
Automated machine learning exact dirichlet boundary physics-informed
neural networks for solid mechanics

Xiaoge Tian a , Jiaji Wang a,* , Chul-Woo Kim b , Xiaowei Deng a , Yingjie Zhu c

a Department of Civil Engineering, The University of Hong Kong, China
b Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan
c School of Civil Engineering, North China University of Technology, China

A R T I C L E I N F O

Keywords:
Solid mechanics
Physics-informed neural network (PINN)
Exact Dirichlet boundary PINN (EPINN)
Bayesian-optimization tree-structured parzen
estimator
AutoML EPINN (AEPINN)

A B S T R A C T

While Physics-informed neural networks (PINN) have made significant progress in solving partial differential
equations (PDE), conventional PINN may have convergence issues due to spectral bias, the requirement of loss
balancing, and a significant number of trainable weights. Exact Dirichlet boundary condition Physics-informed
Neural Networks (EPINN) was developed to solve forward problems in solid mechanics by applying tensor
decomposition, approximating distance function, and the principle of least work, achieving more than 127 times
speedup compared to PINN. However, the sensitivity of hyperparameters of the PINN framework is less reported.
To merge the gap, this study develops the mesh-free 3D Bayesian-Optimization Tree-Structured Parzen Estimator
(BO-TPE) Automated Machine Learning EPINN to solve solid mechanics problems without labelled data of the
solution field. Developed based on Nvidia modulus platform, the Automated Machine Learning EPINN (AEPINN)
can achieve more than 20 times speedup for 2D plane stress problems and four times speedup for 3D bracket
problems compared with the EPINN architecture. Compared with conventional PINN, AEPINN model achieved
more than 200 times speedup for a plane stress problem and 400 times speed up for a bracket problem. For a two-
span three-story frame composed of beams, columns, and slabs, the AEPINN model can simulate the frame
displacement deformations comparable to ABAQUS results with adequate accuracy and speed with GPU accel-
erated. Optimized hyperparameters AEPINN can approach a hyperelastic cube rubber case within 60 s compared
with Abaqus results of Mooney-Rivlin constitutive law. The comparison between single-precision and double-
precision training is also illustrated. The influences of hyperparameters in the adopted EPINN framework are
examined accordingly.

1. Introduction

As one of the numerical solution methods to obtain approximated
solution field Partial Differential Equations (PDE), Finite Element
Methods (FEM) can mesh complex objects into simple elements
achieving numerical results approximation [1]. Despite the performance
of FEM, it may be hard to obtain the derivatives of the solution field with
respect to input parameters, especially for complicated structures.
Hence, solving parametric simulation problems, inverse problems and
design optimization problems may be challenging due to the numerical
approximation in FEM [2,3]. GPU-accelerated differentiable solvers for
solid mechanics problems have been rapidly developed to achieve sig-
nificant speedup in parametric analysis, design optimization problems,
and inverse problems. Deep learning has recently contributed to

intelligent computation research with substantial efficiencies and
affordable costs in simulation and experimental parts [4–7]. Researchers
added loss terms of governing equations (PDE loss) to the data loss terms
and developed a physics-informed neural network framework (PINN) to
solve scientific PDE computation problems by utilizing the Universal
Approximation Theory of Deep Neural Network (DNN) [8–11].
Compared with DNN solvers, PINN can calculate fluid mechanics and
solid mechanics problems with acceptable errors without labeled data of
the solution field [12]. While the efficiency may be lower than numer-
ical solvers, PINN has been developed to address simple fluid, 1D, and
2D static solid mechanical problems [13–15]. However, the extension of
the PINN framework for solving complex solid mechanics problems is
rarely reported due to the lack of efficient PINN-based solvers.

Hierarchical Deep-learning Neural Network (HiDeNN) framework
was developed to reformulate the global shape function of finite

* Corresponding author.
E-mail address: cewang@hku.hk (J. Wang).

Contents lists available at ScienceDirect

Engineering Structures

journal homepage: www.elsevier.com/locate/engstruct

https://doi.org/10.1016/j.engstruct.2025.119884
Received 10 September 2024; Received in revised form 17 January 2025; Accepted 3 February 2025

Engineering Structures 330 (2025) 119884

Available online 19 February 2025
0141-0296/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://orcid.org/0000-0001-6986-4083
https://orcid.org/0000-0002-6728-2685
https://orcid.org/0000-0002-2727-6037
https://orcid.org/0000-0001-7634-5257
https://orcid.org/0000-0003-0012-1120
https://orcid.org/0000-0001-6986-4083
https://orcid.org/0000-0002-6728-2685
https://orcid.org/0000-0002-2727-6037
https://orcid.org/0000-0001-7634-5257
https://orcid.org/0000-0003-0012-1120
mailto:cewang@hku.hk
www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2025.119884
https://doi.org/10.1016/j.engstruct.2025.119884
https://doi.org/10.1016/j.engstruct.2025.119884
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

elements by inputting nodal coordinates [16]. Weights and biases of
HiDeNN were theoretically derived from the shape function of finite
elements to reformulate the spatial discretization of finite elements [16].
HiDeNN significantly reduced the number of trainable variables and
improved the efficiency and ability of HiDeNN in analyzing PDE prob-
lems [17–19]. Exact Dirichlet boundary condition PINN (EPINN)
framework was developed [20] by adopting the Approximate Distance
Function (ADF) to enforce the Dirichlet boundary conditions exactly so
that the boundary conditions can be comprehensively satisfied [21].
Compared with conventional PINN, EPINN can efficiently embed exact
Dirichlet boundary conditions, which are regulated by the principle of
least work. To further improve efficiency, EPINN applies tensor
decomposition in solving complicated structures to reduce the training
time and improve accuracy. The results show that EPINN can be applied
to solve 3D solid mechanics problems. Although EPINN is an efficient
differentiable solver for solid mechanics problems, reasonable input of
hyperparameters may still affect the performance of EPINN [22]. For
most deep learning architectures, the learning rate and rate decay steps
will influence the speed of updating the trainable parameters. For
EPINN, although the network architecture does not allow modification
to the number of layers, the modes of Tensor Decomposition (TD) can
affect the nonlinear fitting ability.

However, there remain many parameters with uncountable sets for
users to pick before testing problems, which would be very inefficient if
the proposed method is highly sensitive to the machine learning com-
ponents. Researchers, therefore, are adopting processes to make ma-
chines learn those unknown effects automatically. Conventional
Automated machine learning consists of data preparation, feature en-
gineering, architecture design and hyperparameter optimization. For
physics-driven frameworks, input information commonly includes co-
ordinates and parameters, where data preparation and feature engi-
neering workloads are normally fixed with several effective methods
[23]. For PINNs, network architecture for advanced versions normally
are designed to be effective for the studied type of framework. Hence,
hyperparameters are normally adjustable for most physics-informed
machine-learning tasks. For physics-informed machine learning frame-
works, especially for estimating unknown surrogate models or functions
in forward or inverse problems, sufficient hyperparameters can

contribute to problem convergence and avoid overfitting issues [12,23,
24]. Exploring the possible sets of multiple hyperparameters is pretty
time-consuming and it is difficult to directly handle these black boxes by
Automated Machine Learning (AutoML) without appropriate methods
[25]. To obtain information on the required objective function, Bayesian
Optimization (BO), as one of the powerful algorithms in improving ef-
ficiencies during searching feasible space, has become very effective in
accelerating the hyperparameters estimation scenarios by adopting the
Bayesian theorem to update the surrogate model of the objective func-
tion with observed results[26]. Approximating surrogate models, BO
will calculate the expected improvement of the next selected set to
ensure the sampling of hyperparameter sets is contributing to the
reduction of optimization iterations significantly [26,27]. Among
various BO framework structured cases, Tree-Structured Parzen Esti-
mator (TPE) separates selection performance into good or bad sets while
considering the prior experiences and adjusting the search strategy
based on this[28,29]. In most cases, TPE can solve parameter tuning
problems efficiently, especially for searching optimized hyperparameter
sets in high-dimensional space.

In this study, we developed the EPINN with Bayesian Optimization
Tree-Structured Parzen Estimator (BO-TPE)[30,31]as the optimization
module for automated machine learning EPINN (AEPINN). Fig. 1 states
the developed AEPINN architecture. Compared with current PINN
studies, our contributions are as follows: we develop the 3D irregularly
shaped mesh-free artificial intelligence framework in addressing the
solid mechanics linear elastic problems with 3D file format STL as input,
which can be obtained through multiple methods, indicating that the
proposed framework can be adopted to solve any shaped mechanics
problems in the future. Secondly, the automated machine learning
framework for physics-informed machine learning-based structures is
established and can be extended to the current PINN framework for
accelerating scientific computing. The obtained optimized hyper-
parameters can be directly utilized in other solid mechanics problems to
achieve a speedup and improve accuracy without rerunning the auto-
mated process for every problem, improving the AutoML efficiency.
Thirdly, we discover hyperparameter balancing can be critical for
reducing the searching space to further accelerate the process of solving
solid mechanics problems. With balanced searching space, automated
machine learning time can be reduced ten times compared with directly
applying AutoML. Last but not least, with optimized hyperparameters
this study tackles the 3D complex shaped frame problems and 3D
hyperelastic cube problems efficiently within 100 seconds, exhibiting
the potential of artificial intelligence in addressing large-scale and
nonlinear problems in the future.

Fig. 1 illustrates the physics-informed 3D scanned objective solid
mechanics problems-solving framework based on AEPINN. The 3D
model can be formulated through designing or analyzing software such
as Autodesk Computer Aided Design (AutoCAD), Blender software or 3D
scanners to obtain StereoLithography (STL), Odb, and any other object
files contain point cloud information for mechanics analysis. Similar to
FEM models, different meshing grids may influence the numerical
analysis accuracy and efficiency respectively, meaning the hyper-
parameters in shape functions have to be analyzed accordingly based on
the specific case. Therefore, this study proposes an AEPINN architecture-
based automated machine learning methodology to improve the
computational ability of artificial intelligence. Continuous Section 2
mainly illustrates the methodology of the AEPINN framework. Section 3
tests the performance of the AEPINN framework in solving 2D plane
stress, 3D bracket traction, and 3D complex-shaped frame structure.
Section 4 concludes the overall performance of the AEPINN framework
for the aforementioned demonstrations.

NOMENCLATURE

xI The coordinate of the node I
NI(x) The shape function of node I
N(x) The global shape function
uI The predicted displacement of node I
u(x) The global displacement function
Q Tensor decomposition modes
β(q)
I The qth trainable weights of the tensor decomposition

in x direction
γ(q)J The qth trainable weights of the tensor decomposition

in y direction
θ(q)K The qth trainable weights of the tensor decomposition

in z-direction
uTD Tensor decomposition predicted displacement
EIy∗ (x) Expected improvement
l(x) Density functions of the bad performances
g(x) Density functions of good performances
L energy(u; f, t) Energy loss function
u(u, v,w) Final predicted displacement field
Ŵ Trainable weights
O Automated machine learning objective function of the

AEPINN model

X. Tian et al. Engineering Structures 330 (2025) 119884

2

2. Model architecture

2.1. The model architecture of AEPINN

Fig. 2 illustrates the overall framework of this research, the 3D STL
file will first be sampled into thousands of points before inputting for
AEPINN analysis. Different from the conventional PINN, this framework
is purely mesh-free so that there will be no mesh grids for the three-
dimensional objects, which can be applied to any irregularly shaped

objects compared with normal meshing-based physics-informed meth-
odologies. Before the optimization process, the ranges of hyper-
parameters should be defined based on preliminary results. Therefore,
how to balance different hyperparameters ranges is of great significance
for the successful automated machine learning process. Hence, the
hyperparameters balance will first be conducted to ensure the reason-
able range for the continuous automated machine learning which is of
great importance for reducing the computational costs as well as
improving the efficiency of appropriate hyperparameters for solving the

Fig. 1. The framework of the proposed AEPINN research.

Fig. 2. Flowchart for addressing solid mechanical problems with the AEPINN framework. Note: MFD: Meshless Finite Difference, ADF: Approximate Distance
Function (measured from any internal points to the boundary), L e: external work done, L s: strain energy.

X. Tian et al. Engineering Structures 330 (2025) 119884

3

irregularly shaped objects. Considering the hyperparameters of the
model, there are the learning rate, mode of Tensor Decomposition (TD),
mesh number of three directions, and interior sampling points in which
the learning rate and rate decay steps mainly affect the model updating
step per epoch. TD Mode, the number of shape function nodal points,
and the number of interior sampling points influence the displacement
prediction ability of EPINN block interactively. Besides, Meshless finite
difference (MFD), as the differential method for calculating gradients,
can obtain the gradient information (i.e. obtain strain field) from
displacement field efficiently so that the whole framework can handle
the mesh-free data sampled from 3D files.

Combined with the automated module, AEPINN can utilize the
optimized structure to reduce the training time significantly and
perform efficiently in solving the solid mechanics solution fields of
irregular three-dimensional objects. In the following sections, we will
introduce the EPINN block in our framework and Bayesian-Optimization
Tree-Structured Parzen Estimator (BO-TPE) framework.

2.2. Exact Dirichlet boundary PINN (EPINN) framework

EPINN model consists of shape functions to formulate piecewise
linear 1D solution field, tensor decomposition to reduce the complexity
of data as well as construct 2D and 3D solution field, and Approximate
Distance function (ADF) to enforce exact Dirichlet boundary condition
to the domain. EPINN adopts the principle of least work to serve as the
loss function, which is the strain energy minus the external work done.
EPINN model utilizes four layers of convolutional neural networks
(CNNs) to reformulate the shape function of 1D truss element based on

previous research [16–18,20]. As shown in Eq. (1), the piecewise linear
function of 1D linear truss element at node I can be represented as a
function of nodal coordinates x, where xI is the coordinate of the node I
and NI(x) is the shape function at this node.

NI(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − xI− 1
xI − xI− 1

, xI− 1 ≤ x < xI, I ≥ 1

xI+1 − x
xI+1 − xI

, xI ≤ x < xI+1, I ≤ n − 1

0, otherwise

(1)

For 1D truss cases, its global 1D shape function can be composed of
numerous 1D elements based on nodal points. The number of elements n
in the 1D shape function, as one of the hyperparameters, should be
defined before training the EPINN model. With increasing mesh number
n, the computational time and accuracy can also be improved. Fig. 3
states that the neural network initializes weights and bias fixed to pro-
duce the 1D-shape function and capture the displacement at the sepa-
rated nodal points. To establish this shape function globally, EPINN first
will uniformly set the coordinates as n nodes. An arbitrary point with the
coordinate x will be input to the adjacent node parts to estimate the
shape function value of this coordinate x. By utilizing the Rectified
Linear Unit (ReLU) activation function, the 1D shape function can be
derived as shown in Eqs. (2)-(3), where A is the ReLU activation func-
tion.[32]. As shown in Fig. 3, constructing a four-layer neural network
allows the shape function of a 1D truss element to be reformulated
exactly, and the trainable weights represent the nodal displacement
respectively. The global 1D-shape function can be obtained as shown in
Eqs. (4)-(6).

As mentioned before, A is the activation function Relu to create the
shape function [16,21]. After obtaining the global shape function for the
sampling point, we can derive the displacement field expression
considering nodal predicted displacements as Eqs. (4) and (5). The
global displacement function can predict the displacement of this point
by multiplying the global shape function with the predicted nodal
displacement at position I next to the sampling point.

N(x) =
∑

I=1,2,…,n
NI(x) (2)

u(x) =
∑

I=1,2,…,n
uI(x)NI(x) (4)

In EPINN, displacement prediction is mainly conducted by
combining Tensor Decomposition (TD) with shape functions. TD is a
method that can significantly reduce the complexity of the dataset from
higher dimensions to lower dimensions, which is considerably beneficial

NI(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

(
− 1

xI+I − xI
A (x − xI) + 1

)

, I = 1

A

(
− 1

xI − xI− I
A (− x+ xI) + 1

)

+ A

(
− 1

xI+1 − xI
A (x − xI) + 1

)

− 1, 2 ≤ I ≤ n − 1

A

(
− 1

xI − xI− I
A (− x+ xI) + 1

)

, I = n

(3)

uI(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ampampA

(
− 1

xI+I − xI
A (x − xI) + 1

)

uI, I = 1

&
(

A

(
− 1

xI − xI− I
A (− x+ xI) + 1

)

− 0.5
)

uI +
(

A

(
− 1

xI+1 − xI
A (x − xI) + 1

)

− 0.5
)

uI,2 ≤ I ≤ n − 1

ampampA

(
− 1

xI − xI− I
A (− x+ xI) + 1

)

uI, I = n

(5)

X. Tian et al. Engineering Structures 330 (2025) 119884

4

in addressing the 3D static mechanical analysis problems by reducing
the computational costs[17,18,20]. Fig. 4 illustrates the TD process of
EPINN, where 1D shape functions are utilized to calculate weighted
predicted values so that the three-dimensional displacement can be
predicted by the trainable weights in the TD layer. As shown in Eq. (6)
and Fig. 4, effective as it is, TD also creates mode Q as a new hyper-
parameter, which needs to be considered. More details can be discov-
ered in the EPINN paper [20].

uTD(x) = uTD(x, y, z)

=
∑Q

q=1

(
∑n1

I=1
NI(x)β(q)

I

)(
∑n2

J=1
NJ(y)γ(q)J

)(
∑n3

K=1
NK(z)θ(q)

K

)

(6)

2.3. Bayesian-optimization tree structured parzen estimator

AutoML is the technique that automatically helps researchers
simplify the machine learning workflow, including data preparation,

Fig. 4. Tensor Decomposition formulated by neural network. Note: NI(x), NI(y), NI(z): shape function of x, y, z; uTD(x, y, z): solution displacement field of the
coordinates; β(q)

I , γ(q)J , θ(q)K : the qth trainable weights of the tensor decomposition layer.

Fig. 3. The 1D-Shape function of the EPINN module. Note: xI : ith nodal coordinates, NI : shape function, uI : predicted displacement; the green and purple color
numbers are the bias and fixed weights respectively.

X. Tian et al. Engineering Structures 330 (2025) 119884

5

feature engineering, and model establishing [33]. Some software
designed for AutoML, including Auto-Weka, Auto-sklearn, and Auto-ml,
are developed in Python for the simplification of machine-learning tasks
[34]. Fig. 5 describes the three stages of AutoML, including data pro-
cessing, feature engineering, and model establishment. Since the pipe-
line of AutoML is mainly classified into three stages as displayed in
Fig. 5, various algorithms are proposed for each specific aspect of the
research [35]. Conventional PINN architectures in addressing compli-
cated solid mechanics may be time-consuming and very difficult to
converge after a long time of training. Therefore, AutoML integrated
PINN framework is rarely reported. However, with the remarkable
development of PINN architectures, establishing AutoML to explore the
potential of PINN as solvers is becoming critical for achieving effective

speedup in preparing to solve real-scale problems. In bridging the gaps,
this study develops the AEPINN model to estimate the performance of
the PINN framework in solving solid mechanics problems accordingly.

PINN solvers do not need to cover large datasets and features mainly
be defined based on physical laws. Especially, for solid mechanics, the
first two steps are not crucial in improving the performance of PINN
solvers. Hence, considering the hyperparameter optimization things,
Fig. 6 illustrates techniques to optimize the model hyperparameters
during model establishing process, including Model-free algorithms,
gradient-based algorithms, heuristic algorithms, and multi-fidelity
optimization [36]. Model-free algorithms, including babysitting,
random search, and grid search, can be established accordingly by priori
knowledge without the specific model, which is widely used with

Fig. 5. The framework of Automated Machine Learning with Human Machine interaction.

Fig. 6. Types of hyperparameter optimization methods. Note: EIy∗ (x) is the expected improvement; l(x), g(x) are density functions of the bad and good performances.

X. Tian et al. Engineering Structures 330 (2025) 119884

6

limited performance. Gradient-based algorithms mainly apply a
gradient descent algorithm during the hyperparameter updating pro-
cess, where gradients of error with respect to hyperparameters are hard
to obtain from PINN solvers and will create new parameters. Despite the
high efficiency of solving some specific tasks, heuristic algorithms are
highly related to the specific initial solution quality and the applicability
and adaptivity of the heuristic section to the studied problems. Succes-
sive halving and hyperband in the multi-fidelity optimization part are
efficient for cases with a stable converging training process but not
suitable for PINN solvers due to the unapparent initial convergence
conditions in the learning curves of differential solvers. Compared with
the aforementioned algorithms, Bayesian optimization (BO) is another
important hyperparameter optimization algorithm that is efficient for
most problems. Instead of random searching, BO is a history-informed
hyperparameter optimization algorithm. BO can explore and exploit
the unsampled areas and promising regions to improve the surrogate
function between the hyperparameters and losses, minimizing the
chances of skipping the optimal part based on historical experiences
[37], which may be more appropriate for PINN solvers.

BO can be formulated by applying sequentially surrogate model
updating to dynamically utilize the historical information to decide the
position of the next sampling point so that the errors between the sur-
rogate model and the true function between hyperparameters and loss
can be minimized. Sequential model-based optimization (SMBO) of BO
mainly consists of three types of algorithms, including Gaussian Process
(GP), Random Forest (RF), and Tree-structured Parzen estimator (TPE),
and SMBO is designed to solve the black box function from hyper-
parameters to the loss function [30]. RF is more efficient for simple
optimization problems by using regression and classification. GP pre-
defines the Gaussian relationships between the black box function and
the hyperparameters, while TPE does not need to define the relationship
of variables [38,39]. Thus, TPE is more suitable for the EPINN block.

Composed of several components, including the domain, surrogate
model, acquisition function, true loss function, and historical informa-
tion, SMBO is the model-based method used to optimize the surrogate
model to fit the true loss function that can reflect the relationships be-
tween hyperparameters and the losses of the trained deep learning
structure. Initializing the surrogate model S as p(y|x) and acquisition
function at the beginning. In processes, set y∗ is the best value of current
observed results y∗ = min{f(xi), xi ∈ X }, where I is the set of sampling
examples. GP will calculate the expected improvement as the acquisition
function: EIy∗ (x) =

∫+∞
− ∞ max(y∗ − y, 0)p(y|x)dy, where the EIy∗ (x) means

the expectation results of the assumed surrogate function p(y|x) that is
modeled by applying the GP model. GP will select the next exploration
or exploitation action based on the estimated expected improvement EI.
The region with a better mean value or higher uncertainty will be
selected respectively. Then, SMBO will test this trial to obtain the value
of the true loss function to update the historical information for the
upcoming next step.

Similar to the GP, TPE will apply the Bayesian rule by calculating the
probability of x with the observed condition y, p(x|y) instead of the
p(y|x), given x is the hyperparameter and y is the value of the true loss
function. The relationship of p(x|y) and p(y|x) is the Bayesian rule as
p(y|x) =

p(xy)
p(x) =

p(x|y)p(y)
p(x) . As shown in Fig. 6, TPE defines the p(x|y) as the

piecewise function with the two density functions l(x), g(x) to first
classify the remained samples into bad and good performance sets as Eq.
(7) displayed, where y∗ is the threshold that will be selected by using the
quantile γ so that p(y < y∗) = γ. Thus, the expected improvement EI of
the TPE method can be obtained as Eq. (8). The next candidate will be
selected based on the value of (1− γ)g(x)

l(x) . TPE will choose the sample with
the highest expected improvement EI during each iteration. Hydra is a
framework to control complicated configured machine learning prob-
lems with only configuration files to control most parameters which is
easy to use for multiple experiments which is what exactly automated
machine learning needed. Optuna is an optimization tool that can be

integrated with hydra to automatically control the whole AutoML pro-
cedure without any extra required command for users to implement.
Besides, Optuna integrated various Bayesian Optimization algorithms
which are easier for researchers to develop their own frameworks. In this
section, we choose Hydra-Optuna as the base platform to develop the
AEPINN framework.

p(x|y) =
{
l(x), ify < y∗
g(x), ify ≥ y∗ (7)

EIy∗ (x) =
∫ y∗

− ∞
(y∗ − y)p(y∣x)dy

=
γy∗l(x) − l(x)

∫ y∗
− ∞ p(y)dy

γl(x) + (1 − γ)g(x)
∝

⎛

⎜
⎜
⎝

1
γ + (1− γ)g(x)

l(x)

⎞

⎟
⎟
⎠ (8)

2.4. Automated machine learning EPINN (AEPINN) framework

As mentioned earlier, this framework utilizes Eq. (9), the principle of
least work applied in [18,32,40] as the loss function, where f denotes the
body force, u denotes the predicted displacement field, and t represents
the traction applied to the boundary. In Eq.(10), the displacement field
is predicted by the trained EPINN framework uTD and then forced to
apply the Dirichlet boundary of the region [20,21]. Through this
method, when minimizing the energy loss, the boundary u∗

∂ΩD
is satisfied

automatically by applying this ADF module ϕADF. As Eq. (11) depicted,
the objective is to discover the appropriate weights Ŵ of the neural
networks to minimize the loss L energy(u; f, t) during training. We don’t
adopt data loss since in reality it is usually difficult to obtain full fields of
the studied structures. Therefore, many engineering problems cannot
provide abundant data for researchers to establish a dataset for machine
learning algorithms to learn. Besides, the transfer learning ability of
physics-driven methods can be further enhanced if the model is efficient
in solving mechanics problems without labeled data, indicating the
possibility of learned physical laws behind the performance.

L energy(u; f, t) =
1
2

∫

Ω

σ(u) : ε(u)dΩ −

⎛

⎜
⎝

∫

Ω

u • fdΩ+

∫

∂ΩN

u • td∂ΩN

⎞

⎟
⎠ (9)

u(u, v,w) = u∗
∂ΩD

+uTD • ϕADF (10)

Ŵ = argmin
w

(
L energy(u; f, t)

)
(11)

In AEPINN structure, the energy functional loss will be the machine
learning loss to automatically update the trainable weights within the
EPINN module. Fig. 7 illustrates the gradient backpropagation process
within the AEPINN framework. The only trainable weights are within
the Tensor decomposition part which corresponds to the calculation
from shape function to the tensor decomposition predicted displacement
fields uTD. uTD will be further forwarded to obtain the final displacement
fields as the predicted solution fields u(u, v,w). With the displacement
fields, the strain and stress results can be obtained through applying the
meshless finite derivatives. Through the final objective function, the
Bayesian optimization section will evaluate the performance of the
hyperparameters and adjust the hyperparameter selection results
accordingly. Since the Bayesian process is gradient free method and
neural network layers that form shape functions are fixed with
untrainable weights and bias, EPINN module will be easily trained with
only the TD part in Eq. (6).

In the BO-TPE process, the objective is to minimize the errors with
respective hyperparameters. As shown in Eq. (12), for the EPINN mod-
ule, the objective function O will be optimized by applying the BO-TPE
process to discover the mesh number n, decomposition mode q, learning
rate lr, the number of sampling points nsample, and the learning rate decay

X. Tian et al. Engineering Structures 330 (2025) 119884

7

Fig. 7. Backpropagation process of EPINN module during AutoML procedure.

Fig. 8. Hyperparameters matching influences of the AEPINN framework.

X. Tian et al. Engineering Structures 330 (2025) 119884

8

steps sdecay that can reduce errors. O denotes the minimum average L2
relative error. uipred is the predicted displacement at ith direction and
ui true is the corresponding reference value.

O = argmin
n, q, lr , nsample ,sdecay

1
nʹ
∑

i=1,2,nʹ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

uipred − ui true
)2

∑
ui true2

√

(12)

To consider the AEPINN framework, it is of great necessity to ensure
the fitting process during training with appropriate hyperparameters. In
FEM, the mesh number n can positively influence the accuracy of FEM
results. However, sampling, just like the adaptive finite element, is
important in addressing high-dimensional problems [41]. Since AEPINN
is a mesh-free method, enough sampling points from the objects are
necessary, especially for irregularly shaped objects. To improve this, this
research applies the Signed distance function (SDF) to so that AEPINN
can sample complicated objects by using STL files obtained from various
software or scanned data.

Thus, the mesh number n, tensor decomposition mode q, and the
sampling points nsample are related to each other. Normally, the common
method to improve accuracy is to simultaneously improve the mesh
number and tensor decomposition mode. However, the unbalanced size
of sampling points and mesh number will influence the efficiency and
accuracy. With high values of the mesh number and the mode, the model
holds a better ability to predict the displacement field, but there may
also be overfitting issues during the training sampling points. If the mesh
number and the mode values are relatively small, this framework will
not be able to capture the features of points fully with an exceeding
amount of sampling points.

Considering this, we propose the sampling points and relationship
framework to accelerate the automated machine learning training speed
along the way. As Fig. 8 depicts, the sparse sampling and tensor
decomposition can impose negative effects on the EPINN framework.
Although a higher number of sampling points n and decomposition
mode q can improve the predicting ability of EPINN, it will also increase
the training time extremely and induce overfitting problems. Compared
with the aforementioned hyperparameters, the matched hyper-
parameters mesh number n, the decomposition mode q, and the number
of sampling points nsample will significantly contribute to the convergence
speed and accuracy of EPINN module.

The automated machine learning framework applied in this EPINN
module is composed of several key steps, as shown in Fig. 9. At the

beginning stage, the surrogate model of the objective function O is
initialized before the BO-TPE framework. Similar to the SMBO process,
in this framework, EPINN module will be the bridge between the
hyperparameters inputting and expected improved factors outputting by
calculating the energy loss function, respectively. After nt trials, the
energy loss function can be obtained accordingly. Normally, the ob-
tained hyperparameters cannot balance the training time and validation
errors well. To fix this, the previously proposed hyperparameter
matching balance method can be applied to match the mesh number,
resolutions, and interior sampling ranges subsequently so that the
selected hyperparameters can maintain the prediction accuracy as well
as efficiency simultaneously.

3. Performance of AEPINN for solving solid mechanics

This section solves four solid mechanics problems by applying the
AEPINN framework without labeled data, including a 2D plane stress
problem, a 3D bracket traction case, a 3D complex frame structure and a
hyperelastic rubber cube solid mechanics problem. These cases are
conducted and tested based on the Nvidia Modulus platform [42], an
open machine-learning environment that is installed on the supercom-
puter SQUID system from Osaka University and one local Personal
Computer (PC) with GPU RTX 3080Ti. All cases of AEPINN are retested
on a local PC with the GPU RTX 3080Ti 11 GB. The referred PINN ar-
chitecture is set with a neural network of 6-layer depth, 512 neurons
width, and the SILU activation function to avoid the gradient dead. For
the AEPINNmodel, as mentioned before, hyperparameters including the
mesh number n, decomposition mode q, learning rate lr, the number of
sampling points nsample, and the learning rate decay steps sdecay will be
considered [43]. For fair comparisons, the ABAQUS implicit solver FEM
results are obtained from the single CPU Intel i7–13700K using double
precision with General Purpose GPU (GPGPU) acceleration using Nvidia
RTX 3080Ti accelerator. The EPINN architecture results are simulated
based on the provided hyperparameters [20], which may have some
acceptable differences due to the random initialization torch seed. RTX
3080Ti, released on 3rd June 2021 which is comparably computational
efficient as the general devices in 3D games and scientific computing
with affordable price, was picked and installed with Pytorch framework
rather than Nvidia Modulus for a fair comparison of the performance of
proposed AEPINN on a normal GPU device. For all cases below, the
performance diagrams in point cloud form are plotted based on the local

Fig. 9. AEPINN gradient-free pipeline.

X. Tian et al. Engineering Structures 330 (2025) 119884

9

PC with one GPU 3080Ti results on FP32 precision to analyze the
adaptivity of this framework. The training loss differences between FP32
and FP64 on SQUID supercomputer and Nvidia Modulus platform are
also compared in the learning curve figures. Since TF32 is for improving
the training speed with reduced precision, TF32 will not be used in this
section for testing the model ability with enough precision.

In this section, in total four solid mechanics problems are studied
including a complicated panel stress problem, a 3D bracket traction
cases, one frame case and a hyperelastic problem which is a cube rubber
with Young’s Modulus 1.1572 MPa and Poisson ratio 0.499 for testing
the proposed AEPINN method in solving nonlinear problem ability.
Types on Abaqus for the panel stress, frame, and cube rubber cases are
CPS4R, C3D8R, and C3D8RH respectively. For the cube rubber case,
conventional FEM cannot deal with high Poisson ratio directly with the
C3D8R element, which is replaced with C3D8RH, the hybrid element
and allows large deformation to ensure Abaqus can solve this problem.

Non-dimensionalized approaches and scale methods are required for
preprocessing data, especially for specific problems with the second and
third cases. In the bracket case, the traction and stress are conducted

through non-dimensionalized approaches as σn = L0
Gu0, where G is the

0.01 scaled from original shear modulus to avoid large values during
training. The coordinates in the frame case are scaled to 1/13 to avoid
the convergence problem during training.

The total AEPINN simulation time for automated machine learning
for the 3D bracket and frame are around six hours and three hours.
Because we are conducting hyperparameters optimization only for these
two problems and the respective nonlinear cube rubber and plane
problems can be directly tested with the optimized results. The AutoML
is not needed to be rerun for every model. Therefore, considering the
limited automated training time on several trials with multiple cases, it
would be much better to compare the optimized results for the several
trials counting for around thirty hours can be regarded as a pre-trained
step. The optimized hyperparameters have been conducted on trans-
ferring from the frame case to the cube rubber case for performance
verification, which also illustrates the importance of conducting AutoML
as a pre-trained step for the continuous application of artificial intelli-
gence in solving nonlinear solid mechanics problems.

Fig. 10. The performance of AEPINN for simulating plane stress compared with Abaqus.

X. Tian et al. Engineering Structures 330 (2025) 119884

10

3.1. Plane stress panel under eccentric tension

The plane-stress panel simulation is reported as a benchmark base-
line finite element case to testify to the performance of the PINN
structures in solving solid mechanical problems [20,44]. Holding an
equal length of width and height of 1.0 m, this plate is fixed at the
bottom part and free in the other three directions. As shown in Fig. 11
(a), the material is elastic with Young’s modulus of 10 MPa and a
Poisson ratio of 0.2. The left half of the top part is restricted with a
vertical displacement of 0.1 m and a horizontal displacement of 0.0 m.
Rest parts are free to be deformed. Using the commercial solver ABAQUS

as the comparison results, the plate model in ABAQUS is defined with a
mesh size of 1/400.

For the conventional PINN, we set the PINN with a fully connected
network with 6 the depth of layers and 512 the width of neurons to
ensure the prediction capability and set the plate sampled with 40000
interior points to ensure sufficient data for PINN to address this
benchmark problem. Despite the tuned hyperparameters, PINN cannot
converge to stable results after a long time of training. Hence, PINN will
not be displayed here. Since this is a stress concentration problem, to
compare stress results, the hyperparameters of the AEPINN for this plate
case are sampled with 60000 interior points to fit with the mesh number

Fig. 11. The performance of AEPINN for simulating plane stress fields.

Fig. 12. Automated machine learning results of EPINN for the bracket.

X. Tian et al. Engineering Structures 330 (2025) 119884

11

n of 50 and the mode q of 13 to improve the prediction accuracy effi-
ciently applied with the automated matching machine learning frame-
work. We set the learning rate with an initialized value of 0.05 with a
decay rate of 0.95 for 200 steps to accelerate the exploration process. To
avoid overfitting, weight decay is adopted with the value of 0.001.
Fig. 11 (b)-(c) displays the wall time training L2 relative error of the
displacement u and v predicted results of the AEPINN architecture.
While the single intel i7–10870H can solve this panel stress problem
after 265 s, Fig. 11 (b)-(c) shows that L2 relative error of total
displacement field from PC can be lower than 0.1 within 37 s which is
nearly the same as ABAQUS results of 37 s of i7–13700K with General
purpose GPU (GPGPU) acceleration of Nvidia RTX3080Ti provided by
ABAQUS solver, achieving a speedup of seven times compared with
ABAQUS speed 265 s of i7–10870H, 22 times the EPINN method of
836 s with better accuracy, and more than 160 times of the training
speed of the conventional PINN 5957 s [20]. Fig. 11(d)-(i) presents the
differences between the predicted displacement fields and the simulated
results by ABAQUS. With fewer points of 60000 points compared with
400 × 400 in Abaqus and mesh number 50 of the EPINN architecture,
AEPINN results can be close to the displacement fields of this 2D plane
stress problem. Fig. 12 states the predicted stress fields of AEPIN
compared with Abaqus results. As a stress concentration problem, the
displacement and stress values will vary as the mesh size of Abaqus
changes. Therefore, different mesh sizes will cause huge differences in
certain unique points. As shown below, in the stress prediction fields,
AEPINN can capture the displacement and stress fields aligned with the
Abaqus results with a mesh size of 1/400 while some small errors exist at
those stress concentration points due to the mesh size sensitivity of this
specific problem. With Abaqus results of mesh size 1/200 or 1/800, the

stress values results will be quite different. Compared with the
fine-meshed Abaqus results, AEPINN can be close to the current stress
fields except for errors of certain points.

3.2. Three-dimensional bracket

The three-dimensional bracket case is also simulated in this part to
testify to the performance of the AEPINN framework in addressing the
irregularly shaped solid mechanics problems. The conventional PINN
with a fully connected neural network cannot converge within 24 hours
and is not shown in the results. Fig. 12 presents the automated multi-
variable parallel diagram of AEPINN. For this 3D solid mechanics
problem, 7 hyperparameters are selected to be optimized, including the
number of interior sampling points, tensor decomposition mode, mesh
number in three directions, learning rate, and its decay steps. Based on
the matching principle, the range of sampling points, TD modes, and
mesh number are limited to (100, 20000), (2,50), (2, 20), which is
helpful to improve the automated machine learning efficiency. After 60
trials, the AEPINN objective value O can converge to 0.07. Compared
with the original automated machine learning without matching prin-
ciple, the convergence speed is improved ten times more for smaller
searching regions. Fig. 12 shows that the mesh number and TD modes
tend to perform better in smaller value ranges for fewer training sam-
pling points. The learning rate is much more randomly performed with a
range of decay steps between 120 and 400. For AEPINN, the learning
rate, decay steps, TD modes, and interior sampling points are set to
0.0085, 166, 32, and 17432 with a learning rate decay rate of 0.9. The
mesh numbers of the three directions are set to 14, 20, and 14, respec-
tively, to ensure the balance of efficiency and accuracy, which are well-

Fig. 13. Comparison of AEPINN performance with FP32 and FP64 precision and EPINN architecture with FP32 precision for the 3D bracket under uniform
force boundary.

X. Tian et al. Engineering Structures 330 (2025) 119884

12

tuned and selected based on the automated BO-TPE results in Fig. 12.
Fig. 13 (a) displays the concept figure of this bracket, which is fixed

at the back face with the applied 0.4 MPa shear stress to the top surface
edges. The rest parts are stress-free. This bracket has an equal height,
width, and length range of 1.0 m. The Young’s modulus of this case is
100 GPa with a Poisson ratio of 0.3. The reference results of this case are
the FEM simulation with a mesh number of 0.003. Fig. 13 (b)-(d) ex-
hibits the simulated results of AEPINN with different precision of FP32
and FP64. AEPINN with both precisions on A100 can converge within
200 s and achieves a speedup of four times of the three directions
considering the EPINN architecture with 800 s in this simulation, five
times speedup compared with the Matlab FEM speed 1140 s and more
than 400 times of conventional PINN architecture speed 87052 s [20].
Compared with FP32, FP64 is a little bit faster but with similar FP32
results. The proposed AEPINN on PC also achieves a speedup se_of three
times compared with EPINN and four times speedup compared with
Matlab. Fig. 14 (a)-(d) displays the validated results of AEPINN in three
directions and the total displacement field. Fig. 14 (e)-(h) presents the
Matlab simulated results with a fine mesh size of 0.003 [20]. Fig. 14
(i)-(l) shows the variation of these four types of predicted and simulated
results. It shows that AEPINN with optimized hyperparameters can well
resolve this problem within minutes. It can be seen that the maximum
overall displacement is about 5.24 mm, while the total displacement
difference of predicted results from AEPINN only has some differences
with a maximum value of about 0.054 mm, which is nearly a 1 % error.
In the other three directions, the results are still within the acceptable
range. Fig. 15 illustrates the stress fields of the 3D bracket case based on
the displacement fields. Fig. 15 (a)-(c) denote stress in x direction and
the main differences are at the area close to the upper and lower curve
parts of the bracket. This may be due to the sampling points in these
small regions are not enough. For Fig. 15 (c) the differences are
comparably small in the top surface. Fig. 15 (d)-(f) are about the stress in
y direction where similar errors exist due to the sampling problems. For

other stress fields, stress values are too small to tell the differences. Thus,
the third-row results are displayed with the Von-Mises stress field
comparisons between the Abaqus and AEPINN results. The figures show
that in the top and bottom surfaces the errors are located at the upper
and lower curve parts similarly due to the sparse sampling points. The
stress fields in the main directions are fitted close to the FEM result.
However, there still remain some errors in the corners.

3.3. Three-dimensional frame

Despite the good performance of EPINN for the three-dimensional
bracket, complex real-scale structures still require tremendous study
to analyze the performance of artificial intelligence in understanding
reality and predicting the correct displacement field for real cases. In
this section, a three-story frame structure made of beams, columns, and
slabs is established for the case study. The frame structure is applied
with Dirichlet boundary conditions in the top surface along two di-
rections with a displacement of 80 mm. This frame is a 3-storey case
with slabs, beams, and planes together. It’s 9000 mm high, 6500 mm
long, and 6500 mm width. For this complex 3D simulation, the con-
ventional PINN, EPINN architectures, and automated PINN cannot
converge within minutes. Therefore, in this part, only AEPINN based on
the framework will be testified to analyze the performance in addressing
the static solid mechanical problems. Fig. 16 is the automated machine
learning parallel diagram that depicts the variable relationships for the
final objectiveO1, the average relative L2 error. Considering the training
efficiency, the mesh size values in three directions are set the same.
Based on this BO-TPE process, the acceptable hyperparameters interior
sampling points, TD modes, mesh size in three directions, learning rate,
and decay steps are selected as 30000, 50, 13, 0.02, and 500. The reason
why we select a sparse interior sampling point number is based on the
performance in previous sections and Fig. 16, where AEPINN can
converge to 0.2 with 25255 sampled points.

Fig. 14. Displacement solution field of AEPINN with FP32 precision for the 3D bracket (unit: mm).

X. Tian et al. Engineering Structures 330 (2025) 119884

13

Fig. 17 (a) displays the schematic plot of the 3-story frame structure
with a top surface of two Dirichlet boundary conditions of 80 mm
displacement and fixed at the bottom surface. Fig. 17 (b)-(e) shows the
comparison of the FP32 and FP64 precision in total displacement and
the other three directions on SQUID and FP32 on a local PC. AEPINN can
converge under both precisions within 100 s in the total displacement u.
For u and v, AEPINN can converge to a high accuracy of around 200 s.
For w, since the displacement in this direction is quite small, AEPINN
can be overfitted after a quick decreasing stage, meaning the main errors
will come from AEPINN in this direction. However, despite the

overfitting issue, the L2 relative error of total displacement u still
maintains a low value after 200 s. With the double precision of FP64,
AEPINN can even be faster than it with float 32 precision for about 20 %
in the training process. For the u and v direction, FP64 can converge
faster in a speedup of 100 % compared with FP32 in this frame problem.
Fig. 18 (a)-(d) are the predictions of AEPINN for three directions u, v, w,
and the total displacement u. Fig. 18 (e)-(h) shows the ABAQUS solver
with RTX 3080ti accelerated results with the mesh points of 80172
meaning the mesh size is about 1/43 with 18 s to converge. Fig. 18 (i)-(l)
illustrates the differences between the solver and predictions. The

Fig. 15. Stress solution field of AEPINN with FP32 precision for the 3D bracket (unit: mm).

Fig. 16. Automated machine learning results of EPINN for the 3-storey frame.

X. Tian et al. Engineering Structures 330 (2025) 119884

14

average errors of total displacement u, displacement in x direction u, y
direction v and z direction w are lower than 2.4 mm, 1.76 mm, 1.7 mm,
and 1.91 mm, respectively. Considering integrated total displacement

error with a value of around 2 %, AEPINN can solve this frame problem
within certain error values, which shows the ability of the proposed
method AEPINN in solving the static complicated 3D frame problem

Fig. 17. Comparison of the AEPINN performance with FP32 and FP64 precision for simulating 3D frame with two fixed Dirichlet boundary conditions on the
top surface.

Fig. 18. The performance of the AEPINN for simulating 3-storey frame under lateral loading (in units of mm).

X. Tian et al. Engineering Structures 330 (2025) 119884

15

displacement solution fields respectively, indicating the potential of
AEPINN in applying to more reality cases in the future.

For the elastic static problem, ABAQUS solver with GPU accelerated
can obtain solution fields efficiently and effectively. For comparing the
efficiency of AEPINNmodel and FEM in obtaining displacement solution
fields with the finest meshed FEM results with 25 mm. We randomly
select 30000 fixed sampled points from the input 3D file and train the
AEPINN model while validating the model with fine meshed ABAQUS
results with 25 mm mesh size. ABAQUS results with other mesh size
cases ranging from 50 mm to 200 mm are also compared with the
25 mm case by using the same relative l2 error. Hence, this error-time
figure below in Fig. 19 can depict the performance of ABAQUS and

AEPINN in approaching the fine mesh size 25 mm case in both accuracy
and efficiency. Same as AEPINN, ABAQUS results will be compared with
the reference 25 mm case to verify the ability of ABAQUS in solving FEM
problems. and other ABAQUS results frommesh size 50 mm (time:197 s,
relative l2 error:0.89 %), 75 mm(time:32 s, relative l2 error:3.17 %),
100 mm(time:13 s, relative l2 error:2.37 %), 125 mm(time:3 s, relative
l2 error:2.91 %), 150 mm(time:2.8 s, relative l2 error:2.99 %), 175 mm
(time:2.4 s, relative l2 error:4.4 %) to 200 mm(time:2 s, relative l2
error:3.5 %) for comparison. Fig. 19 below shows that compared with
ABAQUS solver, in the first few seconds, ABAQUS can achieve
displacement fields with sparse mesh but with exponential increased
time with fine mesh size, while AEPINN can balance the computational
efficiency as well as speed to enhance the solution performance
compared with 25 mmmesh size ABAQUS case, indicating the potential
of AI solution to assist and accelerate finite element analysis in the
future. Hence, if we need higher accuracy of displacement fields and
satisfied efficiency, AEPINN can be an option in helping solving solid
mechanics problems to reduce time costs.

3.4. Rubber cube

Although AEPINN can be efficient in solving the linear elastic static
solid mechanics problems in 1D, 2D and 3D cases above, nonlinear solid
mechanics problems can be great challenges for artificial intelligence
frameworks to solve. In our research, to examine the effectiveness of
AEPINN in solving nonlinear solid mechanics, a rubber square with
length, width, and height of 50 mm and the bottom is fixed, while the
top surface is fixed with a displacement value of 5 mm in three di-
rections. As [45,46] examined, the Young’s modulus of the rubber
square is adopted as the same value E = 1.1572MPa and the Poisson
ratio v = 0.499 from [46] and Mooney-Rivlin parameters

Fig. 19. Mesh sensitivity of the frame displacement field comparison between
AEPINN and ABAQUS results ranging from 50 mm to 200 mm, take 25 mm
ABAQUS case as reference.

Fig. 20. Schematic plot of the proposed AEPINN method with optimized hyperparameters in solving nonlinear hyper-elastic rubber problem (in units of mm).

X. Tian et al. Engineering Structures 330 (2025) 119884

16

C10 = 0.006243, C01 = 0.007461. The AEPINN model from case 3.3
frame is fine-tuned from previous trained network configurations and
applying the Mooney-Rivlin energy function, AEPINN model can obtain
results with relative L2 errors 0.06 in three directions u, u, v and w
within 45 s and L2 errors all below 0.05 within 60 s. Fig. 20 shown
below can be utilized to illustrate the performance of AEPINN.

Previously, with AutoML optimized hyperparameters, AEPINN can
be applied to static elastic problems and solve those faster than con-
ventional PINN and EPINN. In this nonlinear hyper-elastic case, we
adopt the previous optimized hyperparameter sets and set TD modes as
well as the mesh number equal to the frame case. With optimized
hyperparameters, AEPINN can solve this rubber static hyper-elastic
within 60 s. Besides, the pre-trained optimized weights of AEPINN in
the frame case can be utilized to be fine-tuned for further applications to
quick responses towards studied objects. Apparently, with pre-trained
AEPINN weights, the model can achieve a speedup compared with
directly training AEPINN.

Fig. 21 exhibits the ABAQUS results and AEPINN predicted
displacement fields. In all three directions, even in this nonlinear
problem, AEPINN can obtain the solution fields with L2 relative errors in
all directions lower than 10 % within 100 s. While the previous research
papers mentioned didn’t indicate the actual training time for solving
these nonlinear hyper-elastic problems, the simplest 1D and 2D prob-
lems for those methods will require hundreds of seconds to solve the
static elastic problems instead of hyper-elastic problems. Hence,
compared with those methods, AEPINN is compatible with artificial
intelligence models in solving displacement solution fields. Of course, in
this cube rubber case, the stress fields are not listed for currently the
AEPINN hasn’t directly output stress fields and the derived stress fields
from displacement data will induce a series of errors due to the nu-
merical errors in rounding numbers and calculating derivatives. In the

future, we will analyze the AEPINN to obtain full fields of problems.

3.5. Qualitative analysis and discussion of the AEPINN process

One of the most important things to consider the qualitative analysis
of the proposed method is to measure the uncertainty compared to
current research. However, many studies have conducted related vali-
dation without analyzing the model performance corresponding to the
automated machine-learning iterations. In this part, we conduct the PCA
of the bracket and frame cases to analyze the impacts of different
hyperparameters towards the performance of the proposed AEPINN
model in solving purely physics-informed solid mechanics problems.
Since this analysis is more about the performance of this framework, the
irrelevant hyperparameter decay step is removed. Fig. 22 denotes the
PCA contour results of the AutoML process. Fig. 22 (a) and (c) display
how the proposed method can assist the AutoML process in discovering
the regions where hyperparameter sets are effective for the model to
solve problems. Those internal areas are surrounded by low efficiency
boundaries where all those sets are insufficient for AEPINN to predict
the displacement fields successfully. In AutoML results, the loss values
lower than 0.5 are near the centre of the PCA geometry, denoting the
performance under uncertain hyperparameters near the centre sets will
be able to approach solution fields respectively. Fig. 22 (b) and (c) show
that the loadings in PCA 1 almost all come from the sampling points,
which is reasonable since sampling is the data resource. For PCA 2,
loadings about mesh number and modes appear different trends for two
problems. The learning rate did not contribute a lot to the final
convergence in these two cases.

Although the proposed AEPINN methods can solve the static frame
case and nonlinear hyperelastic cube rubber case, our research still re-
quires further development in improving stress prediction so that the

Fig. 21. Schematic plot of the proposed AEPINN method with optimized hyperparameters in solving nonlinear hyper-elastic rubber problem (in units of mm).

X. Tian et al. Engineering Structures 330 (2025) 119884

17

proposed methodology can be applied to real structures. For the frame
case, the top and bottom parts are fixed with boundary conditions which
are applied in AEPINN model. However, the conducted Dirichlet
boundary condition cannot fully constrain the displacement in other

parts without any displacement errors. Therefore, strain and stress, the
derivatives derived from displacement fields may hold some errors due
to the accumulated errors. One possible solution is to predict the
displacement fields and stress fields simultaneously and output these

Fig. 22. PCA contour results and loadings analysis of hyperparameters.

Fig. 23. Strain fields in three normal direction comparison between Abaqus and AEPINN results.

X. Tian et al. Engineering Structures 330 (2025) 119884

18

two types of results, which could help the model avoid the accumulated
errors due to derivatives. Besides, in this model, only Dirichlet boundary
conditions are applied and Neuman boundary conditions are not
considered since we are focusing on the displacement solution fields. In
the future, these two methods can be considered to extend our proposed
AEPINN in solving displacement, strain and stress fields efficiently.

Another future direction is to consider the material parameters and
geometric information during the automated machine-learning process.
In this study, AutoML did not consider various material and geometry
parameters of studied objects such as different Young’s Modulus values,
Poisson ratio values, and the geometry setting such as the length, width,
height, and thickness of the cube. Current AutoML cannot consider these
parameters since the proposed APEINN only be designed for the specific
material and the geometric input information from other cases cannot be
embedded. To further extend our model, the tensor decomposition part
can be developed to include the required information. Fig. 23 displays
the further development of the AEPINN framework. The external pa-
rameters will first pass through the parametric net to preprocess the
information so that the results can be embedded into the initial state
with the shape function. Secondly, the convolutional Resnet with fewer
trainable parameters to skip the parameters if those weights cannot
provide useful information after the parametric net. Finally, the stress
net will be included in the third part which will be trained to predict the
stress fields while the displacement fields and stress can be verified with
each other in the final loss function.

4. Conclusions

The proposed AEPINN framework is developed to improve the per-
formance of EPINN in solving solid mechanical problems, which adopts
the Bayesian optimization TPE framework as the basis and the principles
of the hyperparameter optimization process. This study is focused on an
extreme case of zero-shot learning, where we only apply the governing
equation without any data. It is for the first time we find this PINN ar-
chitecture can be accelerated to the same level or even faster than
conventional FE solver, which has already been optimized and devel-
oped for more than 50 years so far. In more practical case such as inverse
problems, structural health monitoring problems and structural design
optimization problem, when we have additional dataset from test or FE
simulation, we believe the proposed AEPINN architecture can reach
significant speedup compared to conventional FE simulation, as this is
the primary objective of Scientific Machine Learning algorithms.

Because this AEPINN framework adopts the EPINN architecture, the
training process can converge without any labeled data of the solution
field. The AEPINN framework showed its ability to solve solid me-
chanical problems directly without any data. The AEPINN framework is
also discussed to explore complex solid mechanical problems for
complicated shaped objects. The major contributions of this paper can
be concluded as follows:

(1) The AutoML EPINN framework combines an automated machine-
learning method that utilizes the BO-TPE to optimize the hyper-
parameters and architecture of the adopted PINN and EPINN.
With the matching principle for shape function or interpolation-
based framework, automated machine learning can achieve an
obvious speedup.

(2) The developed AEPINN is a mesh-free framework with 3D design
geometry or scanned information as input to consider irregularly
shaped objects by sampling points randomly within the interior
and boundary parts to evaluate the irregularly shaped 3D static
solid mechanics problems, which explores the possibility of
mesh-free methodologies in solving solution fields of solid
mechanics.

(3) For the 2D plane stress case, AEPINN can achieve 20 times
speedup compared with the EPINN architecture, similar speed

compared with ABAQUS solver with GPU accelerated, and more
than 200 times compared with conventional PINN.

(4) For the 3D bracket traction problem, AEPINN can converge
quickly within 2 minutes, achieving four times speedup
compared with EPINN architecture, Five times the speedup of the
Matlab FEM solver, and more than 400 times the speedup of the
conventional PINN framework. can achieve a speedup of two
times compared with EPINN architecture and 200 times
compared with conventional PINN. Considering the applicability
of physics-informed architecture, this study conducts the 3D
complex 3-story framemodel for the AEPINN framework to solve.
AEPINN can solve this problem within 2 minutes and can capture
the displacement fields within 400 seconds, displaying the po-
tential of this AEPINN framework to contribute to addressing
solid mechanics with AI in the future.

(5) The optimized hyperparameters from Automated machine
learning can be transferred to other solid mechanics problems
without rerunning the AutoML process for every problem. The
optimized hyperparameters from the frame case are adopted to
solve the nonlinear hyperelastic cube rubber problem which
cannot be solved unless Abaqus utilizes the hybrid element as
well as the nonlinear geometry methods. The optimized AEPINN
can solve the displacement solutions fields of hyperelastic prob-
lems within 60 s to reach the relative l2 error below 0.1 which is
comparably fast compared with existing, exhibiting the potential
of the proposed methodology in applying to real structures.

CRediT authorship contribution statement

Zhu Yingjie: Resources. Deng Xiaowei:Writing – review & editing,
Supervision. Tian Xiaoge: Writing – original draft, Visualization, Vali-
dation, Methodology, Investigation. Kim Chul-Woo:Writing – review&
editing, Software, Resources. Wang Jiaji: Writing – review & editing,
Writing – original draft, Validation, Supervision, Resources, Methodol-
ogy, Data curation, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The work in this paper is financially supported by the National
Natural Science Foundation of China Project 52408221, Hong Kong
Innovation and Technology Support Programme (Mid-stream, theme-
based, ITS/041/23MX). The authors would like to thank National Su-
percomputer Center in Guangzhou for providing high performance
computational resources. The findings in the paper reflect the views of
the authors, who are responsible for the facts and the accuracy of the
data presented herein. The contents do not necessarily reflect the official
views or policies of the sponsor.

Data availability

Data will be made available on request.

References

[1] Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and
fundamentals. Elsevier; 2005.

[2] Schneider T, et al. A large-scale comparison of tetrahedral and hexahedral elements
for solving elliptic PDEs with the finite element method. ACM Trans Graph (TOG)
2022;41(3):1–14.

X. Tian et al. Engineering Structures 330 (2025) 119884

19

http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref1
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref1
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref2
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref2
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref2

[3] Kang F, et al. Multi-parameter inverse analysis of concrete dams using kernel
extreme learning machines-based response surface model. Eng Struct 2022;256:
113999.

[4] Jin H, Zhang E, Espinosa HD. Recent advances and applications of machine
learning in experimental solid mechanics: a review. Appl Mech Rev 2023;75(6):
061001.

[5] Samaniego E, et al. An energy approach to the solution of partial differential
equations in computational mechanics via machine learning: concepts,
implementation and applications. Comput Methods Appl Mech Eng 2020;362:
112790.

[6] Jagtap AD, Kharazmi E, Karniadakis GE. Conservative physics-informed neural
networks on discrete domains for conservation laws: applications to forward and
inverse problems. Comput Methods Appl Mech Eng 2020;365:113028.

[7] Wen W, Zhang C, Zhai C. Rapid seismic response prediction of RC frames based on
deep learning and limited building information. Eng Struct 2022;267:114638.

[8] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. J Comput Phys 2019;378:686–707.

[9] Zhang E, et al. Analyses of internal structures and defects in materials using
physics-informed neural networks. Sci Adv 2022;8(7):eabk0644.

[10] Haghighat E, et al. A physics-informed deep learning framework for inversion and
surrogate modeling in solid mechanics. Comput Methods Appl Mech Eng 2021;379:
113741.

[11] Liu W-H, Zhang L-W, Dai J-G. A physics-informed and data-enhanced tensile stress-
strain model for UHPFRC. Eng Struct 2023;285:115989.

[12] Karniadakis GE, et al. Physics-informed machine learning. Nat Rev Phys 2021;3(6):
422–40.

[13] Diao Y, et al. Solving multi-material problems in solid mechanics using physics-
informed neural networks based on domain decomposition technology. Comput
Methods Appl Mech Eng 2023;413:116120.

[14] Jeong H, et al. A physics-informed neural network-based topology optimization
(PINNTO) framework for structural optimization. Eng Struct 2023;278:115484.

[15] Li G, et al. Static analysis of two-side supported 2-ply laminated glass panes
through physics-informed neural networks. Eng Struct 2024;309:118038.

[16] Saha S, et al. Hierarchical deep learning neural network (HiDeNN): an artificial
intelligence (AI) framework for computational science and engineering. Comput
Methods Appl Mech Eng 2021;373:113452.

[17] Zhang L, et al. HiDeNN-TD: reduced-order hierarchical deep learning neural
networks. Comput Methods Appl Mech Eng 2022;389:114414.

[18] Li H, et al. Convolution hierarchical deep-learning neural network tensor
decomposition (C-HiDeNN-TD) for high-resolution topology optimization. Comput
Mech 2023;72(2):363–82.

[19] Park C, et al. Convolution hierarchical deep-learning neural network (c-hidenn)
with graphics processing unit (gpu) acceleration. Comput Mech 2023;72(2):
383–409.

[20] Wang J, et al. Exact dirichlet boundary physics-informed neural network EPINN for
solid mechanics. Comput Methods Appl Mech Eng 2023;414:116184.

[21] Sukumar N, Srivastava A. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Comput Methods Appl Mech
Eng 2022;389:114333.

[22] Andonie R. Hyperparameter optimization in learning systems. J Membr Comput
2019;1(4):279–91.

[23] Escapil-Inchauspé P, Ruz GA. Hyper-parameter tuning of physics-informed neural
networks: Application to Helmholtz problems. Neurocomputing 2023;561:126826.

[24] Chen Y, et al. Physics-Informed LSTM hyperparameters selection for gearbox fault
detection. Mech Syst Signal Process 2022;171:108907.

[25] Zhang Q, et al. TBM performance prediction with Bayesian optimization and
automated machine learning. Tunn Undergr Space Technol 2020;103:103493.

[26] Lindauer M, et al. SMAC3: A versatile Bayesian optimization package for
hyperparameter optimization. J Mach Learn Res 2022;23(54):1–9.

[27] Ezati M, Esmaeilbeigi M, Kamandi A. Novel approaches for hyper-parameter tuning
of physics-informed Gaussian processes: application to parametric PDEs. Eng
Comput 2024:1–20.

[28] Watanabe, S., Tree-structured parzen estimator: Understanding its algorithm
components and their roles for better empirical performance. arXiv preprint arXiv:
2304.11127, 2023.

[29] Nguyen H-P, Liu J, Zio E. A long-term prediction approach based on long short-
term memory neural networks with automatic parameter optimization by Tree-
structured Parzen Estimator and applied to time-series data of NPP steam
generators. Appl Soft Comput 2020;89:106116.

[30] Ozaki, Y., et al. Multiobjective tree-structured parzen estimator for
computationally expensive optimization problems. in Proceedings of the 2020
genetic and evolutionary computation conference. 2020.

[31] Mao J, et al. Automated Bayesian operational modal analysis of the long-span
bridge using machine-learning algorithms. Eng Struct 2023;289:116336.

[32] Zhang L, et al. Hierarchical deep-learning neural networks: finite elements and
beyond. Comput Mech 2021;67:207–30.

[33] Elshawi, R., M. Maher, and S. Sakr, Automated machine learning: State-of-the-art and
open challenges. arXiv preprint arXiv:1906.02287, 2019.

[34] Thornton, C., et al. Auto-WEKA: Combined selection and hyperparameter optimization
of classification algorithms. in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2013.

[35] Wang S, Wang H, Perdikaris P. On the eigenvector bias of Fourier feature networks:
From regression to solving multi-scale PDEs with physics-informed neural
networks. Comput Methods Appl Mech Eng 2021;384:113938.

[36] Palar, P.S., et al. On the use of surrogate models in engineering design optimization and
exploration: The key issues. in Proceedings of the genetic and evolutionary
computation conference companion. 2019.

[37] Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine
learning algorithms. Adv Neural Inf Process Syst 2012;25.

[38] Wilson J, Hutter F, Deisenroth M. Maximizing acquisition functions for Bayesian
optimization. Adv Neural Inf Process Syst 2018:31.

[39] He X, Zhao K, Chu X. AutoML: a survey of the state-of-the-art. Knowl-Based Syst
2021;212:106622.

[40] Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev 2009;51
(3):455–500.

[41] Tang K, Wan X, Yang C. DAS-PINNs: a deep adaptive sampling method for solving
high-dimensional partial differential equations. J Comput Phys 2023;476:111868.

[42] Nvidia. 〈https://docs.nvidia.com/deeplearning/modulus/index.html〉. 2024.
[43] Nwankpa, C., et al., Activation functions: Comparison of trends in practice and

research for deep learning. arXiv preprint arXiv:1811.03378, 2018.
[44] Rao C, Sun H, Liu Y. Physics-informed deep learning for computational

elastodynamics without labeled data. J Eng Mech 2021;147(8):04021043.
[45] Goodbrake C, Motiwale S, Sacks MS. A neural network finite element method for

contact mechanics. Comput Methods Appl Mech Eng 2024;419:116671.
[46] Bai J, et al. A robust radial point interpolation method empowered with neural

network solvers (rpim-nns) for nonlinear solid mechanics. Comput Methods Appl
Mech Eng 2024;429:117159.

X. Tian et al. Engineering Structures 330 (2025) 119884

20

http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref3
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref3
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref3
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref4
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref4
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref4
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref5
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref5
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref5
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref5
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref6
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref6
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref6
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref7
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref7
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref8
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref8
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref8
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref9
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref9
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref10
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref10
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref10
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref11
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref11
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref12
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref12
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref13
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref13
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref13
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref14
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref14
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref15
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref15
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref16
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref16
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref16
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref17
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref17
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref18
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref18
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref18
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref19
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref19
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref19
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref20
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref20
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref21
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref21
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref21
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref22
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref22
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref23
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref23
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref24
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref24
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref25
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref25
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref26
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref26
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref27
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref27
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref27
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref28
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref28
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref28
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref28
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref29
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref29
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref30
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref30
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref31
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref31
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref31
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref32
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref32
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref33
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref33
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref34
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref34
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref35
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref35
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref36
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref36
https://docs.nvidia.com/deeplearning/modulus/index.html
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref37
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref37
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref38
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref38
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref39
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref39
http://refhub.elsevier.com/S0141-0296(25)00274-3/sbref39

	Automated machine learning exact dirichlet boundary physics-informed neural networks for solid mechanics
	1 Introduction
	2 Model architecture
	2.1 The model architecture of AEPINN
	2.2 Exact Dirichlet boundary PINN (EPINN) framework
	2.3 Bayesian-optimization tree structured parzen estimator
	2.4 Automated machine learning EPINN (AEPINN) framework

	3 Performance of AEPINN for solving solid mechanics
	3.1 Plane stress panel under eccentric tension
	3.2 Three-dimensional bracket
	3.3 Three-dimensional frame
	3.4 Rubber cube
	3.5 Qualitative analysis and discussion of the AEPINN process

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Data availability
	References

