
Computers and Geotechnics 181 (2025) 107139 

0

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research paper

A unified transport-velocity formulation for SPH simulation of cohesive
granular materials
Shuaihao Zhang a, Feng Wang b, Xiangyu Hu b , Sérgio D.N. Lourenço a ,∗

a Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
b School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany

A R T I C L E I N F O

Keywords:
Smoothed particle hydrodynamics
Tensile instability
Transport-velocity formulation
Cohesive granular materials
Granular flows

A B S T R A C T

When simulating cohesive granular materials using smoothed particle hydrodynamics (SPH), tensile instability
often arises, characterized by particle clustering and non-physical fractures. In two-dimensional scenarios, this
issue is typically addressed by the artificial stress method, which introduces repulsive forces between particle
pairs. However, extending this approach to three dimensions is considered complex due to the requirements
of matrix diagonalization and coordinate system rotation. In this study, we introduce the transport-velocity
formulation (TVF), a numerical technique widely used in SPH simulation of fluids to remove tensile instability,
to address this issue. Furthermore, rather than being limited to inner particles alone as in the previous TVF, we
develop a unified transport-velocity formulation (UTVF) that encompasses both free-surface and inner particles,
by applying corrections to surface particles only in the tangential direction. This unified approach is tailored
for large deformation and failure flow problems in cohesive granular materials, which often involve free
surfaces. The proposed approach is first validated through benchmark cases of both fluids and elastic materials
with known analytical solutions, demonstrating its convergence, stability, and accuracy. Comparisons with the
artificial stress and particle shifting methods highlight the advantages of the UTVF in terms of momentum
conservation and low dissipation. Subsequently, the developed UTVF is applied to the simulation of cohesive
granular material failure and flows in both two-dimensional and three-dimensional settings. The results indicate
that the proposed method effectively eliminates tensile instability, regardless of dimensionality. An open-source
code is provided for further comparison and in-depth study.
1. Introduction

As a mesh-free method well-suited for simulating large material
deformations, smoothed particle hydrodynamics (SPH) (Gingold and
Monaghan, 1977; Lucy, 1977) has been widely applied to granular
material simulations (Zhan et al., 2019; Bui and Nguyen, 2021; del
Castillo et al., 2024) since its introduction by Bui et al. (2008). Over
the past decade, SPH has undergone significant development, achieving
notable advancements across various aspects of granular material mod-
eling (Peng et al., 2017; Feng et al., 2022; Hoang et al., 2024). How-
ever, simulations using SPH often encounter numerical instabilities,
among which tensile instability (Swegle et al., 1995; Monaghan, 2000;
Gray et al., 2001)—manifested as particle clustering and non-physical
fractures—is a particularly prominent issue.

In the SPH simulation of non-cohesive granular materials, tensile
instability should theoretically not occur, as it arises only in tensile
regions, and non-cohesive materials cannot sustain tensile forces. How-
ever, due to numerical errors in the computation (Bui et al., 2008),
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some particles may exhibit a hydrostatic stress component (negative
for compression) greater than zero, indicating the presence of tensile
forces. This numerical artifact can, in turn, result in particle clustering
akin to tensile instability. To address this issue, a tension cracking treat-
ment (Chen and Mizuno, 1990; Bui et al., 2008) is commonly employed,
where the hydrostatic stress component of a particle is adjusted to zero
whenever it becomes positive. This adjustment eliminates tensile forces
that should not arise in non-cohesive materials, thereby mitigating the
numerical instabilities caused by such forces.

When simulating cohesive granular materials, the presence of co-
hesion allows the material to resist tensile forces, making tensile in-
stability more pronounced. A commonly used solution is to introduce
an artificial stress term (Gray et al., 2001) in the momentum equa-
tion. Specifically, a small repulsive force is applied to each particle
pair in the tensile region, with the magnitude of the force increas-
ing as the particle spacing decreases. This approach helps prevent
particle overlap and clustering, thereby addressing tensile instability.
https://doi.org/10.1016/j.compgeo.2025.107139
Received 21 November 2024; Received in revised form 8 January 2025; Accepted 6
266-352X/© 2025 The Authors. Published by Elsevier Ltd. This is an open access a
 February 2025
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/compgeo
https://www.elsevier.com/locate/compgeo
https://orcid.org/0000-0003-0932-6659
https://orcid.org/0000-0002-7534-8760
mailto:lourenco@hku.hk
https://doi.org/10.1016/j.compgeo.2025.107139
https://doi.org/10.1016/j.compgeo.2025.107139
http://creativecommons.org/licenses/by/4.0/


S. Zhang et al.

b
b

n

e

S

w
b

a

t
w
b
t
p

e

i

t
(

t
i
p

e
d
s

U
f
i
s

S
f
t
f
U
S
F

e
s
c

i

s

a
i
o

d

f

i

Computers and Geotechnics 181 (2025) 107139 
In two-dimensional (2D) scenarios, the artificial stress method has
een widely adopted and proven effective in mitigating tensile insta-
ility (Bui et al., 2008; Bui and Nguyen, 2021; Lian et al., 2022).

Nevertheless, since artificial stress is derived under 2D conditions (Gray
et al., 2001), its derivation involves operations such as matrix diago-
alization and coordinate system rotation, which makes its extension

to three-dimensional (3D) scenarios complex, as noted in the litera-
ture (Bui and Nguyen, 2021; Zhang et al., 2024a, 2025b). In addition,
the artificial stress method is considered highly dissipative (Zhang
t al., 2024a), which results in excessive energy decay and makes it

unsuitable for long-duration simulations. Another issue is that the arti-
ficial stress method involves two coefficients that may require manual
adjustment for different cases.

To address the aforementioned issues, this study introduces the
transport-velocity formulation (TVF) (Adami et al., 2013; Zhang et al.,
2017a; Zhu et al., 2021; Zhang et al., 2025a), commonly used in
PH simulations of fluids to prevent tensile instability, into the mod-

eling of granular materials. The TVF proposed by Adami et al. (2013)
as designed to mitigate tensile instability by introducing a constant
ackground pressure. Zhang et al. (2017a) generalized the TVF for free-

surface flows by introducing a variable background pressure instead
of a constant one, and by adopting a shortened smoothing length to
ddress free-surface problems. Although the background pressure-based

TVF improves computational stability, its effectiveness is influenced by
he chosen background pressure and time step sizes. Later, the TVF
as reformulated by using an advection term by Zhu et al. (2021)
ased on local particle consistency, which adjusts particle positions
o achieve a uniform distribution. Specifically, the position of each
article is modified to meet the normalization condition, which guar-

antees that the kernel’s integral over the support domain sums to
unity. This consistency-driven formulation has been shown to improve
the stability and accuracy of SPH simulations for inner flows (Zhu
t al., 2021). Recently, this consistency-driven approach has undergone

further optimization (Wang et al., 2024; Zhang et al., 2025a); however,
ts applicability remains restricted to inner particles.

Since most problems involving large deformations of granular ma-
erials include free surfaces, we build upon the latest version of TVF
Zhang et al., 2025a) and unify its applicability from inner particles

alone to both inner and free-surface particles, referring to this as the
unified transport-velocity formulation (UTVF). The UTVF is designed
o address tensile instability in cohesive granular materials, particularly
n 3D scenarios, where the artificial stress method is less effective. The
roposed UTVF, along with Riemann-SPH (Zhang et al., 2017b, 2024c),

is validated through several benchmark tests involving fluids and elastic
materials with known analytical solutions, including the evolution of an
lliptical water drop, a rotating square patch, and an oscillating beam,
emonstrating its convergence, stability, and accuracy. Additionally,
ome results are compared with those obtained using the artificial stress

method and another commonly used particle regularization technique,
the particle shifting scheme (Xu et al., 2009; Khayyer et al., 2017). The

TVF is then applied to the simulation of cohesive granular material
ailure and granular flows in both 2D and 3D settings, demonstrating
ts effectiveness in eliminating tensile instability and enhancing the
tability and accuracy of SPH simulations.

We have developed and released our open-source code to support
simulations of cohesive granular materials. The code is publicly acces-
sible through the SPHinXsys library (Zhang et al., 2021b), available at
https://www.sphinxsys.org/. The structure of this paper is as follows.
ection 2 outlines the governing equations and constitutive models for
luids, elastic solids, and cohesive granular materials. Section 3 details
he SPH discretization approach for these materials, reviews previous
orms of transport-velocity formulations, and introduces the proposed
TVF. Section 4 validates the UTVF through benchmark tests, while
ection 5 illustrates its application to granular material simulations.
inally, Section 6 summarizes the findings and presents the conclusions.
 o

2 
2. Governing equations and constitutive relations

This section presents the governing equations and constitutive mod-
ls for granular materials. The governing equations for fluids and elastic
olids are also briefly outlined, as they are employed in the validation
ases in Section 4.

2.1. Fluids

In the Lagrangian framework, the governing equations of fluids
nclude the conservation of mass and momentum. When materials are

incompressible and viscosity is neglected, these equations are expressed
as
d𝜌
d𝑡 = −𝜌∇ ⋅ 𝐯 (1)

d𝐯
d𝑡 = −1

𝜌
∇ ⋅ 𝑝 + 𝐠 (2)

where 𝜌 is the density, 𝐯 is velocity, 𝑝 is the pressure, and 𝐠 is the body
force. The continuity Eq. (1) is the same for other materials, i.e., elastic
olids and granular materials.

To simulate incompressible flow under the weakly compressible
pproximation (Monaghan, 1994; Morris et al., 1997), an artificial
sothermal equation of state is employed to complete the formulation
f Eq. (2)

𝑝 = 𝑐20 (𝜌 − 𝜌0) (3)

where 𝜌0 is the initial density and 𝑐0 is the sound speed. Generally, in
fluid simulations, when an artificial sound speed of 𝑐0 = 10 |

|

𝐯𝑚𝑎𝑥|| is ap-
plied (where 𝐯𝑚𝑎𝑥 represents the anticipated maximum flow velocity),
the density fluctuates by approximately 1% (Morris et al., 1997).

2.2. Elastic solids

The momentum equation for elastic solids is given by
d𝐯
d𝑡 = 1

𝜌
∇ ⋅ 𝝈 + 𝐠 (4)

where 𝝈 is the Cauchy stress tensor. The total stress tensor 𝝈 can be
ecomposed into the sum of hydrostatic pressure and shear stress, as

illustrated below.

𝝈 = −𝑝𝐈 + 𝝈𝑠 (5)

where 𝐈 is the identity tensor, 𝑝 is the pressure and can be solved by
Eq. (3) under the weakly compressible assumption (Gray et al., 2001;
Zhang et al., 2017a), and 𝝈𝑠 is the shear stress tensor. The sound speed
or solids is defined as

𝑐0 =
√

𝐸
3(1 − 2𝜈)𝜌0

(6)

where 𝐸 is the Young’s modulus, and 𝜈 is the Poisson’s ratio. Shear
stress is derived from the integral of the shear stress rate 𝝈̇𝑠.

𝝈𝑠 = ∫

𝑡

0
𝝈̇𝑠d𝑡 (7)

The shear stress rate 𝝈̇𝑠 is defined by the constitutive relation of the
material. For linear elastic materials, the constitutive relation is given
by

𝝈̇𝑠 = 2𝐺𝜺̇𝑠 (8)

where 𝐺 is the shear modulus, and 𝜺̇𝑠 = 𝜺̇ − 1
𝑑 𝑡𝑟(𝜺̇)𝐈 is the shear strain

rate, with 𝑑 being the dimension of the space. The strain rate tensor 𝜺̇
s defined as

𝜺̇ = 1
2
[

∇𝐯 + (∇𝐯)𝑇
]

(9)

where ∇𝐯 is the velocity gradient tensor, and (⋅)𝑇 denotes the transpose
f a tensor.

https://www.sphinxsys.org/
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2.3. Cohesive granular materials

The elastic-perfectly plastic Drucker–Prager constitutive model is
employed to describe the elastoplastic behavior of granular materi-
als (Drucker and Prager, 1952; Borja, 2013). Although some rate-
dependent constitutive models, such as the 𝜇(𝐼)-rheological constitutive
model (Jop et al., 2006), are also commonly used to describe the
motion of granular materials (Lemiale et al., 2011; Hurley and Andrade,
2017; Madraki et al., 2017), SPH studies often assume cohesionless

aterials (Yang et al., 2021; Zhu et al., 2022) when employing rhe-
logical constitutive models to facilitate comparison with experimen-
al results. However, cohesionless granular materials do not exhibit
ensile instability, and therefore the UTVF scheme proposed in this
tudy is not required in such cases. Accordingly, this study adopts
he Drucker–Prager constitutive model, which is widely used in SPH
imulations (Bui et al., 2008; Nguyen et al., 2017; Bui and Nguyen,

2021; Feng et al., 2021; Zhang et al., 2024c). Comparisons are con-
ucted with experimental results under cohesionless conditions and
ith previous numerical results, to validate the constitutive model is

orrectly implemented in the SPH code. When cohesion is considered,
e demonstrate that tensile instability is completely eliminated by

he UTVF scheme, and compare the results with those obtained using
he artificial stress method (Bui et al., 2008) and the particle shifting

scheme (Lallemand et al., 2025).
The momentum equation for granular materials can be represented

by Eq. (4). Unlike elastic solids, where stress tensor 𝝈 is decomposed
into pressure and the shear stress tensor 𝝈𝑠, with pressure estimated
with equation of state, the total stress tensor 𝝈 for plastic solids is
calculated directly based on constitutive relation, as pressure is also
linked to the yield behavior in the Drucker–Prager model.

For non-associate flow rule, the stress rate 𝝈̇ is given by Borja
(2013)

̇ = 2𝐺𝜺𝑛 +𝐾t r (𝜺𝑛)𝐈 − 𝛾̇
(

3𝐾 𝛼𝜙𝐈 + 𝐺
√

𝐽2
𝝈𝑠𝑛

)

+ 𝝈𝑛 ⋅ 𝝎̇𝑇𝑛 + 𝝎̇𝑛 ⋅ 𝝈𝑛 (10)

with the following yield criterion 𝑓 and plastic potential function 𝑔.

𝑓 (𝐼1, 𝐽2) = 𝛼𝜙𝐼1 +
√

𝐽2 − 𝑘𝑐 (11)

𝑔(𝐼1, 𝐽2) = 𝛼𝜓𝐼1 +
√

𝐽2 (12)

where the subscript 𝑛 indicates the time step 𝑛. 𝝈𝑠 = 𝝈 − 1
3 t r (𝝈)𝐈 is the

deviatoric stress tensor. 𝐾 is the bulk modulus and 𝝎̇ = 1
2

[

∇𝒗 − (∇𝒗)𝑇 ]

s the spin tensor. 𝐼1 = t r (𝝈) and 𝐽2 =
1
2𝝈

𝑠 ∶ 𝝈𝑠 are the first and second
invariant of 𝝈, respectively. The Jaumann stress rate 𝝈̇ is a commonly
adopted approach in SPH-related studies (Bui et al., 2008; Nguyen
et al., 2017; Feng et al., 2021). However, it has been shown to exhibit
oscillatory behavior under simple shear conditions (Dienes, 1979), as
also mentioned by del Castillo et al. (2024). Interestingly, del Castillo
et al. (2024)’s investigation further demonstrates that such oscillations
were absent in SPH simulations involving both simple shear and large
deformation scenarios. Alternatively, other objective stress rates, such
as those derived from the Lie derivative (Borja and Tamagnini, 1998),
may also be considered in this context.

𝛾 in Eq. (10) is the plastic multiplier and can be determined by
he consistency condition. The change rate 𝛾̇ of the plastic multiplier
s given by

𝛾̇ =
3𝛼𝜙𝐾t r (𝜺𝑛) + (𝐺∕√𝐽2)𝝈𝑠𝑛 ∶ 𝜺𝑛

9𝛼𝜙𝐾 𝛼𝜓 + 𝐺
(13)

𝛼𝜙, 𝑘𝑐 and 𝛼𝜓 are material constants in Drucker–Prager model, which
are defined as (Borja, 2013; Nguyen et al., 2017)

𝛼𝜙 =
t an𝜙

√

2
, 𝑘𝑐 = 3𝑐

√

2
, 𝛼𝜓 =

t an𝜓
√

2
(14)
9 + 12t an 𝜙 9 + 12t an 𝜙 9 + 12t an 𝜓

3 
Here, 𝑐, 𝜙, and 𝜓 are cohesion, friction angle, and dilation angle,
espectively. Then the trial stress at the new time step 𝑛 + 1 can be
btained by

𝝈𝑡𝑟𝑖𝑎𝑙𝑛+1 = 𝝈𝑛 + 𝝈̇𝛥𝑡 (15)

A two-step elastic predictor-plastic corrector scheme, known as the
return mapping algorithm (Simo and Hughes, 2006; Bui et al., 2008;
Borja, 2013), is employed to return the trial stress 𝝈𝑡𝑟𝑖𝑎𝑙𝑛+1 to the yield
surface and get the final stress 𝝈𝑛+1.

3. Numerical method

3.1. SPH discretization

3.1.1. Fluids
A low-dissipation Riemann solver (Zhang et al., 2017b) is intro-

duced to discretize the continuity and momentum equation for fluids,
s shown

d𝜌𝑖
d𝑡 = 2𝜌𝑖

∑

𝑗

𝑚𝑗
𝜌𝑗

(𝐯𝑖 − 𝐯∗) ⋅ ∇𝑖𝑊𝑖𝑗 (16)

d𝐯𝑝𝑖
d𝑡 = −2 1

𝜌𝑖

∑

𝑗

𝑚𝑗
𝜌𝑗
𝑃 ∗∇𝑖𝑊𝑖𝑗 (17)

Here, 𝐫 and ℎ are the particle position and smoothing length, respec-
tively. 𝑊𝑖𝑗 = 𝑊 (𝐫𝑖 − 𝐫𝑗 , ℎ) is the kernel function, and 𝑚 is the particle
mass. The subscripts 𝑖 and 𝑗 are particle numbers. The term ∇𝑖𝑊𝑖𝑗 =
𝜕 𝑊 (𝑟𝑖𝑗 ,ℎ)
𝜕 𝑟𝑖𝑗 𝐞𝑖𝑗 is the gradient of the kernel function 𝑊𝑖𝑗 . 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗 | is

the distance between particles 𝑖 and 𝑗. The unit vector directed from
particle 𝑗 to particle 𝑖 is represented by 𝐞𝑖𝑗 . The superscript 𝑝 in d𝐯𝑝𝑖

d𝑡
ndicates this is pressure-induced acceleration, as opposed to shear

stress-induced acceleration in elastic solids.
According to Zhang et al. (2017b), the variables 𝐯∗ and 𝑃 ∗ are

the solutions to an inter-particle Riemann problem, and are defined
as (Zhang et al., 2017b)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐯∗ = 𝑈∗𝐞𝑖𝑗 +
(

𝐯𝑖𝑗 − 𝑈𝐞𝑖𝑗
)

𝑃 ∗ =
𝜌𝐿𝑐𝐿𝑃𝑅 + 𝜌𝑅𝑐𝑅𝑃𝐿 + 𝛽 𝜌𝐿𝑐𝐿𝜌𝑅𝑐𝑅(𝑈𝐿 − 𝑈𝑅)

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅

𝑈∗ =
𝜌𝐿𝑐𝐿𝑈𝐿 + 𝜌𝑅𝑐𝑅𝑈𝑅 + 𝑃𝐿 − 𝑃𝑅

𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅

(18)

Here, 𝐯𝑖𝑗 =
1
2

(

𝐯𝑖 + 𝐯𝑗
)

and 𝑈 = 1
2

(

𝑈𝐿 + 𝑈𝑅
)

. 𝑐𝐿 and 𝑐𝑅 are the sound
peed. The subscripts 𝐿 and 𝑅 denote the left and right states from
iemann problem, and are defined as

⎧

⎪

⎨

⎪

⎩

(

𝜌𝐿, 𝑈𝐿, 𝑃𝐿, 𝑐𝐿
)

=
(

𝜌𝑖,−𝐯𝑖 ⋅ 𝐞𝑖𝑗 , 𝑝𝑖, 𝑐0𝑖
)

(

𝜌𝑅, 𝑈𝑅, 𝑃𝑅, 𝑐𝑅
)

=
(

𝜌𝑗 ,−𝐯𝑗 ⋅ 𝐞𝑖𝑗 , 𝑝𝑗 , 𝑐0𝑗
)

(19)

The dissipation limiter 𝛽 is given by Zhang et al. (2017b)

𝛽 = min
{

𝜂max
[

(𝑃𝐿 + 𝑃𝑅)(𝑈𝐿 − 𝑈𝑅)
𝜌𝐿𝑐𝐿 + 𝜌𝑅𝑐𝑅

, 0
]

, 1.0
}

(20)

where 𝜂 is a coefficient, which is used to modulate dissipation when the
fluid is under the action of a compression wave (𝑈𝐿 ≥ 𝑈𝑅), typically
set to 3 for fluids (Zhang et al., 2017b).

3.1.2. Elastic solids
For elastic solids, the continuity equation does not require the in-

roduction of the Riemann solver (Zhang et al., 2024b). The continuity
equation is discretized as
d𝜌𝑖
d𝑡 = 𝜌𝑖

∑

𝑗

𝑚𝑗
𝜌𝑗

𝐯𝑖𝑗 ⋅ ∇𝑖𝑊𝑖𝑗 (21)

where 𝐯𝑖𝑗 = 𝐯𝑖 − 𝐯𝑗 . The pressure-induced acceleration for elastic solids
is the same with that for fluids (as shown in Eq. (17)), except the
dissipation limiter is set to 𝛽 = 1 (Zhang et al., 2024b). The shear
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stress-induced acceleration for elastic solids is given by
d𝐯𝑠𝑖
d𝑡 = 1

𝜌𝑖

∑

𝑗

𝑚𝑗
𝜌𝑗

(

𝝈𝑠𝑖 + 𝝈𝑠𝑗
)

⋅ ∇𝑖𝑊𝑖𝑗 (22)

The velocity gradient in Eq. (9) is discretized as (Espanol and Revenga,
2003)

∇𝐯𝑖 =
∑

𝑗
𝐯𝑖𝑗 ⊗

(

𝐁𝑖∇𝑖𝑊𝑖𝑗
)

𝑉𝑗 (23)

The correction matrix for the kernel gradient, 𝐁𝑖, is defined as (Randles
nd Libersky, 1996; Ren et al., 2023)

𝐁𝑖 = −
(

∑

𝑗
𝐫𝑖𝑗 ⊗ ∇𝑖𝑊𝑖𝑗𝑉𝑗

)−1

(24)

where 𝑉𝑗 is the volume of particle 𝑗, and 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 .

3.1.3. Cohesive granular materials
(Zhang et al., 2024c) were the first to introduce the Riemann

roblem into the SPH simulation of granular materials to incorpo-
rate numerical dissipation as a substitute for artificial viscosity terms.
They employed a low-dissipation Riemann solver to reduce numerical
dissipation, thereby addressing the issue of excessive dissipation that
might be introduced by artificial viscosity terms. The accuracy of this
method was demonstrated through comparisons with previous results,
nd it was shown that using a Riemann solver does not reduce compu-
ational efficiency compared to methods using the artificial viscosity
erm (Zhang et al., 2024c). According to Zhang et al. (2024c), the

discretization of the continuity equation for granular materials is the
same as that for fluids, as shown in Eq. (16). The discretization of
momentum equation is given by Zhang et al. (2024c, 2025b)
d𝐯𝑖
d𝑡 = 2 1

𝜌𝑖

∑

𝑗

𝑚𝑗
𝜌𝑗

𝝈∗ ⋅ ∇𝑖𝑊𝑖𝑗 + 𝐠 (25)

The 𝝈∗ is expressed as (Zhang et al., 2024c)

𝝈∗ = 𝝈𝑠𝑖𝑗 − 𝑃
∗𝐈 (26)

Here, 𝝈𝑠𝑖𝑗 = (𝝈𝑠𝑖 + 𝝈𝑠𝑗 )∕2 is the particle-average shear stress between
particles 𝑖 and 𝑗. The pressure 𝑃 ∗ is determined by the Riemann solver,
as shown in Eq. (18). The hydrostatic pressure of particle 𝑖 can be
btained by the trace of total stress tensor and 𝑃𝑖 = − 1

3 t r (𝝈𝑖) (Zhang
t al., 2024c). The coefficient 𝜂 in the dissipation limiter (Eq. (20)) for

granular materials is set to 20𝑑 according to Zhang et al. (2024c), with
𝑑 being the space dimension.

A stress diffusion term is introduced in the constitutive equation of
Drucker–Prager model to ensure a smooth stress distribution. Further
etails on this term can be found in the Ref. (Feng et al., 2021).

3.2. Previous transport-velocity formulations

In the work of Adami et al. (2013) and Zhang et al. (2017a), a trans-
port (or advection) velocity 𝐯 is introduced to replace the momentum
elocity. This velocity is obtained at every time step 𝛥𝑡 by

𝐯𝑖(𝑡 + 𝛥𝑡) = 𝐯𝑖(𝑡) +
(

d̃𝐯𝑖
d𝑡 − 1

𝜌𝑖
∇𝑝𝑏

)

𝛥𝑡 (27)

where 𝑝𝑏 is a background pressure. Although the gradient of a constant
background pressure is zero, the SPH discretization of ∇𝑝𝑏 under irreg-
ular particle distributions does not vanish due to the lack of zero-order
consistency, thereby resulting in a non-zero contribution (Adami et al.,
2013).

Zhu et al. (2021) improved this background pressure-based trans-
port velocity method by proposing a consistency-driven particle-
4 
advection formulation. The advection velocity is modified to

𝐯𝑖(𝑡 + 𝛥𝑡) = 𝐯𝑖(𝑡) +
[

d̃𝐯𝑖
d𝑡 +

2𝛥𝐫𝑖
(𝛥𝑡)2

]

𝛥𝑡 (28)

where the introduced extra advection term 𝛥𝐫𝑖 is determined by local
particle consistency, and is defined as

𝛥𝐫𝑖 = 𝜒𝑖𝐸𝑖
∑

𝑗
∇𝑖𝑊𝑖𝑗𝑉𝑗 (29)

where 𝜒𝑖 =
[

(

∑

𝑗 ∇𝑖𝑊𝑖𝑗𝑉𝑗
)2

+
∑

𝑗
(

∇𝑖𝑊𝑖𝑗𝑉𝑗
)2
]−1

is a positive value and
𝐸𝑖 is the local integration error estimated based on the normalization
(unity) condition of particle approximation (Zhu et al., 2021). With
Eq. (28), the position of each particle is adjusted to meet the normaliza-
tion condition, ensuring that the integral of the kernel over the support
omain equals unity.

The recent work by Zhang et al. (2025a) simplifies the advection
term 𝛥𝐫𝑖 with

𝛥𝐫𝑖 = 2𝛼 ℎ2
∑

𝑗
∇𝑖𝑊𝑖𝑗𝑉𝑗 (30)

Here, the coefficient 𝛼 can be generally set to 0.2 to ensure numerical
stability (Zhang et al., 2025a), and the smoothing length ℎ is used to
cale the advection term. Together with the momentum velocity, the
erm 𝛥𝐫𝑖 is iteratively applied to correct zero-order integration errors
y adjusting particle positions.

3.3. Unified transport-velocity formulation

Similar to Eq. (29), the essence of Eq. (30) is also to adjust particle
positions within the support domain, determined by each particle’s
smoothing length ℎ, to achieve zero-order consistency of the local par-
ticles, thereby enhancing numerical stability. This method is effective
for inner particles (i.e., particle 𝑖1 in Fig. 1) where the support domain
is complete, but presents significant issues for free-surface particles
i.e., near-surface particle 𝑖2 and outermost-surface particle 𝑖3 in Fig. 1)

where the kernel function is truncated. Considering both computational
efficiency and accuracy, ℎ∕𝑑 𝑝 (𝑑 𝑝 is the initial particle spacing) is
ypically less than 1.5 (Oger et al., 2007) and is set to 1.3 throughout
his paper, meaning that two layers of particles on the free surface
ill experience kernel truncation and are thus labeled as free-surface

particles, as shown in Fig. 1. For free-surface particles, if the extra
advection term 𝛥𝐫𝑖 is applied, free-surface particles will move in a
direction away from other particles under the requirement of local zero-
order consistency. For example, particle 𝑖3 in Fig. 1 will move in the
irection of 𝛥𝐫𝑖3 , leading to highly inaccurate computational results.

Therefore, in previous studies, transport-velocity corrections are
applied only to inner particles, while free-surface particles are left
uncorrected (Ren et al., 2023; Zhang et al., 2025a). However, numerical
instabilities can still occur in fluid simulations with longer computa-
ion times, and such errors become even more pronounced in solid
imulations (please refer to Section 4 for details.). Building on this,
e have extended the latest transport-velocity formulation, as shown

in Eq. (30), to accommodate free surfaces, thus facilitating long-term
table simulations for free-surface problems.

Firstly, the free-surface particles, include outermost-surface parti-
cles and near-surface particles, need to be identified. The outermost-
urface particles are classified if ∇⋅𝐫 < 0.75𝑑 (Lind et al., 2012; Khayyer
t al., 2017), with 𝑑 being the space dimension. The divergence of the
article position is given by Lee et al. (2008)

∇ ⋅ 𝐫𝑖 =
∑

𝑗
𝐫𝑖𝑗 ⋅ ∇𝑖𝑊𝑖𝑗𝑉𝑗 (31)

The method for identifying near-surface particles is adapted from
he Refs. (Khayyer et al., 2017; Zhang et al., 2023). Particle 𝑖 is

considered a near-surface particle if there exists any particle 𝑗 in
its neighborhood that satisfies both of the following conditions: (1)
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Fig. 1. Illustration of inner and free-surface particles.

particle 𝑗 is an outermost surface particle; (2) the distance between
particle 𝑖 and particle 𝑗 is less than the smoothing length ℎ.

The normal direction of the free-surface particles is then calculated
following the method of Brackbill et al. (1992).

𝐧𝑖 =
∇𝐶𝑖
|∇𝐶𝑖|

(32)

where ∇𝐶𝑖 is the gradient of color function 𝐶𝑖, and is defined as

∇𝐶𝑖 =
∑

𝑗
𝐶𝑖𝑗∇𝑖𝑊𝑖𝑗𝑉𝑗 (33)

with

𝐶𝑖𝑗 =
𝜌𝑖

𝜌𝑖 + 𝜌𝑗
𝐶𝑖 +

𝜌𝑗
𝜌𝑖 + 𝜌𝑗

𝐶𝑗 (34)

where 𝐶𝑖 = 1. 𝐶𝑗 = 1 if particle 𝑗 and particle 𝑖 are of the same material,
and 𝐶𝑗 = 0 if particle 𝑗 and particle 𝑖 are of different materials (Hu
and Adams, 2006). For this study, at the free surface, the neighboring
particle 𝑗 and particle 𝑖 belongs to the same material, Eq. (33) can
be simplified to ∇𝐶𝑖 =

∑

𝑗 ∇𝑖𝑊𝑖𝑗𝑉𝑗 . The correction matrix for kernel
gradient 𝐁𝑖, as shown in Eq. (24), is used to improve the accuracy of
normal direction by Khayyer et al. (2017)

𝐧𝑖 =
𝐁𝑖 ⋅ ∇𝐶𝑖
|𝐁𝑖 ⋅ ∇𝐶𝑖|

(35)

Inspirited by the optimized particle shifting scheme (Khayyer et al.,
2017), the advection position term 𝛥𝐫𝑖 is projected onto the tangential
direction for all the free-surface particles.

𝛥𝐫𝑠𝑢𝑟𝑓 𝑎𝑐 𝑒𝑖 = 𝛥𝐫𝑖 −
(

𝛥𝐫𝑖 ⋅ 𝐧𝑖
)

𝐧𝑖 =
(

𝐈 − 𝐧𝑖 ⊗ 𝐧𝑖
)

⋅ 𝛥𝐫𝑖 (36)

Finally, the advection term using the unified transport-velocity for-
mulation, which is suitable for free surface simulations, is expressed
as

𝛥𝐫𝑈 𝑇 𝑉 𝐹𝑖 =

{

2𝛼 ℎ2 ∑𝑗 ∇𝑖𝑊𝑖𝑗𝑉𝑗 for inner particles
2𝛼 ℎ2 (𝐈 − 𝐧𝑖 ⊗ 𝐧𝑖

)

⋅
∑

𝑗 ∇𝑖𝑊𝑖𝑗𝑉𝑗 for free-surface particles

(37)

It should be noted that in certain cases, when particles are splashed,
transport-velocity correction is not required. The criteria for identifying
splashed particle 𝑖 follow Khayyer et al. (2017), where ∇⋅𝐫𝑖 < 0.75𝑑, and
there are no near-surface particles in its neighborhood. Additionally,
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considering that the calculation of the normal vector would be inac-
curate when the number of neighboring particles of particle 𝑖 is very
small, we do not adjust the position of particle 𝑖 when ∇ ⋅ 𝐫𝑖 < 0.6𝑑.

Fig. 2 illustrates the effect of UTVF compared to TVF. Initially, a
horizontal disturbance of 0.4𝑑 𝑝 ∗rand(−1,1) (Fig. 2b) is applied to each
particle based on a uniform lattice particle distribution (Fig. 2a), where
rand(−1,1) generates a random real number between −1 and 1. After
the random disturbance, some particles cluster together, similar to the
particle clustering seen in tensile instability (Gray et al., 2001). TVF
resolves particle clustering for the inner particles, creating a uniform
particle distribution, but it has no effect on free-surface particles. In
contrast, UTVF acts on both inner and free-surface particles simultane-
ously. In Section 4 and Section 5, we will demonstrate through case
studies how the clustering of free-surface particles and the formation
of non-physical voids, particularly in solid materials, can significantly
affect computational stability and accuracy.

3.4. Time integration scheme

The time step △𝑡 is defined as (Zhang et al., 2024c)

△𝑡 = 𝐶 𝐹 𝐿 ℎ
𝑐0 + |𝐯|𝑚𝑎𝑥

(38)

where 𝐶 𝐹 𝐿 = 0.4. The position-based Verlet scheme (Zhang et al.,
2021a) is utilized for acoustic time integration. The particle position
and density are initially updated to the midpoint 𝑛+ 1

2 from beginning
step 𝑛 using the following procedure.
⎧

⎪

⎨

⎪

⎩

𝐫𝑖
𝑛+ 1

2 = 𝐫𝑖𝑛 +
1
2△𝑡𝐯𝑖𝑛

𝜌𝑖
𝑛+ 1

2 = 𝜌𝑖𝑛 +
1
2△𝑡

(

d𝜌𝑖
d𝑡

)𝑛 (39)

Then the velocity is updated to the new time step 𝑛 + 1.

𝐯𝑖𝑛+1 = 𝐯𝑖𝑛 +△𝑡
(d𝐯𝑖

d𝑡

)𝑛+1
(40)

where
(

d𝐯𝑖∕d𝑡
)𝑛+1 is estimated from momentum equation. Finally, the

particle position and density are advanced to the new time step by
⎧

⎪

⎨

⎪

⎩

𝐫𝑖𝑛+1 = 𝐫𝑖
𝑛+ 1

2 + 1
2△𝑡𝐯𝑖𝑛+1

𝜌𝑖𝑛+1 = 𝜌𝑖
𝑛+ 1

2 + 1
2△𝑡

(

d𝜌𝑖
d𝑡

)𝑛+1 (41)

The transport-velocity is utilized for each particle by

𝐫𝑖 = 𝐫𝑖 + 𝛥𝐫𝑈 𝑇 𝑉 𝐹𝑖 (42)

where 𝐫𝑖 and 𝐫𝑖 are the position vectors before and after applying the
transport-velocity term 𝛥𝐫𝑈 𝑇 𝑉 𝐹𝑖 , respectively.

4. Benchmark validation

In this section, we use several benchmark cases of fluids and elastic
solids with known analytical solutions to validate the proposed UTVF.
A fifth-order Wendland kernel (Wendland, 1995) is applied for all cases
with ℎ = 1.3𝑑 𝑝.

4.1. Evolution of an elliptical water drop

A simple benchmark case, specifically the evolution of a circular
water drop into an elliptical shape (Monaghan, 1994; Khayyer et al.,
2017), is conducted to validate the proposed UTVF for free-surface
flows. The results are compared with those obtained using the TVF,
as well as other particle regularization techniques, i.e., dynamic sta-
bilization (DS) (Tsuruta et al., 2013), particle shifting (PS) (Xu et al.,
2009), and optimized particle shifting (OPS) (Khayyer et al., 2017). The
initial radius of the circular drop is 1 m, and it begins to move under
the influence of the initial velocity field (−100𝑥, 100𝑦) m/s (as shown
in Fig. 3), with 𝑥 and 𝑦 being the coordinates of each particle. The fluid
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Fig. 2. Comparison of the effects of UTVF and TVF on particle distributions with initial random disturbances: (a) particles in the initial lattice distribution; (b) particles after
initial disturbances; (c) particle distribution after applying TVF; (d) particle distribution after applying UTVF.
i

Fig. 3. Elliptical water drop: initial velocity distribution.

density is set to 1000 kg/m3, and viscosity is not considered. Since there
are no external forces throughout the process, theoretically, the linear
and angular momentum should be fully conserved.

Fig. 4 presents the particle configuration and pressure distribution
of the elliptical drop at 𝑡 = 0.008 s, comparing the results without
correction, with the TVF and UTVF methods. Without any correction,
both the inner and free-surface particles exhibit irregular distributions,
leading to reduced pressure calculation accuracy. Applying the TVF
6 
improves the regularity of the inner particle distribution, but parti-
cle overlap still persists among the free-surface particles. In contrast,
the proposed UTVF ensures a regular distribution for both inner and
free-surface particles.

The theoretical evolution of the semi-minor axis and the semi-major
axis of the elliptical drop during its motion can be derived (Monaghan,
1994). Fig. 5 illustrates the time evolution of semi-minor and the semi-
major axes with different resolutions (𝑑 𝑝 = 0.1 m, 0.05 m, 0.02 m), along
with the analytical values for comparison. It can be observed that as
the resolution increases (i.e., as 𝑑 𝑝 decreases), the lengths of the semi-
axes obtained from numerical calculations gradually converge to the
theoretical solution, thereby validating the convergence and accuracy
of the proposed method.

The temporal variation of the 𝑥-direction linear and angular mo-
mentum is shown in Fig. 6. The results from DS, PS, OPS (Khayyer et al.,
2017) and TVF are also included for comparison. Both TVF and UTVF,
similar to DS, achieve full conservation of linear momentum, while
PS and OPS show notable and slight deviations, respectively. UTVF
also demonstrates superior angular momentum conservation compared
to PS and OPS. Additionally, by regularizing the distribution of both
free-surface and inner particles, UTVF can enhance angular momentum
conservation compared to TVF, which only applies to inner particles.
Although the angular momentum in DS is exactly conserved, we will
show in Section 4.2 that DS introduces significant dissipation (Khayyer
et al., 2017), leading to poor energy conservation.

4.2. Rotating square patch

In this section, we examine a rotating square water patch with
significant free-surface deformation to evaluate the performance of the
proposed UTVF method. This benchmark was first proposed in Colagross
(2005) and has been widely utilized as a standard numerical test for
particle-based simulations (Khayyer et al., 2017; Le Touzé et al., 2013).
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Fig. 4. Elliptical water drop: snapshots of the particle configuration and pressure field at 𝑡 = 0.008 s with different numerical schemes, i.e., (a) without correction, (b) with TVF,
and (c) with UTVF. Here, 𝑑 𝑝 = 0.02 m.
Fig. 5. Elliptical water drop: analytical and numerical results for the time history of
the semi-minor and the semi-major axes of the elliptical drop with UTVF.

The initial configuration of the square patch is shown in Fig. 7, with
a side length of 𝐿. The initial velocity profile, as shown in Fig. 7a, is
given by Colagrossi (2005)
{

𝑣𝑥(𝑥, 𝑦; 𝑡 = 0) = +𝜔𝑦
𝑣𝑦(𝑥, 𝑦; 𝑡 = 0) = −𝜔𝑥 (43)

where 𝜔 denotes the angular velocity corresponding to the pure rigid
rotation of the fluid patch. The initial pressure distribution is obtained
by solving the Poisson equation under the incompressible assump-
tion (Colagrossi, 2005), and is defined as

𝑝(𝑥, 𝑦; 𝑡 = 0) =
7 
− 𝜌
∞
∑

𝑚

∞
∑

𝑛

32𝜔2

𝑚𝑛𝜋2
[

(𝑚𝜋∕𝐿)2 + (𝑛𝜋∕𝐿)2] sin
(𝑚𝜋 𝑥∗

𝐿

)

sin
(

𝑛𝜋 𝑦∗
𝐿

)

𝑚, 𝑛 ∈ 𝑁𝑜𝑑 𝑑
(44)

where 𝑥∗ = 𝑥 + 𝐿∕2 and 𝑦∗ = 𝑦 + 𝐿∕2. In this case, the fluid density
𝜌 = 1000 kg/m3, 𝐿 = 1 m and 𝜔 = 1 rad/s.

Fig. 8 shows the particle configuration and pressure distribution
at 𝑡𝜔 = 1.08 and 𝑡𝜔 = 2.04 with TVF (Fig. 8a) and UTVF (Fig. 8b),
respectively. The results are compared with the contour obtained using
the finite difference method (FDM) (Le Touzé et al., 2013), represented
by the black dashed line in Fig. 8. The zoomed-in window on the right
side of each subplot clearly shows the particle distribution. It can be
observed that the UTVF method significantly improves the regularity
of the particle distribution, particularly for free-surface particles, com-
pared to TVF. The profile obtained using the TVF method is similar
to that of the UTVF method, both of which agree well with the FDM
results.

In this case, since no external forces are applied, the kinetic energy
of the square patch should theoretically be conserved. Fig. 9a shows the
variation of energy decay, i.e., (𝐸𝐾 −𝐸0

𝐾 )∕𝐸
0
𝐾 , with time, where 𝐸𝐾 is

the current kinetic energy and 𝐸0
𝐾 is the initial kinetic energy. It can be

seen that, compared to the previous DS, PS, and OPS methods (Khayyer
et al., 2017), the proposed method in this study exhibits lower energy
dissipation and thus improved conservation. Notably, although the
results in Section 4.1 show that the DS method ensures complete linear
momentum and angular momentum conservation, it introduces signifi-
cant dissipation, making it unsuitable for long-duration computations.
Fig. 9b shows the variation of pressure at the center point over time,
which closely matches the reference results derived using a mixed
Eulerian–Lagrangian boundary element method (BEM-MEL) (Le Touzé
et al., 2013).
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Fig. 6. Elliptical water drop: temporal variation of 𝑥-direction (a) linear momentum and (b) angular momentum. The results obtained using the proposed UTVF are compared
with those from TVF, DS, PS, and OPS. The data for DS, PS, and OPS are extracted from Khayyer et al. (2017). 𝑑 𝑝 = 0.01 m for all simulations.
Fig. 7. Rotating square patch: (a) initial velocity distribution; (b) initial pressure distribution.
4.3. Oscillating beam

Next, we use a simple elastic case with a theoretical solution, to
further validate the convergence and accuracy of the proposed UTVF
method. The previous two fluid cases demonstrated that, compared
to TVF, UTVF results in a more uniform distribution of free-surface
particles, although it has little impact on the macroscopic deformation.
We will further show that such free-surface particle clustering in solid
materials can lead to severe consequences. As illustrated in Fig. 10, we
first validate the proposed method using an elastic beam with one edge
fixed. The results are then compared to existing theoretical (Landau
8 
and Lifshitz, 2013) and numerical (Gray et al., 2001; Zhang et al.,
2024a) solutions. The beam has a length 𝐿 and thickness 𝐻 , with
the left edge fixed to create a cantilever configuration. An observation
point is placed at the midpoint of the rear end to record the vertical
displacement (deflection). The material and dimensional parameters
are taken from the literature (Gray et al., 2001; Zhang et al., 2024a),
i.e., density 𝜌0 = 1000 k g∕m3, Young’s modulus 𝐸 = 2 MPa, Poisson’s
ratio 𝜈 = 0.3975, 𝐿 = 0.2 m, and 𝐻 = 0.02 m. An initial velocity 𝑣𝑦,
applied perpendicular to the beam, is given by

𝑣𝑦(𝑥) = 𝑣𝑓 𝑐0
𝑓 (𝑥)
𝑓 (𝐿)

(45)
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Fig. 8. Rotating square patch: snapshots of the particle configuration and pressure distribution at 𝑡𝜔 = 1.08 and 𝑡𝜔 = 2.04 with different numerical schemes, i.e., (a) TVF and (b)
UTVF. The black dashed line represents the contour obtained using the FDM method (Le Touzé et al., 2013), and 𝑑 𝑝 = 𝐿∕100.

Fig. 9. Rotating square patch: temporal variation of (a) energy decay and (b) pressure at the center of the square patch. The energy decay results obtained using the proposed
UTVF are compared with those from TVF, DS, PS, and OPS, with data for DS, PS, and OPS extracted from Ref. (Khayyer et al., 2017). The pressure values are compared with
results obtained from BEM-MEL (Le Touzé et al., 2013). 𝑑 𝑝 = 𝐿∕100 for all simulations.

Computers and Geotechnics 181 (2025) 107139 

9 



S. Zhang et al. Computers and Geotechnics 181 (2025) 107139 
Fig. 10. Oscillating beam: model setup.
Fig. 11. Oscillating beam: evolution of particle configuration with time (𝑡 = 0.04 s, 0.07 s and 0.35 s) for SPH simulations (a) without correction, (b) with TVF, and (c) with
UTVF. Here, 𝑣𝑓 = 0.05, 𝐿 = 0.2 m, 𝐻 = 0.02 m, and 𝐻∕𝑑 𝑝 = 10. The particles are colored by von Mises stress.
where 𝑣𝑓 is a constant that controls the magnitude of initial velocity,
𝑐0 is the sound speed, and 𝑓 (𝑥) is a function defined as
𝑓 (𝑥) = (sin(𝑘𝐿) + sinh(𝑘𝐿))(cos(𝑘𝑥) − cosh(𝑘𝑥))

−(cos(𝑘𝐿) + cosh(𝑘𝐿))(sin(𝑘𝑥) − sinh(𝑘𝑥)) (46)

where 𝑘𝐿 = 1.875 is determined by the equation cos(𝑘𝐿) cosh(𝑘𝐿) = −1.
The frequency 𝜔 of the oscillating beam is theoretically given by

𝜔2 = 𝐸 𝐻2𝑘4

12𝜌0(1 − 𝜈2)
(47)

Fig. 11 illustrates the computational results when no correction,
TVF, and UTVF are applied. It is evident that without any correction,
significant particle clustering and non-physical fractures occur, making
further computation difficult. While using TVF addresses the irregular
10 
Table 1
Oscillating beam: comparison of the first oscillation period 𝑇 obtained from SPH-TVF,
the present SPH-UTVF, SPH-AS (Gray et al., 2001) and analytical solutions. Here,
𝐿 = 0.2 m, 𝐻 = 0.02 m and 𝐻∕𝑑 𝑝 = 30.
𝑣𝑓 0.001 0.01 0.03 0.05

𝑇 (Analytical) 0.254 0.254 0.254 0.254
𝑇 (SPH-TVF) 0.275 0.277 0.283 0.284
𝑇 (SPH-UTVF) 0.274 0.271 0.271 0.271
𝑇 (SPH-AS) 0.273 0.273 0.275 0.278
Error (SPH-TVF) 8.3% 9.1% 11.4% 11.8%
Error (SPH-UTVF) 7.9% 6.7% 6.7% 6.7%
Error (SPH-AS) 7.5% 7.5% 8.3% 9.4%
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Fig. 12. Oscillating beam: temporal evolution of deflection at various resolutions. Here,
𝑣𝑓 = 0.05, 𝐿 = 0.2 m, and 𝐻 = 0.02 m.

distribution of inner particles, free-surface particles still tend to cluster
in the tensile region. This clustering affects stress distribution and
the deformation behavior of the material. For instance, at 𝑡 = 0.35
s, there is a significant difference between the results of TVF and
UTVF. A quantitative analysis of the oscillating period with theoretical
solutions will be conducted subsequently. When UTVF is applied, both
inner and free-surface particles are distributed uniformly, and the stress
distribution is smooth.

The temporal evolution of the deflection at the observation point
is shown in Fig. 12 for various resolutions using the present UTVF.
It can be observed that as the resolution increases, the difference
between adjacent resolutions decreases, indicating the convergence of
the present method.

Table 1 shows the first oscillation period 𝑇 obtained from the
present UTVF, TVF, and the analytical solution. For comparison, results
from the artificial stress method (SPH-AS) (Gray et al., 2001), com-
monly used in solid dynamics, have also been included. Clearly, the use
of UTVF reduces the error relative to the theoretical value compared to
TVF. Additionally, the error of SPH-UTVF is at the same level as that of
SPH-AS. While the use of artificial stress can yield relatively accurate
periodic values, it introduces significant dissipation. Fig. 13 shows the
long-term temporal evolution of elastic strain energy, kinetic energy,
and total energy in SPH simulations using both artificial stress and
UTVF. When with artificial stress, total energy rapidly decays, whereas
the present UTVF method demonstrates improved energy conservation.
Additionally, after a certain period in the simulation, the elastic strain
energy with artificial stress does not return to zero even when the beam
returns to its initial position (where kinetic energy reaches its maxi-
mum). This is due to the hourglass issues (Zhang et al., 2024a) in the
later stages of the simulation when using artificial stress, which causes
a zigzag distribution of particles and stress. As a result, even when the
beam returns to its initial position, the stress of some particles remains
non-zero, as illustrated in the literature (Zhang et al., 2024a). The study
by Zhang et al. (2024a) also demonstrated that in elastic solids, such
particle clustering and non-physical fractures are caused by hourglass
modes. Nevertheless, this case is presented here to illustrate that the
proposed UTVF effectively eliminates these numerical instabilities.

5. Application to granular materials

This section firstly simulates cohesionless granular materials and
compares the results with experimental data (Nguyen et al., 2017) to
11 
Table 2
Material parameters of granular materials.

Parameter Section 5.1 Section 5.2 & 5.3 & 5.4

Density (k g∕m3) 2040 1850
Young’s modulus (MPa) 5.84 1.8
Poisson’s ratio 0.3 0.3
Cohesion (kPa) 0 5
Friction angle (◦) 21.9 25
Dilation angle (◦) 0 0

validate the correct implementation of the Drucker–Prager constitu-
tive model. Subsequently, cohesive granular materials are simulated
to demonstrate that the proposed UTVF effectively prevents the oc-
currence of tensile instability. A no-slip wall-boundary condition (Bui
et al., 2008; Zhang et al., 2024c) is applied in this section.

5.1. 2D granular column collapse

The collapse of a 2D cohesionless granular column is simulated. The
model setup is shown in Fig. 14, with material parameters detailed in
Table 2 (Nguyen et al., 2017). The numerical simulations are designed
to replicate the experimental conditions (Nguyen et al., 2017), where
the granular column is released under the influence of self-gravity
(gravity acceleration 𝑔 = 9.8 m∕s2). 2D granular flows are examined
for model lengths (𝐿) of 0.2 m and 0.1 m separately, while the model
height (𝐻) is consistently maintained at 0.1 m. The initial particle
spacing is set to 𝑑 𝑝 = 0.002 m.

Figs. 15 and 16 illustrate the profiles of the soil column at different
times for cases of 𝐿 = 0.2 m and 𝐿 = 0.1 m, respectively, with
experimental results (the solid line in green) (Nguyen et al., 2017)
included for comparison. The granular flow begins at the front of
the column and gradually advances forward until coming to rest at
the deposit’s toe. Throughout the entire motion process, the current
numerical results show good agreement with the experimental data,
indicating that the Drucker–Prager constitutive model has been cor-
rectly implemented within the present computational framework. This
lays a solid foundation for subsequent studies incorporating cohesion
to investigate the role of the proposed UTVF scheme in eliminating
tensile instability. Fig. 17 illustrates the distribution of the accumulated
deviatoric plastic strain in the soil column for the final deposit. A
shear band interface is observed, beneath which the particles remain
stationary, while the particles above the interface move outward. This
observation is also consistent with the experimental results (Nguyen
et al., 2017).

5.2. 2D failure of cohesive granular materials

A rectangular soil mass with a length of 𝐿 = 4 m and a height
of 𝐻 = 2 m fails under its own weight, following the setup in Bui
et al. (2008). Due to the cohesive nature of the soil, severe tensile
instability will occur in the tensile region if only the original SPH
formulation is used. In this section, we apply the proposed UTVF to
this problem and compare the results with those obtained using TVF
and the unmodified approach. Literature results based on artificial
stress (Bui et al., 2008) and particle shifting (Lallemand et al., 2025) are
also included to demonstrate the validity of the findings. The material
parameters, consistent with those in Bui et al. (2008), are listed in
Table 2.

Fig. 18 shows the simulation results at various time points when no
correction, TVF, and UTVF are applied, respectively. In each subplot, an
enlarged inset in the lower-left corner clearly shows the local particle
distribution. It can be observed that the original SPH, when simulating
cohesive granular materials, exhibits severe particle clustering and non-
physical fractures in the tensile region, indicating tensile instability.
This instability significantly affects the computational results, leading
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Fig. 13. Oscillating beam: temporal evolution of elastic strain energy, kinetic energy, and total energy for SPH simulations with (a) artificial stress and (b) UTVF. Here, 𝐿 = 0.2
m, 𝐻 = 0.02 m, 𝐻∕𝑑 𝑝 = 10 and 𝐯𝑓 = 0.05.
Fig. 14. 2D granular column collapse: model setup.

to an over-prediction of the sliding distance in this case. When TVF
is applied, the tensile instability of inner particles is mitigated; how-
ever, particle clustering still occurs for free-surface particles. With the
present UTVF, tensile instability is completely eliminated for both inner
and free-surface particles, resulting in a uniform particle distribution.
Upon reaching a stable state (𝑡 = 2 s), a shear band extending from top
to bottom can be observed in the right region, while the area to the left
of the shear band remains undisturbed. This result is consistent with
12 
findings reported in the literature (Bui et al., 2008; Lallemand et al.,
2025).

Fig. 19 shows the external contour of the soil column at 𝑡 = 2
s and includes comparison results from the literature where artifi-
cial stress (Bui et al., 2008) and particle shifting (Lallemand et al.,
2025) were applied to mitigate tensile instability. Overall, the re-
sults from the different methods are consistent. However, a notable
distinction is observed with the UTVF method: a step-path failure
phenomenon occurs in the sliding region, characterized by an initial
descent followed by an upward shift of the soil surface. This feature
does not appear in the other methods. In fact, the previous study
by Lallemand et al. (2025) have shown that increasing resolution
(i.e., decreasing particle spacing 𝑑 𝑝) can also induce this step-path
failure on the soil surface. This can be explained by the analysis of
energy decay for UTVF, particle shifting, and artificial stress discussed
in Section 4. As illustrated in Fig. 9 and Fig. 13, energy dissipation
occurs more rapidly with particle shifting and artificial stress com-
pared to UTVF. This excessive energy dissipation explains why particle
shifting and artificial stress do not exhibit step-path failure at the
current resolution; in other words, excessive numerical energy decay
may obscure certain physical phenomena that should have occurred.
As the resolution increases, the effects of these corrections—and thus
the associated energy dissipation—diminish, eventually allowing step-
path failure to emerge (Lallemand et al., 2025). In contrast, the UTVF
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Fig. 15. 2D granular column collapse: comparison of the soil column (𝐿 = 0.2 m) profiles at different times between SPH simulations and experimental results (Nguyen et al.,
2017).

Fig. 16. 2D granular column collapse: comparison of the soil column (𝐿 = 0.1 m) profiles at different times between SPH simulations and experimental results (Nguyen et al.,
2017).

Fig. 17. 2D granular column collapse: illustration of the accumulated deviatoric plastic strain for the final deposit of the column with (a) 𝐿 = 0.2 m and (b) 𝐿 = 0.1 m.
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Fig. 18. 2D failure of cohesive granular materials: evolution of particle configuration with time (𝑡 = 0.8 s and 2.0 s) for SPH simulations (a) without correction, (b) with TVF,
and (c) with UTVF. 𝑑 𝑝 = 𝐿∕100.
Fig. 19. 2D failure of cohesive granular materials: the contour shape at 𝑡 = 2.0 s. The
results with artificial stress (Bui et al., 2008) and particle shifting (Lallemand et al.,
2025) are also shown for comparison. 𝑑 𝑝 = 𝐿∕100.

method inherently has minimal energy dissipation, enabling it to cap-
ture the step-path failure phenomenon at a lower resolution, which
other methods require higher resolutions to achieve.

Fig. 20 shows the distribution of accumulated deviatoric plastic
strain and vertical stress (𝑡 = 2 s) obtained using the UTVF correction
when the resolution is doubled. As the resolution increases, the step-
path failure phenomenon becomes more pronounced, and the shear
band changes from a wide, thick single band to several narrow bands.
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This aligns with the results presented in the literature (Lallemand et al.,
2025). Additionally, the vertical stress exhibits a smooth distribution.

Fig. 21 illustrates the final resting state (𝑡 = 2 s) of the soil column
simulated using the UTVF approach, where the values of cohesion 𝑐
and friction angle 𝜙 were varied independently, while other parameters
remained constant. These are representative values for soils in Hong
Kong (GEO, 2020) and reflect their cohesive, granular nature. It can
be observed that as the cohesion and friction angle increase, the shear
band gradually shifts to the right, and the undisturbed region on the
left side of the shear band expands. The failure mode evolves from
retrogressive slips at lower cohesion and friction angle to a single block
failure at higher friction angles. Notably, in this case, the increase in
cohesion significantly reduces the deformation of the soil column due
to the enhanced shear strength, which aligns with our expectations.
Regardless of the variations in cohesion and friction angle, a uniform
particle distribution is ultimately achieved without exhibiting tensile
instability, demonstrating the robustness and general applicability of
the proposed method for a wide range of parameter values.

5.3. 3D failure of cohesive granular materials

As mentioned earlier, the extension of the artificial stress method
to three dimensions is complex (Bui and Nguyen, 2021; Zhang et al.,
2024a). In this section, we will demonstrate that the present UTVF
can effectively eliminate tensile instability in 3D scenarios, without
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Fig. 20. 2D failure of cohesive granular materials: the distribution of (a) accumulated deviatoric plastic strain and (b) vertical stress at 𝑡 = 2.0 s with 𝑑 𝑝 = 𝐿∕200.

Fig. 21. 2D failure of cohesive granular materials: final states (𝑡 = 2 s) of the soil column simulated using the UTVF, with variations in (a) cohesion 𝑐 and (b) friction angles 𝜙.
Other parameters remain consistent with those listed in Table 2. 𝑑 𝑝 = 𝐿∕100.
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Fig. 22. 3D failure of cohesive granular materials: model setup. The edge length of
the cubic soil column is 2 m.

introducing additional complexity compared to the 2D case.
The model setup is shown in Fig. 22, where a cubic soil column with

an edge length of 2 m is subjected to self-weight loading. The material
parameters are consistent with those in the 2D case, as listed in Table 2.
The soil column is discretized with a particle spacing of 𝑑 𝑝 = 0.04 m.
Fig. 23 shows the particle configuration and velocity distribution at
𝑡 = 0.5 s and 𝑡 = 1.0 s for SPH simulations without correction, with
TVF, and with UTVF. Without any correction, severe tensile instability
arises in the 3D scenario, leading to pronounced particle clustering and
non-physical fractures. The application of TVF improves the regularity
of the inner particle distribution; however, tensile instability persists
among the free-surface particles. In contrast, the proposed UTVF ef-
fectively eliminates tensile instability in the 3D scenario, achieving a
uniform distribution of both inner and free-surface particles. Fig. 24
shows the distribution of accumulated deviatoric plastic strain on sur-
face ABC (as shown in Fig. 22) at different times using the present
UTVF. The soil column undergoes a failure process, with the shear band
gradually propagating from the top to the bottom of the soil column.

5.4. 3D cohesive granular flow

The flow of cohesive granular materials on an inclined flume with
a barrier is simulated to demonstrate the capability of the proposed
UTVF in preventing tensile instability under significant deformation
conditions. The model setup is shown in Fig. 25a, where a rectangular
soil mass is placed on the top of the flume. The inclined flume forms an
angle of 50 degrees with the horizontal plane. The material parameters
are as listed in Table 2.

Fig. 25 presents snapshots of the numerical simulation at various
time steps, colored by velocity magnitude. The granular material moves
downward under the influence of gravity and eventually comes to
rest in front of the barrier. The magnified inset images reveal that
tensile instability does not occur throughout the entire process, with
the particle distribution remaining uniformly distributed. This indicates
that the proposed UTVF is effective in preventing tensile instability
even in 3D granular flows.
16 
6. Conclusions

This study extends the TVF, based on local particle consistency, to
free surfaces and proposes the UTVF to address tensile instability in
large deformation and failure problems of cohesive granular materials
under both 2D and 3D scenarios. The developed approach requires
only a single coefficient, which is generally applicable across all cases
presented in this study, including tests on fluids, elastic materials, and
plastic materials.

The UTVF is first validated in simulations of fluids and elastic
materials with analytical solutions, demonstrating its convergence, sta-
bility, and accuracy. The results also reveal that, compared to particle
shifting and optimized particle shifting technique, the UTVF fully con-
serves linear momentum and exhibits improved angular momentum
conservation, while showing significantly reduced energy dissipation
compared to dynamic stabilization and artificial stress methods. After
validating the Drucker–Prager constitutive model with cohesionless
granular materials, the UTVF is applied to simulate the failure of
cohesive granular materials in two dimensions, with comparisons made
to results obtained using particle shifting and artificial stress methods
reported in the literature. Based on the energy dissipation character-
istics analyzed in Section 4, the study further explores the reasons
for slightly differences in results among the methods. Specifically,
the UTVF’s minimal dissipation enables it to capture step-path failure
phenomena at low resolutions, which other methods require higher
resolutions to achieve. Finally, the proposed UTVF is applied to the 3D
failure of cohesive granular materials and cohesive granular flows. The
results show that, unlike the complex extension of artificial stress to
three dimensions, the proposed UTVF can effectively eliminate tensile
instability in granular materials in 3D cases without introducing addi-
tional computational complexity, thereby enhancing the stability and
accuracy of the calculations.
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Fig. 23. 3D failure of cohesive granular materials: evolution of particle configuration with time (𝑡 = 0.5 s and 1.0 s) for SPH simulations without correction, with TVF, and with
UTVF, respectively. The particles are colored by velocity magnitude and 𝑑 𝑝 = 0.04 m.

Fig. 24. 3D failure of cohesive granular materials: the distribution of accumulated deviatoric plastic strain on surface ABC at different times with the present UTVF. 𝑑 𝑝 = 0.04 m.

Computers and Geotechnics 181 (2025) 107139 
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Fig. 25. 3D cohesive granular flow: snapshots of granular flows on an inclined flume at different times (𝑡 = 0 s, 1 s, 2 s and 4 s). The particles are colored by velocity magnitude
and 𝑑 𝑝 = 0.04 m. The units of the values in subplot (a) are all in meters.
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