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 A B S T R A C T

This study focuses on dynamic continuum pedestrian flow models with random inputs, which 
can be represented by sets of partial differential equations with some modeling parameters 
being randomized. Under random conditions, the model outputs are no longer fixed and may 
differ appreciably from their respective average levels. Simulating the resulting distribution is 
important as it helps quantify the effects of uncertainties on traffic behaviors when evaluating 
walking facilities. Through two examples based on continuum models, the effect of random 
inputs on pedestrian flow propagation is qualitatively analyzed. Crowd evacuation is found 
to be effective in reducing the variation and risk produced by randomness, while congestion 
is observed to significantly increase the uncertainty within the system. For a general system 
without an explicitly known exact solution, an existing efficient solver — the multi-element 
probabilistic collocation method (ME-PCM) — is introduced to derive the solution distribution 
numerically. The ME-PCM is non-intrusive and flexible and has no limitations in terms of 
governing partial differential equations and the numerical schemes for solving them. The ME-
PCM’s use of element-wise local orthogonal polynomials to represent the solution enables it 
to converge efficiently even if shocks occur during the modeling period. As a demonstration 
case, the well-known Hughes model is applied in a numerical example with a corridor and an 
obstacle. The demand at the inflow boundary is randomized to a lognormal distribution that 
represents day-to-day demand stochasticity. The results indicate that the ME-PCM’s solution 
converges more rapidly than those of the Monte Carlo and generalized polynomial chaos 
methods. Statistical information on pedestrian density is derived from the ME-PCM solution and 
can be used to identify the locations in walking facilities where the average pedestrian density 
is moderate but where exceptional congestion with a large variance can occur. This successful 
application shows the possibility of quantifying the uncertainty in pedestrian flow models using 
the ME-PCM. The proposed approach can also be applied to models with other similar random 
inputs, given that a well-established algorithm for deterministic cases is available.
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1. Introduction

Traffic flow is influenced by various stochastic factors, including external factors (e.g., weather conditions) and internal factors 
(e.g., transportation facilities, vehicle characteristics, and driver behaviors). For instance, more people typically enter underground 
stations on rainy days (Sumalee et al., 2011a), and the free-flow speed of drivers tends to decrease during severe rainstorms and 
other extreme weather conditions (Chung et al., 2005). Considering these stochastic influences in traffic flow modeling helps to 
accurately predict and further investigate dynamic evolution.

Recent studies have extensively investigated the incorporation of stochasticity into traffic flow modeling in the fields of vehicular 
and pedestrian flows. Wang and Papageorgiou (2005) presented a general stochastic macroscopic traffic flow model of freeway 
stretches based on a traffic state estimator. Sumalee et al. (2011b) and Zhong et al. (2013) proposed a first-order macroscopic 
stochastic cell transmission model, formulating each operational mode as a discrete time bilinear stochastic system to calculate 
the traffic density of freeway segments under demand and supply uncertainties. In addition to randomizing the density function, 
researchers have attempted to quantify the stochasticity in fundamental diagrams and the corresponding phase transitions by 
randomizing the relationships among flow, density and velocity. For example, Li et al. (2012) incorporated a stochastic fundamental 
diagram into their modified Lighthill–Whitham–Richards (LWR) model, and Jabari et al. (2014) derived a stochastic relationship 
between macroscopic variables based on Newell’s simplified car-following model. Other studies have explored the randomization 
of driving behaviors and road capacity. For example, Fan et al. (2023) investigated the stochasticity of the LWR model arising from 
driver heterogeneity by randomizing free-flow speed. Brilon et al. (2005) introduced a realistic and useful concept of stochastic 
capacities, which was then used to identify the characteristics of traffic flow breakdown and occurrence conditions (Kerner and 
Klenov, 2006; Kesting et al., 2010). Additionally, recent research has aimed at modeling pedestrian flow from the perspective of 
game theory. Dogbé (2010) and Lachapelle and Wolfram (2011) applied mean-field game (MFG) theory to examine the motion 
and congestion of pedestrian crowd dynamics. Burger et al. (2013) and Djehiche et al. (2017) investigated the evacuation of 
pedestrians based on the MFG approach. Barreiro-Gomez and Masmoudi (2023) studied crowd dynamics in both non-atomic 
and atomic differential games and showed the connection of their game-theoretical models with Hughes model and the LWR 
traffic model. Ghattassi and Masmoudi (2023) presented a generalization of Hughes model based on MFGs, considering pedestrian 
behaviors that avoid high-density regions. Furthermore, Tordeux and Schadschneider (2016) introduced stochastic noise into optimal 
velocity models for pedestrians, resulting in the emergence of stop-and-go waves. Ramírez et al. (2019) implemented a cellular 
automaton model to investigate random interactions among pedestrians, parameterizing social, cultural, and psychological behaviors 
as sources of randomness.

This study considers macroscopic dynamic continuum pedestrian flow models, which are written as partial differential equations. 
The continuum modeling approach places a greater focus on the collective and average behavior of pedestrians, and it offers a 
robust theoretical description of observable phenomena, such as shock formation and evolution, providing valuable insights for an 
analytical understanding of the issue (Liang et al., 2021; Huang et al., 2009a). Moreover, it reduces the problem size and saves 
considerable computation time in the case of crowd simulation under high-density conditions and long-term planning (Cao et al., 
2015), especially for uncertainty quantification which typically requires repeatedly solving the model. In a deterministic case, the 
model inputs, including relation parameters and initial boundary conditions, are determined, and an algorithm is then used to derive 
the output (solution). However, uncertainty is always present in the model inputs, as a determined set of inputs and outputs has 
difficulty representing all possible scenarios. If the inputs are randomized based on realistic observation, the output is no longer 
determined and varies in a range that may be different from the average level. For example, the traffic demand at the entrance 
of a platform varies across different days and can be considered as a random input influenced by a scaling parameter in what is 
termed day-to-day demand stochasticity. The scaling parameter is assumed to follow a certain distribution, leading to the pedestrian 
density varying within a range. Modeling demand stochasticity is important, as it can be utilized in designing walking facilities by 
identifying critical locations that arise from varying demand distributions on different days. There may be instances where the 
average density at certain locations is moderate, but with a large variance, leading to exceptional congestion on critical days that 
can be overlooked during the standard design process based on average demand. Moreover, the likelihood of such critical situations 
can be quantified, allowing for a trade-off between the operational performance and construction cost. By adopting the probability 
distribution derived from stochastic modeling, the parameters of walking facilities, such as the corridor width and platform area, 
can be designed using a critical probability threshold, such as the 95% percentile value, ensuring that the system fails only 5% of 
the time during operation.

Under random model inputs, this study derives the distribution of pedestrian flow characteristic variables in an efficient way. 
The commonly used Monte Carlo (MC) method is useful for its robustness. When combined with high-order numerical schemes for 
deterministic partial differential equations (PDEs), the MC method has proven successful in addressing various stochastic vehicular 
problems (Parry and Hazelton, 2013; Sayegh et al., 2018; Fan et al., 2023). In most cases, a large sample size is necessary to 
obtain accurate estimates of statistical properties, such as the mean and standard deviation, as the MC method has only a half-
order convergence rate. Some techniques, such as the adoption of a quasi-random sequence (Caflisch, 1998) and the multilevel 
MC method (Giles, 2015), can be used to enhance computational efficiency, but they are computationally expensive. In addition 
to statistical MC methods, several nonstatistical approaches have been proposed (Wiener 1938, Xiu and Karniadakis 2002, Wan 
and Karniadakis 2005, Cheng et al. 2013a,b). One such approach is based on polynomial chaos (Wiener, 1938), using orthogonal 
polynomial functions to represent the stochastic process, and has proven effective for certain problems (Ghanem and Red-Horse, 
1999; Ghanem and Spanos, 2003). Xiu and Karniadakis (2002) proposed the generalized polynomial chaos (gPC) strategy and 
highlighted that the type of orthogonal polynomial should correspond to the stochastic process and distribution to achieve optimal 
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exponential convergence. Compared with MC methods, such a spectral method provides a better convergence rate and thus has 
a reduced computational cost. The method uses a truncated expansion for the solution, and the expansion coefficients can be 
determined by adopting stochastic Galerkin (SG) methods. In gPC-SG methods, truncated expressions are substituted into the original 
PDEs, and a new group of equations is derived from the coefficients in the expansion.

However, difficulties arise when applying spectral methods to pedestrian flow models with random inputs. First, the governing 
equations in pedestrian flow models are typically non-linear, and the gPC method thus makes the problem deterministic but 
without holding the original equation properties. A well-known example is the hyperbolic mass conservation equation. After the gPC 
procedure, the equation sets for expansion coefficients are no longer hyperbolic. Second, congestion is observed during the period, 
and the locations where shock appears may differ with random inputs, leading to a sharp jump or discontinuity in the randomized 
parameter space. In this situation, convergence cannot be ensured by adopting a global polynomial basis and typical gPC methods.

To efficiently obtain the pedestrian density distribution, this study considers a multi-element probabilistic collocation method 
(ME-PCM) (Wan and Karniadakis, 2005, 2006; Foo et al., 2008) and shows that this avoids the above difficulties. As a foundational 
model, Hughes model (Hughes, 2002) provides a systematic framework for the dynamic macroscopic modeling of pedestrian flow 
problems, and many continuum models have been developed based on it. To illustrate the wide applicability of the ME-PCM and its 
attractive feature of having no restrictions on the equations and numerical schemes used, this study uses the representative Hughes 
model in a test on a numerical example with a corridor and obstacle as a first demonstration. The demand at the inflow boundary is 
randomized to a lognormal distribution that represents day-to-day demand stochasticity. From the ME-PCM solutions, the statistical 
pedestrian density information can be derived to evaluate walking facilities, considering the risk of exceptional congestion. To the 
best of the authors’ knowledge, no prior study has investigated pedestrian flow stochasticity using this approach. This application 
of the spectral method offers a promising way to quantify the uncertainty in pedestrian traffic flow models. This paper provides 
a detailed framework of the ME-PCM. The method is shown to be robust and effective, especially for nonlinear problems such as 
those of demand stochasticity considered in the section reporting numerical results. Compared with MC methods, the ME-PCM has 
a much better convergence rate and computational efficiency. This study shows that the ME-PCM is a useful tool for quantifying 
uncertainties in macroscopic dynamic continuum pedestrian flow models without limitations on the PDEs used and the numerical 
schemes for solving them. The mathematical functions provided by the ME-PCM enable analytical analyses of key parameters in 
the model, including statistical quantities and sensitivity coefficients (Xiu, 2009; Foo et al., 2008). In addition, the ME-PCM can be 
applied to similar models with random inputs, given that a well-established algorithm for deterministic cases is available.

The remainder of this paper is structured as follows. Section 2 presents dynamic continuum models with random inputs in a 
general form, describes the analysis of the qualitative effect of random inputs on pedestrian flow propagation through two examples, 
and then outlines the algorithm application procedure for the ME-PCM, including the decomposition, sampling, and reconstruction 
steps. Section 3 details the adoption of the Hughes model with day-to-day demand stochasticity to demonstrate the effectiveness 
of the ME-PCM. Additionally, high-order finite-difference schemes are reviewed to solve deterministic PDEs. Numerical examples 
and simulation results, including density distribution plots, convergence rates, and a speedup comparison, are presented. Section 4 
presents the concluding remarks.

2. Models and solution methods

2.1. Pedestrian flow models with random inputs

This study considers macroscopic dynamic continuum pedestrian flow models, which can be generally described as a set of 
time-dependent PDEs with initial boundary conditions; i.e., 

𝜕𝑡𝑼 (𝒙, 𝑡) + (𝑼 (𝒙, 𝑡)) = 0, ∀(𝒙, 𝑡) ∈ 𝐷 × (0, 𝑇 ], (1a)

𝑼 (𝒙, 0) = 𝑼 0(𝒙), ∀𝒙 ∈ 𝐷, (1b)

𝑼 (𝒙, 𝑡) = 𝑮(𝑡), ∀(𝒙, 𝑡) ∈ 𝜕𝐷 × (0, 𝑇 ]. (1c)

Here, 𝐷 is a two-dimensional walking facility domain and 𝜕𝐷 is the boundary of 𝐷. 𝑡 ∈ (0, 𝑇 ], 𝑇 > 0 is time, and 𝒙 = (𝑥, 𝑦) denotes 
spatial coordinates. The components of 𝑼 (𝒙, 𝑡) represent time-varying pedestrian flow characteristic variables, such as density and 
velocity. The time-dependent governing equations are given as (1a), where  is the spatial operator representing different kinds 
of dynamic continuum models, including but not limited to the models of Hughes (2002), Huang et al. (2009b), Xia et al. (2009) 
and Hoogendoorn and Bovy (2004), and other first-order and second-order pedestrian flow models that can be written as partial 
differential equations. Given the initial condition (1b) and boundary condition (1c), the above system is closed as a deterministic 
system and can be solved using a number of numerical approaches, such as the adoption of finite difference and finite element 
schemes.

We assume that some parameters in the pedestrian flow model are randomized, and with different parameters, the output 
(solution) of the model may also have appreciable differences. Such randomized parameters are regarded as random inputs of the 
model and are assumed to follow certain distributions. For different problems, the randomness can enter the system from operator 
 in PDEs, from the initial conditions 𝑼 0 and boundary conditions 𝑮, and even from the geometry settings 𝐷 and 𝜕𝐷.

For simplicity, this study considers that the dimension of random inputs is one and a single random variable is appended to the 
generalized system. Consider a complete probability space (𝛺, ,P), where 𝛺 is the sample space,  is the 𝜎-algebra of subsets of 
3
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the random event 𝜔, and P is a probability measure. Assume the input can be expressed as a random variable 𝜉(𝜔) ∶ 𝛺 ↦ R, with 
a probabilistic density function (PDF) 𝑤(𝜉). Let 𝛩 be the image of 𝜉(𝛺). The model with a random input is then expressed as 

𝜕𝑡𝑼 (𝒙, 𝑡, 𝜉) + (𝑼 (𝒙, 𝑡, 𝜉)) = 0, ∀(𝒙, 𝑡, 𝜉) ∈ 𝐷 × (0, 𝑇 ] × 𝛩, (2a)

𝑼 (𝒙, 0, 𝜉) = 𝑼 0(𝒙, 𝜉), ∀(𝒙, 𝜉) ∈ 𝐷 × 𝛩, (2b)

𝑼 (𝒙, 𝑡, 𝜉) = 𝑮(𝑡, 𝜉), ∀(𝒙, 𝑡, 𝜉) ∈ 𝜕𝐷 × (0, 𝑇 ] × 𝛩. (2c)

 Here, the model is expressed in a general form to illustrate that the ME-PCM can be applied without limitations on governing PDEs 
and random inputs. Although different models can be considered, this study uses Hughes model (Hughes, 2002), on the basis of 
which many continuum models are developed, in a demonstration. The details are discussed in the section presenting the numerical 
example.

2.2. Qualitative effects of random inputs on pedestrian flow propagation

Two specific examples are used to demonstrate the continuum model’s ability to analytically study pedestrian flow propagation 
within a stochastic paradigm. The continuum modeling approach provides a collective description of pedestrian traffic behaviors in 
an equation form, enabling the analytical analysis of pedestrian flow propagation with random inputs. For a system (2) in hyperbolic 
form which is commonly used in continuum models, the solution property and the influence of uncertainty can be mathematically 
studied (LeVeque, 1992; Schwab and Tokareva, 2013; Cho et al., 2014). For example, the shock formation in a traffic flow model 
can be explained using characteristic lines for hyperbolic systems (LeVeque, 1992). Accordingly, the qualitative effects of random 
inputs on pedestrian flow propagation are examined herein.

Consider a flow of pedestrians on a platform, where 𝜌 and 𝑢 denote the density and walking speed of the pedestrians, respectively. 
The density is restricted to 0 ≤ 𝜌 ≤ 𝜌max, where 𝜌max is the maximum density. Because the pedestrian flow is conserved, the density 
and speed must satisfy the continuity equation 

𝜌𝑡 + (𝜌𝑢)𝑥 = 0. (3)

The local walking speed 𝑢 = 𝑢(𝜌) is related to the local density and can be determined using pedestrian fundamental diagrams. The 
Greenshields model yields the linear relation 

𝑢(𝜌) = 𝑢𝑓 (1 − 𝜌∕𝜌max), (4)

where 𝑢𝑓  is the free-flow speed of pedestrians. Substituting this term into (3) gives 

𝜌𝑡 + 𝑓 (𝜌)𝑥 = 0, 𝑓 (𝜌) = 𝜌𝑢𝑓 (1 − 𝜌∕𝜌max). (5)

Here, two types of initial and boundary conditions are considered. The randomness enters the system from the boundary condition 
in the first example, while the initial condition randomizes in the second example.

• Example 1. Pedestrians marching into an empty platform. 
𝜕𝑡𝜌(𝑥, 𝑡, 𝜉) + 𝜕𝑥𝑓 (𝜌(𝑥, 𝑡, 𝜉)) = 0, ∀(𝑥, 𝑡, 𝜉) ∈ (0, 𝐿) × (0, 𝑇 ] × 𝛩, (6a)

𝜌(𝑥, 0, 𝜉) = 0, ∀(𝑥, 𝜉) ∈ (0, 𝐿) × 𝛩, (6b)

𝜌(0, 𝑡, 𝜉) = 𝜉, ∀(𝑡, 𝜉) ∈ (0, 𝑇 ] × 𝛩. (6c)

 This model describes the state of pedestrians moving slowly from a queue (𝑥 < 0) to enter an empty field (0 < 𝑥 < 𝐿), where 𝐿
is the length of the platform. The parameter 𝜉 here represents the density of the queue and is regarded as a random variable.

• Example 2. Walking pedestrians meeting a jam. 
𝜕𝑡𝜌(𝑥, 𝑡, 𝜉) + 𝜕𝑥𝑓 (𝜌(𝑥, 𝑡, 𝜉)) = 0, ∀(𝑥, 𝑡, 𝜉) ∈ (−∞, 𝐿) × (0, 𝑇 ] × 𝛩, (7a)

𝜌(𝑥, 0, 𝜉) = 𝜉, ∀(𝑥, 𝜉) ∈ (−∞, 𝐿) × 𝛩, (7b)

𝜌(𝐿, 𝑡, 𝜉) = 𝜌max, ∀(𝑡, 𝜉) ∈ (0, 𝑇 ] × 𝛩. (7c)

 This model describes the state of walking pedestrians (𝑥 < 𝐿) meeting a jam at 𝑥 = 𝐿. The parameter 𝜉 here denotes the 
initial uniform density of the pedestrians and is again regarded as a random variable.

Using characteristic lines (LeVeque, 1992), the solution of these two examples at position 𝑥 and time 𝑡 can be determined based 
on the characteristic speed 

𝑓 ′(𝜌) = 𝑢𝑓
(

1 − 2𝜌∕𝜌max
)

. (8)

For the first example, if the random variable is assumed to be uniformly distributed, i.e., 𝜉 ∼  (0, 𝜌𝑚𝑎𝑥∕2), then the exact solution 
(Fig.  1(a)) is a rarefaction wave when 𝑡 < 𝐿∕𝑢𝑓 :

𝜌(𝑥, 𝑡, 𝜉) =

⎧

⎪

⎨

⎪

𝜉, 0 ≤ 𝑥 < 𝑢𝑓 𝑡(1 − 2𝜉∕𝜌max),
− 𝜌max

2𝑢𝑓 𝑡

(

𝑥 − 𝑢𝑓 𝑡
)

, 𝑢𝑓 𝑡(1 − 2𝜉∕𝜌max) ≤ 𝑥 ≤ 𝑢𝑓 𝑡,
4

⎩

0, 𝑢𝑓 𝑡 < 𝑥 < 𝐿.
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Fig. 1. The graphs of pedestrian density 𝜌 in terms of location 𝑥 for different inputs 𝜉. Left: result of example 1. Right: result of example 2.

By defining 𝛾 = 𝑥
𝑢𝑓 𝑡
, the solution can be expressed as 

𝜌(𝑥, 𝑡, 𝜉) =

⎧

⎪

⎨

⎪

⎩

𝜉, 0 ≤ 𝛾 < 1 − 2𝜉∕𝜌max,
− 𝜌max

2 (𝛾 − 1) , 1 − 2𝜉∕𝜌max ≤ 𝛾 ≤ 1,
0, 1 < 𝛾 < 𝐿∕(𝑢𝑓 𝑡).

(9)

Notably, the exact solution (9) has three intervals. The interval (0, 1 − 2𝜉∕𝜌max) represents the pedestrians still walking in the queue 
with a uniform speed 𝑢(𝜉). The interval (1, 𝐿∕(𝑢𝑓 𝑡)) represents the area that the pedestrians have not reached. The pedestrians in 
(1 − 2𝜉∕𝜌max, 1) begin to accelerate and spread out as there is no pedestrian in front of them, which leads to a decrease in the 
pedestrian density.

With the exact solution known, the mean and deviation of the density 𝜌 at position 𝑥 and time 𝑡 can be derived from 
E[𝜌(𝑥, 𝑡, 𝜉)] = ∫𝛩 𝜌(𝑥, 𝑡, 𝜉)𝑤(𝜉)𝑑𝜉 and D[𝜌(𝑥, 𝑡, 𝜉)] = E[𝜌2(𝑥, 𝑡, 𝜉)] −E[𝜌(𝑥, 𝑡, 𝜉)]2. For the first example, the uniformly distributed random 
variable 𝜉 ∼  (0, 𝜌max∕2) yields a PDF 𝑤(𝜉) = 2∕𝜌max. Through simple calculations, the following results are obtained for 0 ≤ 𝛾 ≤ 1:

E[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌max
4

(1 − 𝛾2), D[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌2max
48

(1 − 𝛾)3(1 + 3𝛾).

The mean and deviation of the random variable 𝜉 are E[𝜉] = 𝜌max∕4 and D[𝜉] = 𝜌2max∕48, respectively. The relations between the 
statistical properties of the solution 𝜌(⋅, 𝜉) and the random input 𝜉 are written as 

E[𝜌(⋅, 𝜉)] = E[𝜉](1 − 𝛾2), D[𝜌(⋅, 𝜉)] = D[𝜉](1 − 𝛾)3(1 + 3𝛾), 0 ≤ 𝛾 ≤ 1. (10)

Here, 𝛾 = 𝑥
𝑢𝑓 𝑡

 actually represents the relative position of a pedestrian within the advancing crowd, where 𝛾 = 0 and 𝛾 = 1
signify the tail and head of the crowd, respectively. E(⋅) = E[𝜌(⋅, 𝜉)]∕E[𝜉] is defined as the ratio between the mean of 𝜌 and 𝜉, 
while D(⋅) = D[𝜌(⋅, 𝜉)]∕D[𝜉] denotes the ratio between the deviation of 𝜌 and 𝜉. E and D quantify the responses of pedestrian 
density to random inputs at different locations and times. From (10), these ratios can be directly derived as E(𝛾) = 1 − 𝛾2 and 
D(𝛾) = (1 − 𝛾)3(1 + 3𝛾) for 0 ≤ 𝛾 ≤ 1. Fig.  2(a) plots the graphs of E and D, which demonstrate that both ratios decrease as 
𝛾 increases from 0 to 1. E falls because the pedestrian density decreases from the tail of the crowd to the head, while the fall 
in D is due to the crowd spreading out. This is consistent with real-world observations because the spreading out of a crowd to 
low-density regions reduces the number of pedestrians per unit length and the diversity of the system.

For the second example, if the random variable is assumed to be uniformly distributed, i.e., 𝜉 ∼  (0, 𝜌max), then the exact solution 
(Fig.  1(b)) is a shockwave when 𝑡 < 𝐿∕𝑢𝑓 :

𝜌(𝑥, 𝑡, 𝜉) =

{

𝜉, 𝑥 < 𝐿 − 𝜉
𝜌max

𝑢𝑓 𝑡,

𝜌max, 𝐿 − 𝜉
𝜌max

𝑢𝑓 𝑡 < 𝑥 < 𝐿,

where the traveling speed − 𝜉
𝜌max

𝑢𝑓  is derived based on the Rankine–Hugoniot jump condition 𝑠 = 𝑓 (𝜉)−𝑓 (𝜌max)
𝜉−𝜌max

 (LeVeque, 1992). By 
defining 𝛾 = 𝐿−𝑥

𝑢𝑓 𝑡
> 0, the solution can be expressed as 

𝜌(𝑥, 𝑡, 𝜉) =

{

𝜌max, 0 < 𝛾 < 𝜉
𝜌max

,

𝜉, 𝛾 > 𝜉 .
(11)
5
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Fig. 2. The graphs of E and D in terms of 𝛾. Left: result of example 1 with 𝛾 = 𝑥
𝑢𝑓 𝑡
. Right: result of example 2 with 𝛾 = 𝐿−𝑥

𝑢𝑓 𝑡
.

Here, the interval (0, 𝜉
𝜌max

) corresponds to the region where the pedestrians have met a jam, decelerated to a stop, and formed a 
congested crowd. Conversely, the interval ( 𝜉

𝜌max
,+∞) represents the region where the pedestrians have not been affected by the jam 

in front of them. Similarly, the mean and deviation of the density can be calculated as

0 < 𝛾 < 1 ∶ E[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌max
2

[

1 + (𝛾 − 1)2
]

, D[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌2max
12

𝛾(12 − 24𝛾 + 16𝛾2 − 3𝛾3),

𝛾 > 1 ∶ E[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌max
2

, D[𝜌(𝑥, 𝑡, 𝜉)] =
𝜌2max
12

.

As E[𝜉] = 𝜌max∕2 and D[𝜉] = 𝜌2max∕12, the ratio functions are

E(𝛾) =
{

1 + (𝛾 − 1)2, 0 < 𝛾 < 1,
1, 𝛾 > 1,

D(𝛾) =
{

𝛾(12 − 24𝛾 + 16𝛾2 − 3𝛾3), 0 < 𝛾 < 1,
1, 𝛾 > 1.

The parameter 𝛾 = 𝐿−𝑥
𝑢𝑓 𝑡

 represents the distance from a pedestrian’s position to the initial jam location. Fig.  2(b) plots the graphs 
of E and D. E is observed to be larger in the region where the shock is generated and congestion occurs (0 < 𝛾 < 1) than in 
the region not influenced by the shock (𝛾 > 1). Moreover, E decreases as 𝛾 increases, because the response of pedestrians to the 
randomness is attenuated at locations distant from the jam. D, by comparison, exhibits a slight variation within the region (0, 1). 
When 𝛾 is close to 0, D tends to 0. This is because pedestrians always stop at this location when they encounter congestion, and 
the density attains its highest density (𝜌max). Because the position of the shock is uncertain, D begins to increase and reaches its 
maximum value when 𝛾 ≈ 1

3 . This maximum exceeds the constant value D = 1 in the region (1,+∞), which indicates that the 
congestion and shock generation would inject more variations and risk into the system. Thereafter, D begins to decrease, similar 
to E. However, compared with that in the first example, the decline in D due to congestion is delayed. Therefore, considerable 
time is required to eliminate the effects of the high variance caused by congestion.

The analytical analysis of these two examples illustrates that crowd evacuation can effectively reduce the variation and risk 
created by randomness, whereas congestion can significantly increase the uncertainty within the system. Furthermore, in terms of 
the pedestrian density, the decrease in deviation within the system tends to lag behind the decrease in mean. Similar observations 
are also reported in the numerical results. The analytical examination using the continuum model provides valuable insights into 
the properties of pedestrian flow propagation in a stochastic environment.

For a general model (2), for which the exact solution and statistics are not explicitly known, the ME-PCM presented next 
constitutes a rapid method to numerically derive the solution and its statistical properties.

2.3. Multi-element probabilistic collocation method

This part introduces the details of ME-PCM application to the generalized pedestrian flow model as described before, including 
the decomposition of random space, sampling and reconstruction. The strategy transforms the original problem into a collection of 
deterministic samples, to which the well-established solution algorithm for deterministic PDEs can be applied. The overall procedure 
of the ME-PCM is finally summarized to facilitate the application of this methodology by interested researchers.

The target solution 𝑼 (𝒙, 𝑡, 𝜉) of system (2) is assumed to be a second-order space–time-related random field. In contrast to MC 
methods, gPC type methods adopt a functional expression of the stochastic process: 

𝑼 (𝒙, 𝑡, 𝜉) =
+∞
∑

𝑼̂ 𝑗 (𝒙, 𝑡)𝛷𝑗 (𝜉), (12)
6

𝑗=0
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where 𝛷𝑗 is the orthogonal polynomial basis, and 𝑼̂ 𝑗 denotes the corresponding coefficients. This expression was first proposed 
by Wiener (1938), using Hermite polynomials to represent Gaussian stochastic processes. According to the theorem presented 
by Cameron and Martin (1947), the polynomial chaos expansion converges for a second-order process in the 𝐿2 sense. Therefore, a 
truncated expansion with 𝑁𝑝 +1 terms ∑𝑁𝑝

𝑗=0 𝑼̂ 𝑗 (𝒙, 𝑡)𝛷𝑗 (𝜉) provides an appropriate approximation. As described before, for a highly-
nonlinear model, the solution involves a discontinuity or sharp region in the random space, leading to poor convergence when using 
high-degree global polynomials. In addition, the gPC method may not be suitable for certain long-term problems (Gerritsma et al., 
2010). The statistical properties of the solution change over time, and the orthogonal polynomial basis that leads to exponential 
convergence in the initial period may not be effective in later stages.

To address this problem, a multi-element probabilistic collocation method is considered here (Wan and Karniadakis, 2005, 2006; 
Foo et al., 2008). The main concept of the ME-PCM is to decompose the random space into elements and represent the solution 
using element-wise polynomials. In this framework, the ME-PCM yields more accurate approximations of the solution distribution 
with a minimal increase in the computational cost. The procedure involves three key steps, namely decomposing the random 
space, sampling, and reconstructing expansion coefficients. The spatial and temporal discretization schemes are not limited and 
are discussed later.

Decomposition is achieved by discretizing the random space 𝛩 into 𝑁𝑒 nonoverlapping meshes of open intervals: 
⎧

⎪

⎨

⎪

⎩

𝐵𝑘 = (𝑎𝑘, 𝑏𝑘),
𝛩 = ∪𝑁𝑒

𝑘=1𝐵𝑘,
𝐵𝑘1 ∩ 𝐵𝑘2 = ∅, ∀ 𝑘1 ≠ 𝑘2,

(13)

where 𝑘, 𝑘1, 𝑘2 = 1,… , 𝑁𝑒. Here, 𝑎𝑘 and 𝑏𝑘 are finite or infinite in R, allowing the decomposition to be applied to any type of 
continuous distribution.

Definition 1.  Based on the decomposition, for each random element, the indicator random variable is defined as 

𝐼𝐵𝑘
=
{

1, if 𝜉 ∈ 𝐵𝑘,
0, otherwise. 𝑘 = 1, 2,… , 𝑁𝑒. (14)

This leads to a decomposition of the sample space 𝛺 = ∪𝑁𝑒
𝑘=1𝐼

−1
𝐵𝑘

(1), where 𝐼−1𝐵𝑘1
(1) ∩ 𝐼−1𝐵𝑘2

(1) = ∅,∀𝑘1 ≠ 𝑘2. 

Definition 2.  In each element 𝐵𝑘, a new local random variable 
𝜉𝑘(𝜔) ∶ 𝐼−1𝐵𝑘

(1) ↦ 𝐵𝑘 (15)

is defined in the probability space (𝐼−1𝐵𝑘
(1), ∩ 𝐼−1𝐵𝑘

(1), 𝑃 (⋅|𝐼𝐵𝑘
= 1)) with a conditional PDF 

𝑤̂𝑘(𝜉𝑘|𝐼𝐵𝑘
= 1) =

𝑤(𝜉𝑘)
∫𝐵𝑘

𝑤(𝜉)d𝜉
, (16)

where ∫𝐵𝑘
𝑤(𝜉)𝑑𝜉 > 0.

To this end, the random space 𝛩 is decomposed and local random variables 𝜉𝑘 are obtained. Regarding the conditional PDF 
𝑤̂𝑘 as a weight function, a local orthogonal polynomial basis 

{

𝛷𝑘,𝑗 (𝜉𝑘)
}𝑁𝑝
𝑗=0 is constructed by adopting the following Stieltjes 

procedure (Gautschi, 1982), where 𝑁𝑝 + 1 is the number of orthogonal basis functions. 

Theorem 1 (Stieltjes Procedure). The basis functions satisfy a three-term recurrence relation
𝛷𝑘,𝑗+1(𝜉𝑘) = (𝜉𝑘 − 𝑎𝑘,𝑗 )𝛷𝑘,𝑗 (𝜉𝑘) − 𝑏𝑘,𝑗𝛷𝑘,𝑗−1(𝜉𝑘), 𝑗 = 0, 1,… ,

𝛷𝑘,0(𝜉𝑘) = 1, 𝛷𝑘,−1(𝜉𝑘) = 0. (17)

where the recurrence coefficients 𝑎𝑘,𝑗 , 𝑏𝑘,𝑗 are

𝑎𝑘,𝑗 =
E[𝜉𝑘𝛷2

𝑘,𝑗 ]

E[𝛷2
𝑘,𝑗 ]

, 𝑗 = 0, 1, 2,… , (18)

𝑏𝑘,0 = E[𝛷2
𝑘,0], 𝑏𝑘,𝑗 =

E[𝛷2
𝑘,𝑗 ]

E[𝛷2
𝑘,𝑗−1]

, 𝑗 = 1, 2,… . (19)

In element 𝐵𝑘, the polynomial basis functions are orthogonal with respect to 𝑤̂𝑘: 

E[𝛷𝑘,𝑖𝛷𝑘,𝑗 ] = ∫𝐵𝑘

𝛷𝑘,𝑖(𝜉𝑘)𝛷𝑘,𝑗 (𝜉𝑘)𝑤̂𝑘(𝜉𝑘|𝐼𝐵𝑘
= 1)d𝜉𝑘 = 0, ∀ 𝑖 ≠ 𝑗. (20)

The local approximation of 𝑼 (𝒙, 𝑡, 𝜉) in element 𝐵𝑘 is efficiently expressed as (Wan and Karniadakis, 2006) 

𝑼 (𝒙, 𝑡, 𝜉𝑘)|𝜉𝑘∈𝐵𝑘
≈ 𝑼̂𝑘(𝒙, 𝑡, 𝜉𝑘) =

𝑁𝑝
∑

𝑼̂𝑘,𝑗 (𝒙, 𝑡)𝛷𝑘,𝑗 (𝜉𝑘). (21)
7
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Consequently, the approximation on the entire random field is expressed as 

𝑼 (𝒙, 𝑡, 𝜉)|𝜉∈𝛩 =
𝑁𝑒
∑

𝑘=1
𝑼̂𝑘(𝒙, 𝑡, 𝜉)𝐼𝐵𝑘

=
𝑁𝑒
∑

𝑘=1

𝑁𝑝
∑

𝑗=0
𝑼̂𝑘,𝑗 (𝒙, 𝑡)𝛷𝑘,𝑗 (𝜉)𝐼𝐵𝑘

. (22)

The next step is to determine the coefficients 𝑼̂𝑘,𝑗 . Unlike the SG method, which requires solving a new group of equations 
with respect to coefficients in the expansion, the ME-PCM derives the coefficients based on sampling. The ME-PCM is one example 
of a stochastic collocation (SC) method (Xiu, 2009), a category of methods that have emerged as promising computational tools 
for uncertainty quantification owing to their robustness and unlimited numerical schemes. Leveraging a suitable quadrature rule, 
the SC scheme can be considered as an approximation of the SG scheme (Zhong and Shu, 2022). In each element 𝐵𝑘, the Galerkin 
projection onto the space spanned by orthogonal polynomials is the best approximation in the 𝐿2 sense (Kincaid and Cheney, 2009). 
The coefficient takes the form 

𝑼̂𝑘,𝑗 (𝒙, 𝑡) =
1

E[𝛷2
𝑘,𝑗 ] ∫𝐵𝑘

𝑼 (𝒙, 𝑡, 𝜉𝑘)𝛷𝑘,𝑗 (𝜉𝑘)𝑤̂𝑘(𝜉𝑘|𝐼𝐵𝑘
= 1)d𝜉𝑘. (23)

In the pseudo-projection SC approach (Foo et al., 2008; Xiu, 2009), a Gauss quadrature rule is applied to approximate the integration 
in (23). Specifically, 

𝑼̂𝑘,𝑗 (𝒙, 𝑡) ≈
1

E[𝛷2
𝑘,𝑗 ]

𝑁𝑠
∑

𝑠=1
𝛼𝑠𝑘𝑼 (𝒙, 𝑡, 𝜉𝑠𝑘)𝛷𝑘,𝑗 (𝜉𝑠𝑘), (24)

where {𝜉𝑠𝑘
}𝑁𝑠
𝑠=1 represents the integration points of the quadrature rule on 𝐵𝑘 with weights 

{

𝛼𝑠𝑘
}𝑁𝑠
𝑠=1. The equation sets (2) are then 

enforced at node 𝜉𝑠𝑘 for all 𝑘 = 1,… , 𝑁𝑒, 𝑠 = 1,… , 𝑁𝑠: 

𝜕𝑡𝑼 (𝒙, 𝑡, 𝜉𝑠𝑘) + (𝑼 (𝒙, 𝑡, 𝜉𝑠𝑘)) = 0, ∀(𝒙, 𝑡) ∈ 𝐷 × (0, 𝑇 ], (25a)

𝑼 (𝒙, 0, 𝜉𝑠𝑘) = 𝑼 0(𝒙, 𝜉𝑠𝑘), ∀𝒙 ∈ 𝐷, (25b)

𝑼 (𝒙, 𝑡, 𝜉𝑠𝑘) = 𝑮(𝑡, 𝜉𝑠𝑘), ∀(𝒙, 𝑡) ∈ 𝜕𝐷 × (0, 𝑇 ]. (25c)

 For each fixed 𝜉𝑠𝑘, (25a) with (25b) and (25c) represent a deterministic system, which can be solved using a well-established 
algorithm. The algorithm for the deterministic problem has no limitations and can be viewed as a black box in the ME-PCM 
procedure. This ease of implementation is an important advantage of sampling-based methods, including MC methods. After 
repeatedly running the code at different input parameter values, the solution ensemble ∪𝑁𝑒

𝑘=1 ∪
𝑁𝑠
𝑠=1

{

𝑼 (𝒙, 𝑡, 𝜉𝑠𝑘)
} is derived, and then 

in each random space 𝐵𝑘, the expansion is reconstructed using (21) and (24).
From the gPC expansion (21) in element 𝐵𝑘 and orthogonality of the basis, the local mean and deviation are directly obtained 

as 

E[𝑼 (⋅, 𝜉𝑘)] = 𝑼̂𝑘,0, D[𝑼 (⋅, 𝜉𝑘)] =
𝑁𝑝
∑

𝑗=1
𝑼̂ 2

𝑘,𝑗E[𝛷
2
𝑘,𝑗 ], in element 𝐵𝑘. (26)

Here, ‘‘⋅’’ represents spatial and time coordinates. The global mean and deviation are simply derived as

E[𝑼 (⋅, 𝜉)] =
𝑁𝑒
∑

𝑘=1
𝑼̂𝑘,0 ∫𝐵𝑘

𝑤(𝜉)𝑑𝜉, (27)

D[𝑼 (⋅, 𝜉)] =
𝑁𝑒
∑

𝑘=1

⎡

⎢

⎢

⎣

𝑁𝑝
∑

𝑗=1
𝑼̂ 2

𝑘,𝑗E[𝛷
2
𝑘,𝑗 ] +

(

𝑼̂𝑘,0 − E[𝑼 (⋅, 𝜉)]
)2
⎤

⎥

⎥

⎦

∫𝐵𝑘

𝑤(𝜉)𝑑𝜉. (28)

Moreover, the 95% confidence interval at a space–time point is defined as [𝑺𝑎(⋅),𝑺𝑏(⋅)
]

, satisfying 𝑃 (

𝑺𝑎(⋅) < 𝑼 (⋅, 𝜉) < 𝑺𝑏(⋅)
)

= 0.95. 
𝑺𝑎 and 𝑺𝑏 are respectively the minimum and maximum of the 95% confidence interval. The above statistical information can be 
quickly computed using the functional expression (22) for 𝑼 .

The accuracy of the ME-PCM depends on the number of random elements 𝑁𝑒 and the polynomial order 𝑁𝑝. It has been 
proven (Foo et al., 2008) that for a fixed 𝑁𝑝, the ME-PCM solution has a moments error of 𝑂(𝑁

−2(𝑁𝑝+1)
𝑒 ) for a smooth function, 

neglecting the error in spatial and temporal discretization. The number of integration points, 𝑁𝑠, must match 𝑁𝑒 to ensure accuracy. 
In this study, 𝑁𝑠 is set as 𝑁𝑝 +1 to ensure that the approximation (24) is exactly satisfied when the true solution is a polynomial of 
order 𝑁𝑝. The total number of sample points is 𝑁 = 𝑁𝑒 ⋅𝑁𝑠 = 𝑁𝑒(𝑁𝑝 + 1), and the moments error can be expressed as 𝑂(𝑁−2(𝑁𝑝+1))
for fixed 𝑁𝑝. For smooth functions, the ME-PCM solution has a convergence rate of 𝑂(𝑁−4) when 𝑁𝑝 = 1, which is much better 
than the half-order convergence 𝑂(𝑁−1∕2) of the MC method. In terms of the non-linear pedestrian flow models considered here, 
although the expected convergence may not be realized without a guarantee of solution regularity, this study still obtains results 
having an improved convergence rate compared with the results of MC methods. This is discussed in detail in the numerical results 
section.

The desired accuracy can be maintained using two strategies, namely refining the decomposition (increasing 𝑁𝑒) and increasing 
the polynomial order (increasing 𝑁𝑝). Adaptive refinement (Wan and Karniadakis, 2005) can be introduced to accelerate con-
vergence. In maintaining algorithm efficiency, uniform decomposition can be first considered, and the ‘‘off-line’’ element-wise 
8
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polynomial basis needs to be constructed only once. In practice, the random variable 𝜉𝑘 in element 𝐵𝑘 can be linearly transformed 
according to 

𝜉𝑘 =
𝑏𝑘 − 𝑎𝑘

2
𝜂𝑘 +

𝑏𝑘 + 𝑎𝑘
2

(29)

into a random variable 𝜂𝑘 defined on [−1, 1]. The PDF of 𝜂𝑘 is defined as 

𝑤̄𝑘(𝜂𝑘|𝐼𝐵𝑘
= 1) =

𝜕𝜉𝑘
𝜕𝜂𝑘

𝑤̂𝑘(𝜉𝑘|𝐼𝐵𝑘
= 1) =

𝑏𝑘 − 𝑎𝑘
2

𝑤(𝜉𝑘(𝜂𝑘))
∫𝐵𝑘

𝑤(𝜉)𝑑𝜉
. (30)

The ME-PCM is then introduced with respect to 𝜂𝑘 adopting a standard procedure in the unit interval [−1, 1]. For the element 𝐵𝑘
having an infinite boundary, the probability ∫𝐵𝑘

𝑤(𝜉)𝑑𝜉 on 𝐵𝑘 is always small. As the values in these elements typically have no 
practical meaning, they can be eliminated at the cost of negligible error.

The following algorithm 1 outlines the overall algorithm flow. We assume an explicit temporal discretization scheme is used to 
update (25a) in the time sequence 𝑡0, 𝑡1,… , 𝑡𝑛.

Algorithm 1 ME-PCM procedure

1: Step 1: Discretize the random space 𝛩 and spatial space 𝐷. In each element 𝐵𝑘, construct local polynomial basis 
{

𝛷𝑘,𝑗
}𝑁𝑝
𝑗=0 with 

respect to the corresponding conditional PDF 𝑤̂𝑘, and derive integration points and weights 
{

(𝜉𝑠𝑘, 𝛼
𝑠
𝑘)
}𝑁𝑠
𝑠=1. Initialize the solution 

𝑼 (𝒙, 𝑡0, 𝜉). 
2: Step 2: Loop for each time step 𝑡𝑛(𝑛 ≥ 0): 
3:  Determine the solution 𝑼 (𝒙, 𝑡𝑛, 𝜉𝑠𝑘); 
4:  Loop for each sample point 𝜉𝑠𝑘: 
5:   Solve (25) using existing numerical solvers. 
6:  Derive the solution ensemble ∪𝑁𝑒

𝑘=1 ∪
𝑁𝑠
𝑠=1

{

𝑼 (𝒙, 𝑡𝑛+1, 𝜉𝑠𝑘)
}

; 
7:  Reconstruct the solution 𝑼 (𝒙, 𝑡𝑛+1, 𝜉); 
8: Step 3: Output the deserved statistical information.

The complexity of the ME-PCM algorithm mainly depends on the number of samples 𝑁 = 𝑁𝑒(𝑁𝑝+1), as the cost associated with 
the construction of orthogonal polynomials is negligible. Note that for every random input 𝜉𝑠𝑘, the simulations are independent at 
each time step. Parallelization can thus be applied to further reduce the computational cost.

3. Numerical example

To demonstrate the effectiveness of the ME-PCM, this section uses the well-known Hughes model by appending a random 
variable to the boundary condition. A two-dimensional numerical example that includes a corridor with an obstacle is presented, 
and the inflow demand at the entrance is assumed to follow a lognormal distribution. High-order finite difference schemes are 
applied to solve deterministic PDEs as samples. Statistical information, including the expectation, standard deviation, and confidence 
interval, is efficiently derived to quantify the locations where exceptional congestion varies from the average level in the walking 
facility. Simulations are performed using different numbers of random elements and polynomial basis functions to test the converge 
performance of the ME-PCM. The numerical results show that the ME-PCM accelerates simulations relative to MC methods, even in 
scenarios with increased variance.

3.1. Hughes model with randomized inflow demand

A railway platform including a corridor with an obstacle, as illustrated in Fig.  3, is considered. Pedestrians enter from the left 
entrance and leave through the right exit. The boundary 𝜕𝐷 = 𝛤𝑜 ∪𝛤𝑑 ∪𝛤ℎ, where 𝛤𝑜, 𝛤𝑑 , and 𝛤ℎ denote the entrance, exit, and wall 
of the walking facility, respectively. Hughes model (Hughes, 2002) is considered to describe pedestrian crowd dynamics in which 
pedestrians move along the path that minimizes their travel time while avoiding extremely high densities. The model is given by 

𝜌𝑡 + ∇ ⋅
(

−𝜌
𝑢(𝜌)
𝑐(𝜌)

∇𝜙
)

= 0, ∀(𝒙, 𝑡, 𝜉) ∈ 𝐷 × (0, 𝑇 ] × 𝛩, (31a)

|∇𝜙| = 𝑐(𝜌), ∀(𝒙, 𝑡, 𝜉) ∈ 𝐷 × (0, 𝑇 ] × 𝛩. (31b)

 The function 𝜌(𝒙, 𝑡, 𝜉) represents the time-varying pedestrian density, and 𝜙(𝒙, 𝑡, 𝜉) represents the walking time potential along 
the instantaneous shortest path from location 𝒙 to the destination 𝛤𝑑 (𝜙 = 0), based on the traffic condition at moment 𝑡. 𝒇 =
−𝜌𝑢(𝜌)∕𝑐(𝜌)∇𝜙 is the flow vector. 𝑢(𝜌) is the local walking speed and can be determined using various types of pedestrian fundamental 
diagrams, such as Greenshields’s model (Huang et al., 2009a), Drake’s model (Wong et al., 2010), and Newell’s model (Newell, 1961). 
In this study, Newell’s model is applied because of its flexibility in fitting observed speed−density diagrams (Parisi et al., 2021). 
The model is given by 

𝑢(𝜌) = 𝑢𝑓

{

1 − exp
[

𝑐0
(

1 −
𝜌max

)]}

, (32)
9
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Fig. 3. The geometry of the railway platform.

where 𝑢𝑓  is the average walking speed of pedestrians, and 𝑐0 is a parameter governing the backward wave speed at maximum 
density, 𝜌max. The cost function 𝑐(𝜌) is defined as 𝑐(𝜌) = 1∕𝑢(𝜌) + 𝑔(𝜌), where 1∕𝑢(𝜌) represents the local cost associated with the 
(estimated) travel time, and 𝑔(𝜌) represents the level of discomfort assumed to monotonically increase with density. Eq. (31a) is the 
continuity equation and Eq. (31b) is an eikonal equation, which ensures that pedestrians select routes that minimize their individual 
travel cost to the destination, considering the instantaneous travel cost information.

Randomness enters the system from the following initial boundary conditions: 
𝒇 (𝒙, 𝑡, 𝜉) ⋅ 𝒏(𝒙) = 𝜉𝑞(𝒙, 𝑡), ∀(𝒙, 𝑡, 𝜉) ∈ 𝛤𝑜 × (0, 𝑇 ] × 𝛩, (33a)

𝜌(𝒙, 0, 𝜉) = 𝜌0(𝒙), ∀(𝒙, 𝜉) ∈ 𝐷 × 𝛩, (33b)

𝜙(𝒙, 𝑡, 𝜉) = 0, ∀(𝒙, 𝑡, 𝜉) ∈ 𝛤𝑑 × (0, 𝑇 ] × 𝛩. (33c)

Here, 𝒏(𝒙) is a unit outer normal vector that points outward from the domain boundary, and 𝜌0(𝒙) is the initial pedestrian density. 
𝑞(𝒙, 𝑡) represents the number of pedestrians crossing a unit width of the original segment and is given as a deterministic time-varying 
demand function. 𝜉 is a random variable satisfying the following assumptions of demand stochasticity.

1. Stochasticity arises from factors influencing the traffic demand 𝑞 at the entrance. The impact of these factors is reflected in 
the average traffic demand 𝑞 being scaled up or down by the parameter 𝜉.

2. The scaling parameter 𝜉 is treated as a random input following a lognormal distribution.

For instance, on a rainy day, a greater number of people are observed to enter underground stations, increasing the traffic demand 
(𝜉 > 1) at the entrance (although the demand may vary with time). The scaling parameter 𝜉 remains fixed during the brief period 
in which people enter and exit the platform, as weather conditions typically do not change appreciably within a few minutes. On 
a sunny day, 𝜉 is smaller (𝜉 < 1) but remains fixed in a given period. Under random conditions, the pedestrian density varies 
within a range, and this variation cannot be captured by a deterministic model within average demand. The random variable 𝜉
scaling the averaged traffic demand 𝑞(𝒙, 𝑡) is independent of location and time, indicating that for each random event, the demand 
is entirely scaled by the same parameter. This configuration is consistent with the definition of day-to-day demand stochasticity, 
where differences occur on different days rather than on the same day. Notably, to validate the effectiveness of the ME-PCM, the 
model used here is the same as Hughes model, except that the boundary condition is assumed to be randomized. The ME-PCM can 
also be implemented for other similar models with random inputs.

3.2. Numerical schemes for solving deterministic PDEs

There has been abundant research on numerical schemes for solving Hughes model, such as the finite difference (Huang et al., 
2009a), finite volume, and finite element schemes (Jiang et al., 2011; Twarogowska et al., 2014; Ghattassi and Masmoudi, 2023). 
Based on finite difference schemes, Huang et al. (2009a) proposed an efficient algorithm for the deterministic problem. This study 
adopts their algorithm for its ability to capture shock propagation accurately in pedestrian crowd dynamics. A brief review is 
presented here.
10
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The physical domain is divided by fixed Cartesian meshes: 
𝑥𝑖+1 = 𝑥𝑖 + 𝛥𝑥, 𝑦𝑗+1 = 𝑦𝑗 + 𝛥𝑦, (34)

where 𝛥𝑥 and 𝛥𝑦 are uniform mesh sizes in the 𝑥- and 𝑦-directions, respectively. 𝜌𝑖,𝑗 and 𝒇 𝑖,𝑗 = ((𝑓1)𝑖,𝑗 , (𝑓2)𝑖,𝑗 ) denote the 
approximations of 𝜌 and 𝒇 , respectively, at grid point (𝑥𝑖, 𝑦𝑗 ). The semi-discrete form of Eq. (31a) is 

𝑑
𝑑𝑡

𝜌𝑖,𝑗 = − 1
𝛥𝑥

(

(𝑓1)𝑖+1∕2,𝑗 − (𝑓1)𝑖−1∕2,𝑗
)

− 1
𝛥𝑦

(

(𝑓2)𝑖,𝑗+1∕2 − (𝑓2)𝑖,𝑗−1∕2
)

. (35)

The numerical fluxes (𝑓1)𝑖+1∕2,𝑗 and (𝑓2)𝑖,𝑗+1∕2 at the half-point are obtained by the one-dimensional fifth order weighted essentially 
non-oscillatory (WENO) finite difference scheme based on Lax–Friedrichs flux splitting (Jiang and Shu, 1996). After spatial 
discretization, the semi-discrete scheme is equivalent to a first-order ordinary differential equation system 𝜌𝑡 = 𝐿(𝜌), where 𝐿(𝜌) is 
the spatial operator. Subsequently, the third-order total variation diminishing Runge–Kutta time integration (Shu and Osher, 1988), 
which is a convex combination of three Euler forward steps, is applied to ensure system evolution: 

𝜌(1) = 𝜌𝑛 + 𝛥𝑡𝐿(𝜌𝑛), (36a)

𝜌(2) = 3
4
𝜌𝑛 + 1

4
(

𝜌(1) + 𝛥𝑡𝐿(𝜌(1))
)

, (36b)

𝜌𝑛+1 = 1
3
𝜌𝑛 + 2

3
(

𝜌(2) + 𝛥𝑡𝐿(𝜌(2))
)

, (36c)

where 𝛥𝑡 is the time step and the superscript denotes the time level. The discretized form of the eikonal equation (31b) is 
𝐻̂

(

(𝜙𝑥)−𝑖,𝑗 , (𝜙𝑥)+𝑖,𝑗 ; (𝜙𝑦)−𝑖,𝑗 , (𝜙𝑦)+𝑖,𝑗
)

= 𝐶(𝜌(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛)), (37)

where 𝐻̂ is the Godunov-type monotone Hamiltonian, and (𝜙𝑥)± and (𝜙𝑦)± are WENO approximations of the left and right derivatives 
of 𝜙 in the 𝑥 and 𝑦 directions, respectively. The fast-sweeping method with the third-order WENO scheme (Zhang et al., 2006) is 
applied to solve this equation.

3.3. Example settings

As shown in Fig.  3, a railway platform has a length of 100 m and width of 50 m. The obstacle placed in the middle of the platform 
has a size of 20 m by 20 m. The time horizon 𝑇  is 240 s. The discomfort function is set as 𝑔(𝜌) = 0.002𝜌2. The maximum density 𝜌max
and parameter 𝑐0 in Eq. (32) are set as 6 ped∕m2 and 0.4, respectively. The average time-varying demand function is expressed as 

𝑞(0, 𝑦, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑡∕100 0 ≤ 𝑡 < 60,
1.2 − 𝑡∕100 60 ≤ 𝑡 < 120,

0 120 ≤ 𝑡,
(38)

with the unit being ped∕m∕s. The random input 𝜉 follows a lognormal distribution in two cases:

• 𝜉 ∼ Lognormal(1.0, 0.12), MEAN = 1.0, SDEV = 0.1;
• 𝜉 ∼ Lognormal(1.0, 0.22), MEAN = 1.0, SDEV = 0.2.

The rectangular domain [0, 100] × [0, 50] (units: m) is discretized into 100 × 50 uniformly spaced grid points for the numerical 
simulation. This problem, formulated as a set of PDEs with initial and boundary conditions, is solved using the efficient numerical 
schemes described earlier. To ensure numerical stability, the time step is restricted as 𝛥𝑡 = CFL∕

(

𝛼
𝛥𝑥 + 𝛽

𝛥𝑦

)

, where the coefficient 
CFL = 0.5, 𝛼 = max𝑖,𝑗 |𝑢1|, 𝛽 = max𝑖,𝑗 |𝑢2|, and (𝑢1, 𝑢2) is the velocity vector.

To investigate the convergence rate of the ME-PCM, the global relative root mean square error (RRMSE) is considered: 

𝐸𝜌 =

√

1
𝑁𝑔

∑

𝑖,𝑗,𝑘(𝜌
(ref)
𝑖,𝑗,𝑘 − 𝜌

(𝑁𝑒 ,𝑁𝑝)
𝑖,𝑗,𝑘 )2

1
𝑁𝑔

∑

𝑖,𝑗,𝑘 𝜌
(ref)
𝑖,𝑗,𝑘

× 100%, (39a)

𝐸𝜎 =

√

1
𝑁𝑔

∑

𝑖,𝑗,𝑘(𝜎
(ref)
𝑖,𝑗,𝑘 − 𝜎

(𝑁𝑒 ,𝑁𝑝)
𝑖,𝑗,𝑘 )2

1
𝑁𝑔

∑

𝑖,𝑗,𝑘 𝜎
(ref)
𝑖,𝑗,𝑘

× 100%, (39b)

where the subscript 𝑘 represents the integer time points satisfying 𝑡𝑘 = 𝑘, 𝑘 = 1, 2,… , 240. 𝐸𝜌 and 𝐸𝜎 denote the RRMSEs of the 
mean (MEAN) and standard deviation (SDEV) of the density, respectively. 𝜌(𝑁𝑒 ,𝑁𝑝)

𝑖,𝑗,𝑘  and 𝜎(𝑁𝑒 ,𝑁𝑝)
𝑖,𝑗,𝑘  denote the MEAN and SDEV of the 

density for the grid point (𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) in a case involving 𝑁𝑒 random elements and 𝑁𝑝 polynomial basis functions, respectively. 𝜌(ref)𝑖,𝑗,𝑘
and 𝜎(ref)𝑖,𝑗,𝑘  are the reference solutions obtained from the ME-PCM results for a sufficiently large number of sample points. Here, 
ME-PCM solutions with 𝑁𝑒 = 256, 𝑁𝑝 = 5 are regarded as the benchmark solution for comparative analyses. 𝑁𝑔 is the total number 
of space–time grid points. The total MEAN and SDEV of the density over the entire spatial space at time 𝑡𝑘 are defined as 

Total𝜌(𝑡𝑘) =
∑

𝜌(𝑁𝑒,𝑁𝑝)
𝑖,𝑗,𝑘 , (40a)
11
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Total𝜎 (𝑡𝑘) =
∑

𝑖,𝑗
𝜎(𝑁𝑒,𝑁𝑝)
𝑖,𝑗,𝑘 , (40b)

which illustrate the variations in the statistics over time. To quantify the locations in walking facilities where the average pedestrian 
density is moderate but exceptional congestion can occur with a large variance, this study defines these risk regions as 

𝛺𝑟(𝑡) =
{

(𝑥, 𝑦) ∈ 𝐷|𝑆𝑏(𝑥, 𝑦, 𝑡) > 𝐶𝑟 ⋅ E[𝜌(𝑥, 𝑦, 𝑡, 𝜉)]
}

, (41)

where E[𝜌(⋅, 𝜉)] is the mean, and 𝑆𝑏(⋅) is the maximum of the 95% confidence interval [𝑆𝑎(⋅), 𝑆𝑏(⋅)
] of the pedestrian density 

distribution. The constant 𝐶𝑟 is taken as 2.0 in this example to represent the locations 𝛺𝑟 where the maximum of the pedestrian 
density distribution in the 95% confidence interval is twice the average level under the random demand.

3.4. Numerical results

3.4.1. Case 1: 𝜉 ∼ Lognormal(1.0, 0.12)
The lognormal variable 𝜉 ∼ Lognormal(1.0, 0.12) is first tested using the ME-PCM. 𝑁𝑒 = 20 random elements and 𝑁𝑝 = 3

polynomial bases are used to derive the density distribution.
In Fig.  4, the left column shows the contours of the MEAN of the density distribution at space–time point (𝑥, 𝑦) in the day-to-day 

stochastic process at different times. Pedestrians enter the platform from the left entrance, pass through the corridors, and leave 
through the exit gate. As the width of the corridor is reduced at 𝑥 ∈ [40, 60]m, pedestrians tend to avoid the obstacle, resulting in 
two shocks at 𝑥 ∈ [0, 40] m, 𝑦 ∈ [10, 30] m and 𝑡 = 90 s. A similar phenomenon is observed before the exit as pedestrians leave the 
platform at 𝑡 = 180 s. Throughout this period, the density is highest at the four corners of the obstacle and on both sides of the exit. 
The contour results illustrate the evolution of the congestion pattern of pedestrians and help identify areas with high density. The 
middle column displays the contours of the SDEV of the density distribution at space–time point (𝑥, 𝑦) in the day-to-day stochastic 
process at different times. In areas expected to exhibit high pedestrian density, the SDEV is also higher. This result indicates that 
the demand stochasticity has a more notable effect on the higher-density regions of the platform. Specifically, at 𝑡 = 120 and 150 s, 
the peak position of the SDEV shock around the obstacle always appears behind that of the mean density along the direction of 
movement. As more pedestrians traverse the platform, the pedestrian density varies within a wide range relative to the average level, 
which increases the risk of crowding in these shock areas. The statistical information provided by both MEAN and SDEV can assist 
the evaluation of the obstructed facility and facilitate the development of strategies to improve service in walking environments. 
The right column displays the risk regions defined in (41) at different times. At these locations, the average density is moderate, but 
there is large variance, leading to exceptional congestion on critical days that could be overlooked in a standard design process based 
on the average demand. From this point of view, the walking facility could be designed by increasing the capacity to a maximum 
value at the locations such that the system works 95% of the time during operation.

These observations are consistent with the theoretical findings in Section 2.2. The two examples considered in Section 2.2 
respectively correspond to the processes of pedestrians entering the platform and encountering the obstacle in this numerical 
example. Initially, when pedestrians are entering the platform, the spreading out of the crowd (rarefaction solution) can be clearly 
seen, and the MEAN and SDEV of pedestrian density are higher at the tail of the crowd and lower at the head. When the pedestrians 
encounter the obstacle and congestion (shock solution) occurs, the SDEV reaches a significantly high value at these locations and 
introduces risk into the system. The lagging of the SDEV peak position behind the MEAN also validates the conclusion from the 
theoretical analysis.

The lognormal random variable 𝜉 has a 95% confidence interval [0.82, 1.20], satisfying 𝑃 (0.82 < 𝜉 < 1.20) ≈ 0.95. For comparison, 
this study presents the solution obtained from the deterministic model without random inputs using the average demand 𝑞(𝒙, 𝑡)
(𝜉 = 1) and a larger demand scaled up by 𝜉 = 1.2, which is the maximum value in the 95% confidence interval of 𝜉, as indicated 
in Eq. (38). Figs.  5 and 6 show the pedestrian density along lines 𝑦 = 28.5 m and 𝑦 = 32.5 m, respectively. The label ‘‘Deterministic 
Case’’ indicates the solution obtained using the deterministic model with 𝜉 = 1 and 𝜉 = 1.2. Under demand stochasticity, the 
ME-PCM solution (𝑁𝑒 = 20, 𝑁𝑝 = 3) varies within a range that has a 95% probability (labeled ‘‘95% Confidence Interval’’), and its 
expectation is ME-PCM MEAN. A comparison of the deterministic results reveals that by increasing the demand from 𝜉 = 1 to 𝜉 = 1.2, 
the pedestrian density in the facility increases most of the time. However, at 𝑥 = 40 m, 𝑦 = 28.5 m, 𝑡 = 120 s near the obstacle, the 
density obtained using the model with random inputs is much higher than that in the deterministic case (𝜉 = 1.2). A reasonable 
explanation is that in a stochastic environment, the congestion occurs at different locations, as explained in the foregoing theoretical 
analysis. This shows that to calculate the range of pedestrian density variation, the deterministic model cannot only simulate a few 
samples by simply increasing the traffic demand at the entrance; rather, it needs more samples with different deterministic inputs. 
In contrast, the ME-PCM solution can capture density variations influenced by demand stochasticity and identify risk regions much 
more efficiently. Moreover, at 𝑦 = 32.5 m, 𝑡 = 150 s, and 180 s, the results of ME-PCM MEAN are considerably different from the 
deterministic results with averaged demand (𝜉 = 1), which further validates the effectiveness of considering the demand stochasticity. 
In the figure, the 95% confidence interval indicates that the pedestrian density may appreciably exceed its average level at specific 
locations on the platform under extreme conditions, such as at 𝑥 = 55 m, 𝑦 = 32.5 m, and 𝑡 = 150 s. This information can facilitate 
the evaluation of the traffic facility, as congestion is more likely to occur at these locations.

Fig.  7 shows the variations in Total𝜌 and Total𝜎 over the simulation period, where Total𝜌 and Total𝜎 respectively denote the total 
MEAN and SDEV of the density over the entire spatial space defined in (40). The maximum Total𝜌 occurs near 𝑡 = 110 s, preceding 
the moment when the average traffic demand (38) decreases to zero, i.e., 𝑡 = 120 s. This early peak in Total𝜌 is attributable to the 
departure of the first batch of pedestrians entering the platform. In addition, as pedestrians walk by the obstacle and exit the gate, 
12
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Fig. 4. Density contour plot of MEAN and SDEV at different times in case 1 using ME-PCM with 𝑁𝑒 = 20 random elements and 𝑁𝑝 = 3 polynomial basis. Left: 
MEAN. Middle: SDEV. Right: risk region.
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Fig. 5. The pedestrian density distribution along line 𝑦 = 28.5 m.

Total𝜌 begins to decrease, whereas Total𝜎 decreases at a later time and at a lower rate. This observation, which is consistent with 
the analytical result, shows that in narrow regions of the walking facility, considerable time (approximately 80 s) is required to 
eliminate the effects of high variance caused by congestion.

Next, this study examines the convergence performance of the ME-PCM against the performances of several commonly used 
approaches, namely the gPC, MC, and quasi-MC (QMC). The classical gPC corresponds to a special case of the ME-PCM with only 
one random element; i.e., 𝑁𝑒 = 1. Considering a specific space–time point near the obstacle (𝑥 = 40 m, 𝑦 = 30 m, 𝑡 = 120 s), 
the solution response to the random input is simulated in the interval 𝜉 ∈ [0.6, 1.6], as depicted in Fig.  8(a). When 𝜉 is small, the 
pedestrian density at the specific location is almost zero. However, at higher 𝜉 (ranging approximately from 1.1 to 1.5), there is a 
congestion shock at this location, leading to a rapid increase in pedestrian density. If the gPC method uses global basis functions 
to represent the solution, as the polynomial order 𝑁𝑝 increases, the approximate solution obtained by the gPC method converges 
gradually, and the error becomes appreciable on both sides of the interval. However, it is not necessary to use a large number 
of polynomial basis functions because the orthogonal basis can locally represent the solution when using the ME-PCM. Fig.  8(b) 
shows the results of the ME-PCM with 𝑁𝑒 = 1, 3, 5 elements. Notably, improved convergence is observed even when only three 
basis functions are used. This flexibility is advantageous, as it avoids potential problems associated with high-degree polynomials. 
Moreover, the ME-PCM provides users with two pathways to improve accuracy, enabling the selection of a more suitable pair of 𝑁𝑒
and 𝑁𝑝.

The ME-PCM results are next compared with the MC and QMC results. Fig.  9 presents the RRMSE of the MEAN and SDEV for the 
MC and QMC methods, where 𝑁 is the number of samples and 𝐸𝜌 and 𝐸𝜎 are obtained using (39). Adopting a first-order polynomial 
to approximate the error in a least-squares sense, the accuracy of the MC method is obtained as 𝑂(𝑁−0.36) and 𝑂(𝑁−0.44) for MEAN 
and SDEV, respectively. In the same manner, the accuracy of the QMC method is obtained as 𝑂(𝑁−0.83) for MEAN and 𝑂(𝑁−0.76)
for SDEV. Note that the expected rates are 𝑂(𝑁− 1

2 ) for the MC method and 𝑂(𝑁−1) for the QMC method. In Fig.  10, the errors of 
the ME-PCM are plotted for 𝑁 = 1, 2, 3. From the least-square fitted line, the convergence rates are approximated for the cases (i) 
14
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Fig. 6. The pedestrian density distribution along line 𝑦 = 32.5 m.

Fig. 7. The variations in total MEAN and SDEV with respect to time 𝑡.
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Fig. 8. Comparison between gPC and ME-PCM.

Fig. 9. Convergence of MC and QMC.

Fig. 10. Convergence comparisons of ME-PCM with 𝑁𝑝 = 1, 2, 3.
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Fig. 11. Comparison of computational cost. Left: simulation time with respect to the number of random elements 𝑁𝑒 with 𝑁𝑝 = 1, 2, 3. Right: simulation time 
with respect to the number of (Q)MC samples 𝑁 .

Table 1
Comparison of estimated number of samples required to achieve the MEAN error 𝜀tol by different 
approaches in case 1.
 MEAN
 𝜀tol ME-PCM MC QMC  
 𝑁𝑝 = 1 𝑁𝑝 = 2 𝑁𝑝 = 3  
 1% 12 13 14 2908 893  
 0.1% 24 25 25 1,702,026 14,327  
 0.001% 99 92 85 >1011 3,685,905 

Table 2
Comparison of estimated number of samples required to achieve the SDEV error 𝜀tol by different 
approaches in case 1.
 SDEV
 𝜀tol ME-PCM MC QMC  
 𝑁𝑝 = 1 𝑁𝑝 = 2 𝑁𝑝 = 3  
 1% 26 27 29 166,008 12,076  
 0.1% 54 52 51 31,039,808 247,050 
 0.001% 226 184 155 >1012 >108  

𝑁𝑝 = 1: 𝑂(𝑁−3.23) and 𝑂(𝑁−3.19), (ii) 𝑁𝑝 = 2: 𝑂(𝑁−3.50) and 𝑂(𝑁−3.62), and (iii) 𝑁𝑝 = 3: 𝑂(𝑁−3.84) and 𝑂(𝑁−4.10), for the MEAN and 
SDEV. The accuracy does not achieve the optimal order 𝑂(𝑁−2(𝑁𝑝+1)) as the solution involves shocks without enough regularity. 
However, it is observed that the ME-PCM converges much more rapidly than the MC and QMC methods, and the convergence rate 
increases with the polynomial order 𝑁𝑝.

As a sampling-based method, the ME-PCM has a computational cost that is mainly determined by the number of sample points 
𝑁 = (𝑁𝑝 + 1)𝑁𝑒, because the cost of basis construction can be neglected. Fig.  11(a) shows the computational times for different 
polynomial orders with respect to the number of random elements 𝑁𝑒. For the same 𝑁𝑒, the cost increases with the polynomial order 
𝑁𝑝, as 𝑁𝑝+1 sample points are simulated for an 𝑁𝑝 degree polynomial in each element. The (Q)MC time cost is plotted for different 
sizes of (Q)MC samples in Fig.  11(b). Although the MC method robustly simulates the solution distribution, the computation cost 
is extremely high. Each sample has a computational cost of approximately 0.4 min in this example.

To further illustrate the efficiency of the ME-PCM, its speedup performance is calculated relative to the MC and QMC methods. 
The number of simulated samples can be used to quantify the speedup. Using the least-square fitted lines in Figs.  9 and 10, the 
estimated number of samples required to achieve a tolerance error 𝜀tol is calculated for the ME-PCM and MC and QMC methods, 
as given in Tables  1 and 2. The number of samples required to achieve a desired accuracy is notably higher for the MC and QMC 
methods than for the ME-PCM. Furthermore, it is observed that the ME-PCM with 𝑁𝑝 = 3 outperforms the ME-PCM with 𝑁𝑝 = 1, 2 in 
achieving a higher accuracy of 0.001%. Although parallelization can be considered both for the ME-PCM procedure and robust Monte 
Carlo methods, it is not used in this example. To compare efficiency, the test conditions are kept the same without parallelization. 
Due to the fast convergence of the ME-PCM, only a few samples are actually required to achieve a small error (1%, an acceptable 
value), so the superiority of parallelism for the ME-PCM in this example is not obvious. Parallelization is recommended if users find 
that more samples are required to meet the desired tolerance error for their problem.
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Table 3
Comparison of convergence order of different approaches in case 2.
 Order ME-PCM MC QMC 
 𝑁𝑝 = 1 𝑁𝑝 = 2 𝑁𝑝 = 3  
 MEAN 2.46 2.95 3.09 0.35 1.00  
 SDEV 2.18 2.64 2.82 0.27 0.79  

Table 4
Comparison of estimated number of samples required to achieve the MEAN error 𝜀tol by different 
approaches in case 2.
 MEAN
 𝜀tol ME-PCM MC QMC  
 𝑁𝑝 = 1 𝑁𝑝 = 2 𝑁𝑝 = 3  
 1% 19 21 23 4469 880  
 0.1% 49 47 48 3,075,132 8623  
 0.001% 316 222 214 >1012 826,218 

Table 5
Comparison of estimated number of samples required to achieve the SDEV error 𝜀tol by different 
approaches in case 2.
 SDEV
 𝜀tol ME-PCM MC QMC  
 𝑁𝑝 = 1 𝑁𝑝 = 2 𝑁𝑝 = 3  
 1% 44 43 45 17,607,957 11,651  
 0.1% 127 102 101 >1010 214,314  
 0.001% 1048 580 518 >1018 72,502,420 

3.4.2. Case 2: 𝜉 ∼ Lognormal(1.0, 0.22)
In this test case, 𝜉 ∼ Lognormal(1.0, 0.22) with a larger variance. Fig.  12 displays the MEAN and SDEV of the density distribution 

and the risk region at different times. It is seen that the MEAN is similar to that in case 1, whereas the SDEV tends to be higher, as 
expected. As a result, the risk region mainly distributed in pedestrian-congested areas, becomes wider.

The convergence rates when using the different approaches are summarized in Table  3. Compared with the results in case 1, the 
ME-PCM has a lower convergence rate but still performs better than the MC and QMC methods. Tables  4 and 5 present the speedup 
results. When using the same numbers of random elements and polynomial basis functions, the number of samples required to 
achieve error 𝜀tol is larger than that in case 1. This observation is reasonable, as a larger variance leads to a broader range of traffic 
demand, resulting in a larger error in the stochastic moment statistics of pedestrian density. Nevertheless, an excellent speedup 
performance is maintained, indicating that the ME-PCM algorithm is robust and can be applied to similar problems.

4. Conclusion

Based on dynamic continuum models, some analytical results pertaining to the effect of random inputs on pedestrian flow 
propagation were first presented. For a general model that can be expressed as sets of PDEs with random inputs, the ME-PCM 
solver, used in uncertainty quantification, was employed to efficiently derive the solution and its statistical properties. The algorithm 
application procedure, including decomposition, sampling, and reconstruction steps, was given. In a demonstration case, this study 
considered demand stochasticity by randomizing the inflow boundary condition of Hughes model. A two-dimensional numerical 
example of a corridor with an obstacle was simulated, and two variance cases were considered. The pedestrian density distribution 
was accurately derived using the ME-PCM, with a notably reduced computational cost. From the ME-PCM solutions, statistical 
information was accurately obtained for the evaluation of walking facilities at risk of exceptional congestion. In a comparison with 
the MC and QMC methods, the ME-PCM had a better convergence rate, although there was shock during the simulation period. 
The ME-PCM also required fewer samples to achieve a desired tolerance error. In a successful application of the spectral method to 
quantify the uncertainty in pedestrian traffic flow models, this study showed the ability of the ME-PCM to investigate other traffic 
models involving randomized parameters without limitations on governing PDEs and numerical schemes.

This study considered only a single random variable. The ME-PCM will be developed to handle pedestrian models with more 
random inputs in future work. Other considerations, such as randomizing the parameters in speed-density relations, also have 
practical importance.
18
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Fig. 12. Density contour plot of MEAN and SDEV at different times in case 2 using ME-PCM with 𝑁𝑒 = 20 random elements and 𝑁𝑝 = 3 polynomial basis. Left: 
MEAN. Middle: SDEV. Right: risk region.
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