately 3%,
4%, and 5%, and reduce traffic emissions of a ride-sourcing system by approximately
30%, 45%, and 50%, respectively. This study can guide transportation network com-
panies in designing and managing more efficient and environment-friendly mobility
systems.

KEYWORDS
On-demand mobility; Shared mobility; High-capacity ride-sharing; Traffic
emissions; Traffic congestion.

1. Introduction

With massive population growth, large-scale urbanization, and rapid technological
development, diverse urban mobility demands have increased significantly, bringing
tremendous pressure on urban traffic systems and inducing various environmental
pollution issues(McDonnell and MacGregor-Fors 2016; Batty 2008; Bettencourt 2013;
Bai, Chen, and Wang 2023; Hussain, Kaleem Khan, and Xia 2023). On the one hand,
in the process of urban expansion over the past decades, urban congestion has become
costly in terms of time, money, and fuel (Lu et al. 2021a; Ewing, Tian, and Lyons 2018;
Li, Xiong, and Wang 2019; Chang, Lee, and Choi 2017). For example, it is estimated
that traffic congestion generated approximately 8.8 billion hours of total delay for 494
U.S. urban areas in 2017, requiring around 3.3 billion gallons of excess fuel consumption
and 179 billion dollars of cost (Schrank, Eisele, and Lomax 2019). In Europe, the cost
of traffic congestion is approximately equivalent to 1% of GDP (Christidis, Rivas
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Table 1. List of symbols and abbreviations used in this study.

Symbol or abbreviation Description
PM Particulate matter
CO2 Carbon dioxide
NO Nitrogen monoxide
NO2 Nitrogen dioxide
NOx Nitrogen oxides, comprising mostly NO and NO2

TNC Transportation network company
VMT Vehicle miles traveled
FC Fuel consumption
COPERT Computer programme to calculate emissions from road transport
EFi,j,k Emission factor of pollutant k emitted by vehicle i on road j (g/km)
vi,j Average speed of vehicle i on road j (km/h)
αk, βk, γk, δk, ϵk, ζk, ηk Parameters for calculating pollutant k
Ek Amount of pollutant k emitted by all vehicles
lj Length of road j
u Traffic speed
u0 Free-flow speed
k Traffic density
kj Traffic jam density
kb Basic traffic density
kr Ride-sourcing density
ILP Integer linear programming
NN Nearest neighbor algorithm
n Number of served passengers
N Total number of passengers
PMD Passenger miles delivered
SR Service rate
PEF Passenger emission factor
PEFk PEF of Pollutant k
DF Delay factor
DFt,j Delay factor for each road j at observation time point t
ut,j Average space speed of road j at time point t
T Number of observation time points
J Number of roads

et al. 2012). In China, there are more than 80 cities with at least 1 million cars,
causing serious traffic congestion and carbon emissions (Li, Xiong, and Wang 2019; Li
et al. 2022a). On the other hand, traffic emissions contribute substantially to primary
particulate matter (PM) (Table 1 lists all symbols and abbreviations used in this
study) emissions in urban areas (Pant and Harrison 2013), which is linked to increased
rates of asthma, lung cancer, and other respiratory illnesses (Grimm et al. 2008; EEA
2023). In 2022, global carbon dioxide (CO2) emissions by the transport sector were
around 8 Gt, accounting for approximately 25% of CO2 emissions from fuel combustion
(IEA 2023). Excessive greenhouse gas emissions increase global temperatures, resulting
in more frequent and intense heatwaves, droughts, floods, and storms. In Europe,
the transport sector is a significant contributor to the emissions of air pollutants,
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accounting for approximately 10% of PM2.5 emissions and 34% of total nitrogen oxides
(NOx), which comprises mostly nitrogen monoxide (NO) and nitrogen dioxide (NO2)
(EEA 2023; Mulholland et al. 2022). In China, it is estimated that emissions from
mobility-related activities account for approximately 83% of hydrocarbons (HC), 46%
of NOx, and 78% of carbon monoxide (CO) (Wang et al. 2008). These air pollutants
can stimulate the respiratory organs of human well-being, cause acute and chronic
poisoning, and endanger human health.

Traditionally, urban mobility needs are primarily satisfied by mass public trans-
portation (including metro and buses), taxis, and private cars (Vuchic 2017). In recent
years, the proliferation of mobile internet and wireless communication technologies has
led to the rapid expansion of transportation network companies (TNCs) that provide
ride-sourcing services (Zeng et al. 2023). As a result, TNCs have become a critical
player in meeting the urban mobility needs of commuters, serving as a reliable alter-
native to traditional modes of transportation (Wang and Yang 2019). For example,
Uber, an international ride-sourcing company providing various on-demand mobility
services in more than 700 metropolitan areas, has finished approximately 21 million
daily trips in 2022 (DMR 2023b). Didi, the largest on-demand mobility platform in
China, offers a variety of services to 587 million users in more than 400 cities in China,
with approximately 27 million daily trips in 2019 (DMR 2023a). In addition, TNCs
account for 15% of all intra-San Francisco vehicle trips, 12 times that of taxi trips
(Castiglione et al. 2016). However, the vehicle occupancy rate is generally low with on
average less than 1.5 passengers in each vehicle (Li et al. 2021; Mitchell, Borroni-Bird,
and Burns 2010), resulting in low transportation efficiency and traffic congestion (Er-
hardt et al. 2019; Wu and MacKenzie 2021; Schaller 2021; Vilaça, Correia, and Coelho
2024). Certainly, improving vehicle occupancy rates can help improve transportation
efficiency and reduce the required fleet size, thereby decreasing traffic emissions and
alleviating traffic congestion.

To enhance urban mobility efficiency and reduce environmental impacts, many
TNCs, such as Didi, Uber, and Lyft, have launched ride-sharing services that allow a
driver to transport multiple passengers with similar origins and destinations in a sin-
gle trip.(Ke et al. 2020; Lu et al. 2021b). In addition, with the rapid development of
mobile internet technology, dynamic ride-sharing services that match passengers and
drivers on very short notice are gaining popularity worldwide (Shaheen et al. 2015;
Agatz et al. 2012; Chen, Zahiri, and Zhang 2017). These dynamic ride-sharing ser-
vices can improve vehicle occupancy rates while maintaining the flexibility of drivers
(McDonnell and MacGregor-Fors 2016; UN 2015; Storch, Timme, and Schröder 2021).
Ride-sharing programs can not only bring numerous benefits to passengers and drivers,
such as saving costs and increasing revenue, but also benefit society by improving vehi-
cle occupancy rates, reducing environmental impacts, and alleviating traffic congestion
(Chan and Shaheen 2012; Furuhata et al. 2013; Santi et al. 2014; Lapardhaja et al.
2023). For example, Santi et al. (2014) proved that on-demand ride-sharing services
in New York City could reduce 40% or even more of cumulative vehicle miles traveled
(VMT). In addition, Anair (2020) showed that ride-sharing services can reduce traffic
emissions by 33% compared with normal ride-sourcing services. Therefore, ride-sharing
is a promising means of reducing air pollution and alleviating traffic congestion.

Although many studies have been directed towards estimating the extent to which
traffic emissions can be reduced after ride-sharing services are adopted (Tikoudis et al.
2021; Sui et al. 2019; Tikoudis et al. 2021; Yan et al. 2020; Cai et al. 2019), there are
still a few unsolved questions. First, quantifying the implication of high-capacity ride-
sharing services (with three or more passengers sharing one vehicle) is still a challenging
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task, as solving high-capacity ride-sharing problems is significantly time-consuming.
Second, the interplay between traffic flow and traffic speed is usually neglected in
previous studies for the sake of simplicity, but its impact on traffic emission calculation
is non-trivial (Tachet et al. 2017; Yan et al. 2020). Fewer on-road vehicles can result
in higher vehicle speeds, thereby improving transportation efficiency and leading to
a greater reduction in traffic emissions. Therefore, it is imperative to account for
traffic congestion when calculating traffic emissions. Third, there is a lack of open-
source easy-operating simulation platforms for high-capacity ride-sharing systems for
the calculation of traffic emissions and estimation of traffic congestion. This study seeks
to address these gaps by developing an agent-based ride-sharing simulation platform
and a heuristic algorithm and integrating traffic congestion into the quantification of
traffic emissions. The main contributions of this study are summarized as follows:

• This study develops an open-source agent-based simulation platform, where each
vehicle, passenger, and road is an agent, enabling us to quantify the real-time
status of the ride-sharing system. Specifically, we can calculate the real-time
traffic speed of each road according to the number of on-road vehicles. Hence,
the real-time traffic speed of each vehicle can be adjusted and the impact of
traffic congestion on traffic emissions can be quantified.

• This study proposes a heuristic algorithm that can solve high-capacity ride-
sharing problems with no more than 2% computational costs but achieving over
97% accuracy compared with the enumeration method. This enables us to simu-
late and quantify traffic emissions under high-capacity scenarios, contributing to
decision-making and policy designing about ride-sharing services involving dif-
ferent capacities. This is substantial, especially for the autonomous driving era,
as autonomous minibuses and robotaxis are fully compliant and can be operated
to carry multiple passengers on each trip.

• This study integrates a traffic emission model and a speed-density traffic flow
model into the simulation platform to evaluate the impacts of high-capacity
ride-sharing services on reducing traffic emissions while considering the effects
of traffic congestion. This consideration is necessary as current heavy traffic
congestion may significantly increase carbon emissions, which can be mitigated
by ride-sharing if the platform can dispatch all on-road vehicles.

2. Literature review

This section presents a summary of existing studies regarding how ride-sharing services
impact traffic emissions and traffic congestion, and the corresponding methods for
quantifying the effects of ride-sharing. Some studies focus more on the impacts of ride-
sharing services on traffic emissions, while others emphasize more on their influences
on traffic congestion.

2.1. Traffic emissions

Regarding traffic emission reductions, the typical approach in previous studies is to
utilize GPS trajectory data to estimate the fuel consumption and carbon emissions
of both taxis and ride-sourcing vehicles (Weng et al. 2017; Sun, Zhang, and Shen
2018; Sui et al. 2019). This methodology allows for a thorough analysis of the carbon
footprint of these transportation modes and provides insights into potential strategies
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for reducing emissions. A few recent works quantified the environmental benefits of
ride-sharing services by combining GPS trajectories and historical trip requests (Liu
et al. 2021; Cai et al. 2019; Zhu and Mo 2022; Zhang et al. 2020). In these stud-
ies, all shareable trips were initially identified based on predefined constraints for the
origins, destinations, departure time, and arrival time of two passengers. The cumula-
tive VMT were then calculated under a hypothetical scenario in which ride-sharing is
adopted. The calculated results were compared with those under the original scenario
with non-sharing ride-sourcing services. Based on this comparison, the reduction in
VMT and traffic emissions resulting from ride-sharing can be calculated. In addition,
a spatiotemporal analysis of emission reductions can be done to indicate at which
time period and location ride-sharing can reduce more carbon emissions (Li et al.
2021). Moreover, other studies have explored the impacts of various travel-related and
built environmental factors on carbon emission reductions resulting from ride-sharing,
thereby identifying the most critical factors that can enhance the benefits of ride-
sharing (Li et al. 2022b; Yin et al. 2018). For example, Li et al. (2022b) proved that
the overlap rate and detour rate of shared rides are the most critical determinants for
enhancing the traffic emission reduction rate of ride-sharing. In addition, a few studies
quantified the impacts of ride-sharing associated with autonomous or electric vehicles
on traffic emissions (Morfeldt and Johansson 2022; Akimoto, Sano, and Oda 2022). For
instance, Morfeldt and Johansson (2022) claimed that shared mobility could decrease
the carbon footprint by approximately 41% by 2050 if one shared vehicle replaces ten
individual vehicles. Some researchers also used statistics from questionnaires filled by
ride-sharing passengers to calibrate the calculation results (Chen et al. 2021; Si et al.
2022). Interestingly, Si et al. (2022) found that carbon-emission reduction certification
can significantly increase users’ willingness to participate in ride-sharing programs.

However, most of the aforementioned studies assumed a ride-sharing scenario in
which at most two passengers share one vehicle, allowing all possible sharing trips to
be easily enumerated. For example, a driver would sequentially visit passenger A’s
origin, passenger B’s origin, passenger A’s destination, and passenger B’s destination.
This method cannot be extended to high-capacity ride-sharing scenarios due to the
exponential increase in computational complexity with vehicle capacity. In addition,
these studies determined which two passengers can be pooled through offline calcula-
tions, assuming all transportation requests were known in advance. To address these
gaps, this study develops a heuristic algorithm that achieves over 95% accuracy with no
more than 2% computational costs compared with the enumeration method. Also, the
simulation-based quantification method can pool passengers online, without needing
to know all requests ahead of time, which is more in line with real applications.

2.2. Traffic congestion

Regarding ride-sharing’s implications for traffic congestion, there is common sense that
ride-sharing can reduce the required vehicle fleet size to meet a given level of passenger
demand, thereby alleviating traffic congestion, particularly in areas with high-density
demand during peak hours (Shaheen 2018; Alisoltani, Leclercq, and Zargayouna 2021;
Zhang and Nie 2022; Engelhardt et al. 2019). Specifically, Alisoltani, Leclercq, and
Zargayouna (2021) employed a dynamic trip-based macroscopic simulation to mea-
sure the congestion effect and dynamic travel times, finding that ride-sharing can
significantly alleviate traffic congestion, especially in areas with high-density demand.
Zhang and Nie (2022) demonstrated that encouraging ride-sharing through a policy
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that charges trips with only one passenger starting or ending in the urban center can
reduce traffic congestion modestly and improve social welfare substantially. Engelhardt
et al. (2019) claimed that ride-sharing can benefit the entire transportation system,
particularly by reducing traffic congestion on major roads when the passenger adop-
tion rate for ride-sharing exceeds 5%. In addition, Ke, Yang, and Zheng (2020) found
that ride-sharing can alleviate traffic congestion when demand density is high, as vehi-
cles in a ride-sharing market can run faster than those in a non-sharing ride-sourcing
market. Zhang and Zhang (2022) showed that the system efficiency can decrease due
to the congestion effect, and increasing sharing size (i.e., the maximal vehicle capac-
ity) can improve the system efficiency in many cases. Correa et al. (2019) proposed
a congestion-aware ride-sharing algorithm that optimizes the travel plans for all ride-
sharing trips within a specific time interval, which can alleviate traffic congestion.
Although many studies have demonstrated that ride-sharing can alleviate traffic con-
gestion as well as improve transportation efficiency from various perspectives, few
studies have considered these effects when calculating traffic emissions. To address
this gap, this study integrates a speed-density traffic flow model with a traffic emission
model, enabling our developed simulation platform to account for traffic congestion
when estimating traffic emissions.

2.3. Simulation and quantification

Several quantifying and simulation methods have been proposed to address ride-
sharing tasks. For instance, Santi et al. (2014) proposed the shareability network,
which represents each trip as a node, each route that serves two shareable trips via
ride-sharing as a link, and the weight of the shared trip as the link weight, to solve the
ride-sharing assignment problem. This approach has been widely applied in various
ride-sharing research areas (Yan et al. 2020; Guo and Samaranayake 2022; Koutsopou-
los, Ma, and Zahedi 2023). For example, Yan et al. (2020) adopted the shareability
network and a speed-density traffic-flow model to quantify the benefits of ride-sharing
in Shanghai, concluding that ride-sharing can reduce fuel consumption (FC) by 22.88%
and 15.09% in optimal and realistic scenarios, respectively. Moreover, Alonso-Mora
et al. (2017) proposed the high-capacity ride-sharing strategy that collects all trip re-
quests for a batch-matching time frame and matches all requests and vehicles. This
can increase the efficiency of high-capacity ride-sharing systems, as systems gain more
knowledge from all possible assignments. This strategy has been applied to various
ride-sharing optimization approaches, such as reinforcement learning-based optimiza-
tion (Shah, Lowalekar, and Varakantham 2020), stochastic optimization (Luo et al.
2021), and scaling laws analysis (Chen, Ke, and Yang 2023). In addition, Kucharski
and Cats (2020) developed the ExMAS algorithm, which can incrementally match
single trips into shared trips based on passengers’ utilities. This algorithm has been
used to solve probabilistic ride-sharing and other problems (Soza-Parra, Kucharski,
and Cats 2024; Kucharski, Cats, and Sienkiewicz 2021; Bujak and Kucharski 2022).
Another widely used simulation tool for ride-sharing is MATSim, a queuing-based net-
work simulator (W Axhausen, Horni, and Nagel 2016), which has been extended and
applied to various ride-sharing research areas, such as autonomous taxi services (Ruch,
Hörl, and Frazzoli 2018; Hörl 2017), traffic noise simulation (Kuehnel, Kaddoura, and
Moeckel 2019; Kuehnel and Moeckel 2020), and design and analysis of ride-sharing
services (Zwick et al. 2021; Zwick and Axhausen 2020; Ruch et al. 2020; Bischoff,
Maciejewski, and Nagel 2017). MATSim can handle high-capacity ride-sharing sim-
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ulations by adjusting vehicle capacities but with high computational costs, making
the large magnitude of simulations infeasible. (Nassar 2023). In addition, most of the
existing simulation tools do not consider the impact of vehicle speed changes on trans-
portation systems. To address this gap, this study develops an open-source agent-based
ride-sharing simulator that takes into account traffic speeds and can quantify the ef-
fects of high-capacity ride-sharing services on reducing traffic emissions and alleviating
traffic congestion.

3. Data and simulation settings

3.1. Data

The dataset used in this study comprises passenger requests provided by Didi Chuxing
in Chengdu from November 1st to 30th, 2016. Each request includes an ID, timestamps,
and origin and destination coordinates (longitude and latitude). The dataset contains
approximately 200,000 requests per day in the whole city. To filter the dataset, we first
select the urban zone that includes the Ring Expressway as the study area since most
requests are generated in this area. Only requests with origins and destinations within
the study area are considered. Second, we relocate all requests’ origins and destina-
tions to the nearest road intersections, enabling us to calculate the routes for vehicles
to pick up and drop off passengers on the road network. This is because we model
the road network as a graph, where each node denotes an intersection and each edge
denotes a road. We can calculate the routes for vehicles only if passengers’ origins and
destinations are located at intersections. In addition, each road is represented as a few
short straight lines in the graph, making sure the relocation will not induce significant
errors. Finally, since this study uses the batch matching algorithm, where passengers
and vehicles are matched at regular time intervals, we reschedule the generation times-
tamps of all requests to the nearest batch-matching time points (see Section 3.5 for
details).

After filtering the data as described above, the dataset contains approximately
170,000 requests per day, and the temporal and distance distributions of the remaining
requests are presented in Fig. 1. Notably, the temporal and distance distributions of
requests are similar for all weekdays; therefore, this study selects requests from a
typical day for simulation and analysis. As shown in Fig. 1(a), the request arrival rate
is significantly higher during the daytime than at midnight. Moreover, the average
distance of requests is 6.4 km, and most requests have distances of no more than 15
km (Fig. 1(b)).

To simulate the actions of vehicles and passengers on a real road network, this study
uses the road network, including roads and intersections, obtained from Open Street
Map (Ope 2004). The road network in the study area is relatively regular, as shown
in Fig. 2, ensuring that the simulation results in this area are typical since most cities
worldwide are planned to be regular (Mumford 1961). The majority of requests are
concentrated in the northeastern zone of the study area, as shown in Fig. 2(a). This
study initializes vehicles according to the spatial distribution of requests; thus, most
of the vehicles are initialized in the northeastern zone of the study area, as shown in
Fig. 2(b).
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(a) Temporal distribution (b) Distance distribution

Figure 1. Temporal and distance distributions of passenger requests on a typical day.

(a) (b)

Figure 2. Spatial distributions of (a) passenger requests and (b) vehicles. Red circles represent passengers in

(a) and green squares represent vehicles in (b). The request arrival rate in (a) is 1.96 #/s, and the number of
vehicles in (b) is 1000.

3.2. Simulation framework

We develop a ride-sharing simulation platform using Python 1 which integrates the
introduced heuristic algorithm (Sec. 3.3), traffic emission model (Sec. 3.4), and speed-
density traffic flow model (Sec. 3.5). This simulation platform is developed based on
the algorithm proposed by Alonso-Mora et al. (2017). However, the main differences
between our simulation platform and the one proposed by Alonso-Mora et al. (2017)
are as follows.

(1) This study develops a heuristic algorithm and verifies its effectiveness and effi-
ciency for solving high-capacity ride-sharing problems, enabling the simulation
platform to simulate high-capacity ride-sharing scenarios much more efficiently.
This is important as researchers and practitioners may need to quantify the im-

1The code can be available at: https://github.com/HKU-Smart-Mobility-Lab/Ride-sharing-Simulator
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plications of high-capacity ride-pooling services in various market scenarios with
varying supply and demand levels and city structures.

(2) This study integrates a traffic emission model and a speed-density traffic flow
model into the simulation platform, enabling the platform to quantify the impact
of ride-sharing services on reducing traffic emissions while considering traffic
congestion.

(3) Our simulation platform is agent-based, implementing each vehicle, passenger,
and road as an agent, which can dynamically update the shortest paths for
vehicles according to real-time traffic congestion situations.

Figure 3. Architecture of the developed open-source agent-based ride-sharing simulation platform. RTV
denotes ride-trip-vehicle, representing the system first determines which rides can be pooled together as a trip,

and then matches trips with available vehicles. RL denotes reinforcement learning that is not used in this study
and ILP denotes integer linear programming.

The architecture of the simulation platform is shown in Fig. 3. The platform mainly
consists of six parts, i.e., control center, environment, RTV system, evaluation system,
action system, and post-process system. The control center is designed to integrate
all functions, while the environment initializes road networks and updates real-time
traffic situations. In the RTV system, each vehicle is regarded as an agent with its
attributes including the current on-vehicle passengers, the planned route, etc. Agents
drive to pick up and deliver their scheduled passengers according to the assignment
results given by the integer linear programming (ILP) in the evaluation system. Sub-
sequently, agents’ movements and speeds, and passengers’ states are updated in the
action system. Finally, all simulation results are visualized in a post-process system. 2

3.3. Dispatching algorithm

The dispatching algorithm used in this study is similar to the one proposed by Alonso-
Mora et al. (2017). Specifically, first, all passenger requests are collected within a

2All parameters needed for the simulation platform, such as the maximum allowable detour time ratio and
the vehicle capacity, are defined in a configuration file, enabling users to simulate various scenarios without

needing to modify the source code.
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batch-matching time interval (e.g., 2 seconds). Each request is potentially assigned to
the vehicles within their matching area, i.e., the pickup distance is no more than the
matching radius. Then, for each vehicle, the shareability of their potential request(s)
and current request(s) is calculated based on the constraints of maximal pickup and
detour time. Specifically, an optimal route with minimal costs for the vehicle to se-
quentially visit the origins and destinations of two passengers can be obtained by
enumerating all possible routes and comparing their corresponding costs. If the opti-
mal route meets all constraints of maximal pickup and detour time, the two passengers
can share the vehicle, and is regarded as a feasible trip. It is worth noting that this
study restricts a maximum detour time ratio (i.e., 0.5) for all passengers, ensuring the
detour time for all passengers cannot exceed 50% of their original travel time, which
makes sure the induced detour time for all passengers can be acceptable. Therefore,
each vehicle might be preassigned with several feasible trips and each feasible trip is
assigned a value according to the system objective. For example, the value can be the
total price of the trip if the system objective is to maximize the revenue. It should be
noted that each feasible trip contains one or more passenger requests and two differ-
ent feasible trips may contain one same request. Subsequently, all vehicles and their
feasible trips are matched through ILP which maximizes the total values of all feasible
trips. Finally, vehicles pick up and deliver the assigned trips according to the match-
ing results. Those passengers who have not been matched successfully at the current
step will keep waiting for the next batch-matching frame until they are assigned to
vehicles or quit the system due to the constraint of maximal waiting time. In addi-
tion, those idle vehicles that have not been assigned any passengers will cruise within
nearby areas. Please refer to Alonso-Mora et al. (2017) for details of the dispatching
algorithm.

Under high-capacity scenarios, however, it is extremely time-consuming to enumer-
ate all possible routes due to the tremendous number of possible routes (Santi et al.
2014; Alonso-Mora et al. 2017). Therefore, this study develops the nearest neighbor
(NN) algorithm to check the shareability among multiple requests, that is, whether
they can be pooled together or not. If the designed route satisfies the constraints for all
requests, i.e., pickup and detour times do not exceed the maximum constraints, then
these requests can share the same trip. Instead of enumerating all possible routes for
vehicles, the NN algorithm aims to find a suboptimal solution by iteratively selecting
the nearest unvisited passenger from the current position of a vehicle. In other words,
the NN algorithm guides vehicles to visit the nearest spot (origin or destination) to
pick up or drop off passengers. The obtained suboptimal route through the NN algo-
rithm generally has slightly higher costs than the optimal route (Rosenkrantz, Stearns,
and Lewis 1977).

To figure out the computational cost and accuracy of the NN algorithm, we conduct
a numerical study in Chengdu, the same study area in Section 3.1, in which the fleet
size is 50, the request arrival rate is around 170 requests per hour, and the time
horizon is from 6 to 10 am. We compare the computational costs and accuracy of the
NN algorithm with the enumeration method for two different scenarios with vehicle
capacities of 4 and 6 passengers, respectively. The computational cost is represented
as the total time for calculating the shareability among multiple requests during the
whole simulation process, while the accuracy is calculated based on the confusion
matrix, in which the calculation results of the NN algorithm and numeration method
are respectively regarded as the predicted value and true label, as follows:
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accuracy =
TN + TP

TN + FN + TP + FP
, (1)

where TP represents True Positive, i.e., the calculation results of both the NN algo-
rithm and enumeration method are true. In other words, the multiple requests can be
pooled with the driver. TN , FN , and FP represent True Negative, False Negative,
and False Positive, respectively. Moreover, we define the scenario in which the locally
optimal route given by the NN algorithm is the same as the optimal route given by the
enumeration method as the same positive (SP). And we use consistency to measure
the ratio of SP to TP:

consistency =
SP

TP
. (2)

This metric essentially measures the gap between the locally optimal route given by
the NN algorithm and the optimal route given by the enumeration method.

The results of the numerical study are listed in Table 2. The NN algorithm achieves
97.1% accuracy and 91.6% consistency with only 1.7% computational costs, as well
as 97.9% accuracy and 92.3% consistency with only 0.2% computational costs in two
scenarios with vehicle capacities of 4 and 6 passengers, respectively. It is worth noting
that the accuracy and consistency in the scenario with higher vehicle capacity are
slightly higher than that in the scenario with lower vehicle capacity. This is because
there are more sharing possibilities among multiple requests in the scenario with higher
vehicle capacity, as each vehicle can be preassigned with more requests. But actually,
the generated feasible trips may be fewer since it is significantly more difficult to meet
constraints for more requests. Therefore, there are more negative labels (a subgroup of
passengers can not share a vehicle) in the scenario with higher vehicle capacity. Since
it is easier to predict the negative values, the TN value in the scenario with higher
vehicle capacity is significantly larger, making the accuracy slightly higher. In addition,
the possible routes for higher-capacity ride-sharing are significantly less due to more
constraints for more requests. Therefore, the NN algorithm has a greater possibility of
providing the optimal route, making the value of consistency larger. The experimental
results of the numerical study demonstrate that the NN algorithm can realize high
accuracy with significantly lower computational costs compared with the enumeration
method. This proves the NN algorithm is capable of being applied to high-capacity
ride-sharing simulations.

Table 2. Comparison between NN algorithm and enumeration method on computational costs and accuracy.

Maximal vehicle capacity = 4 Maximal vehicle capacity = 6
Nearest Neighbor Enumeration Nearest Neighbor Enumeration

Time (s) 8 483 12 5996
Accuracy (%) 97.1 – 97.9 –

Consistency (%) 91.6 – 92.3 –
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3.4. Emission estimation model

In this study, a widely used traffic emission estimation model developed by Europe
Environment Agency, COPERT (i.e., COmputer Programme to calculate the Emis-
sions from Road Transport) (Ntziachristos and Samaras 2020), is adopted to calcu-
late emissions. The COPERT model can estimate various pollutant levels emitted by
different categories of vehicles using different types of fuels, such as carbon dioxide
(CO2), carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbon (HC), and so on.
Moreover, when calculating emissions of various pollutants, the COPERT model takes
into account different engine temperatures, driving situations, and climatic conditions.
However, for simplicity, this study only focuses on the hot emissions (the engine is at
its normal temperature) with urban driving. Since the COPERT model is developed
based on European emission standards that are comparable to that implemented in
China, a lot of research has proved the effectiveness of adopting the COPERT model
to estimate vehicle emissions in Chinese cities (Cai and Xie 2007; Lang et al. 2014;
Luo et al. 2017; Sun, Zhang, and Shen 2018; Sui et al. 2019; Li et al. 2021).

Given a specific category of vehicle and fuel, the COPERT model estimates the
emission factor of various pollutants concerning travel speed as follows:

EFi,j,k = (αkv
2
i,j + βkvi,j + γk + δk/vi,j)/(ϵkv

2
i,j + ζkvi,j + ηk), (3)

where EFi,j,k denotes the emission factor of pollutant k emitted by vehicle i on road
j (unit: g/km), vi,j the average speed of vehicle i on road j (unit: km/h), and αk, βk,
γk, δk, ϵk, ζk, and ηk are parameters for pollutant k, and their values can be found in
Ntziachristos and Samaras (2020). Therefore, the amount of pollutant k emitted by
all vehicles Ek can be calculated as:

Ek =
∑
i

∑
j

EFi,j,klj , (4)

where lj is the length of road j.
According to references (Sui et al. 2019; Li et al. 2021), most ride-sourcing vehicles

in Chengdu comply with the emission standard of China IV which is equal to Euro
4. Without loss of generality, this study assumes that all vehicles are Small Passenger
Cars fueled with Petrol complying emission standard of Euro 4. As a result, the emis-
sion parameters of pollutant k can be uniquely determined. Furthermore, the emission
factors of different pollutants can be calculated concerning the average speed.

3.5. Speed-density model

As mentioned in Section 1, a vehicle can deliver multiple passengers at each time in
a ride-sharing system, enabling the system to realize comparable service rates with
smaller fleet sizes. This, in turn, alleviates traffic congestion as well as increases traffic
speed, due to the fewer number of on-road vehicles, which can further improve the
transportation efficiency of the system. Hence, it is necessary to consider the ever-
changing traffic speeds when quantifying the implications of ride-sharing services.

In this study, we adopt Greenshield’s model, the simplest classic macroscopic traffic
flow model proposed by Greenshield’s in 1935, which assumes speed and density are
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linearly related under uninterrupted flow conditions, to calculate the traffic speeds of
vehicles. The basic formula of Greenshield’s model is as follows:

u = u0(1 − k/kj), (5)

where u denotes the traffic speed, u0 the free-flow speed, k the density, and kj the
traffic jam density. The traffic jam density kj can be set as 100 vehicles/km/lane (Liu,
Williams, and Rouphail 2012). According to the Amap’ (one of the largest online
map companies in China, affiliated with Alibaba) annual transportation report 20223,
the free-flow speed in Chengdu is around 45 km/h. The density k consists of two
components, basic density kb and ride-sourcing density kr. The basic density kb refers
to the density of on-road vehicles excluding ride-sourcing vehicles, such as buses and
private cars. The ride-sourcing density kr refers to the density of the ride-sourcing
vehicles that are simulated in this study. According to Chengdu transportation report
20214, the ride-sourcing density kr approximately accounts for 10 - 15% of the total
density k. In this study, we assume the basic density kb remains constant because the
real-time traffic flow data is inaccessible for now. This assumption is reasonable since
this study focuses on the average values of traffic speeds and carbon emissions (Yan
et al. 2020).

It is worth noting that the density refers to the number of vehicles per unit of length
on each lane. Since this study considers different types of roads may have different
numbers of lanes which are recorded in the road network, the used speed-density
model is able to consider road types. In addition, this study focuses on quantifying
the average traffic emissions and congestion in the entire city. Hence, it is reasonable
to assign all roads a global average free-flow speed.

This study adopts Dijkstra’s algorithm (Dijksta 1959) to estimate the shortest
routes from origins to destinations of requests based on the road network. However,
since this study accounts for traffic congestion when modeling vehicle behaviors, re-
sulting in fluctuating vehicle speeds due to shifts in traffic density, the shortest routes
are calculated using the on-road traffic time, rather than the road length. Specifically,
this study adds an attribute, i.e., travel time, to each road, which is the weight of the
road when calculating the shortest routes. Moreover, the system updates the traffic
density of each road once a vehicle leaves or enters the road, based on which the travel
time on the road can be updated according to the speed-density model.

3.6. Simulation settings and measurement metrics

To simplify the analysis, this study focuses on two distinct scenarios: (1) a traditional
ride-sourcing system without any ride-sharing options, where passengers do not share
trips with others, and (2) a ride-sharing system where all passengers are willing to
share trips. Any other scenarios in which a proportion of passengers are willing to
share can be considered a combination of these two extremes. Moreover, unlike most
existing literature that only allows at most two passengers to share a trip at each
time, this study expands the analysis to include three different vehicle capacities, i.e.,
2, 4, and 6. Therefore, there are 4 scenarios in total in this study: non-sharing ride-
sourcing (denoted as NS), ride-sharing with the capacity of 2 passengers (denoted

3https://report.amap.com/download.do (in Chinese)
4https://www.cdipd.org.cn/index.php?m=content&c=index&a=show&catid=63&id=385 (in Chinese)
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as RS2), ride-sharing with the capacity of 4 passengers (denoted as RS4), and ride-
sharing with the capacity of 6 passengers (denoted as RS6). As mentioned earlier,
ride-sharing services can achieve a similar service rate (SR) with a smaller fleet size,
resulting in a reduction in traffic emissions and alleviating traffic congestion for a
given level of demand. Therefore, this study calculates and compares traffic emissions
and traffic congestion among four scenarios for a given level of demand and required
SR. SRs mainly depend on demand-to-supply ratios, reflecting different ride-hailing
markets, such as under-supply, balanced, and over-supply. For instance, when the
demand-to-supply ratio is high, indicating under-supply, the SR should be relatively
low. Consequently, this study further examines the performances of the four systems
at different required SR levels, i.e., 50%, 60%, 70%, 80%, and 90%.

This study uses system efficiency, traffic emissions, and traffic congestion as metrics
to measure the overall performances of the four scenarios. The metrics are calculated
as the average value of all observations and presented as relative values rather than
absolute values. For example, the widely used metric, VMT, is not considered in this
study as VMT is an absolute value that changes with fleet size. However, fleet size
may vary significantly in different cities. Instead, the delivery efficiency factor (DEF)
which refers to the ratio of VMT to passenger miles delivered (PMD) is used in this
study to measure the required VMT for each PMD. Relative values are more typical
and can be extrapolated to other scenarios.

First, this study adopts the SR and DEF to measure the system efficiency under
various scenarios. The SR can be calculated as follows:

SR =
n

N
, (6)

where n and N denote the number of served passengers and the total number of
passengers, respectively. As introduced above, DEF can be calculated as:

DEF =
VMT

PMD
. (7)

In particular, SR can be used to measure the overall performance of the system, while
DEF can be used to measure the efficiency of delivering passengers.

For traffic emissions, the amount of emissions may vary significantly between dif-
ferent scenarios due to the different settings such as fleet size. As a result, similar to
DEF, this study uses the passenger emission factor (PEF) to measure the emissions
of various pollutants. PEF of Pollutant k can be calculated as follows:

PEFk =
Ek

PMD
. (8)

Remind that Ek denotes the amount of pollutant k emitted by all vehicles. This metric
can represent the emission cost for delivering each passenger mile, which is easier to
understand and more convenient for comparison between various scenarios.

Third, this study adopts the delay factor (DF) to measure the traffic congestion
under different scenarios (Erhardt et al. 2019). The delay factor refers to the ratio
of congested travel time to free-flow travel time. Hence, the higher the value of the
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delay factor, the longer the travel delay, i.e., the more congested the road is. At an
observation time point t, for each road j, the delay factor DFt,j can be calculated as:

DFt,j =
lj/ut,j
lj/u0

=
u0
ut,j

, (9)

where ut,j denotes the average space speed of road j at time point t. Remind that lj
and u0 are the length of the road j and the free-flow speed, respectively. Therefore,
the average delay factor among all roads for all observations D can be calculated as
follows:

DF =
1

T

1

J

∑
t

∑
j

Dt,j , (10)

where T and J denote the number of observation time points and roads, respectively.
To accelerate the simulation process, this study randomly downsamples approxi-

mately 30% of the requests, which does not affect the spatial and temporal distribu-
tions of requests. The simulation time step as well as the batch-matching time interval
are set to 2 seconds. At the end of each batch-matching time frame, this study calcu-
lates the DF of all roads, and when a vehicle arrives at the end of a road, this study
calculates the traffic emissions of this vehicle on the road. In addition, several assump-
tions are made for the simulation. First, to simplify the model, car-following behaviors
are not considered, and the speeds of vehicles on the road change instantaneously when
the density of the road changes. This assumption is reasonable since this study only
considers the average speeds of on-road vehicles when calculating the emission factor
and delay factor. Second, idle vehicles are assumed to be cruising randomly within
their surrounding areas. Once the system assigns a passenger to a driver, the driver
stops cruising and drives to pick up and deliver the passenger. It should be noted
that the VMT for cruising is included in the total VMT since idle vehicle cruising is
essential for ride-sourcing or ride-sharing systems to serve more passengers, which is
the fundamental objective of a mobility system. Third, this study assumes that each
request includes only one passenger; thus there is no difference between a passenger
and a passenger request in this study.

4. Results and findings

4.1. Overall results

The experimental results are presented in Fig. 4, with the required SRs ranging ap-
proximately from 40% to 95%. In addition, the system efficiency improvement, traffic
congestion alleviation, and traffic emission reductions resulting from ride-sharing at
different levels of SR are calculated via interpolation and shown in Fig. 5. In general,
ride-sourcing and ride-sharing systems need to pay higher costs to achieve a higher SR.
This is mainly because, when the system is under-supply, it is easier for idle vehicles to
find passengers, resulting in fewer cruising distances, higher system efficiencies, fewer
traffic emissions, and less traffic congestion. However, when the required SR increases,
the corresponding required fleet size also increases, leading to more idle vehicles cruis-
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ing longer distances to find passengers, which results in more traffic emissions and
heavier traffic congestion.

In terms of traffic congestion, at different levels of required SRs, ride-sharing sce-
narios SR2, SR4, and SR6 can reduce the values of DF by 2.4 - 3.6%, 3.6 - 5.2%, and
3.9 - 5.6%, respectively (Fig. 5 (b)). However, it should be noted that ride-sourcing
vehicles only account for 10 - 15% of the total traffic flow, leading to a relatively small
improvement in traffic congestion resulting from ride-sharing. In addition, when the
required SR increases, the reductions in traffic congestion resulting from ride-sharing
are more significant (Fig. 5 (b)). For instance, when the SR is at 50%, the reductions
of DF resulting from the three ride-sharing scenarios are 2.4%, 3.6%, and 3.9%, respec-
tively. However, when the required SR increases to 90%, the reductions of DF increase
to 3.6%, 5.2%, and 5.6%, respectively. This is because, for a given level of demand,
when the required SR increases, the corresponding fleet size also increases. Therefore
ride-sharing services can reduce a larger absolute number of vehicles, resulting in a
more significant decrease in traffic flow, since this study assumes the basic flow is
instant.

As for traffic emissions, including CO2, CO, NOx, and HC, ride-sharing scenar-
ios SR2, SR4, and SR6 can reduce the values of PEF by approximately 30%, 45%,
and 50%, respectively (Fig. 5 (c-f)). In other words, compared to a non-sharing ride-
sourcing system, the three ride-sharing systems can achieve a PMD with approximately
70%, 55%, and 50% of traffic emissions. These reductions are mainly brought by the
improvement of traffic efficiency resulting from ride-sharing, as shown in Fig. 5 (a).
Ride-sharing can reduce the required VMT to achieve a PMD, thereby reducing traf-
fic emissions. Furthermore, when the required SR increases, the reductions in traffic
emissions provided by ride-sharing decrease slightly (figs. 5 (c) - (f)). This is because
when the required SR is low, indicating that the system is under-supply, it is easier for
passengers to share trips, leading to more significant reductions in traffic emissions.
However, as the required SR increases, the corresponding required fleet size increases,
and then it becomes more difficult to match passengers with compatible travel routes
and schedules, leading to a diminishing impact on traffic emissions.

These results demonstrate that ride-sharing has a high potential to reduce traffic
emissions. For example, even with a capacity of 2 passengers, ride-sharing can reduce
approximately 30% traffic emissions compared to non-sharing services. The findings
provide insight into the expected traffic emission reductions in the autonomous driving
era, as all vehicles are fully compliant to be operated to carry multiple passengers on
each trip. In addition, increasing the vehicle capacity from 4 to 6 cannot significantly
reduce traffic emissions, indicating it is not necessary to provide ride-sharing services
with a vehicle capacity over 4. Please refer to Section 4.4 for more details on the
marginal effect.

4.2. Emission reductions from traffic speed increase

Ride-sharing services can reduce the required fleet size for a given level of demand,
resulting in decreased traffic density and increased traffic speeds compared to non-
sharing ride-sourcing services. The speed increase resulting from ride-sharing can
further impact traffic emissions since the emissions of various pollutants are speed-
dependent. Considering CO, NOx, and HC are not speed sensitive when the traffic
speed is low in COPERT, we present only CO2 reductions provided by traffic speed
increase. Fig. 6 (a) illustrates that ride-sharing services can further reduce carbon
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Experimental results on the system efficiency, traffic congestion, and traffic emissions at different
levels of SRs.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. System efficiency improvement, traffic congestion alleviation, and traffic emission reductions re-
sulting from ride-sharing at different levels of SRs.
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emissions by approximately 0.4-0.8% by mitigating traffic congestion. These findings
are consistent with those reported by Yan et al. (2020). These percentage reductions
are relatively small because ride-sourcing vehicles constitute only a small proportion
of the total traffic flow. Therefore, the increase in traffic speed due to reduced fleet size
in ride-sharing systems may not be noticeable. In addition, to validate these results,
we conduct three group RS4 experiments with different initial locations of vehicles.
Fig. 6 (b) illustrates the similar results of three group experiments, validating these
emission reductions from the traffic speed effect.

(a) CO2 reductions (b) Sensitivity analysis of RS4

Figure 6. Carbon emission reductions from traffic speed effect.

While the further improvements in emission reductions achieved by traffic speed
increase may not be significant in this study, the results provide a valuable reference
for future research on reducing traffic emissions. Specifically, the findings suggest that
traffic emissions can be reduced not only by decreasing the required fleet size to meet
a given level of demand but also by increasing traffic speeds. Furthermore, in future
mobility systems where all vehicles are autonomous and connected, ride-sharing pro-
grams can potentially be applied to all vehicles, resulting in a significant decrease in
traffic flow and a corresponding increase in traffic speed. Therefore, it is possible to
achieve a substantial further reduction in traffic emissions through the implementation
of such ride-sharing programs.

4.3. Spatial pattern analysis

The study area contains an obvious hot zone with high demand, located in the middle
of the area with a longitude from 104.4 to 104.12 and a latitude from 30.64 to 30.70. To
analyze the spatial patterns of the impact of ride-sharing services, this study calculates
the traffic emission reductions and traffic congestion alleviation resulting from ride-
sharing services in the hot zone and other areas, as shown in Table 3. For the sake
of conciseness, this section only analyzes the spatial patterns at 80% of the SR level,
with similar results at other SR levels displayed in the appendix. The results show that
the impacts of ride-sharing services on reducing traffic emissions and alleviating traffic
congestion in the hot zone are more significant than those in other areas. For example,
in the hot zone, ride-sharing scenarios RS2, RS4, and RS6 can reduce CO2 emissions by
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32.6%, 49.7%, and 54.3%, respectively. However, these reduction percentages decrease
to 30.0%, 45.5%, and 50.3%, respectively, in other areas. Similarly, the decreased
DFs in three ride-sharing scenarios are 3.1%, 4.5%, and 4.9%, respectively, in other
areas. In contrast, the alleviation of traffic congestion provided by RS2, RS4, and
RS6 is more significant in the hot zone, with reductions in DFs of 3.5%, 5.0%, and
5.5%, respectively. This can be explained by the spatial aggregation of trip origins,
as demonstrated in Fig. 2 (a). Most ride requests are concentrated in the hot zone,
increasing the probability of passengers finding others with similar destinations to
share a vehicle. This outcome results in a more significant decrease in the required
fleet size to satisfy mobility needs, leading to more substantial reductions in traffic
emissions and the alleviation of traffic congestion.

Table 3. Comparison of the impacts of ride-sharing services on traffic emission reductions and traffic conges-

tion alleviation in the hot zone and other areas at 80% of SR.

RS2 RS4 RS6
Other Hot Other Hot Other Hot

CO2 (%) 30.0 32.6 45.5 49.7 50.3 54.3
CO (%) 30.2 32.7 45.4 49.8 50.3 54.3

NOx (%) 30.0 32.7 45.5 49.8 50.6 54.4
HC (%) 29.9 32.6 45.4 49.8 50.4 54.2
DF (%) 3.1 3.5 4.5 5.0 4.9 5.5

To further analyze the spatial patterns of ride-sharing services’ implications, this
study aggregates the results across all observations and calculates the daily emissions
of non-sharing ride-sourcing and the emission reductions from ride-sharing on each
road. The emissions of non-sharing ride-sourcing and the emission reductions from
ride-sharing on each road are then plotted as a scatter plot of (x,y), as shown in Fig.
7. A linear regression without a constant is used to model the relationship between x
and y, and the regression results are also shown in Fig. 7. The regressed equations in-
dicate a strong linear relationship between x and y, with an R2 value of more than 0.9.
This suggests that the traffic emission reductions from ride-sharing services are spa-
tially correlated with emissions from non-sharing ride-sourcing services. In other words,
ride-sharing can reduce more traffic emissions on roads with higher traffic emissions
from non-sharing ride-sourcing, as shown in Fig. 8. Moreover, the regression results
demonstrate that ride-sharing systems SR2, SR4, and SR6 can reduce emissions of
CO2, CO, NOx, and HC by approximately 37.6%, 55.2%, and 59.3%, 38.1%, 56.4%,
and 61.6%, 36.7%, 54.2%, and 58.9, and 36.9%, 54.3%, and 58.5%, respectively.

These findings indicate that high-capacity ride-sharing services are recommended
in hot areas with more transportation requests, as passengers can be paired together
more easily, reducing traffic emissions more significantly.

4.4. Marginal effects of increasing the vehicle capacity

Figure 5 illustrates that, across all measurement metrics and various required service
reliability (SR) levels, there are significant marginal benefits associated with increasing
vehicle capacity when the capacity is no more than 4 passengers. However, when
the vehicle capacity increases to 6 passengers, the marginal improvement in system
efficiency, reductions in traffic emissions, and alleviation in traffic congestion resulting
from higher-capacity ride-sharing services are not significant. For example, as shown in
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Figure 7. Relationship between reduced traffic emissions brought by ride-sharing and original emissions from
non-sharing ride-sourcing on each road at 80% of SR level.

Fig. 5 (c), when the SR is at 90%, RS2, and RS4 can reduce CO2 emissions by 31.7%
and 45.9%, respectively. However, RS6 only decreases CO2 emissions by 50.2%, which
is not significantly different from the reduction provided by RS4. This is because it is
more challenging for multiple passengers to share a trip as more constraints need to
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Figure 8. Spatial distributions of cumulative CO2 emissions from non-sharing ride-sourcing and reductions
from ride-sharing at 80% of SR level.

be satisfied. Therefore, although the RS6 system allows for up to 6 passengers to share
a vehicle on each trip, it is almost impossible to schedule 6 passengers with similar
origins and destinations to a driver at one time.

(a) Average number of scheduled passengers (b) Average detour time

Figure 9. Marginal effects of increasing the vehicle capacity.

Fig. 9 presents the marginal effects of increasing the vehicle capacity, including (1)
the average number of scheduled passengers of each vehicle, including the passengers
already in the vehicle and those scheduled to be picked up in the future, and (2)
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the average detour time of passengers. The marginal improvement in the number of
scheduled passengers with each increase in vehicle capacity is more significant in the
scenarios where the capacity is no more than 4 passengers, compared to scenarios with
a capacity of 6 passengers. For example, when the SR is at 80%, RS2 and RS4 increase
the number of scheduled passengers from 0.7 to 1.2 and 1.8 passengers, respectively, re-
sulting in marginal improvements of 0.25 and 0.3 with one increase in vehicle capacity.
In contrast, compared to RS4, RS6 only increases the number of scheduled passengers
from 1.8 to 2.0, representing a marginal improvement of only 0.1. However, increasing
the vehicle capacity from 4 to 6 can significantly increase the average detour time of
passengers. For instance, when the SR is at 70%, RS4 increases the average detour
time by 2.0 minutes compared to RS2 (from 4.4 to 6.4 minutes), while RS6 increases
the average detour time by 2.2 minutes compared to RS4 (from 6.4 to 8.6 minutes). It
is worth noting that, in situations where the SR is low (e.g., 50%), indicating a mar-
ket with a high demand-to-supply ratio where passengers find it easier to share their
trips, the marginal increase in the number of scheduled passengers is more substantial
while in the average detour time is less significant. As a result, except in scenarios
with extremely high demand, ride-sharing programs with no more than 4 passengers
sharing a vehicle are generally recommended in practical ride-sourcing systems.

5. Discussions and conclusion

This study develops an open-source ride-sharing simulation platform to investigate the
impacts of high-capacity ride-sharing services on reducing traffic emissions and allevi-
ating traffic congestion. A heuristic algorithm is developed to solve high-capacity ride-
sharing problems, which significantly speeds up the simulation process while achieving
high-accuracy results. Moreover, the platform integrates a speed-density traffic flow
model and a typical traffic emission model to account for the interplay among traffic
flow of regular and ride-sharing vehicles, traffic speed, and traffic emissions, enabling
the platform to quantify traffic emission reductions and traffic congestion alleviation
simultaneously. By conducting extensive experiments in Chengdu, this study finds
that ride-sharing services with vehicle capacities of 2, 4, and 6 passengers can alleviate
total traffic congestion by approximately 3%, 4%, and 5%, respectively, and reduce
traffic emissions from ride-sourcing systems by approximately 30%, 45%, and 50%, re-
spectively. In addition, this study finds that the carbon emission reduction attributed
to the increased traffic speed after the implementation of ride-sharing only provides
for a further 0.4-0.8% of traffic emission reductions. Furthermore, we observe that the
impacts of ride-sharing services on reducing traffic emissions and alleviating traffic
congestion are more significant in hot areas with higher passenger demand. It is also
interesting to find that the marginal benefits of increasing vehicle capacity in ride-
sharing programs are insignificant when the vehicle capacity exceeds 4. These results
provide valuable insights into managing, operating, and regulating on-demand ride
services. For example, it is not recommended to implement high-capacity ride-sharing
programs carrying more than 4 passengers under situations in which demand is not
extremely high, since the additional benefits brought by the increasing vehicle capacity
become less significant when the vehicle capacity is more than 4.

This study has a few limitations. First, due to the unavailability of real-time traffic
flow data, this study just assumes the same traffic-flow model with the same free-
flow speed for all roads. Second, to quantify the potential of ride-sharing involving
different vehicle capacities, this study assumes the demand remains the same while
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overlooking passenger choice behavior. Nevertheless, the findings of this study can
still provide insight into the expected performance of ride-sharing services in real-
world applications. Specifically, the quantified benefits of ride-sharing services in this
study could be the upper bound of those in real-world circumstances involving different
ride-sharing services as we assume the same demand. This can guide policymakers and
transportation network companies in designing green and efficient mobility systems
using ride-sharing services.

This study opens up a few potential avenues for future research. First, it is inter-
esting to investigate passenger choice behavior since ride-sharing may attract demand
from public and private transportation, which may offset the mobility pattern of the
entire transportation system. Considering the traffic demand is price-elastic, our work
provides a foundation for the design of a reasonable price strategy to attract more
passengers to share trips, thereby leading to a more efficient mobility system with
significantly fewer traffic emissions. Second, car-following behavior models can also
be integrated into our developed simulation platform to allow for microscopic simula-
tions, which can more accurately quantify traffic emissions and congestion by simulat-
ing vehicles’ acceleration and deceleration processes. Third, our developed simulation
platform can be used to investigate the environmental impacts of future shared au-
tonomous mobility systems in which all vehicles are connected, coordinated and fully
controlled by the central platform for meeting mobility demands. Such research could
provide valuable insights into the development of more sustainable, efficient, and eq-
uitable mobility systems in the near future.
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S1. Appendix

Table S1. Comparison of the impacts of ride-sharing services on traffic emission reductions and traffic con-

gestion alleviation in the hot zone and other areas at other SR levels.

SR@50% RS2 (other) RS2(hot) RS4 (other) RS4(hot) RS6 (other) RS6(hot)
CO2 (%) 32.6 35.1 53.2 52.6 58.3 56.8
CO (%) 32.6 35.4 53.0 52.6 58.4 56.9

NOx (%) 32.4 35.2 52.9 52.5 58.3 56.9
HC (%) 32.5 35.1 53.1 52.5 58.2 56.9
DF (%) 2.4 2.6 3.5 3.8 3.8 4.1
SR@60% RS2 (other) RS2(hot) RS4 (other) RS4(hot) RS6 (other) RS6(hot)
CO2 (%) 31.2 35.1 50.9 51.8 55.7 56.5
CO (%) 31.2 35.0 50.6 51.6 55.5 56.4

NOx (%) 31.2 35.0 50.5 51.6 55.6 56.3
HC (%) 31.0 35.0 50.6 51.6 55.8 56.5
DF (%) 2.7 2.9 3.9 4.3 4.2 4.6
SR@70% RS2 (other) RS2(hot) RS4 (other) RS4(hot) RS6 (other) RS6(hot)
CO2 (%) 30.5 33.9 48.0 51.1 53.0 56.0
CO (%) 30.6 33.9 48.1 51.1 53.2 55.8

NOx (%) 30.5 34.0 48.1 51.1 53.0 55.8
HC (%) 30.4 34.0 48.1 51.0 53.2 55.7
DF (%) 2.9 3.2 4.3 4.7 4.6 5.1
SR@90% RS2 (other) RS2(hot) RS4 (other) RS4(hot) RS6 (other) RS6(hot)
CO2 (%) 30.1 31.2 45.0 47.8 49.0 52.3
CO (%) 30.2 31.3 45.0 47.9 48.7 52.0

NOx (%) 30.2 31.3 44.9 47.8 48.7 52.3
HC (%) 30.3 31.4 44.7 47.9 48.8 52.3
DF (%) 3.4 3.9 4.9 5.5 5.3 6.0
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(a) At 50% of SR level (b) At 60% of SR level

(c) At 70% of SR level (d) At 90% of SR level

Figure S1. Relationship between reduced traffic emissions brought by ride-sharing and original emissions

from non-sharing ride-sourcing on each road at other SR levels.

32


