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Abstract
We introduce an efficient stochastic interacting particle-field (SIPF) algorithmwith no history
dependence for computing aggregation patterns and near singular solutions of parabolic-
parabolic Keller-Segel (KS) chemotaxis system in three-dimensional (3D) space. In our
algorithm, the KS solutions are approximated as empirical measures of particles coupled
with a smoother field (concentration of chemo-attractant) variable computed by a spectral
method. Instead of using heat kernels that cause history dependence andhighmemory cost,we
leverage the implicit Euler discretization to derive a one-step recursion in time for stochastic
particle positions and the field variable based on the explicit Green’s function of an elliptic
operator of the form Laplacian minus a positive constant. In numerical experiments, we
observe that the resulting SIPF algorithm is convergent and self-adaptive to the high-gradient
part of solutions. Despite the lack of analytical knowledge (such as a self-similar ansatz) of a
blowup, the SIPF algorithm provides a low-cost approach to studying the emergence of finite-
time blowup in 3D space using only dozens of Fourier modes and by varying the amount
of initial mass and tracking the evolution of the field variable. Notably, the algorithm can
handle multi-modal initial data and the subsequent complex evolution involving the merging
of particle clusters and the formation of a finite time singularity with ease.
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1 Introduction

Chemotaxis partial differential equations (PDEs) were introduced by Keller and Segel (KS
[16]) to describe the aggregation of the slime mold amoeba Dictyostelium discoideum due to
an attractive chemical substance. A related randomwalkmodel was known earlier, developed
by Patlak [26]. For an analysis of basic taxis behaviors (such as aggregation, blowup, and
collapse) based on reinforced random walks, we refer to [31]. In this work, we consider the
parabolic-parabolic (fully parabolic) KS system of the following form:

ρt = ∇ · (μ∇ρ − χ ρ ∇c),

εct = Δ c − k2 c + ρ, (1)

where χ,μ (ε, k) are positive (non-negative) constants. The model is called elliptic if ε = 0
(when c evolves rapidly to a local equilibrium), and parabolic if ε > 0. Here, ρ is the density
of active particles (such as bacteria), and c is the concentration of chemo-attractant (e.g.
food). For a more detailed discussion, please refer to Sect. 2.

The KS systems (1) have been extensively studied for several decades, with various cases
and dimensions explored. It is well known that the system (1) in R2 converges to Dirac-delta
type function in finite time given sufficiently large initial mass in the parabolic-elliptic case
(k = 0 and ε = 0) [27] and the fully parabolic case [13]. In addition to the δ type singularity,
C(T − t + |x |2)−1 is shown to be an alternative profile for self-similar blowup [9, 29] in
3D parabolic elliptic case. Given the smallness assumption of the initial data, [1, 18, 25,
33] established global well-posedness results for 3D fully parabolic KS in various function
spaces. To date, the complete characterization (criteria and profile) of the finite time 3D
singularity of (1) with ε > 0 remains largely open. See also [14] for a related model that
does not blow up and still exhibits spiky solutions by assuming a saturation concentration
for the bacteria.

Many notable numerical methods have been developed for KS systems. Chertock et al.
[5] developed a finite-volume method on a class of chemotaxis and haptotaxis models for
accurate and efficient simulations. Shen et al. [28] proposed an energy dissipation and bound
preserving scheme that is not restricted to specific spatial discretization methods. The bound
preserving property is achieved through modifications of the system. Chen et al. [3] devel-
oped a fully-discrete finite element method (FEM) scheme for the 2D parabolic-elliptic KS,
following the approach of Shen et al. [28]. They showed that the proposed scheme will blow
up in a finite time, under assumptions similar to those in the continuous blow-up scenarios.
In the classic setting, Liu and Wang [20] reformulated the equation using the Le Châtelier
Principle to attain a positive-preserving scheme. See [19, 38] among others on discontinuous
Galerkin methods. Besides the aforementioned numerical methods for 2D KS, we refer to
[7, 32] on mesh-based (finite element, finite volume/difference with difference of potential
domain decomposition) methods for 3D fully parabolic KS models.

As an alternative to the Eulerian discretization methods mentioned above, there have been
steady advancements in the Lagrangian formulations for the KS system (1) and related equa-
tions. The Lagrangian framework approximates ρ in (1) as the density of an N -interacting
particle system as N tends to infinity. Stevens [30] derived a convergent N -particle system for
the fully parabolic KS. Craig and Bertozzi [6] proved the convergence of a blob method for
a related aggregation equation. Liu et al. [21, 22] developed a random particle blob method
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with a mollified kernel for the parabolic-elliptic KS, and proved its convergence when the
limiting (macroscopic mean field) equation admits a global weak solution. See also [2] for
an extension to the fully parabolic KS. As noted in [24], the success of this line of analysis
relies on the limiting nonlinear mean field equation, rather than the underlying many-particle
Markov process.

On numerically implemented particle methods for KS systems, Havskovéč- Ševčovič
[10, 11] developed a convergent regularized particle system for the 2D parabolic-elliptic
KS and in the presence of a passive flow [17]. The authors of this paper conducted a deep
learning study on chemotaxis aggregation in 3D laminar and chaotic flows, based on a kernel
regularized particle method for parabolic-elliptic KS systems [35]. For 2D fully parabolic
KS, [8] proposed a particle-field method and [34] investigated a fully particle approach.
Though both methods may be generalized to higher dimensions, the former suffers from
numerical instability when capturing blowup behavior and the latter is inefficient for long-
time simulation due tomemory costs. See Sect. 2.2 for an in-depth discussion and comparison
with our proposed method.

To the best of our knowledge, an efficient particle-based (mesh-free) method capable
of characterizing blow-up behaviors of 3D fully parabolic KS, especially the critical mass,
is unknown. In this paper, we propose a novel stochastic interacting particle-field (SIPF)
algorithm to serve this purpose.

Ourmethod takes into account the coupled stochastic particle evolution (density ρ) and the
accompanying field (concentration c) in the system and allows for a self-adaptive simulation
of focusing and potentially singular behavior. In the SIPF algorithm, we represent the active
particle density ρ using empirical particles, while the concentration field c is discretized
using a spectral method instead of a finite difference method [8]. This is possible since the
field c is smoother than density ρ and does not require interpolation of ρ to grid points
as [8]. We demonstrate the effectiveness of our method through numerical experiments in
3D space, which, to the best of our knowledge, have not been systematically computed and
benchmarked before.

It is worth noting that pseudo-spectral methods were employed to compute the nearly
singular solutions of the 3D Euler equations [15]. Subsequently, the finite-time blowup of
3D axisymmetric Euler equations was computed using the adaptive moving mesh method
[23]. Thesemethods represent the cutting edge in the computation of nearly singular solutions
of 3D Euler equations. Nevertheless, we also point out that the implementation of pseudo-
spectral methods for 3D problems demands substantial computational resources, while the
adaptive moving mesh method requires sophisticated design and advanced programming
skills.

It is important to recognize that the Lagrangian algorithms used in the computation of
parabolic-ellipticKS systems, such as the one proposed in [10], cannot be directly generalized
to the fully parabolic KS. These algorithms rely on the assumption that the field c at time t
can be accessed through particle density ρ at the same instant. Hence only the local update
of the particle density is required. However, a direct generalization to the fully parabolic KS
(e.g. [34]) will require historical particle density ρ from the starting time of the algorithm.
An example and related convergence analyses can be found in [2]. Nonetheless, from a
computational perspective, the volume of such historical data grows over time, posing a
costly burden on memory and computational resources. In contrast, our SIPF algorithm
computes particle and field values only once per time step, without relying on a long history.
Therefore, our computational cost does not increase over time.

The main objective of this paper is to propose a novel stochastic interacting particle-
field algorithm for the fully parabolic KS system. While we provide stability analysis and
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numerical verification of the convergence of theSIPFalgorithm, a detailed theoretical analysis
will be left as a future work.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the blow-up
behavior in the fully parabolic KS models under critical mass conditions and the Lagrangian
formulations for computation. Section3 outlines our proposed SIPF algorithms for solving
the fully parabolic KS system. We simplify a theoretically equivalent method with history-
dependent parabolic kernel functions, which is computationally undesirable, into efficient
recursions. In Sect. 4, we present numerical results to demonstrate the performance of our
method for both radial and multi-modal initial data. The SIFP results are in agreement with
those from a fully resolved finite difference method in the radially symmetric case. Conclud-
ing remarks are in Sect. 5.

2 Parabolic-Parabolic KS System

In this section, we provide some theoretical analyses of singular behaviors and related com-
putational methods for KS models in both parabolic-elliptic cases and parabolic-parabolic
(fully parabolic) cases. We begin by revisiting the KS model:

ρt = ∇ · (μ∇ρ − χ ρ ∇c), (2)

εct = Δ c − k2 c + ρ, (3)

x ∈Ω ⊆ R
d , t ∈ [0, T ]. (4)

The first Eq. (2) of ρ models the evolution of the density of active particles, such as bac-
teria. The bacteria diffuse with mobility μ and drift in the direction of ∇c with a velocity
χ∇c, where χ is called chemo-sensitivity. The second Eq. (3) of c models the evolution of
the concentration of chemo-attractant, such as food. The increment in c is proportion to ρ,
which indicates the aggregation or attraction between active particles. An additional impor-
tant physical parameter in the model is ε in Eq.(3), which represents the timescale of the
chemotaxis. When ε �= 0, the system is referred to as a parabolic-parabolic KS system. For
ε = 0 the system is reduced to the parabolic-elliptic case, which assumes that the chemical
attractant released by the active particle instantaneously reaches equilibrium.

2.1 From Critical Collapse to Coexistence of Blow-up and Global Smooth Solutions

Well-knownKSdichotomy (critical collapse) states that 8π is the criticalmass for the simplest
two-dimensional parabolic-elliptic KS system in Ω = R

2, namely (1) with ε = k = 0,
The well-known KS dichotomy, also known as critical collapse, states that in the simplest

2D parabolic-elliptic KS system in the domainΩ = R
2, the critical mass is 8π . This system,

denoted by (1) with ε = k = 0, i.e.,

ρt = ∇ · (∇ρ − ρ ∇c),

Δ c = −ρ, (5)

exhibits a critical behavior where the solution either remains global and bounded or blows
up in finite time depending on the initial mass of the density ρ. Specifically, we have

1. If M0 < 8π , the system has a global smooth solution.
2. If M0 > 8π , the system blows up in finite time in the sense of | · |∞ norm.
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It can be seen from the classical variance identity for system (5), [27], that,

d

dt

∫
x∈R2

|x |2 ρ(x) dx = M

2π
(8π − M). (6)

Then, the solution of (5) exhibits a quantized concentration of mass at the origin, which is a
type of blow-up known as a δ-blow up.

In the case of the system (5) on R
d with d ≥ 3, the identity (6) is no longer applicable,

and the evolution of the KS system is not as straightforward. However, the coexistence of
blow-up and global smooth solutions still depends on the size of the initial data. For fully
parabolic KS, [36, 37] show that the system may blow up in finite time over a large set of
radial initial data. On the other side of the dichotomy, it has been shown [33] that global
strong solutions exist for small initial data in the fully parabolic system (1).

In addition, the blow-up profile can differ from the δ-type blow-up observed in 2D cases.
For instance, it has been shown in [12] that in 3D parabolic elliptic systems, there exist radial,
positive, backward self-similar solutions of the form,

ρ(x, t) = V (x/
√
T − t)

T − t
, 0 < t < T , (7)

where the radially decreasing profile function V satisfies limy→∞ y2V (y) = L ∈ R
+. Later

in a more refined result by [29], the blowup is said to be type I if

0 < lim sup
t→T

(T − t) ‖ρ‖∞ < ∞. (8)

Then for radial initial data in L1(R3), if a blowup is type I, ∃C > 0 such that

ρ(x, t) ≤ C(T − t + |x |2)−1, 0 < |x | ≤ R, 0 < t < T . (9)

To the best of our knowledge, the complete characterization of blow-up criteria with non-
radial initial data and the profile of the fully parabolic KS system inR3 has not been analyzed,
also as discussed in [37]. Therefore, numerical computations are necessary to investigate the
potential singular behavior, which we will discuss in Sect. 4.3.

2.2 Lagrangian Formulations

As a fundamental step of deriving the algorithms, we begin by introducing the Lagrangian
formulation of the active particle density ρ in the KS system (1). We focus on the elliptic
system with ε = k = 0, specifically (5), which can be generalized to any dimension d .
By considering the equation Δc = −ρ and utilizing the Green’s function of the Laplacian
operator in R

d , we can deduce the following:

c(x, t) =
{

− 1
2π

∫
ln |x − y| ρ(y, t), d = 2

Cd
∫ 1

|x−y|d−2 ρ(y, t) dy, d ≥ 3 , (10)

where Cd = Γ (d/2+1)
d(d−2)πd/2 . So the convection term in (2) can be expressed as follows:

∇c(x) = −Γ (d/2)

2πd/2

∫
x − y

|x − y|d ρ(y, t) dy. (11)
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Now we arrive at the interactive stochastic differential equation system of P particles,
{X p

t }p=1:P ,

dX p
t = −χ

M

P

∑
q �=p

Γ (d/2)

2πd/2

X p
t − Xq

t

|X p
t − Xq

t |d + √
2μ dW p

t , p = 1, · · · , P, (12)

whereW p
t denotes independent identically distributed standard Brownian motions. In [24], it

has been demonstrated, under mild regularity condition, that as P → ∞, the distribution of
empirical particles {X p

t }p=1:P converges to ρ in the continuous PDE system (2). To study the
singularity behavior in the parabolic elliptic KS systems, several novel numerical methods
have been developed and implemented, as discussed in [10, 21, 35].

In the fully parabolic case (ε �= 0), the solution of chemical concentration c is obtained
by solving a parabolic equation, which is no longer Markovian as in (12). In this case, at time
t > 0, the solution of ρ in the interval [0, t] needs to be incorporated in the representation of
c. Specifically, we have to consider the following:

c(·, t) = e−k2t etΔc(·, 0) +
∫ t

0
ek

2(s−t)e(t−s)Δ ρ(·, s) ds, (13)

where the heat semigroup operator etΔ is defined by

(etΔ f )(x, t) :=
∫

e−|x−y|2/(4t)

(4π t)d/2 f (y) dy. (14)

Similar to (12), the empirical particle system converging to density ρ reads:

dX p
t = χ∇X c(X p

t , t) dt + √
2μ dW p, p = 1, · · · , P, (15)

andW p’s are independent Brownian motions inRd . However, due to the historic path depen-
dence in the solution of c in (13), direct computation of the drift ∇X c(X p

t , t) in (15) as (12)
would result in significant memory and computational cost in each step, which increases with
computational time T . More precisely, by directly substituting (13) into (15), the empirical
particle system is as follows,

dX p
t = χ e−k2t etΔ∇Xc(X

p
t , 0)dt + √

2μ dW p,

−
⎛
⎝χ

M

P

∫ t

0
ek

2(s−t)
∑
q �=p

1

(4π(t − s))d/2

X p
t − Xq

s

2(t − s)
ds

⎞
⎠ dt . (16)

In the discrete scheme of (16), at the n-th temporal step, one shall compute the interaction of
Xtn with other particle positions over time interval [0, tn]. At the n-th step, the computational
cost is O(nP2) and memory cost is O(nP).

A purely probabilistic particle method based on (16) for 2D fully parabolic KS system
is proposed in [34]. The method is efficient due to the interaction, as mentioned by [34]. In
contrast, [8] proposed a memory-less approach for 2D systems similar to ours. However, the
method in [8] computes c only on the spatial grid points, which leads to numerical inaccuracy
in moving the particles. More details for computing 2D systems can be found in [34]. To
the best of our knowledge, a memory-less algorithm (memory cost O(P) for saving particle
positions) to compute fully parabolic KS systems in 3D, or higher dimensions, has not been
developed yet. We will present such an algorithm in the following section.
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3 SIPF Algorithms for Parabolic-Parabolic KS

In this section, we will present the SIPF algorithm for solving the fully parabolic KS models.
Since we are interested in studying the spatially localized aggregation behavior as dis-
cussed in Sect. 2.1, it is reasonable to consider the system (2) and (3) in a large domain
Ω = [−L/2, L/2]d and assume Dirichlet boundary condition for the particle density ρ and
Neumann boundary condition for the chemical concentration c.

As a discrete algorithm, we assume that the temporal domain [0, T ] is partitioned into
time steps by {tn}n=0:nT , where t0 = 0 and tnT = T . We approximate the density ρ using
particles, i.e.

ρt ≈ M0

P

P∑
j=1

δ(x − X p
t ), P � 1, (17)

where M0 is the conserved total mass (integral of ρ). For the chemical concentration c, we
approximate it using a set of Fourier basis. In the following derivation, we assume d = 3 for
brevity, while the algorithms proposed work under any dimension. Specifically, c(x, t) can
be represented as a series expansion:

∑
j,m,l∈H

αt; j,m,l exp(i2π j x1/L) exp(i2πm x2/L) exp(i2πl x3/L), (18)

where H denotes index set

H :=
{
( j,m, l) ∈ N

3 : | j |, |m|, |l| ≤ H

2

}
, (19)

and i = √−1.
Then at t0 = 0, we generate P empirical samples {X p

0 }p=1:P according to the initial
condition of ρ0, and set up α0; j,m,l using the Fourier series representation of c0.

For ease of presenting our algorithm, we will use a slight abuse of notation. We will rep-
resent the density ρ at time tn as ρn = M0

P

∑P
p=1 δ(x − X p

n ), and the chemical concentration
c at time tn as

cn =
∑

j,m,l∈H
αn; j,m,l exp(i2π j x1/L) exp(i2πm x2/L) exp(i2πl x3/L).

To discretize the time-stepping system (1) from tn to tn+1, with ρn and cn−1 known, our
algorithm, inspired by the operator splitting technique, consists of two sub-steps: updating
the chemical concentration c and updating the organism density ρ.
Updating chemical concentration c Let δt = tn+1 − tn > 0 be the time step. We discretize
the equation for c in (1) in time using an implicit Euler scheme:

ε (cn − cn−1)/δt = (Δ − k2) cn + ρn . (20)

From (20), we obtain the explicit formula for cn as:

(Δ − k2 − ε/δt) cn = −ε cn−1/δt − ρn . (21)

It follows that:

cn = c(x, tn) = −Kε,δt ∗ (ε cn−1/δt + ρn) = −Kε,δt ∗ (ε c(x, tn−1)/δt + ρ(x, tn)) (22)
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where ∗ is the spatial convolution operator, and Kε,δt is the Green’s function of the operator
Δ − k2 − ε/δt . In the case of R3, the Green’s function Kε,δt is given by:

Kε,δt = Kε,δt (x) = −exp{−β|x|}
4π |x| . β2 = k2 + ε/δt . (23)

The Green’s function admits a closed-form Fourier transform,

FKε,δt (ω) = − 1

|ω|2 + β2 . (24)

For the term −Kε,δt ∗ cn−1 in (22), using Eq.(24), it is equivalent to modify the Fourier
coefficients α j,m,l to α j,m,l/(4π2 j2/L2 + 4π2m2/L2 + 4π2l2/L2 + β2).

For the second term Kε,δt ∗ ρ, we first approximate Kε,δt with a cos series expansion.
Then, according to the particle representation of ρ in (17), we have

(Kε,δt ∗ ρ) j,m,l ≈
M0
P

∑P
p=1

exp(−i2π j X p
n,1/L−i2πmX p

n,2/L−i2πl X p
n,l/L)(−1) j+m+l

4π2 j2/L2+4π2m2/L2+4π2l2/L2+β2 .

Finally, we summarize the one-step update of the Fourier coefficients of the concentration
field c in Algorithm 1.

Algorithm 1: One step update of chemical concentration in SIPF
Data: Distribution ρn represented by empirical samples Xn , initial concentration cn−1 represented by

Fourier coefficients αn−1;
for ( j,m, l) ∈ H do

αn; j,m,l ← εαn−1; j,m,l

δt(4π2 j2/L2+4π2m2/L2+4π2l2/L2+β2)
Fj,m,l ← 0.
for p = 1 to P do

Fj,m,l ← Fj,m,l + exp(−i2π j X p
n;1/L − i2πmX p

n;2/L − i2πl X p
n;3/L)

end

Fj,m,l ← Fj,m,l
(−1) j+m+l

4π2 j2/L2+4π2m2/L2+4π2l2/L2+β2 ∗ M
P

end
αn ← αn − F
Result: Updated chemical concentration field from input cn−1 to cn via αn .

Remark 1 Note that (20)–(22) are algebraic derivations. In the vanishing ε regime, the related
semi-discrete systems tend to an elliptic equation. In terms of numerical implementation, the
updates of Fourier coefficients with Green’s kernel by (23) and (3) are also consistent. Hence
our method is robust in the vanishing ε regime.

Updating density of active particles ρ In the one-step update of the density ρn represented
by particles {X p

n }p=1:P , we apply the Euler-Maruyama scheme to solve the SDE (15):

X p
n+1 = X p

n + χ∇xc(X
p
n , tn)δt + √

2μδt N p
n , (25)

where N p
n ’s are i.i.d. standard normal distributions with respect to the Brownian paths in the

SDE formulation (15). For n > 1, substituting (22) in (25) gives:

X p
n+1 = X p

n − χ∇xKε,δt ∗ (ε cn−1(x)/δt + ρn(x))|x=X p
n
δt + √

2μδt N p
n , (26)
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from which ρn+1(x) is constructed via (17).
In such a particle formulation, the computation of spacial convolution is slightly different

from the one in the update of c, namely (22).
For ∇xKε,δt ∗ cn−1(X

p
n ), to avoid the singular points of ∇xKε,δt , we evaluate the integral

with quadrature points that are away from 0. Precisely, we denote the standard quadrature
points in Ω as

x j,m,l = ( j L/H ,m L/H , j L/H), (27)

where j , m, l are integers ranging from −H/2 to H/2 − 1. When computing the integral
∇xKε,δt ∗ cn−1(X

p
n ), we evaluate ∇xKε,δt at {X p

n + X̄ p
n − x j,m,l} j,m,l where a small spatial

shift is given by

X̄ p
n = H

2L
+

⌊
X p
n

H/L

⌋
H

L
− X p, (28)

and c at {x j,m,l − X̄ p
n } j,m,l correspondingly. The latter one is computed by the inverse Fourier

transform of the shifted coefficients, with α j,m,l modified to α j,m,l exp(−i2π j X̄ p
n;1/L −

i2πmX̄ p
n;2/L − i2πl X̄ p

n;3/L), where (X̄ p
n;i ) denotes the i-th component of X̄ p

n .

The computation of the term ∇xKε,δt ∗ ρ(X p
n , tn) is straightforward thanks to the particle

representation of ρ(X p
n , tn) in (17):

∇xKε,δt ∗ ρn(X
p
n ) =

∫
∇x Kε,δt (X

p
n − y)ρ(y) ≈

P∑
q=1,q �=p

M

P
∇x Kε,δt (X

p
n − Xq

n ). (29)

We summarize the one-step update (for n > 1) of density in SIPF as in Algorithm 2.

Algorithm 2: One step update of density in SIPF
Data: Distribution ρn represented by empirical samples Xn , input: concentration cn−1 represented by

Fourier coefficients αn−1;
for p = 1 to P do

X p
n+1 ← X p

n+1 + √
2μδt N where N is a random generated standard normal distribution.

for q = 1 to P do
X p
n+1 ← X p

n+1 − χMδt
P ∇xKε,δt (X

p
n − Xq

n )

end

X̄ p
n ← H

2L + � X p
n

H/L � H
L − X p

for ( j,m, l) ∈ H do
Fj,m,l ← ∇xKε,δt (X

p
n + X̄ p

n − x j ,m,l ), x j ,m,l from Eq. (27)

G j,m,l ← α j,m,l exp(−i2π j X̄ p
n;1/L − i2πmX̄ p

n;2/L − i2πl X̄ p
n;3/L)

end
Ǧ = i FFT (G)

X p
n+1 ← X p

n+1 − εχ(F, Ǧ) L3

H3 , where (·, ·) L3

H3 denote an inner product corresponding to L2(Ω)

quadrature.
end
Result: Output ρn+1 represented by updated Xn+1.

Combining (22) and (26), we conclude that the recursion from
({X p

n }p=1:P , ρn(x), cn−1(x)) to ({X p
n+1}p=1:P , ρn+1(x), cn(x)) is complete. We summarize

the SIPF method in the following Algorithm 3.
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Algorithm 3: Stochastic Interacting Particle-Field Method
Data: Initial distribution ρ0, initial concentration c0;
Generate P i.i.d samples following distribution ρ0, X1, X2, · · · X P .
for p ← 1 to P do

Compute X p
1 by (25), with c−1 = c0

end

Compute c1 by Alg.1 with c0 and ρ1 = ∑P
p=1

M
P δX p

1
.

for step n ← 2 to N = T /δt do
Compute Xn by Alg.2 with ρn−1 and cn−2

Compute cn by Alg.1 with cn−1 and ρn = ∑P
p=1

M
P δX p

n
.

end

Numerical Stability Under discretization H, the update in Alg.1 is equivalent to,

ĉn(ω) = 1

1 + (|ω|2 + k2) · δt
ε

ĉn−1(ω) + 1

|ω|2 + k2 + ε
δt

ρ̂n(ω), (30)

where for brevity we used the notation, ω = 2π
L (n,m, l). Given |ρ̂n(ω)| bounded by Mρ ,

|ĉn(ω)| ≤ Mc + An
c (|ĉ0| − Mc), (31)

where Ac = 1
1+(|ω|2+k2)· δt

ε

< 1 and Mc = Mρ

|ω|2+k2
. Furthermore, in the discrete setting,

|ρ̂n(ω)| = |M
P

P∑
p=1

exp(−i2π j X p
n;1/L − i2πmX p

n;2/L − i2πl X p
n;3/L)| ≤ M . (32)

(32) implies that one can take Mρ = M (total mass) and validate that the stability of the
update of c in Alg.1 only requires k > 0, independent of δt and position of Xn .

In the one-step update of ρn represented by Xn via Alg.2, the numerical stability relates to

the increment from drift terms, namely χMδt
P ∇xKε,δt (X

p
n −Xq

n ) and εχ(F, Ǧ) L3

H3 . The upper
boundedness of the latter is ensured by the spatial shifting (28). For the direct interaction
term χMδt

P ∇xKε,δt (X
p
n − Xq

n ), due to the random normal update step, namely X p
n+1 ←

X p
n+1 + √

2μδt N , the probability that X p
n , X

q
n coincides is zero. Practically, we clip Xn+1

to the range of domain Ω .

Remark 2 The convergence of the distribution of many-particle solution to the continuous
PDE (the mean-field limit) in similar systems can be found in [2, 30]. In the mean-field
regime, our discretization for the c equation, namely (3), is implicit Euler in time and Fourier
spectral discretization in space. We validate the first order convergence in time in Sect. 4.2.
We will leave the full convergence analysis of the SIPF as a future work.

Remark 3 Thememory usage throughout Alg.3 isO(P+CardH), where CardH denotes the
total number of Fourier terms in the discretization (19). The computational cost for each step
of Alg.2 and Alg.1 are O(P CardH) and O(P2 + P CardH log(CardH)). So the one step
update in Alg.3 costs O(P2 + P CardH log(CardH)). To be noted, the complete algorithm
Alg.3 admits direct parallelization over particles in each step.
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Fig. 1 Density ρ approximated by empirical distribution at T = 0.1: the mass effect on focusing

4 Numerical Experiments

4.1 Aggregation Behaviors

To illustrate the performance of the algorithm, we start with two examples. In both cases, the

initial distribution ρ0 is assumed to be a uniform distribution over a ball centered at

⎡
⎣0
0
0

⎤
⎦with

radius 1, as shown in Fig. 1a. Also, in both cases, we assume the followingmodel parameters,

μ = χ = 1, ε = 10−4 and k = 10−1. (33)

for the fully parabolic KS model (1). These parameter choices in (33) are made so that the
model exhibits comparable behavior to the corresponding parabolic-ellipticKS systemwhose
blow-up behavior is known. For the first example, the total mass is chosen to be M0 = 20,
while for the second one, the mass is M0 = 80.

In the numerical computation of both examples, we use H = 24 Fourier basis in each
spatial dimension to discretize the chemical concentration c, and use P = 10000 particles to
represent the approximated distribution ρ. The computational domain isΩ = [−L/2, L/2]3
with L = 8. We compute the evolution of c and ρ using Algorithm 3 with a time step of
δt = 10−4 up to T = 0.1. The total computation time is 284 seconds on a workstation with
one RTX2070 Super GPU card.

In Fig. 1, we plot the distribution ρ by empirical samples, at the starting time T = 0 and
final computation time T = 0.1. In Fig. 1b, we observe the diffusive behaviors compared to
the initial distribution shown in Fig. 1a. While in Fig. 1c, we increase the total mass from
M0 = 20 toM0 = 50,we can see particles become concentrated at the origin, which indicates
the possible blow-up of the continuous system.

In Fig. 2, we present the chemical concentration c at the final time T = 0.1 and third
component z = 0 for various initial total masses M0. By comparing the sub-figures, we can
see that in the case of a large total mass, c exhibits a sharp profile at the origin. This behavior,
together with the near singular behavior of ρ, is shown in Fig. 1b, c, indicating a possible
blow-up.

Furthermore, if we assume, there exists a self-similar profile of ρ at origin as discussed in
[29] and Sect. 2.1, namely, ρ(x, t) ∼ 1

|x |2 , the Fourier coefficients of the chemical concen-
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Fig. 2 Chemical concentration c at final time T = 0.1, sliced at z = 0: the mass effect on focusing

Fig. 3 Maximum of chemical concentration c vs computation time T with different total mass M0: identifying
blow up by refining the discretization

tration c have the following asymptotics according to Eq. (1):

Fc(ω) ∼ 1

|ω|2 + k2
ρ̂ ∼ 1

(|ω|2 + k2)|ω| . (34)

Then, the maximum of c in the computation shall vary with the discretization parameter H .
Specifically, we observe that at the origin,

c(0) ∼
∫

1

(|ω|2 + k2)|ω|e
iωxdω|x=0 =

∫
1

(|ω|2 + k2)|ω|dω. (35)

In practical discretization, the range of the integral (35) is determined by the maximum
frequency, which can be expressed as [−π

L ( H2 − 1), π
L · H

2 ]3. Then, for the type of blow-up
with a profile proportional to 1

|x |2 ,

‖c‖∞ = O(ln(H)). (36)

A similar analysis shows that for the type of blow-up with a profile proportional to δ(x), we
have the following asymptotic relation:

‖c‖∞ = O(H). (37)

123



Journal of Scientific Computing           (2025) 102:75 Page 13 of 23    75 

Fig. 4 Maximum of c scales
linearly with the number of
Fourier modes H (in each
dimension) under total mass
M0 = 80 (super critical): a δ type
blow up

In Fig. 3, we show themaximum value of c as a function of computational time T for different
numbers of Fourier modes H and total mass M0. In the case of a possible blow-up (Fig. 3b),
we can see that themaximum of c varies dramatically for different values of H . This variation
can be used as an indicator of a possible blow-up, which will be further investigated in the
following experiments.

Additionally, in the case where M0 = 80 and T = 1 are chosen to achieve numerical
stability for ‖c‖∞, we conducted tests for H ranging from 8 to 24. In Fig. 4, we plot ‖c‖∞
against H and observe that the maximum value of c grows nearly linearly with respect to
H . This further supports our previous observation that the maximum of c depends on the
discretization parameter H .

Remark 4 Similar ideas for detecting blow-ups by comparing maximum values computed
under different discretizations can be found in the literature on the finite volume approach to
2D KS systems. For example, in [4], the δ-type singularities in the 2D system are identified
when ‖ρ‖∞ = O( 1

ΔxΔy ).

4.2 Numerical Convergence

In this subsection,we validate the convergence of the algorithms numerically. Throughout this
subsection, we consider the same initial condition (ρ and c at t = 0) and physical parameters
as in the first example. For the parameters in the discretization, we will take uniform time
step δre f = 2−11T , the number of Fourier modes in each dimension as H = 24, the number
of particles as P = 10000, and the computational domain as Ω = [−L/2, L/2]3 with
L = 8. Additionally, we set M0 = 80 and T = 0.01 when the system has not formed any
singularities (as shown in Fig. 3b).

For the investigation for convergence of δt , we consider the time step δt in the range
between 2−8T to 2−4T , and we take δtre f = 2−11T as the reference solution.

Another identity that can be used to validate the accuracy of the computation for the
system (2)–(3) is the total concentration of the chemical attractant c at a given time t , which
is given by

c0(t) :=
∫

Ω

c(x, t)dx . (38)
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Fig. 5 Relative errors of c vs. δt ,
compared with δ = 2−11 × 0.01.
Fitted rate: e(δt) = O(δt1.011)

Table 1 Relative errors of c vs.
δt , from data of Fig. 5

δt L2 error c0 error

2−4 × 0.01 0.01756 0.01773

2−5 × 0.01 0.00884 0.00898

2−6 × 0.01 0.00440 0.00452

2−7 × 0.01 0.00218 0.00227

2−8 × 0.01 0.00106 0.00113

By integrating both sides of (3) over physical domain Ω , we have,

ε
d

dt
c0(t) = −k2c0(t) + M0, (39)

which implies,

c0(t) =
(
c0(0) − M0

k2

)
e− k2

ε
t + M0

k2
. (40)

In Fig. 5, we present both types of error to verify the convergence of the algorithm. The
first type of error is the L2 relative error of the chemical concentration c at the final time T
compared to the reference solution. The second type of error is the mean squared relative
error of the total concentration (38) over the interval [0, T ] compared to the ground truth
(40). To calculate the mean squared relative error of the total concentration c0, we use the
following formula:

c0 error =
√

1

T

∫ T

0

( |c̃0(t) − c0(t)|
|c0(t)|

)2
dt (41)

where c̃0 is the approximated value of c0 obtained using the SIPF algorithm with a time
step δt . In addition, we fit the slope of error versus δt in the logarithmic scale and find
that the L2 relative error e(δt) follows an approximate first-order convergence rate, with
e(δt) = O(δt1.011). This indicates that the algorithm is approximately first order in time
(Table 1).

In addition, we investigate the convergence of the algorithm with respect to other
parameters of discretization. To this end, we keep the reference setting as Fig. 5, and
alter Fourier mode number H or particle number P to compare with the reference solu-
tion. In Fig. 6 and Table 2 we present the L2 relative error of c(·, T ) with varying
P = 100, 200, 400, 800, 1600 comparing with reference solution by P = 10000. The
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Fig. 6 Relative errors of c vs. P ,
compared with P = 10000

Table 2 Relative errors of c vs.
P , from data of Fig. 6

P L2 error

100 0.00434

200 0.00359

400 0.00268

800 0.00237

1600 0.00198

Fig. 7 Relative errors of c vs. H ,
compared with H = 24. Fitted
rate: e(H) = O(H−0.659)

Table 3 Relative errors of c vs.
H , from data of Fig. 7

H L2 error

6 0.00124

8 0.00109

10 0.00089

12 0.00080

fitted convergence rate is e(P) = O(P−0.287), significantly smaller than standard Monte
Carlo. We conjecture that this is due to particle interaction and leave it for a future study.

In Fig. 7 and Table 3 we present the L2 relative error of c(·, T ) with varying H =
6, 8, 10, 12, comparing with reference solution by H = 24. The fitted convergence rate is
e(H) = O(H−0.659).

We report that the convergent behavior of c0 while varying H or P is similar.

4.3 Blow up behaviors

As mentioned in Sect. 2.1, it is well-known that 8π is the critical mass for the simplest two-
dimensional parabolic-elliptic KS system (5). Specifically, the system exhibits the following
dichotomy:
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1. If M0 < 8π , the system has a global smooth solution.
2. If M0 > 8π , the system has no global smooth solutions and can exhibit blow-up behavior.

In the case of a fully parabolic KS system or the specific parabolic-elliptic KS system
(5) with passive advection, there is no known variance identity similar to (6). Therefore, to
investigate the possible blow-up behaviors, numerical computation becomes necessary. By
utilizing the asymptotics described in (36) and (37), we can conduct tests for two scenarios:
H = 24 and H = 12. In these examples, we will compare the ‖c‖∞ values to detect any
potential blow-up occurrences.
Mass dependenceWe begin by investigating the critical mass M0, which plays a central role
in the dichotomy of the simple 2D parabolic elliptic system (5). To this end, we initialize the
algorithmwith a uniform distribution over the unit ball centered at the origin and c(0, x) = 0.
We then apply the algorithm with two different values of H to compute the density and
chemical concentration until T = 1. To identify the possible blow-up, we compute the ratio
of |c|∞ between the two cases. In Fig. 8a, we present the ratio, |c|∞,H=24

|c|∞,H=12
, over time for various

values of M0. We observe a sharp increase in the ratio when a potential blow-up forms for
M0 ≥ 47.6. Figure8b presents the ratio at the final time T = 1, indicating that the critical
mass of the aforementioned initial condition should fall between 47.6 and 47.8.

In addition to the SIPF algorithm, we also present the numerical results obtained using the
finite difference method (FDM). We note that the KS system (2)–(3) admits radial solutions
when given constant scalar physical parameters (33) and a radially symmetric initial condition
(ρ0, c0). Therefore, we re-write the system in the radial coordinate,

ρt = μ

(
ρrr + 2

r
ρr

)
− χ

(
ρr cr + ρ(crr + 2

r
cr

)
, (42)

εct = crr + 2

r
cr − k2c + ρ, (43)

r ∈ R
+, t ∈ [0, T ]. (44)

To formulate a finite difference scheme, we consider the system (42)–(43) on the domain
[0, 20]with the Neumann boundary condition.We use a uniform partition with Nr = 2×105

intervals for spatial discretization. For the temporal domain, we employ a backward Euler
scheme with a time step of δt = 10−5. This discretization method requires a comparable
computational time (approximately 150 seconds) to the proposed SIPF. In Fig. 8c, we present
the maximum value of c over time for various initial mass M0, denoted as

|c|∞,FDM = sup
t,r

|c(r , t)|. (45)

We found that the FDM exhibits numerical instabilities for initial masses between 47.6 and
47.8, which matches the prediction made by the SIPF algorithm in Fig. 8b. This example
further validates the accuracy of the proposed SIPF algorithm. It is worth noting that our
SIPF algorithm applies readily to more general (non-radial) KS systems, whereas FDM in
3D with a fine uniform mesh will be computationally much more expensive.
Geometry dependence In contrast to the simplest parabolic-elliptic KS system (5), where
the total mass is the sole determinant of the aggregation behavior, we have experimentally
observed that the critical mass can vary for different initial distributions of ρ. For instance,
in an experiment aimed at identifying the critical mass (as shown in Fig.8), we replaced the
initial distribution with a uniform distribution on a ball centered at the origin with a radius
of 0.8. With a more concentrated initial distribution, we found that the critical mass of the
system decreases. To be more precise, in Fig. 9a, we present the ratio of |c|∞ for various
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Fig. 8 Ratio of |c|∞’s from 2 SIPF runs with H = 24 and H = 12 and |c|∞ from FDM run: in radial case,
the proposed SIPF can identify the same critical mass as FDM simulation

Fig. 9 Ratio of |c|∞’s from 2 runs with H = 24, 12; particles stay within initial radius 0.8: the more
concentrated initial, the smaller critical mass

total masses M0 as a function of computational time T . We can see a significant change in
the ratio when the total mass M0 is large enough (M0 ≥ 39), indicating the formation of
potential singularities. Conversely, for relatively small values of M0 (M0 ≤ 38.8), the ratio
remains stable around 1 throughout the computational time. In Fig. 9b, we present the ratio
at the final time T = 0.1 as a function of the total mass M0, which indicates the critical mass
for this particular initial condition lies between 38.8 and 39.
Dependence on physical and biological parameters. Here we investigate the dependence
of critical mass on other physical coefficients in the KS systems. Here we take the base
configuration as specified in Sect. 4.1 with physical coefficients set (33). We then change
one of the coefficients and apply the same methodology as the aforementioned example,
i.e. calculating |c|∞,H=24

|c|∞,H=12
for various values of the coefficient and find the first interval that

|c|∞,H=24
|c|∞,H=12

is significantly away from 1. In Table 4, we summarize the results by examples that
change one of the coefficients in (33). FromTable 4, we call tell that the following factors have
a positive correlation with the critical mass (suppressing blow-up): mobility of the bacteriaμ

and chemical decay constant k. In contrast, the following factors have a negative correlation
(promoting blow-up): chemo-sensitivity of the bacteria χ and time scale of chemotaxis ε.
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Table 4 Dependence of critical
mass on KS physical and
biological parameters

Original setup New setup New interval Changes

μ = 1 μ = 0.8 (38, 38.2) ↓
χ = 1 χ = 0.8 (59.6, 59.8) ↑
ε = 10−4 ε = 8 × 10−5 (47.8, 48) ↑
k = 0.1 k = 0.08 (46.8, 47) ↓
Original interval: (47.6, 47.8)

Fig. 10 Results in the example of shifted initial distribution: SIPF predicts blow up with concentration not on
the regular Fourier grids

4.4 Aggregation Behaviors fromNon-radial Initial Data

In this subsection, we investigate aggregation behaviors in more general distributions. To this
end, we present two experiments: (1) the initial distribution is not centered at the origin or
even not a standard Fourier collocation point; (2) a more practical scenario where the initial
distribution ρ models several separated clusters of organisms.
Shifted initial distribution. In this example, we re-do the computation to find the critical
mass in parameter setup (33) as the same approach as Sect. 4.3, while shifting the initial
distribution concentrated at [1/6, 1/6, 1/6]T . The concentration point is selected away from
the standard Fourier collocation point in our maximal resolution, namely [−4, 4]3 domain
with each direction discretized by H = 24 Fourier mode. Obviously, in this setup, the critical
mass shall remain the same as the non-shifted one, namely (47.6, 47.8).

In Fig. 10a, we compute the ration |c|∞,H=24
|c|∞,H=12

as in Fig. 8b. The projected critical mass falls
between 47.6 and 47.8 identical as the experiment result in Sect. 4.3. In Fig. 10b we show the
location of particles representing ρ at T = 1. More specifically, we compute a histogram of
particles projected to x-y plane and zoom in to [−1/3, 1/3]2. Notice that [−1/3, 1/3] covers
an interval of three Fourier collocation points under the resolution of computation.

Results in Fig. 10 confirm the capability of our method in predicting critical solutions that
may focus on any location.

In essence, our algorithm approximates cwith Fourier series (18) and update of c in Alg.1,
always shifting the c series relative to the position of X during collocation, see (28). Hence
our method avoids the potential numerical inaccuracy in [8] as pointed out in [34].
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Fig. 11 Identifying the formation of a finite time singularity at t ≈ 0.3 in non-radial solutions

Multi-clustered initial distribution. This is a more practical scenario where the initial distri-
bution ρ models several separated clusters of organisms. The mass in each cluster is below
the critical mass, while the total mass is super-critical. To be more specific, we assume the
initial distribution is a uniform distribution on four balls with a radius of 0.5. These balls are
centered at four vertices of a regular tetrahedron, namely,

⎛
⎝1
0
0

⎞
⎠ ,

⎛
⎝

− 1
2√
3
2
0

⎞
⎠ ,

⎛
⎝

− 1
2

−
√
3
2
0

⎞
⎠ ,

⎛
⎝ 0

0√
2

⎞
⎠ . (46)

See also Fig. 11a for the scatter plot of particles representing the initial distribution. In this
case, we assume the total mass is M0 = 80 and each cluster has a mass of 20, which is
below the critical mass for a ball with a radius of r = 0.5. Next, we apply the algorithm to
compute the KS system up to T = 0.5, with two different spatial discretizations (H = 24
and H = 12), while keeping the rest of the configurations. In Fig. 11b, we calculate the ratio
between the maxima of c versus time for the two different spatial discretizations. We can see
the singularities formed in the system at around T = 0.3.

In Fig. 12, we present the scatter plot of particles between the time T = 0.1 and T = 0.4.
By comparing Fig. 11a with Fig. 12a, we can see diffusive behavior. This behavior is a result
of the mass in each cluster being below the critical mass. The diffusive behavior persists
until approximately T = 0.2, as depicted in Fig.11b, where the active particles form a single
larger cluster. The mass of this new cluster, centered at the origin, is M0 = 80. In Fig. 12c,
we can observe the aggregation process starting to form a singularity. This can also be seen
from the sharp increase in the ratio of the maximum of c in Fig. 11b. Finally, in Fig. 12d, we
can directly identify the possible blow-up at the origin through the scatter plot.

4.5 Critical Mass and Blowup in Parabolic-parabolic KS

As the last example, we examine the singular solutions in the fully parabolic KS systems.
For the purpose of exposition, we set ε = 0.1 in (1), while keeping the remaining physical
parameters constant. The initial condition is assumed to be a uniform distribution on a ball
with a radius of 0.8 and c(x, 0) = 0.
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Fig. 12 Particle scatter plot at T = 0.1 : 0.1 : 0.4: three cluster merging and a singularity formation

From Fig. 9, we can determine that the critical mass is approximately M0 = 39. We apply
the same computational configuration as in Fig. 9, except we enlarge the domain to L = 12
to accommodate possible diffusive behaviors. We test our algorithm for two cases, M0 = 40
and M0 = 160, respectively.

The behaviors of the system are reported in Fig. 13. In Fig. 13a and b, we present the scatter
plot of the particles representing the density ρ with M0 = 40 and M0 = 160, respectively.

We find that despite the initial mass M0 = 40 being larger than the critical mass in the
case of ε = 10−4, the system does not blow up. We report that the variance of the particles
grows linearly in computational time T , with diffusion coefficients fitted to be 1.696. In the
absence of the chemical attractant, namely χ = 0, the diffusion coefficient is expected to be
4μ = 4. This implies that the parabolic-parabolic KS systems with mass below critical mass
are effectively diffusive, with diffusion suppressed by chemical attraction.

However, forM0 = 160, the systemexhibits a possible singularity at the origin. In Fig. 13c,
we present the ratio of |c|∞ under H = 24 and H = 12 for both initial masses. Similar to
the observation in Fig. 13a and b, the blow-up behavior crucially depends on a critical level
of the initial mass.
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Fig. 13 Effects of initial mass M0 on focusing behavior (finite time blowup)

5 Concluding Remarks

In this paper, we developed a stochastic interacting particle and field algorithm, observed its
convergence, and demonstrated its efficacy in computing blowup dynamics of fully parabolic
KS systems in 3D from general non-radial initial data. The algorithm is recursive and does not
have any history dependence, and the field variable is computed using Fourier series. Since
the field variable (concentration) is smoother than the density, the series approach works well
with only a few Fourier modes. The aggregation or focusing behavior in the density variable
is resolved by using 10k particles. The algorithm successfully detects blowup through the
field variable based on the critical amount of initial mass. The algorithm is self-adaptive and
does not rely on any assumption about the blowup behavior, which is unknown except in
the case of the parabolic-elliptic KS system. A potential weakness of the algorithm is the
high cost of series expansion in 3D when a large number of Fourier modes is required for
high-resolution computation near the blowup time. We will study this issue in future work.
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