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Abstract

We introduce an efficient stochastic interacting particle-field (SIPF) algorithm with no history
dependence for computing aggregation patterns and near singular solutions of parabolic-
parabolic Keller-Segel (KS) chemotaxis system in three-dimensional (3D) space. In our
algorithm, the KS solutions are approximated as empirical measures of particles coupled
with a smoother field (concentration of chemo-attractant) variable computed by a spectral
method. Instead of using heat kernels that cause history dependence and high memory cost, we
leverage the implicit Euler discretization to derive a one-step recursion in time for stochastic
particle positions and the field variable based on the explicit Green’s function of an elliptic
operator of the form Laplacian minus a positive constant. In numerical experiments, we
observe that the resulting SIPF algorithm is convergent and self-adaptive to the high-gradient
part of solutions. Despite the lack of analytical knowledge (such as a self-similar ansatz) of a
blowup, the SIPF algorithm provides a low-cost approach to studying the emergence of finite-
time blowup in 3D space using only dozens of Fourier modes and by varying the amount
of initial mass and tracking the evolution of the field variable. Notably, the algorithm can
handle multi-modal initial data and the subsequent complex evolution involving the merging
of particle clusters and the formation of a finite time singularity with ease.
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1 Introduction

Chemotaxis partial differential equations (PDEs) were introduced by Keller and Segel (KS
[16]) to describe the aggregation of the slime mold amoeba Dictyostelium discoideum due to
an attractive chemical substance. A related random walk model was known earlier, developed
by Patlak [26]. For an analysis of basic taxis behaviors (such as aggregation, blowup, and
collapse) based on reinforced random walks, we refer to [31]. In this work, we consider the
parabolic-parabolic (fully parabolic) KS system of the following form:

pr=V-(uVp—yxpVo),
ec,:Ac—kzc-i-p, (1)

where x, u (€, k) are positive (non-negative) constants. The model is called elliptic if e = 0
(when ¢ evolves rapidly to a local equilibrium), and parabolic if € > 0. Here, p is the density
of active particles (such as bacteria), and c is the concentration of chemo-attractant (e.g.
food). For a more detailed discussion, please refer to Sect. 2.

The KS systems (1) have been extensively studied for several decades, with various cases
and dimensions explored. It is well known that the system (1) in R? converges to Dirac-delta
type function in finite time given sufficiently large initial mass in the parabolic-elliptic case
(k = 0 and € = 0) [27] and the fully parabolic case [13]. In addition to the § type singularity,
C(T —t + |x|*»)~" is shown to be an alternative profile for self-similar blowup [9, 29] in
3D parabolic elliptic case. Given the smallness assumption of the initial data, [1, 18, 25,
33] established global well-posedness results for 3D fully parabolic KS in various function
spaces. To date, the complete characterization (criteria and profile) of the finite time 3D
singularity of (1) with € > 0 remains largely open. See also [14] for a related model that
does not blow up and still exhibits spiky solutions by assuming a saturation concentration
for the bacteria.

Many notable numerical methods have been developed for KS systems. Chertock et al.
[5] developed a finite-volume method on a class of chemotaxis and haptotaxis models for
accurate and efficient simulations. Shen et al. [28] proposed an energy dissipation and bound
preserving scheme that is not restricted to specific spatial discretization methods. The bound
preserving property is achieved through modifications of the system. Chen et al. [3] devel-
oped a fully-discrete finite element method (FEM) scheme for the 2D parabolic-elliptic KS,
following the approach of Shen et al. [28]. They showed that the proposed scheme will blow
up in a finite time, under assumptions similar to those in the continuous blow-up scenarios.
In the classic setting, Liu and Wang [20] reformulated the equation using the Le Chatelier
Principle to attain a positive-preserving scheme. See [19, 38] among others on discontinuous
Galerkin methods. Besides the aforementioned numerical methods for 2D KS, we refer to
[7, 32] on mesh-based (finite element, finite volume/difference with difference of potential
domain decomposition) methods for 3D fully parabolic KS models.

As an alternative to the Eulerian discretization methods mentioned above, there have been
steady advancements in the Lagrangian formulations for the KS system (1) and related equa-
tions. The Lagrangian framework approximates p in (1) as the density of an N-interacting
particle system as N tends to infinity. Stevens [30] derived a convergent N -particle system for
the fully parabolic KS. Craig and Bertozzi [6] proved the convergence of a blob method for
a related aggregation equation. Liu et al. [21, 22] developed a random particle blob method
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with a mollified kernel for the parabolic-elliptic KS, and proved its convergence when the
limiting (macroscopic mean field) equation admits a global weak solution. See also [2] for
an extension to the fully parabolic KS. As noted in [24], the success of this line of analysis
relies on the limiting nonlinear mean field equation, rather than the underlying many-particle
Markov process.

On numerically implemented particle methods for KS systems, Havskovéé- SevEovic
[10, 11] developed a convergent regularized particle system for the 2D parabolic-elliptic
KS and in the presence of a passive flow [17]. The authors of this paper conducted a deep
learning study on chemotaxis aggregation in 3D laminar and chaotic flows, based on a kernel
regularized particle method for parabolic-elliptic KS systems [35]. For 2D fully parabolic
KS, [8] proposed a particle-field method and [34] investigated a fully particle approach.
Though both methods may be generalized to higher dimensions, the former suffers from
numerical instability when capturing blowup behavior and the latter is inefficient for long-
time simulation due to memory costs. See Sect. 2.2 for an in-depth discussion and comparison
with our proposed method.

To the best of our knowledge, an efficient particle-based (mesh-free) method capable
of characterizing blow-up behaviors of 3D fully parabolic KS, especially the critical mass,
is unknown. In this paper, we propose a novel stochastic interacting particle-field (SIPF)
algorithm to serve this purpose.

Our method takes into account the coupled stochastic particle evolution (density p) and the
accompanying field (concentration c) in the system and allows for a self-adaptive simulation
of focusing and potentially singular behavior. In the SIPF algorithm, we represent the active
particle density p using empirical particles, while the concentration field c¢ is discretized
using a spectral method instead of a finite difference method [8]. This is possible since the
field ¢ is smoother than density p and does not require interpolation of p to grid points
as [8]. We demonstrate the effectiveness of our method through numerical experiments in
3D space, which, to the best of our knowledge, have not been systematically computed and
benchmarked before.

It is worth noting that pseudo-spectral methods were employed to compute the nearly
singular solutions of the 3D Euler equations [15]. Subsequently, the finite-time blowup of
3D axisymmetric Euler equations was computed using the adaptive moving mesh method
[23]. These methods represent the cutting edge in the computation of nearly singular solutions
of 3D Euler equations. Nevertheless, we also point out that the implementation of pseudo-
spectral methods for 3D problems demands substantial computational resources, while the
adaptive moving mesh method requires sophisticated design and advanced programming
skills.

It is important to recognize that the Lagrangian algorithms used in the computation of
parabolic-elliptic KS systems, such as the one proposed in [10], cannot be directly generalized
to the fully parabolic KS. These algorithms rely on the assumption that the field ¢ at time ¢
can be accessed through particle density p at the same instant. Hence only the local update
of the particle density is required. However, a direct generalization to the fully parabolic KS
(e.g. [34]) will require historical particle density p from the starting time of the algorithm.
An example and related convergence analyses can be found in [2]. Nonetheless, from a
computational perspective, the volume of such historical data grows over time, posing a
costly burden on memory and computational resources. In contrast, our SIPF algorithm
computes particle and field values only once per time step, without relying on a long history.
Therefore, our computational cost does not increase over time.

The main objective of this paper is to propose a novel stochastic interacting particle-
field algorithm for the fully parabolic KS system. While we provide stability analysis and
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numerical verification of the convergence of the SIPF algorithm, a detailed theoretical analysis
will be left as a future work.

The rest of the paper is organized as follows. In Sect.2, we briefly review the blow-up
behavior in the fully parabolic KS models under critical mass conditions and the Lagrangian
formulations for computation. Section3 outlines our proposed SIPF algorithms for solving
the fully parabolic KS system. We simplify a theoretically equivalent method with history-
dependent parabolic kernel functions, which is computationally undesirable, into efficient
recursions. In Sect.4, we present numerical results to demonstrate the performance of our
method for both radial and multi-modal initial data. The SIFP results are in agreement with
those from a fully resolved finite difference method in the radially symmetric case. Conclud-
ing remarks are in Sect. 5.

2 Parabolic-Parabolic KS System

In this section, we provide some theoretical analyses of singular behaviors and related com-
putational methods for KS models in both parabolic-elliptic cases and parabolic-parabolic
(fully parabolic) cases. We begin by revisiting the KS model:

pr=V-(uVp—xpVo), )
ec,=Ac—kc+p, 3)
xeR CRY, tel0,T]. “)

The first Eq. (2) of p models the evolution of the density of active particles, such as bac-
teria. The bacteria diffuse with mobility  and drift in the direction of V¢ with a velocity
x Ve, where y is called chemo-sensitivity. The second Eq. (3) of ¢ models the evolution of
the concentration of chemo-attractant, such as food. The increment in ¢ is proportion to p,
which indicates the aggregation or attraction between active particles. An additional impor-
tant physical parameter in the model is € in Eq.(3), which represents the timescale of the
chemotaxis. When € # 0, the system is referred to as a parabolic-parabolic KS system. For
€ = 0 the system is reduced to the parabolic-elliptic case, which assumes that the chemical
attractant released by the active particle instantaneously reaches equilibrium.

2.1 From Critical Collapse to Coexistence of Blow-up and Global Smooth Solutions

Well-known KS dichotomy (critical collapse) states that 87 is the critical mass for the simplest
two-dimensional parabolic-elliptic KS system in £2 = R?, namely (1) with e = k = 0,

The well-known KS dichotomy, also known as critical collapse, states that in the simplest
2D parabolic-elliptic KS system in the domain §2 = R2, the critical mass is 8. This system,
denoted by (1) withe =k =0, i.e.,

pe=V-(Vp—pVc),
Ac=—p, ©)

exhibits a critical behavior where the solution either remains global and bounded or blows
up in finite time depending on the initial mass of the density p. Specifically, we have

1. If My < 8, the system has a global smooth solution.
2. If My > 8m, the system blows up in finite time in the sense of | - |o, norm.
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It can be seen from the classical variance identity for system (5), [27], that,

d

— P o) dx = 8 — M) (©6)
di Joepe P = :

Then, the solution of (5) exhibits a quantized concentration of mass at the origin, which is a
type of blow-up known as a §-blow up.

In the case of the system (5) on R? with d > 3, the identity (6) is no longer applicable,
and the evolution of the KS system is not as straightforward. However, the coexistence of
blow-up and global smooth solutions still depends on the size of the initial data. For fully
parabolic KS, [36, 37] show that the system may blow up in finite time over a large set of
radial initial data. On the other side of the dichotomy, it has been shown [33] that global
strong solutions exist for small initial data in the fully parabolic system (1).

In addition, the blow-up profile can differ from the é-type blow-up observed in 2D cases.
For instance, it has been shown in [12] that in 3D parabolic elliptic systems, there exist radial,
positive, backward self-similar solutions of the form,

Vx/T —t
p = LI ZD g o, @
T —t
where the radially decreasing profile function V' satisfies limy_, y2V(y) = L € RT. Later
in a more refined result by [29], the blowup is said to be type I if

0 < limsup (T — 1) ||pllec < 00. (8)

t—>T
Then for radial initial data in L' (R3), if a blowup is type I, 3C > 0 such that
p(x, ) <C(T —t+x/»)7", 0<|x|<R, 0<t<T. ©)

To the best of our knowledge, the complete characterization of blow-up criteria with non-
radial initial data and the profile of the fully parabolic KS system in R? has not been analyzed,
also as discussed in [37]. Therefore, numerical computations are necessary to investigate the
potential singular behavior, which we will discuss in Sect.4.3.

2.2 Lagrangian Formulations

As a fundamental step of deriving the algorithms, we begin by introducing the Lagrangian
formulation of the active particle density p in the KS system (1). We focus on the elliptic
system with € = k = 0, specifically (5), which can be generalized to any dimension d.
By considering the equation Ac = —p and utilizing the Green’s function of the Laplacian
operator in R¢, we can deduce the following:

1
2T 1H|X—y|/’()’7f)’ d=2

2 f
(x, 1) = , 10
C(x ) {Cd‘/‘lx_)l)dz P(}’,l‘)dy, d23 ( )

where Cy = M% So the convection term in (2) can be expressed as follows:
rd/2) x—y
Ve@) =~ 5 / oy PO (1)
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Now we arrive at the interactive stochastic differential equation system of P particles,
{sz } p=L:P>

M rdsp x?-x?
dx} =—x—> 272 7 aa TYV2dW p=1.-- P (12)
P 2wl xP - x]|

where W/ denotes independent identically distributed standard Brownian motions. In [24], it
has been demonstrated, under mild regularity condition, that as P — o0, the distribution of
empirical particles { X/} p=1:p converges to p in the continuous PDE system (2). To study the
singularity behavior in the parabolic elliptic KS systems, several novel numerical methods
have been developed and implemented, as discussed in [10, 21, 35].

In the fully parabolic case (¢ # 0), the solution of chemical concentration c is obtained
by solving a parabolic equation, which is no longer Markovian as in (12). In this case, at time
t > 0, the solution of p in the interval [0, 7] needs to be incorporated in the representation of
c. Specifically, we have to consider the following:

t

c( 1) = e_kztetAC(-, 0) +/ ekz(s—t)e(t—s)A o(-, s)ds, (13)
0

where the heat semigroup operator ¢’ is defined by

L WACD))

tA .
(@A ). 1) = / i

f(y)dy. (14)
Similar to (12), the empirical particle system converging to density p reads:
dX! = xVxeXl,tydt +2udw?, p=1,.---,P, (15)

and WP’s are independent Brownian motions in R?. However, due to the historic path depen-
dence in the solution of ¢ in (13), direct computation of the drift Vx c¢(X ,” ,1)in (15) as (12)
would result in significant memory and computational cost in each step, which increases with
computational time 7. More precisely, by directly substituting (13) into (15), the empirical
particle system is as follows,

dXP =y e* e ANy e(XP, 0)dt + /2 L d WP,

M " 1 xr—xi
_ e (s—1) E ! S ds | dt. 16
xp /o ¢ £ Gr(t =) 2 =) s (16)

In the discrete scheme of (16), at the n-th temporal step, one shall compute the interaction of
X, with other particle positions over time interval [0, #,]. At the n-th step, the computational
cost is O(nP?) and memory cost is O(n P).

A purely probabilistic particle method based on (16) for 2D fully parabolic KS system
is proposed in [34]. The method is efficient due to the interaction, as mentioned by [34]. In
contrast, [8] proposed a memory-less approach for 2D systems similar to ours. However, the
method in [8] computes ¢ only on the spatial grid points, which leads to numerical inaccuracy
in moving the particles. More details for computing 2D systems can be found in [34]. To
the best of our knowledge, a memory-less algorithm (memory cost O(P) for saving particle
positions) to compute fully parabolic KS systems in 3D, or higher dimensions, has not been
developed yet. We will present such an algorithm in the following section.
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3 SIPF Algorithms for Parabolic-Parabolic KS

In this section, we will present the SIPF algorithm for solving the fully parabolic KS models.
Since we are interested in studying the spatially localized aggregation behavior as dis-
cussed in Sect.2.1, it is reasonable to consider the system (2) and (3) in a large domain
2 =[—L/2, L/2] and assume Dirichlet boundary condition for the particle density p and
Neumann boundary condition for the chemical concentration c.

As a discrete algorithm, we assume that the temporal domain [0, 7] is partitioned into
time steps by {#,},=0..,, Where tp = 0 and t,, = T. We approximate the density p using
particles, i.e.

M P
pthZlax—x{’), P> 1, (17)
J=

where M) is the conserved total mass (integral of p). For the chemical concentration ¢, we
approximate it using a set of Fourier basis. In the following derivation, we assume d = 3 for
brevity, while the algorithms proposed work under any dimension. Specifically, c(x, ¢) can
be represented as a series expansion:

Z Q: jom, exp(i2m j x1 /L) exp(i2wm xa/L) exp(i2nl x3/L), (18)
j.m,leH
where H denotes index set

H
H:::(j,m,l)eN3:|j|,|m|,|l|§?}, 19)

andi = /—1.

Then at fo = 0, we generate P empirical samples {X(’)7 }p=1:p according to the initial
condition of pg, and set up ay; ; »,; using the Fourier series representation of cy.

For ease of presenting our algorithm, we will use a slight abuse of notation. We will rep-
resent the density p at time ¢, as p, = % Zﬁ:l 8(x — X%, and the chemical concentration
c at time t,, as

= Z Qp; jm,g exp(i2m j x1 /L) exp(i2wm x2 /L) exp(i2ml x3/L).
j.m,leH

To discretize the time-stepping system (1) from ¢, to t,41, with p, and ¢,,—1 known, our
algorithm, inspired by the operator splitting technique, consists of two sub-steps: updating
the chemical concentration ¢ and updating the organism density p.

Updating chemical concentration ¢ Let 8t = t,11 — t, > 0 be the time step. We discretize
the equation for ¢ in (1) in time using an implicit Euler scheme:

€ (cn = cn-1)/8t = (A= K*) cn + pu- (20)
From (20), we obtain the explicit formula for ¢, as:
(A—Kk>—€/8t)ch = —€ Cp_1/8t — py. 1)
It follows that:

cn =c(X, ty) = —Ke st % (€cp—1/8t + pn) = —Ke 5 % (€ c(X, 1,—1) /8t + p(x,1,)) (22)
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where x is the spatial convolution operator, and K¢ s; is the Green’s function of the operator
A—k2— €/68t. In the case of R3, the Green’s function Ke,s: 1s given by:

_exp(=BIxl)

B> =k*+¢/st. (23)
47 |x|

Ke,st = Ke 5:(x) =

The Green’s function admits a closed-form Fourier transform,
1
| + g2
For the term —K¢ s; * c¢,—1 in (22), using Eq.(24), it is equivalent to modify the Fourier
coefficients o ;0 &j 1 /(4% j2/L? + 42m? /L* + 47212/ L? + B2).
For the second term K¢ s; * p, we first approximate IC s5; with a cos series expansion.
Then, according to the particle representation of p in (17), we have

FKe(@) =~ 24)

(Ke,st % p)jmi1 = :
exp(—i2m jX0 | [L—i2amX} o /L—i2xIXY /L)(~1)]tmH

Mo P
P Zp:l 4722 /L2 +An2m? /L2 +47 212 /L2 +p2

Finally, we summarize the one-step update of the Fourier coefficients of the concentration
field ¢ in Algorithm 1.

Algorithm 1: One step update of chemical concentration in SIPF

Data: Distribution p, represented by empirical samples X, , initial concentration ¢, represented by
Fourier coefficients o, —1;
for (j,m,l) € Hdo

W ; - €Up—1;j,m,l

mjm 42 2 12 A 2m2 L2 A 2 L2+ B2)
Fj,m.l <~ 0.
for p =1to P do

Fjmi < Fjmi+ exp(—i27'rij:;1/L - i2nmXI[;;2/L - i2an5;3/L)

end
(_1)j+m+l M
oM
M T T T A T2 L2+ An 2 LA BT T P

Fimi < Fj
end

oy < ay — F
Result: Updated chemical concentration field from input ¢,, 1 to ¢, via oty

Remark 1 Note that (20)—(22) are algebraic derivations. In the vanishing € regime, the related
semi-discrete systems tend to an elliptic equation. In terms of numerical implementation, the
updates of Fourier coefficients with Green’s kernel by (23) and (3) are also consistent. Hence
our method is robust in the vanishing € regime.

Updating density of active particles p In the one-step update of the density p, represented
by particles {X}} p=1:p, we apply the Euler-Maruyama scheme to solve the SDE (15):

XD = XE+ xVxe(X3, 12)8t + /28t N, (25)

where N/ ’s are i.i.d. standard normal distributions with respect to the Brownian paths in the
SDE formulation (15). For n > 1, substituting (22) in (25) gives:

XDy = XE — X ViKer (€ cum1 (%)/81 + pa(0)|y_xrt + V28I Nf . (26)
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from which p,,41(x) is constructed via (17).

In such a particle formulation, the computation of spacial convolution is slightly different
from the one in the update of ¢, namely (22).

For VxKe¢ st * cn—1(X Py, to avoid the singular points of VK¢ 5;, we evaluate the integral
with quadrature points that are away from 0. Precisely, we denote the standard quadrature
points in £2 as

Xjmi=(L/H,mL/H,jL/H), 27)

where j, m, [ are integers ranging from —H /2 to H/2 — 1. When computing the integral
VxKe s % cn—1(Xh), we evaluate VxKe 5r at {X5 + X§ — X m.i}j,m where a small spatial

shift is given by

. H Xy | H

XP= | S| Z—xp, (28)
2L ' |H/L|L

and cat {x;  ; — X5 j.m,1 correspondingly. The latter one is computed by the inverse Fourier
transform of the shifted coefficients, with «; ,, ; modified to o, ; exp(—i27 j X 5 /L=

i27tm}_(f;2/L — i2nl)_(£;3/L), where ()_(l’;i) denotes the i-th component of X7 .
The computation of the term VyKc s; * p(X P ) is straightforward thanks to the particle
representation of p(XP . t,)in (17):
"M
VaKest % on(XE) = / VeKea(XE = 0p0)~ Y S VxKear(XE — Xi). (29)
g=1l,q#p

We summarize the one-step update (for n > 1) of density in SIPF as in Algorithm 2.

Algorithm 2: One step update of density in SIPF

Data: Distribution p, represented by empirical samples X,;, input: concentration ¢, _| represented by
Fourier coefficients o, —1;

for p =1to P do

xP <X 5 11+ +/2udtN where N is a random generated standard normal distribution.

n+1
forg = 1to P do
M
‘ Xr[;+1 < X5+1 -5 EVxKe 5t (Xh — X7
end

| X S H
Xn < z+frﬁ1f—X”
for (j,m,l) € Hdo
Fimi < VxKes (Xt + X3 = xjn). xjm, from Eq. (27)
Gjmi < jmiexp(=i2njXP /L —i2xmX? /L —i2xIXP /L)
end
G =iFFT(G)
v 13 3
X,’:_H <« Xﬁ_H —ex(F, G)%, where (-, -)% denote an inner product corresponding to L2(9)
quadrature.
end
Result: Output p,, | represented by updated X, .

Combining (22) and (26), we conclude that the recursion from
AXF Y p=1:P+ Pn(X), cam1(X)) 10 (X} 1} p=1:P, Pus1(X), €y (X)) is complete. We summarize
the SIPF method in the following Algorithm 3.
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Algorithm 3: Stochastic Interacting Particle-Field Method
Data: Initial distribution pg, initial concentration cq;
Generate P i.i.d samples following distribution pg, Xl, X2, L XP,
for p < 1to P do
| Compute X! by (25), with c_j = co
end

Compute ¢} by Alg.1 with cg and p; = Y.F_, 4

p=1 P °x¥"
for stepn < 2to N = T /5t do
Compute X, by Alg.2 with p,,_1 and ¢;;—2
Compute ¢, by Alg.1 with ¢, | and p, = 25:1 %8)(11.
n
end

Numerical Stability Under discretization H, the update in Alg.1 is equivalent to,

1
L+ (ol k)

Cn(w) € Pn(w), (30)

Cn— +—F
5?[ n l(a)) |w|2+k2+§

where for brevity we used the notation, w = ZT”(n, m, l). Given |0, (w)| bounded by M,

|en(@)| < Me 4 AL (ICol — M), (31)
where A, = m <land M, = ‘w‘[yﬁ. Furthermore, in the discrete setting,
@ e

A M D : p : p
|pn (@) = |? Zexp(—zZn]Xn;l/L — lZT[an;z/L — 127T1Xn;3/L)| <M. (32)
p=1

(32) implies that one can take M, = M (total mass) and validate that the stability of the
update of ¢ in Alg.1 only requires £ > 0, independent of 6¢ and position of X,,.

In the one-step update of p, represented by X, via Alg.2, the numerical stability relates to
the increment from drift terms, namely %f” VxKe,s5: (X P_x1yandex (F, G) 1% The upper
boundedness of the latter is ensured by the spatial shifting (28). For the direct interaction
term %VXICS,S,(X,? — X}1), due to the random normal update step, namely X, | <«
x? 1+ V218t N, the probability that X2, X coincides is zero. Practically, we clip X,+1

n+
to the range of domain £2.

Remark 2 The convergence of the distribution of many-particle solution to the continuous
PDE (the mean-field limit) in similar systems can be found in [2, 30]. In the mean-field
regime, our discretization for the ¢ equation, namely (3), is implicit Euler in time and Fourier
spectral discretization in space. We validate the first order convergence in time in Sect.4.2.
We will leave the full convergence analysis of the SIPF as a future work.

Remark 3 The memory usage throughout Alg.3 is O(P +Card H), where Card H denotes the
total number of Fourier terms in the discretization (19). The computational cost for each step
of Alg.2 and Alg.1 are O(P Card H) and O(P? + P Card H log(Card H)). So the one step
update in Alg.3 costs O(P? + P Card H log(Card H)). To be noted, the complete algorithm
Alg.3 admits direct parallelization over particles in each step.
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(a) T=0 (b) T =0.1, Mo = 20 (¢) T =0.1, Mo = 80

Fig. 1 Density p approximated by empirical distribution at 7 = 0.1: the mass effect on focusing

4 Numerical Experiments
4.1 Aggregation Behaviors

To illustrate the performance of the algorithm, we start with two examples. In both cases, the
0

initial distribution pg is assumed to be a uniform distribution over a ball centered at | O | with
0

radius 1, as shown in Fig. 1a. Also, in both cases, we assume the following model parameters,

p=x=1 e=10"*andk =10"". (33)

for the fully parabolic KS model (1). These parameter choices in (33) are made so that the
model exhibits comparable behavior to the corresponding parabolic-elliptic KS system whose
blow-up behavior is known. For the first example, the total mass is chosen to be My = 20,
while for the second one, the mass is My = 80.

In the numerical computation of both examples, we use H = 24 Fourier basis in each
spatial dimension to discretize the chemical concentration ¢, and use P = 10000 particles to
represent the approximated distribution p. The computational domain is §2 = [—L/2, L/2]?
with L = 8. We compute the evolution of ¢ and p using Algorithm 3 with a time step of
8t =10 up to T = 0.1. The total computation time is 284 seconds on a workstation with
one RTX2070 Super GPU card.

In Fig. 1, we plot the distribution p by empirical samples, at the starting time 7 = 0 and
final computation time 7" = 0.1. In Fig. 1b, we observe the diffusive behaviors compared to
the initial distribution shown in Fig. 1a. While in Fig. lc, we increase the total mass from
My = 20to My = 50, we can see particles become concentrated at the origin, which indicates
the possible blow-up of the continuous system.

In Fig. 2, we present the chemical concentration ¢ at the final time 7 = 0.1 and third
component z = 0 for various initial total masses M. By comparing the sub-figures, we can
see that in the case of a large total mass, ¢ exhibits a sharp profile at the origin. This behavior,
together with the near singular behavior of p, is shown in Fig. 1b, c, indicating a possible
blow-up.

Furthermore, if we assume, there exists a self-similar profile of p at origin as discussed in
[29] and Sect.2.1, namely, p(x, t) ~ ﬁ, the Fourier coefficients of the chemical concen-
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Fig.2 Chemical concentration ¢ at final time 7 = 0.1, sliced at z = 0: the mass effect on focusing
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Fig.3 Maximum of chemical concentration ¢ vs computation time 7" with different total mass M(: identifying
blow up by refining the discretization

tration ¢ have the following asymptotics according to Eq. (1):

. 1
0+ k2" (ol + ol
Then, the maximum of ¢ in the computation shall vary with the discretization parameter H.
Specifically, we observe that at the origin,

1 iwx _ 1
C(O)N/ (ol + )l d“""zo_/ (ol + )l 2

In practical discretization, the range of the integral (35) is determined by the maximum

frequency, which can be expressed as [—7( % -, T %]3. Then, for the type of blow-up

with a profile proportional to #,

Fe(w) ~ (34)

lclloo = O(n(H)). (36)

A similar analysis shows that for the type of blow-up with a profile proportional to §(x), we
have the following asymptotic relation:

lclloo = OCH). (37)
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Fig.4 Maximum of ¢ scales
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In Fig. 3, we show the maximum value of ¢ as a function of computational time 7 for different
numbers of Fourier modes H and total mass M. In the case of a possible blow-up (Fig. 3b),
we can see that the maximum of ¢ varies dramatically for different values of H. This variation
can be used as an indicator of a possible blow-up, which will be further investigated in the
following experiments.

Additionally, in the case where My = 80 and 7 = 1 are chosen to achieve numerical
stability for ||c||~0, We conducted tests for H ranging from 8 to 24. In Fig. 4, we plot ||¢||co
against H and observe that the maximum value of ¢ grows nearly linearly with respect to
H. This further supports our previous observation that the maximum of ¢ depends on the
discretization parameter H.

Remark 4 Similar ideas for detecting blow-ups by comparing maximum values computed
under different discretizations can be found in the literature on the finite volume approach to
2D KS systems. For example, in [4], the §-type singularities in the 2D system are identified
when [|plloc = O(z375)-

4.2 Numerical Convergence

In this subsection, we validate the convergence of the algorithms numerically. Throughout this
subsection, we consider the same initial condition (p and c at ¢ = 0) and physical parameters
as in the first example. For the parameters in the discretization, we will take uniform time
step 8pef = 2717 the number of Fourier modes in each dimension as H = 24, the number
of particles as P = 10000, and the computational domain as 2 = [—L/2, L/2]3 with
L = 8. Additionally, we set My = 80 and T = 0.01 when the system has not formed any
singularities (as shown in Fig. 3b).

For the investigation for convergence of é¢, we consider the time step ¢ in the range
between 2787 to 24T, and we take Otref = 21T as the reference solution.

Another identity that can be used to validate the accuracy of the computation for the
system (2)—(3) is the total concentration of the chemical attractant ¢ at a given time ¢, which
is given by

co(1) ::/ c(x,t)dx. (38)
Q
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Fig.5 Relative errors of ¢ vs. §t, T L orror ¥
compared with § = 2-11 x 0.01. « Cz error
Fitted rate: e(8t) = O(5¢1:011) 102 .
¥
X
10 ¥ ;
1074
Table 1 Relative errors of ¢ vs.
8t, from data of Fig. 5 ot L2 error co error
4% 0.01 0.01756 0.01773
273 % 0.01 0.00884 0.00898
276 % 0.01 0.00440 0.00452
277 % 0.01 0.00218 0.00227
278 % 0.01 0.00106 0.00113

By integrating both sides of (3) over physical domain £2, we have,

d
€l = —k%co (1) + Mo, (39)
which implies,
Mo\ _#, Mo
co) = (00 — <5 Je " + 55 (40)

In Fig. 5, we present both types of error to verify the convergence of the algorithm. The
first type of error is the L relative error of the chemical concentration c at the final time 7'
compared to the reference solution. The second type of error is the mean squared relative
error of the total concentration (38) over the interval [0, 7] compared to the ground truth
(40). To calculate the mean squared relative error of the total concentration cg, we use the

following formula:
ICo(t) — co(1)]
cg error = dt 41)
\/ / lco ()] )

where ¢y is the approximated value of c¢¢ obtained using the SIPF algorithm with a time
step 6¢. In addition, we fit the slope of error versus §¢ in the logarithmic scale and find
that the L, relative error e(8¢) follows an approximate first-order convergence rate, with
e(8t) = O(8t"0), This indicates that the algorithm is approximately first order in time
(Table 1).

In addition, we investigate the convergence of the algorithm with respect to other
parameters of discretization. To this end, we keep the reference setting as Fig. 5, and
alter Fourier mode number H or particle number P to compare with the reference solu-
tion. In Fig. 6 and Table 2 we present the L, relative error of c¢(-,T) with varying

= 100, 200, 400, 800, 1600 comparing with reference solution by P = 10000. The
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Fig.6 Relative errors of ¢ vs. P, + T er
compared with P = 10000 4x107
3x1072
2x107? +
102 10°
Table 2 Relative errors of ¢ vs. P L ertor
P, from data of Fig.6 2
100 0.00434
200 0.00359
400 0.00268
800 0.00237
1600 0.00198
Fig.7 Relative errors of ¢ vs. H, - -
compared with H = 24. Fitted
rate: e(H) = O(H0:659)
+
10734
9x 104 .
8x107* +
6 8 10 12
Table 3 Relative errors of ¢ vs.
H L
H, from data of Fig.7 2 error
0.00124
0.00109
10 0.00089
12 0.00080

fitted convergence rate is e(P) = O(P~%287), significantly smaller than standard Monte

Carlo. We conjecture that this is due to particle interaction and leave it for a future study.
In Fig. 7 and Table 3 we present the L relative error of c(-, T) with varying H =

6, 8, 10, 12, comparing with reference solution by H = 24. The fitted convergence rate is

e(H) = O(H™09),
We report that the convergent behavior of ¢g while varying H or P is similar.

4.3 Blow up behaviors

As mentioned in Sect. 2.1, it is well-known that 87 is the critical mass for the simplest two-
dimensional parabolic-elliptic KS system (5). Specifically, the system exhibits the following

dichotomy:
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1. If My < 8w, the system has a global smooth solution.
2. If My > 8m, the system has no global smooth solutions and can exhibit blow-up behavior.

In the case of a fully parabolic KS system or the specific parabolic-elliptic KS system
(5) with passive advection, there is no known variance identity similar to (6). Therefore, to
investigate the possible blow-up behaviors, numerical computation becomes necessary. By
utilizing the asymptotics described in (36) and (37), we can conduct tests for two scenarios:
H = 24 and H = 12. In these examples, we will compare the |c|| values to detect any
potential blow-up occurrences.

Mass dependence We begin by investigating the critical mass My, which plays a central role
in the dichotomy of the simple 2D parabolic elliptic system (5). To this end, we initialize the
algorithm with a uniform distribution over the unit ball centered at the origin and ¢(0, x) = 0.
We then apply the algorithm with two different values of H to compute the density and
chemical concentration until 7 = 1. To identify the possible blow-up, we compute the ratio

of |c|~ between the two cases. In Fig. 8a, we present the ratio, :zt’f}%
values of Mo. We observe a sharp increase in the ratio when a potential blow-up forms for
My > 47.6. Figure 8b presents the ratio at the final time 7 = 1, indicating that the critical
mass of the aforementioned initial condition should fall between 47.6 and 47.8.

In addition to the SIPF algorithm, we also present the numerical results obtained using the
finite difference method (FDM). We note that the KS system (2)—(3) admits radial solutions
when given constant scalar physical parameters (33) and aradially symmetric initial condition
(po, co)- Therefore, we re-write the system in the radial coordinate,

over time for various

2 2
Pt = (prr + ;:Or> — X <prcr + p(crr + ;Cr) s (4’2)
2 2
€c; =c,,+;cr—k c+p, (43)
reRT, 1el0,T] (44)

To formulate a finite difference scheme, we consider the system (42)—(43) on the domain
[0, 20] with the Neumann boundary condition. We use a uniform partition with N, = 2 x 10°
intervals for spatial discretization. For the temporal domain, we employ a backward Euler
scheme with a time step of 8z = 107>, This discretization method requires a comparable
computational time (approximately 150 seconds) to the proposed SIPF. In Fig. 8c, we present
the maximum value of ¢ over time for various initial mass M, denoted as

Icloo, FDM = sup le(r, D). (45)

r

We found that the FDM exhibits numerical instabilities for initial masses between 47.6 and
47.8, which matches the prediction made by the SIPF algorithm in Fig.8b. This example
further validates the accuracy of the proposed SIPF algorithm. It is worth noting that our
SIPF algorithm applies readily to more general (non-radial) KS systems, whereas FDM in
3D with a fine uniform mesh will be computationally much more expensive.
Geometry dependence In contrast to the simplest parabolic-elliptic KS system (5), where
the total mass is the sole determinant of the aggregation behavior, we have experimentally
observed that the critical mass can vary for different initial distributions of p. For instance,
in an experiment aimed at identifying the critical mass (as shown in Fig. 8), we replaced the
initial distribution with a uniform distribution on a ball centered at the origin with a radius
of 0.8. With a more concentrated initial distribution, we found that the critical mass of the
system decreases. To be more precise, in Fig.9a, we present the ratio of |c|« for various
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Fig.8 Ratio of |c|so’s from 2 SIPF runs with H = 24 and H = 12 and |c|oo from FDM run: in radial case,
the proposed SIPF can identify the same critical mass as FDM simulation
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Fig. 9 Ratio of |c|o’s from 2 runs with H = 24, 12; particles stay within initial radius 0.8: the more
concentrated initial, the smaller critical mass

0.2

0.0
leloo, H=24

leloo, H=24
leloo, H=12

vs. computation time 7.
[cloo, H=12

total masses My as a function of computational time 7. We can see a significant change in
the ratio when the total mass My is large enough (Mp > 39), indicating the formation of
potential singularities. Conversely, for relatively small values of My (Mo < 38.8), the ratio
remains stable around 1 throughout the computational time. In Fig. 9b, we present the ratio
at the final time 7' = 0.1 as a function of the total mass My, which indicates the critical mass
for this particular initial condition lies between 38.8 and 39.

Dependence on physical and biological parameters. Here we investigate the dependence
of critical mass on other physical coefficients in the KS systems. Here we take the base
configuration as specified in Sect.4.1 with physical coefficients set (33). We then change

one of the coefficients and apply the same methodology as the aforementioned example,
i.e. calculating :it:% for various values of the coefficient and find the first interval that

mz"% is significantly away from 1. In Table 4, we summarize the results by examples that

change one of the coefficients in (33). From Table 4, we call tell that the following factors have
a positive correlation with the critical mass (suppressing blow-up): mobility of the bacteria p
and chemical decay constant k. In contrast, the following factors have a negative correlation
(promoting blow-up): chemo-sensitivity of the bacteria x and time scale of chemotaxis €.
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Table 4 Dependence of critical

mass on KS physical and Original setup New setup New interval Changes
biological parameters w=1 w=0.8 (38,38.2) !
x=1 x =0.8 (59.6,59.8) +
e=10"4 e=8x107° (47.8, 48) 0
k=0.1 k =0.08 (46.8,47) s

Original interval: (47.6, 47.8)

1.5 1 .
40
1.4 -
s 30
1 2 | . L] L] L] 5 L] 20
114 19
. o o 0
107 , , , , -0.2 0.0 0.2
47.0 475 48.0 485 49.0 X
(a) :z:”’% at T =1 vs. Mp. (b) Histogram of X representing p at
i T =1 with Mo = 47.8, projected to x —y

plane.

Fig. 10 Results in the example of shifted initial distribution: SIPF predicts blow up with concentration not on
the regular Fourier grids

4.4 Aggregation Behaviors from Non-radial Initial Data

In this subsection, we investigate aggregation behaviors in more general distributions. To this
end, we present two experiments: (1) the initial distribution is not centered at the origin or
even not a standard Fourier collocation point; (2) a more practical scenario where the initial
distribution p models several separated clusters of organisms.

Shifted initial distribution. In this example, we re-do the computation to find the critical
mass in parameter setup (33) as the same approach as Sect.4.3, while shifting the initial
distribution concentrated at [1/6, 1/6, 1/6]7 . The concentration point is selected away from
the standard Fourier collocation point in our maximal resolution, namely [—4, 4]3 domain
with each direction discretized by H = 24 Fourier mode. Obviously, in this setup, the critical
mass shall remain the same as the non-shifted one, namely (47.6, 47.8).

In Fig. 10a, we compute the ration t::% as in Fig. 8b. The projected critical mass falls
between 47.6 and 47.8 identical as the experiment result in Sect. 4.3. In Fig. 10b we show the
location of particles representing p at T = 1. More specifically, we compute a histogram of
particles projected to x-y plane and zoom in to [—1/3, 1/3]?. Notice that [—1/3, 1/3] covers
an interval of three Fourier collocation points under the resolution of computation.

Results in Fig. 10 confirm the capability of our method in predicting critical solutions that
may focus on any location.

In essence, our algorithm approximates ¢ with Fourier series (18) and update of ¢ in Alg.1,
always shifting the ¢ series relative to the position of X during collocation, see (28). Hence
our method avoids the potential numerical inaccuracy in [8] as pointed out in [34].

@ Springer



Journal of Scientific Computing (2025) 102:75 Page190f23 75

1.4

1.34

1.2 1

1.1

1.0 A

0.0 0.1 0.2 0.3 0.4 0.5

(a) Initial distribution. (b) :Z:”'% vs. computation time.

Fig. 11 Identifying the formation of a finite time singularity at # ~ 0.3 in non-radial solutions

Multi-clustered initial distribution. This is a more practical scenario where the initial distri-
bution p models several separated clusters of organisms. The mass in each cluster is below
the critical mass, while the total mass is super-critical. To be more specific, we assume the
initial distribution is a uniform distribution on four balls with a radius of 0.5. These balls are
centered at four vertices of a regular tetrahedron, namely,

1 1
1 -5 -5 0
o], |2 (-2 [} (46)
0 0 0 V2

See also Fig. 11a for the scatter plot of particles representing the initial distribution. In this
case, we assume the total mass is My = 80 and each cluster has a mass of 20, which is
below the critical mass for a ball with a radius of » = 0.5. Next, we apply the algorithm to
compute the KS system up to T = 0.5, with two different spatial discretizations (H = 24
and H = 12), while keeping the rest of the configurations. In Fig. 11b, we calculate the ratio
between the maxima of ¢ versus time for the two different spatial discretizations. We can see
the singularities formed in the system at around 7' = 0.3.

In Fig. 12, we present the scatter plot of particles between the time 7 = 0.1 and 7 = 0.4.
By comparing Fig. 11a with Fig. 12a, we can see diffusive behavior. This behavior is a result
of the mass in each cluster being below the critical mass. The diffusive behavior persists
until approximately 7 = 0.2, as depicted in Fig. 1 1b, where the active particles form a single
larger cluster. The mass of this new cluster, centered at the origin, is My = 80. In Fig. 12c,
we can observe the aggregation process starting to form a singularity. This can also be seen
from the sharp increase in the ratio of the maximum of ¢ in Fig. 11b. Finally, in Fig. 12d, we
can directly identify the possible blow-up at the origin through the scatter plot.

4.5 Critical Mass and Blowup in Parabolic-parabolic KS

As the last example, we examine the singular solutions in the fully parabolic KS systems.
For the purpose of exposition, we set € = 0.1 in (1), while keeping the remaining physical
parameters constant. The initial condition is assumed to be a uniform distribution on a ball
with a radius of 0.8 and c¢(x, 0) = 0.
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() T=0.3 (d) T=04

Fig. 12 Particle scatter plotat 7 = 0.1 : 0.1 : 0.4: three cluster merging and a singularity formation

From Fig. 9, we can determine that the critical mass is approximately My = 39. We apply
the same computational configuration as in Fig. 9, except we enlarge the domain to L = 12
to accommodate possible diffusive behaviors. We test our algorithm for two cases, My = 40
and My = 160, respectively.

The behaviors of the system are reported in Fig. 13. In Fig. 13a and b, we present the scatter
plot of the particles representing the density p with My = 40 and My = 160, respectively.

We find that despite the initial mass My = 40 being larger than the critical mass in the
case of € = 1074, the system does not blow up. We report that the variance of the particles
grows linearly in computational time 7', with diffusion coefficients fitted to be 1.696. In the
absence of the chemical attractant, namely x = 0, the diffusion coefficient is expected to be
4 = 4. This implies that the parabolic-parabolic KS systems with mass below critical mass
are effectively diffusive, with diffusion suppressed by chemical attraction.

However, for My = 160, the system exhibits a possible singularity at the origin. In Fig. 13c,
we present the ratio of |c|s, under H = 24 and H = 12 for both initial masses. Similar to
the observation in Fig. 13a and b, the blow-up behavior crucially depends on a critical level
of the initial mass.
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Fig. 13 Effects of initial mass M( on focusing behavior (finite time blowup)

5 Concluding Remarks

In this paper, we developed a stochastic interacting particle and field algorithm, observed its
convergence, and demonstrated its efficacy in computing blowup dynamics of fully parabolic
KS systems in 3D from general non-radial initial data. The algorithm is recursive and does not
have any history dependence, and the field variable is computed using Fourier series. Since
the field variable (concentration) is smoother than the density, the series approach works well
with only a few Fourier modes. The aggregation or focusing behavior in the density variable
is resolved by using 10k particles. The algorithm successfully detects blowup through the
field variable based on the critical amount of initial mass. The algorithm is self-adaptive and
does not rely on any assumption about the blowup behavior, which is unknown except in
the case of the parabolic-elliptic KS system. A potential weakness of the algorithm is the
high cost of series expansion in 3D when a large number of Fourier modes is required for
high-resolution computation near the blowup time. We will study this issue in future work.
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