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Unbounded quantum advantage in communication with minimal input scaling
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In communication complexity-like problems, previous studies have shown either an exponential quantum
advantage or an unbounded quantum advantage with an exponentially large input set �(2n) bit with respect to
classical communication �(n) bit. In the former, the quantum and classical separation grows exponentially in
input while the latter’s quantum communication resource is a constant. Remarkably, it was still open whether
an unbounded quantum advantage exists while the inputs do not scale exponentially. Here we answer this
question affirmatively using an input size of optimal order. Considering two variants as tasks: (1) distributed
computation of relation and (2) relation reconstruction, we study the one-way zero-error communication com-
plexity of a relation induced by a distributed clique labeling problem for orthogonality graphs. While we prove no
quantum advantage in the first task, we show an unbounded quantum advantage in relation reconstruction without
public coins. Specifically, for a class of graphs with order m, the quantum complexity is �(1) while the classical
complexity is �(log2 m). Remarkably, the input size is �(log2 m) bit and the order of its scaling with respect to
classical communication is minimal. This is exponentially better compared to previous works. Additionally, we
prove a lower bound (linear in the number of maximum cliques) on the amount of classical public coin necessary
to overcome the separation in the scenario of restricted communication and connect this to the existence of
orthogonal arrays. Finally, we highlight some applications of this task to semi-device-independent dimension
witnessing as well as to the detection of mutually unbiased bases.
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I. INTRODUCTION

Quantum Shannon theory replaces the classical carrier of
information with quantum systems in Shannon’s model of
communication [1]. This initiated a tide of attempts to un-
derstand the advantage of encoding classical information in a
quantum system. Over the past few decades, there have been
numerous works probing the advantage of quantum resources
over classical counterparts in various information-theoretic
scenarios. Many of these works provide a deeper insight into
quantum theory. Some of these quantum advantages have
found practical applications in the field of quantum cryp-
tography [2,3], quantum communication [4–8], and quantum
computing [9–11] to name a few. In a prepare and mea-
sure scenario, the major share of effort has been devoted to
showing an advantage in quantum communication complexity
[12,13]. It involves computing the minimum communication
required between distant parties to perform a distributed com-
putation of functions [14].

Karchmer and Wigderson [15] initiated the study of the
communication complexity of relations and established a con-
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nection between the communication complexity of certain
types of relations and the complexity of Boolean circuits.
Raz [16] provided an example of an exponential gap between
the classical and quantum communication complexity for a
relation.

Another closely related line of study has been to explore
quantum advantage based on orthogonality graphs-inspired
problems. In most cases, orthogonality graphs that yield
quantum advantage are not Kochen-Specker colorable (KS-
colorable) [17], thus connecting this set of tasks to the feature
of quantum contextuality [18].

In terms of communication complexity, it is relevant to
look into the tasks that show a large separation between clas-
sical and quantum communication resources. In this context, a
pertinent question arises regarding the maximum gap between
these resources. In this article, we introduce a new task based
on the communication complexity of relations called relation
reconstruction. For this task, we identify a class of relations
based on graphs, such that there is an unbounded gap between
one-way zero-error classical and quantum communication. In
Refs. [17,19], the authors show the quantum communication
complexity advantage for graphs which are not KS colorable.
This raises questions regarding the usefulness of KS col-
orable graphs in demonstrating a similar utility of quantum
resources. Our proposed task shows quantum advantage in-
dependent of the graphs being KS-colorable (or not). Last,
the exponential advantage in Ref. [16] requires an infinite
set of inputs. In Ref. [20], the authors show an unbounded
separation between quantum and classical resources in the
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absence of public coin while using an input set which is
exponentially large relative to the advantage. This leaves open
the possibility of obtaining a similar advantage while using an
exponentially smaller input set. Here we solve this problem
affirmatively. Our proposed task requires only a finite set of
inputs to establish an unbounded separation between classical
and quantum resources. In our communication complexity
type task, the input size is of the same order as the advan-
tage. It is practically hard to demonstrate such an unbounded
advantage if the input data size is exponentially larger than
the advantage (see Sec. VI for detailed discussion). Note that
the trade-off here is the fact that, unlike in Refs. [14,16,20],
where the exponential advantages are evident when dis-
tant parties share public coins (classical correlations), the
unbounded gap presented in this work precludes such
possibilities.

In this work, the relation we considered is specified by
the rules of distributed clique labeling problem (CLP) over
a graph. We first study the task of distributed computation of
the relation by two parties Alice and Bob and calculate the
one-way zero-error communication complexity of the relation
(CCR). For this task where any valid answer belonging to the
relation is accepted, we show that there is no advantage in
encoding information in quantum systems. However, another
version of the task, called relation reconstruction, where Bob’s
output in different runs should span all correct answers, entails
a nontrivial quantum advantage in communication. We refer to
the communication cost for this relation reconstruction task as
strong communication complexity of relation (S-CCR). This
new task is equivalent to the possibility of reconstructing the
relation from the complete observed input-output statistics.
Demanding reconstruction is a stronger condition than the
communication complexity of relations since a function (a
special case of relations) can always be reconstructed from
the observed statistics in the latter task, while in general for a
relation this does not hold.

A. Main results

We consider two distinct scenarios depending on the avail-
ability of public coins (i.e., preshared correlation) and direct
communication resources between the two parties: (i) the
spatially separated parties do not share any public coin and
have access to one-way communication and (ii) the commu-
nication channels can transmit systems of fixed operational
dimensions and the public coin is resourceful. In the first
scenario, we find that there exist communication tasks that
entail an unbounded separation between the operational di-
mensions of the classical and quantum message systems.
We also demonstrate a quantum advantage for the relation
induced by a class of vertex-transitive self-complementary
graphs, called Paley graphs. In the second scenario, we show
that there exist communication tasks that imply classical
channels are required to be assisted by unbounded amounts
of the classical public coin (i.e., shared randomness) while
the quantum channel does not require any additional assis-
tance. Further, we show that there exist graphs for which
the task with a classical bit channel requires classical public
coin increasing linearly in the number of maximum cliques
whereas with quantum public coin (i.e., quantum correlation)

assistance it can be performed by a 1 e-bit-assisted classical
bit channel.

B. Outline of the paper

The article is organized as follows. Section II introduces
the necessary preliminaries for this work, including orthogo-
nal representations and binary/KS coloring of graphs, which
we later apply to our communication tasks. We also dis-
cuss the notion of the operational dimension of a system in
a theory which would be useful to compare classical and
quantum systems as resources for communication. In Sec. III
we first introduce the setup and discuss the communication
complexity of relations. We then introduce a variation of the
task involving distributed computation of a relation, define the
strong communication complexity of relation (S-CCR) and a
payoff for this new task. In Secs. III A and III B, we introduce
the notion of clique labeling for a graph and the clique labeling
problem which we further elaborately discuss in the later
subsections. In Sec. IV we provide all the results for the two
tasks when different resources are accessible to the parties.
For the results in Secs. IV A–IV D, we consider one-way
noiseless communication as a resource and the parties have
access to a local source of randomness or private coins only.
On the other hand for the results provided in Sec. IV E, we
consider public coin between parties to be a resource as well
when they have access to a noiseless one-way communication
channel of bounded dimension. In Sec. IV A we consider
the distributed clique labeling problem, calculate the classical
and quantum CCR specified by this problem, and show that
there is no quantum advantage in this task. Then we consider
the variation of this task called relation reconstruction where
Bob’s outputs must span all the correct answers. In Sec. IV B,
we calculate the classical strong communication complexity
of the relation and show that it grows with the order of the
graph. Next, in Sec. IV C, we calculate an upper bound on
quantum S-CCR and show that when the orthogonality graphs
belong to a certain class then the gap between classical and
quantum S-CCR can be arbitrarily large. Subsequently, in
Sec. IV D we show that quantum advantage in S-CCR exists
for even a larger class of graphs by explicitly considering
Paley graphs as an example. In Sec. IV E, when an additional
classical public coin is allowed between the parties, we calcu-
late the amount of classical public coin assistance to bounded
classical communication required when orthogonality graphs
belong to some specific class. We show the lower bound on
the classical public coin assistance grows with the number
of maximum cliques. Additionally, we show the advantage
of e-bit assistance to classical channels over assistance from
arbitrary amounts of classical public coin. In Sec. V we list
some applications of the proposed communication scenario.
Finally in Sec. VI we summarize the results and also list
some open questions. We also compare the current work with
preexisting results and discuss some foundational insights into
the results we have presented.

II. PRELIMINARIES

In this section, we briefly go over known concepts relevant
to the article, including notions of orthogonal representation,
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binary coloring of graphs which is widely used in the study of
contextuality [21], and operational dimension.

A. Graphs, orthogonal representation, and binary coloring

A graph G = (V, E ) consists of a set of vertices V :=
(v1, v2, . . . , vn) and a set of edges E := (e1, e2, . . . , em) be-
tween the vertices. Additionally, the edges may also have a
directional property and a weight, which gives rise to further
classifications of directed or undirected graphs and weighted
or unweighted graphs. In this work, we consider simple undi-
rected unweighted graphs. A subgraph of a graph G is a graph
G ′ = (V ′, E ′) where E ′ ⊆ E such that ∀ei ∈ E ′ the vertices
connected by ei belong in V ′ ⊆ V . For any graph G, a clique
is a fully connected subgraph of G. The size of the clique is
given by the number of vertices in the subgraph. A maximum
clique of a graph G is a clique with the largest size and the
number of vertices in it is referred to as clique number.

Among many different representations of an arbitrary
graph, orthogonal representation over complex fields is useful
in demonstrating the impossibility of a noncontextual hidden
variable model for quantum mechanics [21,22]. Here we make
use of a general definition of orthogonal representation. The
orthogonal representation of a graph over arbitrary fields is
defined as follows [23]:

Definition 1. Given a graph G := (V, E ), an orthogonal
representation of G over field F is described by the function
φ : V → Fd , such that

(i) for any two adjacent vertices vi and v j , 〈φ(vi ),
φ(v j )〉 = 0,

(ii) φ(vi ) 	= φ(v j ), for all i 	= j,
where d is the dimension of the vector space over field

F and 〈, 〉 denotes the scalar product (bilinear form) over
field F .

This representation is faith ful if 〈φ(vi ), φ(v j )〉 = 0 im-
plies that vi and v j are adjacent and is orthonormal if
|φ(vi )| = 1 for all vi ∈ V .

In this article, we would only consider the orthogonal
representations such that the vectors are normalized, i.e.,
|φ(vi )| = 1 for all vi ∈ V . An important problem regarding
this representation is to find the minimum dimension, say,
dF , such that the above definition holds. For such an optimal
orthogonal representation we denote the faithful orthogonal
range of the graph G over field F as dF (for example, dR, dC
etc.). A lower and an upper bound to the faithful orthogonal
range dF satisfied over an arbitrary field F , are given as
follows:

ω � dF � dF ′ � |V|, (1)

where F ′ ⊆ F , ω is the maximum clique size, and |V| is the
number of vertices in the graph G, also known as the order
of the graph. The lower bound follows from the constraint
that there should be at least ω number of orthogonal vectors
for any faithful orthogonal representation. The upper bound
says that it is always trivially possible to provide an orthog-
onal representation with |V| number of mutually orthogonal
vectors. Lovász et al. [24] provided a necessary and sufficient
condition for finding minimal d over the real field R for a
class of orthogonal representations called general position,

for which any set of d representing real vectors are linearly
independent.

Proposition 1 [Lovász et al. [24]]. Any graph G := (V, E ),
has a general position faithful orthogonal representation in Rd

if and only if at least (|V| − d ) vertices are required to be
removed to make the complementary graph Ḡ disconnected.

In particular, Proposition 1 provides an upper bound on the
faithful orthogonal range (Definition 1) for a class of graphs,
a fact that we will use later (Sec. IV C) to arrive at our main
result of unbounded quantum advantage in a communication
task. Throughout this work, we will refer to a graph with a
faithful orthogonal representation in minimum dimension as
an orthogonality graph.

Given a graph G, the problems concerning the coloring of
its vertices with one of two possible colors have been widely
studied and share deep connections with quantum noncontex-
tuality. In the following, we define the binary coloring of an
orthogonality graph.

Definition 2. Binary coloring of a graph G := (V, E ) is a
binary function f : V → {0, 1} such that

(i) for any two adjacent vertices vi and v j , f(vi )f(v j ) = 0,
(ii) for any maximum clique Ck of the graph G there is

exactly one vertex v∗ ∈ Ck , such that f(v∗) = 1.
A point to note here is that not all graphs are binary

colorable. A binary coloring of graph G with n vertices, if
possible, can be thought of as a binary string of length n. On
the other hand, the set of the binary strings corresponding to
all different binary colorings uniquely describes the graph G.
In the subsequent sections, we will use the term ”coloring of
a graph” to refer to the binary coloring of the graph.

B. Comparison of classical and quantum resources

In any communication protocol, the carrier of the message,
as well as the sources of private or public coins, are physical
systems, which may be described as classical or quantum (or
more generally but outside the purview of this work by a
postquantum theory). To facilitate comparing resources, we
will describe below the notion of Operational dimension from
the framework of general probabilistic theory [25]. The op-
erational dimension of a system is the largest cardinality of
the subset of states that a single measurement can perfectly
distinguish.

Importantly, the operational dimension of a theory is dif-
ferent from the dimension of the vector space V in which the
state space � is embedded. For instance, for qubit the state
space, the set of density operators D(C2) acting on C2 is
embedded in R3. However, the operational dimension of this
system is 2, as at most two-qubit states can be perfectly distin-
guished by a single measurement. Generally, the operational
dimension is equivalent to the Hilbert space dimension for a
quantum system. We will refer to this notion when comparing
communication resources between the quantum and classical
scenarios.

III. COMMUNICATION COMPLEXITY OF RELATIONS

In this section, we will briefly discuss the communica-
tion complexity of relations. Consider a bipartite prepare and
measure scenario involving Alice and Bob who are separated
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in space and can communicate. A relation is defined as a
subset R ⊆ X×Y ×B, where X and Y are the set of possible
input values of Alice and Bob, respectively, and B is the set
of possible output values that can be produced by Bob. A
simple example is the relation R where X and Y are sets of
parents and the set B is the set of children and a valid tuple
(x, y, b) ∈ R when b is a child of x and y. There might be
multiple correct answers if x and y have multiple children.
There is also the possibility of no valid output for a given x and
y if they have no children. We will consider relations that have
a valid output b for any valid input (x, y). The task for Alice
and Bob is distributed computation of relation R. They can
use communication as a resource for this purpose. A protocol
P to perform this task may involve one-way or two-way com-
munications with single or multiple rounds. However, in this
work, we are interested in one-way communication protocols
only. The cost of a protocol P is defined as the minimum
amount of communication required to perform the distributed
computation for any input (x, y) ∈ X×Y . Now we will define
the CCR.

Definition 3. CCR The communication complexity of a
relation R ⊆ X×Y ×B is the minimum communication re-
quired from Alice to Bob such that for any input variables
x ∈ X and y ∈ Y , Bob’s output b gives the tuple (x, y, b) ∈ R.
Note that Alice and Bob should know the relation R before
the task commences.

In other words, the communication complexity of the
relation R is the minimum communication required when
optimized over all protocols that can compute R. In a gen-
eralized setting, the distributed computation task may allow
for some small errors to lower the cost of communication.
Throughout this article we consider only zero-error scenario,
i.e., P(b|x, y) = 0 whenever (x, y, b) /∈ R for all (x, y) ∈
X×Y . In most cases, rather than finding the optimal protocol
or its cost, which is often difficult, one is interested in provid-
ing a lower bound for the communication complexity. A trivial
zero-error protocol using log2 |X | bit, which requires that
Alice sends all information about her input to Bob, provides a
trivial upper bound for communication complexity.

The protocols for the distributed computation of a rela-
tion depending on encoding and decoding strategies have
the following types. First, the classical one-way log2 m bit
communication protocol can be deterministic. Such a deter-
ministic protocol consists of a fixed encoding E by Alice
which is a “log2 |X | bit to m bit” deterministic function and
a decoding by Bob D which is a “m log2 |Y | bit to log2 |B| bit”
deterministic function, i.e., E : {1, . . . , |X |} �→ {0, . . . , m −
1} and D : {0, . . . , m − 1}×{1, . . . , |Y |} �→ {1, . . . , |B|}. The
communication cost of such a protocol is defined as the length
of the message in bits sent by Alice on the worst choice of
inputs x and y. The one-way deterministic zero-error commu-
nication complexity of relation R, denoted by D(R) is the cost
of the best protocol (i.e., protocol with minimum communica-
tion cost) that allows computation of relation R without any
error. Second, the parties can have access to private coins or
sources of local randomness. In a classical one-way protocol
with private coins, they can locally alternate over the space of
all possible encodings (E) and decodings (D) while following
some probability distribution PE and PD , respectively. We
denote the private coin-assisted communication complexity of

relation R as Rpriv(R). Third, the parties can have access to
public coins or sources of shared correlations. In a classical
one-way protocol with public coins, they can switch between
deterministic encoding and decoding schemes following some
correlation PE×D . Here PE×D is a probability distribution
over the space of the Cartesian product of deterministic en-
codings and decodings. We denote the public coin-assisted
communication complexity of relation R as Rpub(R). Note
that the sources of shared correlations can be classical or
quantum and we will refer to them as classical public coin
or quantum public coin respectively. The classical commu-
nication complexities of a relation R satisfy the following
ordering:

Rpub(R) � Rpriv(R) � D(R). (2)

In the communication complexity of functions, there is
only a single correct answer that Bob may output. The task
of communication complexity of relations differs from that of
functions since there may be more than one correct answer
for Bob. This allows us to define a stronger variation of the
distributed computation task that enforces that Bob outputs all
correct answers over different rounds of the prepare and mea-
sure scenario. We will refer to the minimum communication
required for this task as S-CCR. Naturally, when the relation is
a function (a subclass of relations) S-CCR and CCR are equal
as both the tasks are equivalent in the case of functions.

Definition 4. S-CCR The strong communication complex-
ity of a relation R ⊆ X×Y ×B is the minimum communi-
cation required from Alice to Bob such that for any input
variables x ∈ X and y ∈ Y , Bob’s output b gives the tuple
(x, y, b) which belongs to R and that Bob’s output b in dif-
ferent rounds of the prepare and measure scenario spans all
valid b for each input (x, y). Same as CCR, Alice and Bob
should know the relation R before the task commences.

In other words, this new task aims to decipher or
reconstruct the relation R from the observed statistics
{(xi, yi, bi )|i = runs}. Thus, we will refer to this variant of a
distributed computation task as relation reconstruction. In the
limit of runs → ∞ the observed statistics can be used to get
the conditional output probability distribution {P(b|x, y)}x,y,b.
Note that for relation reconstruction, the necessary condi-
tion to guess or reconstruct R correctly is given by the
nonzero value of the observed conditional probabilities when
(x, y, b) ∈ R (and zero otherwise) rather than the exact prob-
abilities. However, we can define a natural (but not convex)
payoff for relation reconstruction as follows:

PR = min
(x,y,b)∈R

P(b|x, y). (3)

When optimized over all protocols P for this task with or
without public coins involving them, the best strategy yields
the maximum achievable payoff for the given relation which
we will refer to as algebraic upper bound P∗

R. This is trivially
achieved if Alice communicates her input to Bob and Bob in
turn uses this message and his input to give a randomly chosen
output from the set of all correct answers in each run,

P∗
R = max

P
PR. (4)

One way to interpret the payoff PR is to think of it as
related to the probability of success of reconstructing the
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relation R (see Appendix A). Thus, for the given protocol,
the higher the value of PR, the fewer runs one needs to recon-
struct the relation. Note that for the success of reconstruction,
we necessarily require PR > 0. It is worth mentioning that
we are interested in minimum communication that performs
the relation reconstruction task. However, the optimal strategy
using the minimum amount of communication may not yield
P∗
R. Further, two different sets of resources (communication

and/or shared) of the same operational dimension, such as
quantum and classical, that individually perform relation re-
construction may also yield different payoffs (PQ

R and PCl
R ,

respectively) when optimized over all the strategies given the
type of the resource mentioned above.

In this work, we consider some specific relations induced
by orthogonality graphs. These relations are specified by a
distributed clique labeling problem. Before introducing the
clique labeling problem, let us introduce clique labeling.

A. Binary coloring to clique labeling

Consider an orthogonality graph G with the set of ver-
tices V and maximum clique of size ω. Now additionally
consider some indexing of the vertices {1, . . . , |V|} of the
graph. Let us define the ordered (increasing indices) set of
vertices belonging to a maximum clique Ci as VCi ⊆ V . The
binary color, denoted by f (.) is defined over each vertex
(Definition 2). Now consider the binary coloring of the ver-
tices of the maximum clique Ci. Observe that any such binary
color assigns value 1 to exactly one vertex of this maximum
clique, that is,

∀ v ∈ VCi , f (v) = δv,v′ for a v′ ∈ VCi . (5)

There are ω different binary colorings possible for the
maximum clique Ci. Now clique labeling can be defined as
an invertible map that takes one from a binary coloring of the
vertices of some maximum clique to an ω-valued label of this
clique.

Definition 5. For some maximum clique Ci, clique labeling
is a mapping gCi from the set of binary colorings { f (v)}
of vertices VCi in the clique to a ω-valued label in � =
{0, . . . , ω − 1}. For a binary coloring f (v) that assigns color
1 to the vertex at ath position index in the ordered set VCi the
corresponding clique label is gCi = a ∈ �.

The clique label is assigned from {0, . . . , ω − 1} in the
following manner. The lowest clique label 0 is assigned if the
vertex with the lowest index in VCi is assigned 1 by the binary
coloring, the second lowest clique label 1 is assigned if the
vertex with the second lowest index in VCi is assigned 1 by the
binary coloring, and so on.

For example, for ω = 3, if, say, maximum clique Ci has
vertices VCi = {v3, v6, v7} and f (v3) = 1, then gCi = 0, else
if f (v6) = 1, then gCi = 1, and if f (v7) = 1, then gCi = 2,
where gCi is the ω-valued clique label of maximum clique
Ci (see Fig. 1). Note that given the index of vertices and a
maximum clique, one can always map the clique label back
to the binary coloring of the vertices of a maximum clique,
i.e., the map is invertible. This will be useful for Bob while
decoding during the distributed computation of the clique
labeling problem.

FIG. 1. For the graph G (n=3,ω=3) with n = 3 maximum cliques of
size ω = 3 given above, the clique labellings of C2 which has vertices
VC2 = {v3, v6, v7} for different binary colorings is provided in this
figure.

B. Clique labeling problem

Now we present the class of relations for which we study
CCR and S-CCR in this work. These relations are based on
the distributed clique labeling problem over certain graphs.
Here we consider graphs along with some faithful orthogo-
nal representation in minimum dimension and refer to them
together as an orthogonality graph. Let us now consider an
orthogonality graph G (n,ω) with n maximum cliques each of
size ω labeled as Ci where i ∈ {1, . . . , n}. We also assume
that each vertex belongs to some ω-sized maximum clique.
The set of maximum cliques of the graph G (n,ω) is denoted
as C = {C1,C2, . . . ,Cn} and the set of clique labels for each
of the maximum cliques is � = {0, . . . , ω − 1}. Note that the
clique labels are related to the binary coloring of vertices
through Definition 5.

The setup (given in Fig. 2) for the distributed CLP is
a prepare-and-measure scenario involving a referee and two
spatially separated parties, Alice and Bob. The referee shares
the orthogonal graph G (n,ω) with some vertex indexing and
a faithful orthogonal representation in minimum dimension
with Alice and Bob at the beginning. The referee gives Alice
the pair (Cx, a) as input: a maximum clique Cx of size ω

randomly chosen from G (n,ω) and a random possible labeling
a of the same maximum clique, i.e., (Cx, a) ∈ X = C×�. The
referee gives a maximum clique Cy of size ω randomly chosen
from G (n,ω) to Bob as input, Cy ∈ Y = C. We will consider the
inputs to be uniformly distributed in the sense that Cx and Cy

are both randomly chosen from C and a are uniformly chosen
from �.

Bob must output a valid labeling b ∈ B = � for Cy which
satisfies the constraints provided below following from the
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FIG. 2. In the prepare and measure scenario, Alice’s input is a
maximum clique from the orthogonal graph G (n,ω) and its clique
label, i.e., (Cx, a). Bob’s input is some maximum clique Cy in G (n,ω).
Bob must output a valid clique labeling b for his input maximum
clique such that (Cx, a,Cy, b) ∈ R(G (n,ω) ). Alice can send a physical
system of operational dimension d to Bob.

rules of the binary coloring of the orthogonality graph G (n,ω).
This will subsequently specify the relation that we will con-
sider. We call these constraints consistent labeling of pairwise
cliques:

(1) If Alice and Bob receive two maximum cliques sharing
some vertices, then the binary coloring of each shared vertex
(0 or 1) by Bob should be identical to Alice’s coloring of the
vertex.

(2) If Alice and Bob receive two different maximum
cliques such that a vertex from Alice’s input maximum clique
is adjacent to some vertex in Bob’s input maximum clique,
then the vertices belonging to this edge should not both have
binary color 1.

(3) In all other cases Bob can label the input maximum
clique independently of Alice’s input label.

Note that as a consequence of constraint 1, if Alice and Bob
receive the same maximum clique, then Bob’s clique labeling
should be identical to Alice’s input clique labeling, i.e., the
binary coloring of the vertices of the maximum clique should
be the same. Also, there could be graphs where vertices (not
in common) from two maximum cliques are adjacent. The
constraint 2 states that whenever these two maximum cliques
are inputs of Alice and Bob, each of these adjacent vertices
should not be colored 1 simultaneously. The conditions for
consistent labeling of pairwise cliques are defined with respect
to binary colorings, which can be then translated to conditions
on the input and output clique labeling in {0, . . . , ω − 1} = �

(Definition 5). Alice is allowed to send some communication
(either classical or quantum depending on the scenario) to
Bob, which we will optimize to find the communication com-
plexity later. We will also consider situations with classical
and quantum public coins later in Sec. IV E.

We will now define the relation R(G (n,ω) ) that we discuss
throughout this work. R(G (n,ω) ) ⊆ X×Y ×B is specified by
the distributed CLP for the graph G (n,ω). Here X = C×�

and Y = C are the input sets for Alice and Bob, respec-
tively, and B = � is the output set of Bob. Thus, R(G (n,ω) ) ⊆
(C×�)×C×� and the tuple (x, y, b) ≡ ((Cx, a),Cy, b) ∈

FIG. 3. Reconstruction of relation: After many runs of the task,
the statistics {(Ci

x, ai,Ci
y, bi )} are sent to the Reconstructor, who

attempts to recover R(G (n,ω) ).

R(G (n,ω) ) if the input maximum clique of Alice and Bob, input
clique label of Alice and output clique label of Bob satisfies
the constraints of consistent labeling of pairwise clique given
above for the graph G (n,ω). In the subsequent discussions, we
will mildly abuse the notion by using (Cx, a,Cy, b) instead
of ((Cx, a),Cy, b) to denote a tuple belonging to the relation
R(G (n,ω) ).

In the distributed computation of the R(G (n,ω) ) relation,
Bob must output clique label b for his input maximum clique
such that the tuple (x, y, b) ≡ (Cx, a,Cy, b) ∈ R(G (n,ω) ). Note
that having the relation is equivalent to having the graph
itself. Additionally, the CCR and S-CCR when considering
the relation R(G (n,ω) ) will be denoted as CCR(G (n,ω) ) and
S-CCR(G (n,ω) ), respectively.

In Sec. IV, we show that for distributed computation of
R(G (n,ω) ) there exists a protocol such that log2 ω quantum,
as well as classical one-way communication from Alice to
Bob, accomplish this task. Thus, we do not have any quantum
advantage in CCR in this case. However, it is possible to
realize unbounded quantum advantage when we look at the
classical and quantum S-CCR when considering R(G (n,ω) ).

We add one observation here that will become relevant for
some of the results in Sec. IV. For a graph G to have a faithful
orthogonal representation in dimension ω, any two distinct
maximum cliques for this graph can have at most ω − 2 points
in common. Equivalently, every vertex v in Ci that is not in
a maximum clique Cj can be orthogonal to at most ω − 2
vertices in Cj .

C. Reconstruction of the relation R(G (n,ω) )

For the distributed computation of R(G (n,ω) ), Bob must
output some label for his input maximum clique such that it
follows the constraints enlisted above for the distributed CLP.
Let us now consider the stronger version of the distributed
computation task–relation reconstruction, where Bob must
span all correct answers. This can be formulated as a task
where the inputs and outputs of Alice and Bob are listed at
the end of every round. After sufficient iterations, this list is
shared with a randomly chosen Reconstructor (Fig. 3), who at
the beginning does not have any information about the graph
and the induced relation thereof. The Reconstructor becomes
aware of the cardinality of the input and/or output sets of Alice
and Bob from the list. The Reconstructor must reconstruct the
relation R(G (n,ω) ) and thus the graph G (n,ω).
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For reconstruction to be possible, the outcomes of Bob
b should be such that after many runs, the set of tu-
ples {(Cx, a,Cy, b)} can be used to deduce all the (non-)
orthogonality relations in the graph G (n,ω) by the Reconstruc-
tor, without any prior information about the relation R(G (n,ω) )
or the graph G (n,ω).

After many iterations, the following payoff is calculated
for the relation reconstruction task [as defined in Eq. (3)]:

PR(G (n,ω) ) = min
(Cx,a,Cy,b)∈R(G (n,ω) )

P(b|Cx,Cy, a). (6)

Here the minimization is over the set of events in R(G (n,ω) ).
The payoff PR(G (n,ω) ) is necessarily nonzero if reconstruc-
tion is possible. The payoff can be interpreted as a measure
of the efficiency or success probability of relation recon-
struction over some number of runs. Same as before, when
optimized over all protocols with or without public coins,
the best strategy yields the maximum achievable payoff for
the given relation, which we will refer to as algebraic upper
bound P∗

R(G (n,ω) ).

D. Probability table for CCR(G (n,ω) ) and S-CCR(G (n,ω) )

One can analyze the task of distributed computation for the
relation R(G (n,ω) ) as well as the task of relation reconstruc-
tion equivalently through a table of conditional probabilities
P(b|Cx,Cy, a). This table corresponds to the strategy Al-
ice and Bob can decide on before the game begins while
following some protocol. The rows of the table are given
by Alice’s possible inputs (Cx, a), and the columns are de-
noted by the tuple of inputs-outputs of Bob (Cy, b). This
way of analysis will be important to understand some of
the proofs we will present later. The favorable conditions
for zero-error distributed computation of R(G (n,ω) ) [which is
(T0)] and reconstruction of relation R(G (n,ω) ) [which are (T0)
and (T1)] are provided in terms of the following probability
table:

(T0): Consistent labeling. If a tuple does not belong to the
relation, then the corresponding conditional probability entry
should be zero,

∀ (Cx, a,Cy, b) /∈ R(G (n,ω) ) ⇒ P(b|Cx, a,Cy ) = 0. (7)

(T1): Relation Reconstruction. If a tuple belongs to the
relation, then the corresponding conditional probability entry
should not be zero,

∀ (Cx, a,Cy, b) ∈ R(G (n,ω) ) ⇒ P(b|Cx, a,Cy ) > 0. (8)

Further, one can provide an algebraic upper bound P∗
R(G (n,ω) )

for a given graph G (n,ω) from the probability table in the fol-
lowing way. First, fix an input (C̃x, ã) for Alice and C̃y for Bob.
Now count the number of events (C̃x, ã, C̃y, b) ∈ R(G (n,ω) ).
Lets call this number η(C̃x, ã, C̃y). Maximize η(C̃x, ã, C̃y) over
Alice’s and Bob’s input sets and call this number η. Given that
the conditions mentioned in (T0) and (T1) hold, then one has a
nonzero payoff for the relation reconstruction task. The payoff
satisfies the following inequality:

0 < PR(G (n,ω) )) � 1

η
= P∗

R(G (n,ω) )). (9)

For example, in the case of a graph which has maximum
cliques of size ω that are all disconnected the upper bound
on the payoff for the reconstruction of relation R(G (n,ω) ))
becomes PR(G (n,ω) ) � 1

ω
= P∗

R(G (n,ω) ).
We can now provide the final condition:
(T2): Optimal Payoff. When the payoff PR(G (n,ω) ) achieves

the algebraic upper bound, we say the payoff is optimal,

0 < PR(G (n,ω) ) = 1

η
= P∗

R(G (n,ω) ). (10)

It is worth highlighting that the payoff PR(G (n,ω) ) is a faithful
quantifier of the distributed relation reconstruction problem,
that is, PR(G (n,ω) ) > 0 whenever relation reconstruction is pos-
sible and PR(G (n,ω) ) = 0 implies reconstruction is impossible.
Moreover, a protocol that achieves a nonzero payoff for the
reconstruction of relation R(G (n,ω) ) task can trivially perform
the distributed computation task for the same relation as well.
In some instances, which we will state clearly, our objective
will be to additionally maximize the payoff PR(G (n,ω) ) for the
relation reconstruction task using only specified amount of
direct communication resources such as classical bits or qubits
and also using shared resources such as classical public coin
or quantum public coin (entanglement).

Appendix B presents a detailed example to illustrate the
clique labeling problem and the reconstruction or relation
R(G (n,ω) ). Additionally, we examine the constraints on the
conditional probability table specified earlier for this partic-
ular example. In the next section, we present the bulk of
our key results while first considering the scenario with only
direct communication resources (Secs. IV A–IV D) and later
considering the scenario where the bounded amount of direct
communication is assisted by shared resources (i.e., public
coins).

IV. ONE-WAY ZERO-ERROR CLASSICAL
AND QUANTUM CCR AND S-CCR

In the setup described in Sec. III B (Fig. 2), Alice and Bob
have access to a noiseless one-way communication channel
of limited capacity (which is a resource) along with arbi-
trary local sources of randomness (i.e., private coins) that are
considered to be free. Another variation may have them, in
addition, sharing some correlations, i.e., public coin. We will
consider the communication scenario when a public coin is
not allowed between Alice and Bob for the results discussed
in Secs. IV A–IV D. In Sec. IV A, we calculate the necessary
and sufficient classical and quantum communication (CCR)
required to perfectly compute distributed CLP for any graph
G (n,ω) and show that there is no advantage offered by quan-
tum theory for this task. Next, we consider the task where
Bob’s output must span all the correct answers (i.e., relation
reconstruction from observed input-output statistics) and cal-
culate the necessary and sufficient classical resource required
to accomplish this task (S-CCR) in Sec. IV B. Subsequently,
we calculate the sufficient quantum resource required to ac-
complish the same task when considering a specific class of
orthogonality graphs in Sec. IV C. We show that there is an un-
bounded separation between quantum and classical resources
required to accomplish the task of relation reconstruction
for this class of graphs. In Sec. IV D, we show that there
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still exists an advantage in using quantum communication
resources compared to classical resources for an even larger
class of graphs where the orthogonal range is less than the
order of the graph, such as the Paley graphs, for which we
explicitly show the advantage. Last, in Sec. IV E, we consider
the scenario when public coins are allowed between parties
and the dimension of the communication channel is bounded.
For certain classes of orthogonality graphs, we show that the
necessary amount of classical public coins assistance to a
bounded classical communication channel which is required
for the relation reconstruction task increases linearly with the
number of maximum cliques in the graph. Second, we also
compare the resourcefulness of quantum public coins with
classical public coins when bounded classical communica-
tion is allowed between Alice and Bob to achieve nonzero
payoff PR(G (n,ω) ).

A. Classical and quantum communication complexity
of relation R(G (n,ω) )

In this subsection, we calculate the (1) classical and
(2) quantum CCR(G (n,ω) ) some graph G (n,ω). The setup is
described in Sec. III B and assistance from public coins
are forbidden. We will show that quantum and classical
CCR(G (n,ω) ) are the same and thus quantum theory offers no
advantage in this communication task.

We start by observing that both the classical and quantum
one-way communication complexity for R(G (n,ω) ) is bounded
from below by the maximum clique size ω of the given graph.
In other words, Alice has to send an ω-level classical (or
quantum) system using which Bob can choose a deterministic
(or some random correct) output b conditioned on his input Cy

and Alice’s message. It follows from considering the scenario
where both Alice and Bob are given the same maximum clique
Cx = Cy, Bob must know the input label of Alice (which has
the same size as the maximum clique ω) to produce consis-
tent labeling. Further, the quantum protocol can emulate any
classical protocol through its coherent version. Therefore, the
objective now reduces to showing that an ω-level classical
communication is sufficient for the task.

Theorem 1. Given a graph G (n,ω), the classical deter-
ministic one way zero error communication complexity of
R(G (n,ω) ) is log2 ω bit.

The essential idea of the proof is to show that there is a
strategy or analogously a table of conditional probabilities
P(b|Cx,Cy, a) satisfying (T0) such that there are ω distinct
rows. Thus, the aforementioned table of conditional probabil-
ities can be compressed into another table with ω rows only.
Alice, on communicating the row corresponding to her input,
enables Bob to output clique labeling consistently depending
on his input maximum clique. This strategy (table of condi-
tional probability) involving the communication of log2(ω) bit
is necessarily of the following form. For every input of Alice
(Cx, a) and Bob Cy, there is a deterministic b that Bob chooses
to output. This specification is necessary for the probability
table to satisfy (T0).

Proof. For the complete proof see Appendix C. �
Thus, there is no advantage in using quantum resources

over its classical analog when considering the communi-
cation complexity of R(G (n,ω) ). Note that the orthogonal

representation of the graph which is not relevant to the
protocol here will be pertinent in the next two subsections
(IV B and IV C), where we will consider the relation recon-
struction task and calculate the classical and quantum S-CCR
to show an unbounded quantum advantage.

B. Classical communication cost of relation reconstruction

In this subsection, we calculate the amount of classical
communication necessary and sufficient for the reconstruction
of relation R(G (n,ω) ) from observed input-output statistics
when considering the class of orthogonality graphs G (n,ω) that
satisfy the following conditions:

(G0): Each vertex of the graph is part of at least one
maximum clique of the graph.

(G1): ∀v, v′ ∈ V belonging to two different maximum
cliques ∃ u ∈ V such that u is either adjacent to v or v′ but
not both.

Observation 1. Given a graph G (n,ω) with maximum clique
size ω, satisfying conditions (G0) and (G1), there exist in-
duced subgraphs consisting of at least two maximum cliques
of size ω, say, Ci and Cj , such that there is at least one label of
Ci for which there are at least two different consistent choices
of labeling for the other maximum clique Cj .

Given an orthogonality graph G (n,ω) satisfying the prop-
erties listed above, for the relation R(G (n,ω) ) we prove a
tight lower bound for classical S-CCR(G (n,ω) ). This bound
is calculated for the zero-error scenario in which Bob never
outputs an outcome b such that the tuple consisting of Alice’s
and Bob’s input, (Cx, a) and Cy, respectively, and Bob’s out-
put does not belong to the relation R(G (n,ω) ), i.e., the case
(Cx, a,Cy, b) /∈ R(G (n,ω) ) does not occur.

Lemma 1. Given a graph G (n,ω) satisfying (G0) and (G1),
the zero-error classical strong communication complexity
of the relation R(G (n,ω) ) is log2 |V| bit, where |V| is the order
of the graph.

Proof. See Appendix D for the proof. �
Thus, the zero-error classical S-CCR(G (n,ω) ) scales lin-

early with the number of vertices in the graph. In the next
section, we calculate sufficient quantum communication that
accomplishes the same task when no public coin is allowed
between Alice and Bob. We also show, that there exists an un-
bounded gap between quantum and classical resources when
no public coin is preshared between the two parties. This
separation is observed for a subclass of graphs considered in
this section.

C. Unbounded quantum advantage in relation reconstruction

In this subsection, we first calculate the amount of quantum
communication sufficient for accomplishing reconstruction of
relation R(G (n,ω) ) when considering the class of orthogonality
graphs G (n,ω) that also satisfy (G0) and (G1).

Lemma 2. Given a graph G (n,ω) satisfying (G0) and (G1)
with faithful orthogonal range dC , the zero-error quantum
strong communication complexity of relation R(G (n,ω) ) is
upper bounded by log2 dC qubits.

Proof. Alice and Bob are aware of the graph G (n,ω) and
a faithful orthogonal representation of the graph in dimension
dC before the task. When Alice has access to her input (Cx, a),
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then she finds the vertex in the maximum clique Cx that is
assigned value 1 by the input clique label a. Alice prepares a
qudit in the state associated with the orthogonal representation
of this vertex and sends the qudit to Bob. Bob then performs
a measurement associated with his maximum clique Cy. The
projectors of the measurement correspond to the orthogonal
representation of the vertices in the maximum clique Cy.
Based on the measurement outcome, which corresponds to
some vertex in the maximum clique Cy, Bob outputs as his
label b that assigns this vertex binary color 1. The quantum
strategy guarantees consistent labeling of maximum cliques
stated equivalently as R(G (n,ω) ) due to the orthogonal repre-
sentation. This concludes the proof. �

Now we are in a position to show that there are classes
of graphs that give rise to quantum advantage. Lemma 1 and
Lemma 2 lead us to the following theorem, where we show
the condition which guarantees quantum advantage in relation
reconstruction task.

Theorem 2. For any graph G (n,ω) satisfying (G0) and (G1)
with faithful orthogonal range dC , there exists quantum ad-
vantage in relation reconstruction while considering R(G (n,ω) )
whenever dC < |V|.

Proof. The proof of this theorem follows directly from
comparing Lemma 1 and Lemma 2. �

The problem of finding the smallest dimension in which a
given graph G (n,ω) has a (faithful) orthogonal representation
is known to be quite difficult [24,26]. Since the existence
of quantum advantage relies on the faithful orthogonal range
being smaller than the order of the graph (Theorem 2),
it follows that the problem of defining the set of graphs
that entail quantum advantage is at least as complex as
providing a nontrivial upper bound to the faithful orthog-
onal range for any arbitrary graph. Despite this difficulty,
one can identify some families of graphs that are useful
for demonstrating an unbounded separation between clas-
sical and quantum S-CCR(G (n,ω) ). Let us consider graphs
G (n,ω) that satisfy the following condition along with (G0)
and (G1):

(G2): At least (V − k) vertices are required to be removed
from the graph, where k ∈ N and ω � k < |V|, such that the
complementary graph is fully disconnected.

The following are the example of such graphs G (n,ω) satis-
fying the conditions (G0)–(G2):

(1) Disconnected graphs G (n,ω)
disc. : Graphs with n maximum

cliques of size ω all of which are disconnected from one an-
other. Thus, we have |V| = nω. See Fig. 4(a) for an example.

(2) Nearest-neighbor connected cliques G (n,ω)
NNCC(r): Graph

with a chain of n maximum cliques of size ω such that only
maximum clique Ci and Ci+1 share r (1 � r < ω

2 ) vertices
where i ∈ {1, 2, . . . , n − 1}. The rest of the maximum cliques
do not share any additional vertices and edges. See Fig. 4(b)
for an example.

(3) Paley graphs GPaley(q): The class of Paley graphs (see
Sec. IV D).

Having shown that for the relation R(G (n,ω) ) there is a
class of graphs showing a quantum advantage in relation
reconstruction, we now address the question regarding the
extent to which the separation between these resources can
be extended.

FIG. 4. An example for G (n,ω=3) of disconnected graphs (a) and
graphs with nearest neighbor connected cliques (b).

Theorem 3. For the class of graphs G (n,ω) satisfying con-
ditions (G0)–(G2) with faithful orthogonal range ω, the
separation between one-way zero-error classical and quantum
S-CCR(G (n,ω) ) is unbounded.

Proof. Consider the class of graphs G (n,ω) satisfying con-
ditions (G0)–(G2) with k = ω. For instance, a graph G (n,ω)

with a chain of n maximum cliques of size ω such that only
maximum clique Ci and Ci+1 share r (0 � r < ω

2 ) vertices
where i ∈ {1, 2, . . . , n − 1}. The rest of the maximum cliques
do not share any additional vertices or edges than defined
above. Thus, the number of vertices of the graph is |V| =
n(ω − r) + r.

From Lemma 1, the zero-error classical S-CCR(G (n,ω) ) is
�log2{n(ω − r) + r}� bit. On the other hand, Lemma 2 implies
that protocols using quantum resources can achieve the same
by communicating �log2 ω� qubits, provided the graph G (n,ω)

has a faithful orthogonal range dC = ω.
According to Lovász’s theorem (see Sec. II, Proposition 1)

[24] a faithful orthogonal representation of the graph G (n,ω)

exists in dimension dR = ω, since it is necessary to remove
at least (nω − ω) vertices from the complementary graph
Ḡ (n,ω) to make it completely disconnected. It also follows
from Eq. (1) that for the graph G (n,ω), the faithful orthog-
onal range over complex field dC = ω. As one can obtain
such a faithful orthogonal representation of the graph G (n,ω)

in dimension dC = ω and therefore the separation between
classical (�log2{n(ω − r) + r}� bit) and quantum (�log2 ω�
qubits) communication can be made unbounded by consid-
ering large n. �

Given any graph G (n,ω), having an orthogonal range dC =
ω and satisfying conditions (G0) and (G1), the maximum pay-
off PR(G (n,ω) ) achievable for relation reconstruction by direct
quantum communication resource of operational dimension
ω is connected to the optimal faithful orthogonal represen-
tation of the graph within dimension dC . To see this, notice
that the maximum payoff for the quantum strategy is given
by the maximization of the minimum overlap of the vectors
corresponding to any two disconnected vertices of the graph
(following the same protocol as in Lemma 2). So, keeping
in mind the correspondence between quantum strategy and
faithful orthogonal representation of the graph G (n,ω), one
can rephrase the payoff [Eq. (6)] with communication of
d = ω-dimensional quantum system, as an optimization over
the faithful orthogonal representations of the graph G (n,ω) in
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FIG. 5. Example of the 5-Paley graph GPaley(5) (left) and the 9-
Paley graph GPaley(9) (right).

dimension ω on the complex field, i.e.,

PCω
max

R(G (n,ω) ) = min
(Cx,a,Cy,b)∈R(G (n,ω) )

P(b|Cx,Cy, a), (11)

= max
FOR(Cω )

{
min

(Cx,a,Cy,b)∈R(G (n,ω) )
Tr
[
�Cx

a �
Cy

b

]}
, (12)

= max
FOR(Cω )

min
(i, j)/∈E

|〈v(i), v( j)〉|2, (13)

where FOR(Cω ) denotes the set of all faithful orthogonal rep-
resentations in dimension ω over complex field. This relation
connects a property of the graph G (n,ω) (on the right) to an
operational quantity (on the left).

D. Quantum advantage in relation reconstruction
for other graphs

In this section, we will consider a particular class of orthog-
onality graphs (G (n,ω),V, E ) called Paley graphs. This class
of graphs have been well studied in graph theory [27] and
has found applications in quantum information [28,29]. They
satisfy the properties (G0) and (G1) (see Observation 2). Note
that we already know that for graphs satisfying (G0) and (G1),
the classical strong communication complexity increases with
the order of the graph, i.e., log2 |V| bit (Lemma 1). Thus,
graphs with orthogonal range strictly less than its order en-
tails a quantum advantage in communication (following the
same protocol described in the proof of Lemma 2) when
considering the one-way strong communication complexity of
relation R(G (n,ω) ). For the class of well-known Paley graphs,
we will show that it has a faithful orthogonal representation in
a dimension slightly more than half of the order of the graph
(see Theorem 4).

1. Paley graphs

Paley graphs GPaley(q) are simple undirected graphs whose
vertices denote the elements of a finite field Fq (of order
prime power q = 4k + 1 for positive integer k) and whose
edges denote that the corresponding elements differ by a
quadratic residue. Paley Graphs have the interesting property
that they are vertex-transitive, self-complementary graphs,
which means that by Lovász’s original result, the value of
θ (GPaley(q) ) can be computed exactly to be θ (GPaley(q) ) =
|V (GPaley(q) )|1/2 = √

q. Some simple Paley graphs are shown
in Fig. 5. Next, we will show that the class of Paley graphs
satisfy the condition (G1).

Observation 2. In the class of Paley graphs, any two ver-
tices in the graph have the same degree, i.e., in a graph with

q vertices, each vertex has q−1
2 neighbors. Every two adjacent

vertices have q−5
4 common neighbors and every two nonad-

jacent vertices have q−1
4 common neighbors [27]. Thus, for

every pair of different vertices v, v′ there exists a third vertex
u that is adjacent to exactly one of the vertices v or v′. This
implies that condition (G1) is satisfied by Paley graphs.

2. Quantum advantage in S-CCR for Paley graphs

We will show that there exists a FOR for Paley graph
GPaley(q) in dimension q+1

2 where q is the order of the graph.
Further, we show that the quantum protocol achieves the max-
imum payoff 2√

q+1 when following the protocol mentioned in
Lemma 2.

We note that θ (GPaley(q) ) can be computed using the
semidefinite programming formulation given as

θ (GPaley(q) ) = max
M=(Mi, j )

q
i, j=1

q∑
i, j=1

Mi, j s.t. M � 0,
∑

i

Mi,i = 1.

(14)

Let 
Paley(q) denote the automorphism group of GPaley(q),
i.e., the set of all permutations σ that preserve the ad-
jacency structure of the graph. Suppose M is an optimal
solution point for the optimization in (14), then M∗ =

1
|
Paley(q)|

∑
σ∈
Paley(q)

σ T Mσ also satisfies the constraints of pos-
itive semidefiniteness, trace one and the sum over entries
being equal to θ (GPaley(q) ). Since GPaley(q) is vertex transitive,
the sum over permutations in 
Paley(q) goes over transposi-
tions between every pair of vertices so that M∗

i,i = 1/q for all
i ∈ [q]. M∗ is the Gram matrix of a set of vectors (each of
norm 1/

√
q) forming an orthogonal representation of GPaley(q).

Let us denote by Sopt = {|u1〉, . . . , |uq〉} the corresponding set
of normalized vectors forming the optimal solution to the
Lovász-θ optimization and by Mopt = qM∗ the corresponding
Gram matrix. We see that

θ (GPaley(q) ) =
q∑

i, j=1

1

q
〈ui|u j〉. (15)

In other words, we have
∑q

i, j=1〈ui|u j〉 = q3/2. By symmetry
and the fact that every vertex in GPaley(q) has degree (q −
1)/2 it also follows that 〈ui|u j〉 = (q3/2 − q)/(q(q − 1)/2) =
2/(q1/2 + 1) for i � j.

Let us now compute the dimensionality of the vectors |ui〉
in Sopt that form the optimal representation giving rise to
θ (GPaley(q) ). This quantity is the dimension of the vectors giv-
ing rise to the faithful representation Sopt that is traditionally
denoted as ξ ∗(GPaley(q) ).

Theorem 4. The dimension of the optimal representation
of GPaley(q) that gives rise to θ (GPaley(q) ) is (q + 1)/2.

Proof. See Appendix E for the proof. �
From Eq. (6), when using the protocol mentioned in

Lemma 2, the payoff function defined in for a graph G
assumes the form shown below:

PCd

R(G) = max
FORd (G)

min
(i, j)/∈E (G)

|〈vi|v j〉|2, (16)

where FORd (G) denotes the set of faithful orthogonal
representations in dimension d for G. Let us compute this
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function for the class of Paley graphs. First, we consider

PCd

R(GPaley(q) ) � max
FOR(GPaley(q) )

min
(i, j)/∈E (GPaley(q) )

|〈v(i)|v( j)〉|2, (17)

where FOR(GPaley(q) ) denotes the set of faithful orthogonal
representations of GPaley(q) in any dimension.

For (k, l ) /∈ E (GPaley(q) ), let S(k,l ) denote a point
in FOR(GPaley(q) ) that achieves the maximum for the
optimization problem in (17) with the minimum being
realized at (k, l ) /∈ E (G). That is, S(k,l ) = {|v(k,l )

1 〉, . . . , v(k,l )
q 〉}

with 〈v(k,l )
i |v(k,l )

j 〉 = 0 for (i, j) ∈ E (GPaley(q) ) and

|〈v(k,l )
k |v(k,l )

l 〉|2 � |〈v(k,l )
k′ |v(k,l )

l ′ 〉|2 for any (k′, l ′) ∈ E (GPaley(q) ),
(k′, l ′) 	= (k, l ). We claim that S(k,l ) = Sopt, that is, the set
of vectors realizing the optimal value in the Lovász-θ
optimization. To this end, we claim that∣∣〈v(k,l )

k

∣∣v(k,l )
l

〉∣∣ � 2√
q + 1

. (18)

For suppose that |〈v(k,l )
k |v(k,l )

l 〉| > 2√
q+1 . Then consider the

Gram matrix M (k,l ) formed by the set of normalized vectors
in S(k,l ). We see that (1/q)M (k,l ) also satisfies the constraints
of positive semidefiniteness and trace one for the Lovász-θ
optimization in Eq. (14). But if the minimum nonzero off-
diagonal entry of (1/q)M (k,l ) is larger than the minimum
nonzero off-diagonal entry of the optimal matrix M∗ [with
both matrices having diagonal entries all equal to (1/q)],
then we obtain that

∑q
i, j=1(1/q)(M (k,l ) )i, j >

∑q
i, j=1(M∗)i, j =

θ (GPaley(q) ) which is a contradiction. Therefore, we must have
that the quantum maximum value of the payoff function is at
most

∣∣〈v(k,l )
k

∣∣v(k,l )
l

〉∣∣2 =
(

2√
q + 1

)2

, (19)

with the maximum achieved by the set of vectors Sopt in
R(q+1)/2 that also incidentally achieve the optimum value of
Lovász-θ for the graph GPaley(q).

E. Relation reconstruction with public coins

In the previous subsections, we considered the strong
communication complexity of relation when public coins be-
tween Alice and Bob were not allowed. Here we consider
that the parties have access to public coins along with one-
way direct communication resources. In public coin-assisted
communication complexity problems, usually, the amount of
communication necessary and/or sufficient is studied. For this
purpose, an unbounded amount of public coin is allowed to
be shared between the parties. However, here we allow for
restricted direct communication, either quantum or classical,
and compare the amount of classical public coin/shared ran-
domness assistance required for the relation reconstruction
from the observed input-output statistics when considering
R(G (n,ω) ). We show that there exist graphs for which a
nonzero payoff while using restricted classical communica-
tion implies the presence of a public coin.

For a class of graphs G (n,ω) satisfying (G0)–(G2) and with
faithful orthogonal range ω, we provide a lower bound on the
amount of classical public coin required for accomplishing the
relation reconstruction when communicating log2 ω bit. We

show that this lower bound grows as log2 n with the number
of maximum cliques n. Later, we also show the lower bound
on the amount of public coin which is necessary to achieve op-
timal payoff P∗

R(G (n,ω )) for relation reconstruction is connected
to the existence of orthogonal arrays (OA). On another note,
we then show that there are graphs for which both quantum
and classical communication using a ω-dimensional system
require the assistance of public coins to achieve optimal pay-
off for the reconstruction of relation R(G (n,ω) ). In the end,
we also compare the amount of quantum and classical public
coin that is required when only a restricted amount of one-way
classical communication is allowed to perform relation recon-
struction for some specific graphs. In these cases, we show
there is an unbounded gap between the amount of quantum
and classical public coin.

1. Classical communication assisted by classical public coin

In Theorem 1, we showed that the communication
complexity of R(G (n,ω) ) is log2 ω bit. It is the minimum com-
munication required for satisfying (T0). Then in Lemma 1 we
showed that classical S-CCR(G (n,ω) ) is log2 |V| bit when the
graph G (n,ω) satisfies (G0)–(G1). It is the minimum commu-
nication required for simultaneously satisfying (T0)–(T1) in
this case. Here we consider the class of graphs G (n,ω) which
satisfies the constraint (G0)–(G2) and has faithful orthogonal
representation in minimum dimension ω. We first show that
if we bound classical communication to log2 ω bit and allow
classical public coin, then one can satisfy (T0)–(T1) and
achieve optimal payoff P∗

R(G (n,ω )) for relation reconstruction
(see Observation 3). We then calculate the minimum amount
of classical public coin assistance required to satisfy (T0)–
(T1) and achieve the optimal payoff for the reconstruction of
relation R(G (n,ω) ) (T2).

Observation 3. Given a graph G (n,ω), the strategy with only
log2 ω bit classical communication for satisfying (T0) is based
on Alice and Bob finding a suitable deterministic strategy, i.e.,
an nω×nω table of conditional probabilities p(b|Cx,Cy, a)
given as M at the beginning, which can be expressed as a
ω×nω table after compression. In the public coin-assisted
scenario, Alice and Bob prepare all such deterministic strate-
gies (or tables) each of which satisfies consistent labeling of
cliques (T0) before the game begins and index these tables.
Using public coins, they alternated between these tables in
different runs. Over multiple runs, they can satisfy (T1). Triv-
ially, they could use a classical public coin of the order of
the total number of such deterministic strategies where each
satisfies consistent labeling of the cliques (T0).

For example, consider the graph shown in Fig. 6 or the left
graph of Fig. 8, we have shown one classical deterministic
strategy as represented through Table VI in Appendix C. Sim-
ilarly, Alice and Bob could use another strategy represented by
another Table I. If Alice and Bob use 1 bit of unbiased classi-
cal public coin to choose between Table VI and Table I, then
they effectively are using the strategy given in Table II which
satisfies (T0) as well as (T1) and obtain the optimal payoff
for this graph P∗

R(G (2,3) ) = 0.5 since they fill all the entries ∗
with 0.5. Now, we provide a lower bound on the amount of
classical public coin required by Alice and Bob, when they
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TABLE I. Another classical deterministic strategy for graph in
Fig. 6.

C1 C2

b = 0 b = 1 b = 2 b = 0 b = 1 b = 2

a = 0 1 0 0 0 1 0
C1 a = 1 0 1 0 0 0 1

a = 2 0 0 1 1 0 0

a = 0 0 0 1 1 0 0
C2 a = 1 1 0 0 0 1 0

a = 2 0 1 0 0 0 1

are allowed to communicate log2 ω bit, to accomplish relation
reconstruction.

Theorem 5. Given a graph G (n,ω) satisfying conditions
(G0)–(G2) with faithful orthogonal range ω, the lower bound
on the amount of classical public coin assistance to log2 ω

bit communication required for reconstruction of relation
R(G (n,ω) ) (and obtain optimal payoff) is equal to the mini-
mum amount of classical public coin required for the same
task when one bit communication is allowed and we consider
another graph G (n,ω=2) with n disconnected maximum cliques.

Proof. See Appendix G for the proof. �
We now provide the explicit lower bounds on classical pub-

lic coin required for the reconstruction of relation R(G (n,ω) ) as
a function of the number of maximum cliques in the graph.

Corollary 1. Given a graph G (n,ω) satisfying (G0)–(G2)
with faithful orthogonal range ω, it is necessary (but may not
be sufficient) to share classical public coin with n-inputs (i.e.,
1
n

∑n
i=1(|ii〉 〈ii|)) while communicating an ω-level classical

system for the reconstruction of relation R(G (n,ω) ).
Proof. See Appendix H for the proof. �
Now, we will show that the lower bound on the amount

of classical public coin required for achieving optimal payoff
for relation [R(G (n,ω) )] reconstruction while communicating
ω-level classical system is related to the existence of some
specific kinds of orthogonal arrays. Before moving forward,
we first introduce orthogonal arrays.

Definition 6. An N×k array A with entries from set S
is called an orthogonal array OA(N, k, s, t ) with s levels,
strength t (∈ {0, 1, . . . , k}) and index λ if every n×t subarray
of A contains each t-tuples based on S appearing exactly λ

times as a row [30].
Orthogonal arrays have found interesting connections

with absolutely maximally entangled states [31], multipartite

TABLE II. Effective classical strategy with classical public coin
for the graph in Fig. 6.

C1 C2

b = 0 b = 1 b = 2 b = 0 b = 1 b = 2

a = 0 1 0 0 0 0.5 0.5
C1 a = 1 0 1 0 0 0.5 0.5

a = 2 0 0 1 1 0 0

a = 0 0 0 1 1 0 0
C2 a = 1 0.5 0.5 0 0 1 0

a = 2 0.5 0.5 0 0 0 1

FIG. 6. In this example, the graph G (2,3) consists of two maxi-
mum cliques C1 and C2 of size ω = 3.

entanglement [32,33], quantum error-correcting codes [34]
etc. Here, we will consider orthogonal arrays OA(N, k, s, t )
where t = 2 and s = 2 and S = {0, 1}. Let Tk be the mini-
mum N for a fixed k such that OA(N = Tk, k, s = 2, t = 2)
is an orthogonal array with S = {0, 1}. Thus, in OA(N =
Tk, k, s = 2, t = 2) every Tk×2 subarray has the tuples
{(0, 0), (0, 1), (1, 0), (1, 1)} appearing equal number of times
as rows.

Tn is related to the amount of classical public coin nec-
essary and sufficient for the reconstruction of the relation
R(G (n,ω=2)) with optimal payoff P∗

R(G (n,2 )) when log2 ω bit
classical communication is allowed from Alice to Bob.

Corollary 2. Given a graph G (n,ω) satisfying (G0)–(G2)
with faithful orthogonal range ω, it is necessary (but may not
be sufficient) to share classical public coin with 2-inputs (for
n = 2) and log2 Tn−1-inputs (for n > 2) while communicating
an ω-level classical system for relation R(G (n,ω) ) reconstruc-
tion with optimal payoff P∗

R(G (n,ω )).
Proof. See Appendix I for the proof. �
Now we show that there exist some graphs G (n,ω) for which

Alice and Bob need classical public coin while communicat-
ing ω level quantum or classical system for relation R(G (n,ω) )
reconstruction with optimal payoff. As a consequence of this
result, there are graphs for which 1 bit classical communica-
tion when assisted by a finite amount of classical public coin
can be powerful compared to 1 qubit quantum direct commu-
nication resources when considering this particular task and
payoff.

Theorem 6. There exist graphs G (n,ω) satisfying (G0)–(G2)
and faithful orthogonal range ω, such that while using ω

dimensional classical or quantum channel, the assistance of
public coins is necessary for relation R(G (n,ω) ) reconstruction
and obtaining optimal payoff P∗

R(G (n,ω) ).
Proof. Assume that Alice is allowed to communicate an

ω-dimensional system to Bob. We prove the above-mentioned
theorem by showing the existence of a graph that satisfies
the claim. Let us consider the graph G (n=ω+2,ω) satisfying
(G0)–(G2) and having faithful orthogonal representation in
minimum dimension ω where any two the maximum size
cliques are disconnected. For an example, see Fig. 7 where
ω = 2.

Note that for such a graph, the maximum payoff achievable
by communicating log ω qubit, PR(G (ω+2,ω) ), is always less than

FIG. 7. Example for a graph G (n,ω) satisfying Theorem 6 with n
disconnected maximum cliques of size ω = 2.
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TABLE III. Resource comparison for classical vs quantum one-way communication tasks, i.e., distributed computation and relation
reconstruction while considering R(G (n,ω) ), with some examples of quantum advantage in S-CCR(G (n,ω) ) for certain families of graphs
considered in Sec. IV C.

Resource comparison Quantum

Communication task Classical Quantum Advantage Ref.

Distributed computation of R(G (n,ω) ) log2 ω bit log2 ω qubits �(1) Sec. IV A, Theorem 1
Reconstruction of R(G (n,ω) ) log2 |V| bit log2 dC qubits �(log2 |V|) Sec. IV C, Theorem 2

Reconstruction of R
(
G (n,ω)

disc.

)
log2 nω bit log2 ω qubits �(log2 n) Sec. IV C, Theorem 3

Reconstruction of R
(
G (n,ω)

NNCC(r)

)
log2(n(ω − r) + r) bit log2 ω qubits �(log2 n) Sec. IV C, Theorem 3

Reconstruction of R(GPaley(q) ) log2 q bit log2
q+1

2 qubits �(1) Theorem 2 and Sec. IV D

the optimal payoff P∗
R(G (n,ω )) = 1

ω
. This is because only ω + 1

mutually unbiased bases (MUBs) are possible in Cω, which
can be used to encode and decode in an unbiased way, a
maximum of ω + 1 maximum cliques in the considered graph.
If Alice is allowed to send log2 ω bit without having access to
public coins, then the payoff obtained is zero (see Lemma 1).
On the other hand, by using finite classical public coins,
all the deterministic strategies using log2 ω bit which satisfy
(T0) (which are finite in number) can be mixed to obtain the
optimal payoff P∗

R(G (n,ω )) = 1
ω

. �
For the graph in Fig. 7, the necessary and sufficient amount

of classical public coins to achieve PR(G (n,2) ) = 1
2 while com-

municating 1 bit is given in Corollary 2. Also, the maximum
payoff achieved when 1 qubit is communicated from Alice
to Bob is upper bounded by 1

2 [the optimal payoff P∗
R(G (n,2 ))

can be achieved only for n � 3]. Thus, 1 bit classical commu-
nication when assisted by a finite amount of classical public
coin can outperform 1 qubit quantum direct communication
resources when considering this task.

2. Classical communication assisted by quantum public coin

At this point, a natural question is whether quantum
correlations (quantum public coin) can enhance classical com-
munication more than classical public coin. In the following
theorem, we mention an instance where this is the case.

Theorem 7. For public coin assisted classical commu-
nication, there exist graphs G (n,ω) satisfying conditions
(G0)–(G2), such that the separation between classical and
quantum public coins required for reconstruction of relation
R(G (n,ω) ) is unbounded.

Proof. Let us consider the graph G (n,ω)
disc. given by n disjoint

maximum cliques of size ω = 2. 1 bit classical communica-
tion assisted by n − 1 input classical public coin gives payoff
0 (see Corollary 1). On the other hand, when assisted by 1 e-
bit of entanglement (a two-qubit maximally entangled state),
Alice chooses n distinct orthogonal pairs of states from the
equatorial circle of the Bloch sphere corresponding to the n
possible input maximum cliques. Now Alice and Bob perform
the protocol the same as remote state preparation [35,36],
which allows perfect transmission of the states from an equa-
torial circle of the Bloch sphere with 1 e-bit of shared entan-
glement and 1 bit of classical communication. After success-
ful transmission of the state, Bob performs qubit projective
measurement based on his input Cy along one of the bases cho-
sen by Alice. This makes the payoff PR(G (n,2)

disc. ) > 0. Thus in-

creasing n will require an increasing amount of classical pub-
lic coin, while 1 e-bit of entanglement (quantum public coin)
ensures a quantum protocol to achieve a nonzero payoff. �

For example, the symmetric choice of n = 4 directions
on the Bloch sphere implies that this protocol can achieve
PR(G (4,2)

disc. ) = sin2( π
8 ) ≈ 0.1464.

F. Summary of results

In this Sec. IV we have presented several results. Here,
we highlight the main results, summarized in the form of
the following two Tables III and IV. First, in Table III we
have summarized the classical and quantum CCR and S-
CCR without public coin assistance for different graphs when
considering the relation R(G (n,ω) ). This table summarizes
the main results of this work where we quantify an un-
bounded quantum advantage in S-CCR(G (n,ω) ) for some class
of graphs. Next, in Table IV, we summarize our result on the
amount of public coin assistance required for restricted quan-
tum and classical direct communication resources. Here we
have also mentioned our result on the unbounded advantage
of sharing quantum public coins over sharing classical public
coins when using only 1 bit direct communication.

V. APPLICATIONS

In this section, we discuss some useful applications of the
relation reconstruction task. The first application, in Sec. V A,
is the operational detection of MUBs from the observation
of the statistics. We consider some specific type of graph G
with both maximum clique size and faithful orthogonal rep-
resentation in minimum dimension ω. If a quantum strategy
using a ω level quantum system can achieve the upper bound
of the optimal payoff [that is PQ

R(G) = P∗
R(G)] for such a graph

G, then Bob must have used measurements corresponding to
MUBs for decoding. In the next application, in Sec. V B, we
consider the problem of detecting the nonclassical resources
in both direct communication and in the shared correlation
(black-box) scenario. Additionally, we discuss an application
of the communication task as a dimension witness. In the fol-
lowing, we discuss each of the applications in greater detail.

A. Detecting mutually unbiased bases

We show the operational detection of MUBs from the ob-
servation of the statistics of our communication task, showing
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TABLE IV. Resource Comparison for the communication task considered in Sec. IV E where we allow public coins and compare purely
classical protocols with hybrid protocols allowing some quantum resource—communication (first row) or entanglement (second row).

Resource comparison

Resource constraint Communication task Only classical Quantum allowed Ref.

One-way communication Reconstruction of R(G (n,ω) ) log2 ω bit log2 ω qubits Sec. IV E,
+ Classical public coin (SR) + log2 n bit SRa + No SR required Corollary 2

One-way communication Reconstruction of R(G (n,ω=2) ) 1 bit 1 bit Sec. IV E,
+ public coins + log2 n bit SR + 1 EPR pair Theorem 7

aHere the log2 n bit classical public coin allow relation R(G (n,ω) ) reconstruction but does not always achieve the optimal payoff P∗
R(G(n,ω ))

. The
classical public coin necessary for achieving P∗

R(G(n,ω) )
is connected to the problem of orthogonal arrays.

that quantumly achieving the payoff P∗
R(G (n,ω) ) (T2) for some

graphs implies the detection of MUBs.
A pair of projective measurements for a d-dimensional

Hilbert space are mutually unbiased if the squared length of
the projection of any basis element from the first onto any
basis element of the second is exactly 1/d . MUBs are found
to be optimal in several information-theoretic tasks and also
in quantum cryptography [37–42].

Observation 4. Consider a graph consisting of n maxi-
mum cliques of size ω that are completely disconnected
from each other—G (n,ω)

disc. . This graph has faithful orthogonal
representation in dimension dR = dC = ω. If a quantum strat-
egy with direct communication of an ω-level system can

achieve the optimal payoff, i.e., PR(G (n,ω)
disc. ) =

(
1
ω

= P∗
R(G (n,ω)

disc. )

)
for the relation reconstruction task, then the measurements
performed by Bob must be those corresponding to MUBs.

For example, let us consider one such graph, which allows
for the detection of qubit-MUBs. The simplest graph consists
of three maximum cliques of size ω = 2 that are disconnected
from each other, G (n=3,ω=2)

disc. . On receiving her input maximum
clique and clique label, Alice prepares her state in one of the
pairs of the eigenstates of three qubit-MUBs corresponding to
the disjoint maximum cliques of this graph and sends the qubit
to Bob. Bob performs his measurement corresponding to one
of the above three MUBs based on his input maximum clique.
Evidently in this case, the payoff turns out to be PR(G (3,2) ) = 1

2 .
Conversely, one can see that to achieve the optimal payoff it
is required to produce the prepare and measure probabilities
corresponding to the disconnected pairs of vertices of the
graph completely unbiased.

B. Semidevice-independent detection of nonclassical
resources and dimension witness

In a prepare and measure setup, which underlies several
information-theoretic tasks, two prime questions of practical
interest are- (i) is the transmitted system (alternatively, are
the prepare and measure devices) nonclassical? and (ii) what
is the operational dimension of the transmitted system? For
quantum systems, the second question reduces to finding a
lower bound on the Hilbert space dimension, i.e., to find a
dimension witness [43–46]. If these questions are answered
based on the input-output probability distribution {P(b|x, y)},
where x ∈ X and y ∈ Y are inputs and b ∈ B is the output,
without referring to any information about the encoding and
decoding devices, then the protocol is device independent. If

partial information about the devices is available, then the
scenario is called semi-device independent. In the following,
we show that the proposed relation reconstruction task can be
used as a semi-device-independent witness of nonclassicality
and dimension.

While answering the first question, we will consider two
scenarios, first, where no public coin is available. This
scenario allows us to determine the nonclassicality of the
transmitted system. Second, where only a finite amount
of public coins are available and a classical bit has been
transmitted, allows us to answer whether the public coin is
nonclassical or not. For both cases, let us consider the two
distant parties executing the relation reconstruction task with
a class of graphs satisfying conditions condition (G0)–(G1).
Now, in the first case let us also assume that it is known that
the operational dimension of the transmitted system is strictly
upper bounded by |V|, the number of vertices of the graph.
If the distant parties can achieve a nonzero payoff [calcu-
lated from P(b|x, y) according to the definition in Eq. (3)],
then it follows from Theorem 1 that the transmitted system
is nonclassical. In the second case with a finite public coin
and a classical bit communication, let us consider the graph
G (n,ω=2) with all disconnected maximum cliques. This graph
has a faithful orthogonal range ω = 2. If the local dimension
of the public coin is strictly upper bounded by n, then the
number of maximum cliques in the graph. Then (see the ex-
ample in the proof of Theorem 7) payoff PR(G (n,2) ) > 0 implies
that the public coin is nonclassical. To answer the question
about dimension witness we first observe the following: It
follows from Theorem 1 that given a graph with n number of
maximum cliques of size ω, performing the distributed com-
putation of R(G (n,ω) ) requires at least ω-level system needs
to be communicated from Alice to Bob. This fact applies to
any arbitrary graph. Even in the presence of Public coins, if
Alice’s encoding and Bob’s decoding can perform this task
without any error, then it will imply that the communicated
system must have an operational dimension of at least ω.

VI. SUMMARY AND DISCUSSIONS

In a nonasymptotic prepare and measure scenario, the
problem of efficient encoding of classical information in
a quantum system has been a topic of interest in recent
times [47–52]. Communication complexity, a prototype of
distributed computing, measures the efficiency of such an
encoding by the separation between the operational dimension
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of the classical and quantum message. A large separation
for some distributed computation tasks demonstrates the ad-
vantage of quantum communication resources over classical
ones. The present work proposes one such task, called re-
construction of relations specified by the distributed clique
labeling problem. The key significance of this work is that
(i) it presents a novel case of unbounded quantum advantage
in the communication complexity type task and (ii) the size
of the input for the task is the same as the order of the
quantum advantage. All previous results showing unbounded
advantages in communication scenarios with well-defined
input data at local stations [20,53,54] required input data to be
exponentially larger than the advantage and as such are hard
to practically demonstrate.

In this relation reconstruction task, we show a class of
graphs for which the separation between the dimension of
quantum and classical systems necessary can be unbounded
without public coins or preshared between the parties. In the
presence of public coins, however, this separation disappears.
While quantum communication does not require public coins,
the amount of classical public coin assistance that is necessary
(but may not be sufficient) for classical communication to
accomplish the task scales linearly with the number of maxi-
mum cliques. Additionally, we also show that a 1 e-bit assisted
classical 1 bit channel performs a task that would otherwise
require the assistance of a 1 bit channel and an unbounded
amount of classical public coin.

The present work can be seen as an addition to the earlier
attempts to demonstrate the separation of classical and quan-
tum communication complexity with relations [14,16,55,56].
For example, Buhrman, Cleve, and Wigderson [14] showed
an exponential gap between classical and quantum zero-error
communication complexity for a promise problem in the
presence of public coins. Later Raz [16] showed that an
exponential gap in communication exists for communication
complexity of a relation while considering bounded-error pub-
lic coin assisted interactive protocols. Bar-Yossef et al. [55]
showed an exponential separation for one-way protocols as
well as simultaneous protocols with public coins for a re-
lational problem, called the hidden matching problem. In a
tripartite setup (two players and a referee), well known as
quantum fingerprinting, Buhrman et al. reported an expo-
nential advantage of quantum communication [57]. Based on
the result in Ref. [14], in a slightly different setup (where
the sender also produces an output), an exponential gap has
also been demonstrated in the task of simulating statistics of
maximally entangled states [58]. Moreover, when quantum
inputs are considered, the generalized statistics simulation
task becomes classically impossible [59].

The question of an unbounded separation has also been
addressed in the literature. Perry et al. [53] showed an un-
bounded classical vs quantum separation in terms of internal
information cost, defined as the amount of Alice’s input infor-
mation revealed to Bob, while Bob’s task is to exclude certain
combinations of bits that Alice might have. Although later Liu
et al. [54] proved that the quantum communication complexity
of those tasks scales at least logarithmically in the input string
length, indicating that quantum advantage in this setting is
specific to the internal information cost/complexity rather than
communication complexity. Beyond the conventional setting

of communication complexity, Galvao et al. [60] considered a
problem where a system interacts with a classical field while
traveling between two points and a decoding measurement
at the destination has to answer a yes-no question about the
intermediate field. This problem considers a scenario which
differs from communication complexity because the concept
of classical input is of a different type since it is the continuous
field that is capable of coupling to the qubit (e.g., magnetic
one). It does not have a character of binary data provided to
Alice and Bob separately, which needs to be communicated.
It is rather the binary classical characteristic of a continuously
parameterized quantum/classical channel between them that
is to be detected. They proved an unbounded gap between
the sizes corresponding to classical and quantum systems
required to answer correctly. But the most relevant unbounded
separation example to the present work was provided by Mas-
sar et al. [20]. They showed that the quantum communication
complexity of NOT-EQUAL problem is a qubit and the classi-
cal communication complexity increases with the input size.
Considering the similar spirit of this result and our results, a
comparison is in order. While in our task the required classical
communication grows as the logarithm of the cardinality of
the input set, classical communication complexity for the task
in Ref. [20] scales as the double logarithm of the cardinality
of the input set. This implies a challenge for practical demon-
stration of the unbounded advantage in Ref. [20] as the size of
the input set grows exponentially with the advantage. Whereas
in our problem, this scaling is only linear. Second, our task
shows an unbounded advantage for any d dimensional quan-
tum system, while the protocol in Ref. [20] works only for
qubits and generalization for higher dimensions does not seem
straightforward.

Another important aspect of the present work is that the
relations considered here are given by orthogonality graphs.
A similar approach while demonstrating the advantage of
quantum communication over classical was taken by Saha
et al. [17]. The authors in Ref. [17] considered a graph
coloring task, called vertex equality problem, executed by
two spatially separated parties. They showed that quantum
advantage in one-way communication appeared whenever a
class of graphs, called state-independent contextuality graphs
(SIC graphs) were considered. In contrast, the quantum ad-
vantage in the communication task proposed in this article
can be observed independent of the usefulness of the graphs in
demonstrating state-independent contextuality. Therefore, in
our case, the quantum advantage in one-way communication
cannot be attributed to contextuality. Interestingly, in Ref. [19]
the authors showed that the quantum separation for computa-
tion of a partial function via communication task based on
state-independent contextuality witnesses can be polynomi-
ally large, whereas our task, independent of contextuality,
can obtain an unbounded separation for the computation of
a relation via communication.

In a practical setting, one may not always have the same
input sets for both parties. One straightforward direction for
a generalization of relation reconstruction would entail, one
party (Alice) receiving input maximum cliques and their label
over some graph GA ⊂ G̃ while the other party (Bob) receives
input maximum clique that is to be labeled from some other
graph GB ⊂ G̃ only to be consistent with the label of Alice if
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GA ∩ GB = G 	= ∅. As long as there is a quantum advantage in
the relation reconstruction task for distributed clique labeling
problem over this graph G, one could still find the usefulness
of the relation reconstruction task in the setting with different
input sets.

This work leaves several questions open. For example,
could there be a task such that the scaling of classical vs
quantum communication with binary colorable graphs be ex-
ponential in the presence/absence of public coins (possibly
for two-way communication complexity)? Could one obtain a
linear scaling when the two parties compute a function instead
of a relation? Besides these general questions, there are some
particular points about the present study that remain unre-
solved. First, does the unbounded separation between classical
and quantum communication persist when one departs from
the zero-error scenario considered in this work and considers a
degree of error in the computation? In Sec. IV E 1, the connec-
tion between a lower bound to the amount of classical public
coin in the bounded communication setting and orthogonal
arrays, shows that given arbitrary graphs with a large number
of maximum cliques, finding such a lower bound is a hard
problem. In Sec. IV E 2 the advantage of using a quantum
public coin(entanglement) instead of a classical public coin
(shared randomness) to assist a bounded classical communi-
cation has been demonstrated by achieving a higher payoff.
However, it remains unknown what is the optimal payoff
for the entanglement-assisted case. A monotonically decreas-
ing payoff with the increasing number of maximum cliques
(n) might suggest a limit of this advantage. Finally, in the
applications section (Sec. V A) the robustness of the scheme
to detect MUBs is not known.

Finally, one can look at the present protocol from a foun-
dational perspective. Namely, it can be seen as a qualitative
simulation of the quantum statistics on demand. The relation-
reconstruction task proposed in this article could bridge the
gap between conventional communication complexity and
sampling problems with communication [61,62]. Precisely, in
our protocol, the spatially separated parties are given some set
of favorable events and it is required that the events be quan-
titatively simulated by classical communication so that all of
them occur with nonzero probability like it is in the quantum
case. Considering the class of graphs in Fig. 7, obtaining the
nonzero value of the payoff function [Eq. (16)], reduces to
the simulation of the set of correlations generated from pure
qubit states and qubit projective measurements. In order to
simulate the prepare-measure statistics of a qubit, the authors
in Ref. [50] show that it is necessary and sufficient to com-
municate two classical bits when the parties are assisted by
preshared randomness. In the same spirit, Corollary 1 says that
it is necessary to share an unbounded amount of randomness
between the sender and receiver besides one bit of classical
communication to simulate the statistics of qubits for the class
of graphs as in Fig. 7.

Looking at the protocol from yet another angle, we can
see it as a distribution of a (conditional) randomness with the
help of a restricted communication channel. This raises the
question of the possible relation of the present scheme to dis-
crete analogs of bosonic sampling [63]. Quantum advantage
in the latter case relies on the hypotheses of the computational
hardness of some classical tasks. It would be interesting to

see whether additional graph structure and modification of
the present protocol could imply exponential separation in
sampling that would not rely on hypotheses of this type.
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APPENDIX A: SUCCESS PROBABILITY
FOR RECONSTRUCTION OF RELATIONS

Given a relation R ⊆ X×Y ×B for the bipartite prepare and
measure a scenario where X and Y are the set of inputs for
Alice and Bob and B is the set of outputs for Bob, we are
interested in success probability Pk (R) of relation reconstruc-
tion after k number of rounds, where k is large. Additionally,
Alice and Bob’s protocol is agnostic to the number of rounds.
Every tuple (x, y, b) ∈ R must occur at least once in these k
rounds for the correct reconstruction of the relation R. The
cardinality |R| = 
 is the total number of all such events,
which implies k � 
 for reconstruction to be possible. Here
we assume that the inputs are sampled from a uniform dis-
tribution. If Alice encodes her input x ∈ X in the message τx

in each round and Bob outputs b ∈ B depending on his input
y ∈ Y and Alice’s message, then

P(x, y, b) =
∑
τx

P(x, y, b, τx ), (A1)

=
∑
τx

P(b|y, τx )P(τx|x)P(x)P(y), (A2)

P(x, y, b) = P(b|y, x)P(x)P(y), (A3)

if P(τx|x) = 1∀x ∈ X (this is the situation in the scenario
when a preshared public coin is not allowed). We can consider
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a strict ordering of the elements in R. Given this ordered
list, we can define α(k) = {α1, α2, . . . , α
}, where αi ∈ N is
the frequency of occurrence of the ith element (xi, yi, bi ) of
ordered list R given k number of rounds have occurred and
thus

∑

i=1 αi = k∀α. The instances favorable for successful

reconstruction of relation correspond to the set of α(k) where
each of the elements of R occur with nonzero frequency. The
probability of reconstruction of R given k number of rounds is
thus given by the total probability of occurrences of the α(k)
with the aforementioned property,

Pk (R) =
∑
α(k)

P(α(k)|k)

=
∑

α

P({α1, α2, . . . , α
}|k)

=
∑

α

(

∏

i=1

Pαi (xi, yi, bi )

)
. (A4)

Since, ∀α ∀i ∈ {1, 2, . . . , 
}, αi > 0, therefore,

Pk (R) =
(


∏
i=1

P(xi, yi, bi )

)(∑
α

(

∏

i=1

Pαi−1(xi, yi, bi )

))
.

(A5)

Notice that if any of the terms P(xi, yi, bi ) = 0, then the
probability of successful reconstruction after k rounds Pk (R)
becomes zero as well. Therefore,

Pk (R) 	= 0 ⇒ P(b|x, y) 	= 0 ∀(x, y, b) ∈ R. (A6)

Remark. P(b|x, y, τx ) = 1 ∀x ∈ X, y ∈ Y such that ∃!b ∈
B satisfying (x, y, b) ∈ R. For rest of the (x, y, b) ∈ R,
P(b|x, y) ∈ (0, 1).

Now, we define Bx,y = {b ∈ B : (x, y, b) ∈ R}, which is the
set of all acceptable outputs for Bob given the input is x and y
for Alice and Bob, respectively. Then

∑
b∈Bx,y

P(b|x, y, τx ) =
1 ∀ Bx,y.

We aim to maximize the success probability Pk (R) in the
scenario when Alice and Bob are not aware of the total num-
ber of rounds, say, kmax, a priori and thus they should decide
the probabilities of the events in R independent of kmax. To
achieve this we start by using the Lagrange multiplier.

Now, in order to maximize the success probability of re-
construction for k number of rounds we define

L = Pk (R) −
∑
Bx,y

λBx,y

⎛
⎝1 −

∑
b∈Bx,y

P(b|x, y)

⎞
⎠. (A7)

For jth element (x j, y j, b j ) in ordered list of R,

∂L

∂P(x j, y j, b j )
= 0

⇒
∑
α(k)

(α jP(x j, y j, b j )
−1)

(

∏

i=1

Pαi (xi, yi, bi )

)

−λBx j ,y j
(P(b j |x j, y j )), (A8)

⇒ λBx j ,y j
=
∑

α(k) α j
(∏


i=1 Pαi (xi, yi, bi )
)

P2(x j, y j, b j )
. (A9)

For a given k, the optimal probabilities P(xi, yi, bi ) =
P(bi|xi, yi )P(xi, yi ) can be calculated that yields maximum
value of Pk (R). However, for any arbitrary k, the expression
of λBxi ,yi

is a function of k as α(k) and αi are a function of
k. Since Alice and Bob do not have prior information about
k, they have to agree on values of probabilities P(xi, yi, bi )
independent of k. Thus, the obvious solution is P(b|x, y) =
constant ∀b ∈ Bx,y. Here we assume that the inputs are sam-
pled from a uniform distribution. This shows the necessity of
our payoff function. Maximizing the payoff guarantees that
the Pk (R) is maximized to some local maxima.

APPENDIX B: A CONCRETE EXAMPLE

Here we provide an example of a particular simple graph to
help solidify the ideas of the clique labeling problem, relation
reconstruction task for R(G (n,ω) ) and the conditional probabil-
ity table introduced in Sec. III. Consider the graph G (n=2,ω=3)

(see Fig. 6 for vertex indexing), with n = 2 maximum cliques
of size ω = 3 that share a common vertex.

The mapping of binary colorings to clique labellings for
maximum clique C1 can be given by:

f (v1) = 1, f (v2) = f (v3) = 0 ⇒ gC1 = 0

f (v2) = 1, f (v1) = f (v3) = 0 ⇒ gC1 = 1

f (v3) = 1, f (v1) = f (v2) = 0 ⇒ gC1 = 2. (B1)

Similarly, the mapping of binary colorings to clique labellings
for maximum clique C2 can be given by:

f (v3) = 1, f (v4) = f (v5) = 0 ⇒ gC2 = 0

f (v4) = 1, f (v3) = f (v5) = 0 ⇒ gC2 = 1

f (v5) = 1, f (v3) = f (v4) = 0 ⇒ gC2 = 2. (B2)

Then relation R(G (2,3)) induced by the clique labeling
problem with tuples (Cx, a,Cy, b) can be concretely given by:

R(G (2,3)) = {(C1, 0,C2, 1), (C1, 0,C2, 2), (C1, 1,C2, 1),

(C1, 1,C2, 2), (C1, 2,C2, 0), (C2, 1,C1, 0), (C2, 1,C1, 1),

(C2, 2,C1, 0), (C2, 2,C1, 1), (C2, 0,C1, 2), (C1, 0,C1, 0),

(C1, 1,C1, 1), (C1, 2,C1, 2), (C2, 0,C2, 0), (C2, 1,C2, 1),

(C2, 2,C2, 2)}. (B3)

For this graph, the table of conditional probability
P(b|Cx,Cy, a) for all compatible labeling a, b and maximum
cliques Cx,Cy is shown in Table V.

The entries marked with * are the free non-negative entries
up to normalization and the entries with 0 or 1 are constrained
from the consistency conditions for the distributed clique la-
beling problem. This will give a table for which the conditions
in (T0) are satisfied. A table satisfying condition in (T1) must
have positive numbers at all the entries marked with *. In this
example, a table satisfying condition (T2) must have 0.5 at all
the entries marked with *.

APPENDIX C: PROOF OF THEOREM 1

Before we delve into the proof, let us introduce a few
notations that we will frequently use in this section. Prior to

023104-17



SUMIT ROUT et al. PHYSICAL REVIEW RESEARCH 7, 023104 (2025)

TABLE V. Example of a table of conditional probabilities
P(b|Cx,Cy, a) corresponding to the distributed computation of
R(G (2,3) ) (and relation reconstruction task) based on the graph in
Fig. 6. For distributed computation, i.e., satisfying (T0), the entries
marked by ∗ ∈ [0, 1] are free entries up to normalization. For recon-
struction of relation R(G (2,3) ), the free entries marked by ∗ belong to
(0,1) up to normalization. For achieving optimal payoff P∗

R(G(2,3) )
, all

free elements marked by ∗ = 0.5.

C1 C2

b = 0 b = 1 b = 2 b = 0 b = 1 b = 2

a = 0 1 0 0 0 ∗ ∗
C1 a = 1 0 1 0 0 ∗ ∗

a = 2 0 0 1 1 0 0

a = 0 0 0 1 1 0 0
C2 a = 1 ∗ ∗ 0 0 1 0

a = 2 ∗ ∗ 0 0 0 1

the distributed computation of the relation, Alice and Bob are
given G (n,ω) and they construct a table M whose entries are
conditional probabilities P(b|Cx,Cy, a) of compatible labels
a, b, for all possible maximum cliques Cx,Cy ∈ C. In this ta-
ble the probability p(b|Cx,Cy, a) ≡ ((Cx, a,Cy, b)) are entries
corresponding to the event (Cx, a,Cy, b) where (Cx, a) ∈ X ,
Cy ∈ Y and b ∈ B. The rows and the columns of this table are
indexed as (Cx, a)r and (Cy, b)c, respectively. In this table, the
index runs over all the a, b first and then updates the Cx,Cy.
This table has nω rows and nω columns and may be perceived
as a n×n block matrix with elements indexed (Cx,Cy). We
have Iω×ω on the diagonal blocks of the table as Bob has to
output the same label as Alice whenever they get the same
maximum cliques as input. The aforementioned distributed
computation of the relation task can be mapped to the fol-
lowing properties (T0) of the table M. We have equivalence
between the communication task and the table M with the
constraint (T0).

(T0): Consistent labeling of cliques: If the event
(Cx, a,Cy, b) /∈ R(G (n,ω) ) ⇒ P(b|Cx, a,Cy ) = 0.

Proof. If Alice and Bob manage to compress the nd rows
of the table M (i.e., the set of all possible inputs for Alice) into
at least ω partitions such that no two rows in the same partition
have entries in any columns that are different (may be due to
constraints imposed by property (T0) or by choice filling the
probabilities corresponding to events in R(G (n,ω) )), then there
exists a protocol that proves Theorem 1. Alice will communi-
cate with Bob the partition to which her input belongs and then
Bob can suitably pick a label for her input maximum clique Cy

while satisfying the probability distribution table that parties
agreed on at the start and thereby satisfying the consistency
condition.

However, notice that there cannot be any less than ω num-
ber of partitions of the rows of the table M satisfying (T0)
such that no two rows in the same partition have entries in
any columns that are different. This can be easily shown as
every two rows corresponding to each block diagonal entry of
M, i.e., (Cx = Ci,Cy = Ci ) = Iω×ω, are distinct. Thus, each of
the ω rows corresponding to Alice’s input maximum clique
Cx = Ci must belong to a different partition.

This implies that every disjoint partition τ (i)(i ∈
{0, 1, . . . , ω − 1}) of the rows described above must have
exactly one row of the form (Cx, a) for each maximum
clique Cx, i.e., a row corresponding to exactly one out of all
the possible label a for every maximum clique Cx. In the
following, we argue that there exists ω such disjoint partitions
of rows. But before we proceed, we will list some properties
of the table M when such partitioning is possible.

If there is an imposition that the rows of table M can
be partitioned into at least ω disjoint partitions τ (i) while
satisfying the constraints discussed above, then this leads to
restrictions on the structure of table M that can be decided
by both Alice and Bob in order to perform the distributed
computation of relation specified by CLP.

(i) If some row [say, (Cx, a′)r] of off-diagonal block
matrix (Cx,Cy) has more than one nonzero entries [say,
((Cx, a′,Cy, b̃)) 	= 0 and ((Cx, a′,Cy, b̃′)) 	= 0], then the corre-
sponding row in M cannot belong to any partition that contains
a row with index (Cx′(=y), a)r, where a ∈ {0, . . . , ω − 1} as
there exist column (Cy, b)c, where these two rows have differ-
ent entries. This is because the block matrix (Cy,Cy) = Iω×ω

and thus none of the rows have nonzero entries in two different
columns in this block. Thus, this row must belong to a new
partition thereby increasing the total number of partitions to
ω + 1.

(ii) If some column [say, (Cy, b′)c] of the off-diagonal
block matrix (Cx,Cy) has more than one nonzero row entries,
then the rows corresponding to these nonzero entries in M can
only belong to the partition that contains the row (Cx̃(=y), ã(=
b′)). However, as discussed above exactly one out of all the
possible labels a for every maximum clique Cx can belong
to a partition. Therefore, Alice and Bob will be forced to
create at least ω + 1 partitions. Therefore, if the number of
partitions is restricted to ω, then each row and column of every
off-diagonal block matrix (Cx,Cy) is some permutation �Cx,Cy

of Iω×ω.
(iii) The table must have the property M = MT . If

this does not hold, then there exists an element for
which ((Cx, a,Cy, b)) = 1 	= ((Cx′(=y), a′(= b),Cy′(=x), b′(=
a))). The row (Cx, a)r must belong to same par-
tition as (Cx′(=y), ã(= b))r as ((Cx, a,Cy, b)) = 1 =
((Cx′(=y), ã,Cy, b)) only for ã = b. For any other allowed
value of ã, ((Cx′(=y), ã,Cy, b)) = 0. However, the row
(Cx, a)r and (Cx′(=y), ã(= b))r have different entries in the
column (Cy′′(=x), b′′(= a))c. ((Cx, a,Cy′′ (=x), b′′(= a))) = 1 	=
((Cx′(=y), a′(= b),Cy′(=x), b′(= a))). Thus, the row (Cx, a)r
cannot belong to any partition that contains a row indexed
(Cx′(=y), ã) where ã ∈ {0, . . . , ω − 1}.

Now, we will create a specific kind of ω disjoint partitions
(τ (i), i ∈ {0, . . . , ω − 1}) of the input received by Alice con-
sidering a probability table having the form discussed above:

Step 1: ∀a ∈ {0, 1, . . . , ω − 1}, (C1, a)r ∈ τ (a).
Step 2: ∀ j ∈ {2, . . . , n}, say, the block matrix (C1,Cj ) is a

permutation matrix �1,Cj then the row (Cj, a′)r ∈ τ (a) where
a′ is the (a)th element of �1,Cj ∗ (0 1 · · · ω − 1)T .

When Alice communicates the partition to which her input
(Cx, a) belongs, Bob can pick the label for maximum clique
Cy that obeys the consistency labeling of pairwise clique con-
dition. It is important to note that each row associated with
Alice’s input maximum clique Cx must belong to a distinct
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TABLE VI. Example of a table of conditional probabilities
P(b|Cx,Cy, a) for the graph in Fig. 6 satisfying (T0).

C1 C2

b = 0 b = 1 b = 2 b = 0 b = 1 b = 2

a = 0 1 0 0 0 0 1
C1 a = 1 0 1 0 0 1 0

a = 2 0 0 1 1 0 0

a = 0 0 0 1 1 0 0
C2 a = 1 0 1 0 0 1 0

a = 2 1 0 0 0 0 1

partition else Bob might not be able to assign a label obeying
the consistency condition.

For example, consider the graph shown in Fig. 6. Al-
ice and Bob adopt a deterministic strategy and fill the
free entries marked with * in Table V with 0s and
1s as seen in Table VI. For Table VI, we can make
three partitions τ (0), τ (1), and τ (2) for the rows such
that exactly one row of each maximum clique belongs
to a partition. In this the partitions are τ (0) = {(C1, a =
0)r, (C2, a = 2)r}; τ (1) = {(C1, a = 1)r, (C2, a = 1)r}; and
τ (2) = {(C1, a = 2)r, (C2, a = 0)r}. On receiving Cx and a
in each round Alice can send i corresponding to τ (i). After
knowing the partition τ (i), Bob can always pick the label for
his maximum clique Cy that does not violate the consistency
condition. Thus, a classical three-level system is sufficient for
performing the distributed computation of R(G (2,3)). �

APPENDIX D: PROOF OF LEMMA 1

Proof. Before the game begins, Alice and Bob construct
the table M of conditional probabilities P(b|Cx,Cy, a) which
has nω rows and nω columns. We will refer to each of the rows
and columns of this table as (Cx, a)r and (Cy, b)c respectively.
If M satisfies T(0) and T(1), then on receiving (Cx, a) Alice
communicates the relevant row to Bob and relation recon-
struction becomes possible as Bob with P(b|Cx,Cy, a) outputs
clique label b for his input maximum clique Cy. Therefore, we
have a trivial upper bound on the dimension of the classical
system which is required as nω. The deterministic classical
strategy employed for Theorem 1 cannot reconstruct the re-
lation since, the conditional probability table must contain
nonzero entries corresponding to all events (Cx, a,Cy, b) ∈
R(G (n,ω) ).

Therefore, we cannot use the strategy as used before.
Nonetheless, observe that if two rows of the probability
table can be made identical while satisfying the consistency
condition, then Alice and Bob can encode them in the same
communication message. In the table, there is redundancy
when the same vertex shows up in different maximum
cliques. For instance, let vertex v be in both maximum clique
Ci and Cj . Then the rows in the conditional probability
table corresponding to (Cx = Ci, a)r and (Cx = Cj, a′)r,
where label a and a′ for the maximum clique Ci and Cj

respectively color the vertex v as 1, can be assigned the same
entries. For such a vertex v, (Cx = Ci, a,Cy = Cj, b = a′),
(Cx = Cj, a′,Cy = Ci, b = a), (Cx = Cj, a′,Cy = Cj, b= a′),

(Cx = Ci, a,Cy = Ci, b = a) ∈ R(G (n,ω) ). Also for any
other Cy( 	= Ci,Cj ), (Cx = Ci, a,Cy, b) ∈ R(G (n,ω) ) ⇒ (Cx =
Cj, a′,Cy, b) ∈ R(G (n,ω) ). Thus, the entries in the table M
corresponding to the rows (Cx = Ci, a)r and (Cx = Cj, a′)r
can be assigned identically (especially the nonzero entries)
while guaranteeing relation reconstruction without violation
of the consistency condition. The entries that are necessarily
zero in one of the rows are also zero for the other row.
Therefore, these two inputs (Cx = Ci, a)r and (Cx = Cj, a′)r
can be encoded in the same message.

Therefore, Alice and Bob can remove all redundant rows
in this manner and end up with an encoding based on the
compressed table which now has |V| distinct rows, where each
row corresponds to a distinct vertex. Sufficiency of commu-
nicating |V|-level classical system follows trivially since it
allows Alice to send all information about her input. |V| � nω

is saturated if all the maximum cliques are disconnected in the
given graph.

Now we prove the necessity of |V|-level classical sys-
tem to perform the relation reconstruction when considering
R(G (n,ω) ). For every vertex v in a maximum clique Ci where
i ∈ {1, . . . , n} there is an input corresponding to this vertex
for Alice (Ci, a) where label a assigns color 1 to v and
rest of the vertices in the maximum clique are assigned 0.
This is due to condition (G0). For any maximum clique Ci,
each of the Alice’s input, (Ci, a) where a ∈ {0, . . . , ω − 1},
must be encoded with different message alphabet. This is
because Bob needs to exactly guess the input clique label
of Alice whenever his input is Cy = Ci. Now for any two
vertices v, v′ that belong to two different maximum cliques,
say, v ∈ Ci and v′ ∈ Cj (where i 	= j), there exists a maximum
clique Ck and a vertex u ∈ Ck (where k maybe i, j or some
other number) such that it is orthogonal exactly to one of
these vertices (say, v w.l.o.g.). This is due to condition (G1).
Let Alice’s input corresponding to v and v′ be (Cx = Ci, a)
and (Cx = Cj, a′), respectively, and Bob has input Cy = Ck .
For these rounds, P(b|Cx = Ci, a,Cy = Ck ) = 0 and P(b|Cx =
Cj, a′,Cy = Ck ) > 0 where Bob’s output label b for maximum
clique Cy = Ck assigns 1 exactly to vertex u. Thus, the inputs
corresponding to every pair of vertices that do not belong to
the same maximum clique must be encoded with different
message alphabets to accomplish relation reconstruction and
obtain a nonzero payoff. Since there are |V| vertices, the
classical message must be encoded in a system of dimension
� |V|.

We now argue that locally randomizing over the determin-
istic encoding and decoding protocols (that is the usage of
Private Coins) cannot lower the necessary classical commu-
nication, that is, using less than log2 |V| bit along with private
coins cannot accomplish (T0) and (T1). To see this, we will
consider a convex combination of deterministic encoding of
Alice for protocols with communication of a (|V| − 1)-level
classical system. Consider some maximum clique Ci. In any
deterministic encoding, each of Alice’s input (Ci, a) where
a ∈ {0, . . . , ω − 1}, must be encoded with a different message
alphabet. This is so because if Alice and Bob receive the same
maximum clique as input, then their labeling for the maximum
clique must match. Also, this deterministic encoding will en-
code some of the inputs corresponding to different vertices,
say, v and v′, in the same message alphabet. There will be
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some inputs (Cx = Ci, a) and (Cx = Cj( 	=i), a′) encoded in the
same message. Here labels a and a′ assign binary color 1 to
v in Ci and v′( 	= v) in Cj , respectively, while the rest of the
vertices in these maximum cliques are assigned 0. Individu-
ally, each of these encodings will be unsuccessful in relation
reconstruction. Furthermore, since Alice and Bob do not have
access to public coin, therefore, Bob is not aware of Alice’s
choice of encoding in a given round. Thus, Bob cannot use
decoding that is correlated with Alice’s encoding strategy in
a given round. If Bob tries to satisfy consistency conditions,
then he will not be able to have nonzero probability corre-
sponding to all the events (Cx, a,Cy, b) ∈ R(G (n,ω) ).

Thus, communication of |V|-level classical system is nec-
essary for reconstruction of the relation R(G (n,ω) ). �

APPENDIX E: PROOF OF THEOREM 4

Proof. We are looking to compute the dimension of the
faithful representation that gives the optimal solution to the
Lovász-θ optimization of GPaley(q), i.e., we want to find the
minimum ξ ∗(GPaley(q) ) such that |ui〉 ∈ Rξ∗(GPaley(q) ) for the vec-
tors |ui〉 ∈ Sopt. This quantity is given by the rank of the Gram
matrix Mopt of the set of (normalized) vectors Sopt. We have
that

(Mopt )k,l =
⎧⎨
⎩

1 k = l
0 k ∼ l
2/(q1/2 + 1) (k � l ) ∧ (k 	= l )

.

In other words, Mopt = I + 2
q1/2+1 A(GPaley(q) ), where

A(GPaley(q) ) denotes the adjacency matrix of the complement
of GPaley(q) (which is isomorphic to GPaley(q) since the graph is
self-complementary).

To compute rank(Mopt ), we calculate its spectrum and
show that it has exactly (q + 1)/2 nonzero eigenvalues, so that
rank(Mopt ) = (q + 1)/2.

To do this, we compute the spectrum of A(GPaley(q) ) =
A(GPaley(q) ). Following Ref. [64], let us define a matrix K
based on the quadratic characters χ (k − l )

χ (k − l ) =
⎧⎨
⎩

1 (k − l ) is quadratic residue modulo q
0 k = l
−1 else

,

(E1)

by Kk,l = χ (k − l ). By the property of the characters that
χ (xy) = χ (x)χ (y) and

∑q−1
x=0 χ (x) = 0, we can prove the re-

sult K2 = qI − J where J denotes the all-ones matrix (see
Lemma F1 in Appendix F for the proof).

We also see by direct term-by-term comparison that the
adjacency matrix of the Paley graph can be written as

A(GPaley(q) ) = 1
2 (K + J − I ). (E2)

We, therefore, obtain that

(A(GPaley(q) ))
2 = q − 1

4
(J + I ) − A(GPaley(q) ). (E3)

Now observe that the all-ones vector | j〉 is an eigenvector of
A(GPaley(q) ) and consider another eigenvector |eλ〉 correspond-
ing to eigenvalue λ 	= 0. Since |eλ〉 is orthogonal to | j〉, we

have that J|eλ〉 = 0, so that

(A(GPaley(q) ))
2|eλ〉 = λ2|eλ〉 =

(
q − 1

4
− λ

)
|eλ〉, (E4)

or in other words that

λ2 + λ − q − 1

4
= 0,

⇒ λ = 1

2
(−1 ± q1/2). (E5)

Thus, the spectrum and corresponding degeneracies of
A(GPaley(q) ) are found to be

spec(A(GPaley(q) )) =

⎧⎪⎨
⎪⎩

(q − 1)/2 1
1
2 (−1 + q1/2) (q − 1)/2
1
2 (−1 − q1/2) (q − 1)/2

.

As we have seen, the Gram matrix Mopt from the optimal
representation giving rise to θ (GPaley(q) ) is given by

Mopt = I + 2

q1/2 + 1
A(GPaley(q) ). (E6)

Therefore, the spectrum of Mopt consists of exactly (q + 1)/2
nonzero eigenvalues given by

spec(Mopt ) =
⎧⎨
⎩

√
q 1

2
√

q/(1 + √
q) (q − 1)/2

0 (q − 1)/2
.

Therefore, we obtain that rank(Mopt ) = ξ ∗(GPaley(q) ) =
(q + 1)/2.

We can even go further and note that since the adjacency
matrix of the Paley graph is a circulant matrix (the kth row is
a cyclic permutation of the first row with offset k), the eigen-
vectors of the adjacency matrix A(GPaley(q) ) (and therefore the
Gram matrix Mopt) are the Fourier vectors

|eλ〉 = 1

q
(1, ωλ, ω2λ, . . . , ω(q−1)λ), (E7)

with λ = 0, 1, . . . , q − 1, where ω = exp( 2π i
q ) is a primitive

qth root of unity. Note that |e0〉 = | j〉 is the all-ones vector.
We can then explicitly calculate that

Mopt|eλ〉 =

⎡
⎢⎢⎣

√
q − 1√
q + 1

+ 1√
q + 1

∑
l:l 	=1

(1−l ) is a quad. res. mod q

ω(l−1)λ

− 1√
q + 1

∑
l:l 	=1

(1−l ) is not a quad. res. mod q

ω(l−1)λ

⎤
⎥⎥⎦|eλ〉.

(E8)

We can then explicitly compute for prime q not only the
eigenvalues of Mopt as above but also see that the eigenvalue√

q corresponds to the eigenvector | j〉 = |e0〉, the eigenvalues
2
√

q/(1 + √
q) correspond to the eigenvectors |eλ〉 for λ be-

ing the remaining quadratic residues modulo q, and the zero
eigenvalues correspond to the eigenvectors |eλ〉 for λ being the
quadratic nonresidues modulo q. �
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APPENDIX F: PROOF OF RESULT USED IN THEOREM 4

Consider a matrix K (as defined in Theorem 4) based on
the quadratic characters χ (k − l )

χ (k − l ) =
⎧⎨
⎩

1 (k − l ) is quadratic residue modulo q
0 k = l
−1 else

.

(F1)

by Kk,l = χ (k − l ). Using the property of the characters that
χ (xy) = χ (x)χ (y) and

∑q−1
x=0 χ (x) = 0, we will now prove

the result that we have used in Theorem 4.
Lemma F1. K2 = qI − J , where J denotes the all-ones

matrix.
Proof. We want to prove that the diagonal entries of K2 are

equal to (q − 1) and the off-diagonal entries are equal to −1.
The diagonal entries are given by the squared norms of the
columns of K , which have one zero entry, (q − 1)/2 entries of
value 1 (corresponding to the quadratic residues modulo q and
the degree of each vertex in GPaley(q)) and (q − 1)/2 entries of
value −1. Therefore, the squared norms of the columns and
hence the diagonal entries of K2 are equal to q − 1.

The off-diagonal entries (K2)k,l are given by∑q−1
j=0 χ (k − j)χ (l − j) = ∑q−1

j′=0 χ ( j′)χ ((l − k) + j′). Since
χ (0) = 0, the term for j′ = 0 vanishes and we have∑q−1

j′=1 χ ( j′)χ ((l − k) + j′). Since χ ( j′) ∈ {±1} for

j′ 	= 0, the sum reduces to
∑q−1

j′=1 χ ((l − k) + j′)/χ ( j′) =∑q−1
j′=1 χ ((l − k)/ j′ + 1) where we used the property

of the characters that χ (xy) = χ (x)χ (y). We finally
obtain

∑q−1
j′=1 χ ((l − k)/ j′ + 1) = [

∑q−1
j′′=0 χ ( j′′)] − χ (1) =

0 − 1 = −1 where we used the property that as j′ ranges over
[q − 1], the argument (l − k)/ j′ + 1 ranges over elements
{0, . . . , q − 1} \ {1}. Therefore, we obtain the off-diagonal
entries to be −1 thus showing that K2 = qI − J . �

APPENDIX G: PROOF OF THEOREM 5

Proof. The amount of classical public coin, while com-
municating ω-level classical system, depends on the graph
and can be upper bounded by the total number of different
classical deterministic encoding and decoding strategies (or
the total number of different tables of conditional probabilities
that Alice and Bob can prepare while satisfying the constraints
mentioned in Appendix C). We observe that among different
graphs G with the same number of maximum cliques n of
clique size ω, the graph in which all maximum cliques are
disconnected requires the most amount of classical public
coin assistance. On the other hand, graphs in which every
maximum clique shares the most number of its vertices with
other maximum cliques, require the least amount of classical
public coin due to the least number of ∗ entries in their
conditional probability table (for example in Table VII). We
also know that the most number of vertices that any two
maximum cliques can share is ω − 2 to have an orthogonal
representation in Cω (Proposition 1). An example is provided
in Fig. 9 for ω = 5 and n = 2.

To find the lower bound on the classical public coin for a
graph with n maximum cliques of size ω, we can calculate the

TABLE VII. The conditional probability table version of the
equivalence based on the two graphs in Fig. 8, show that the table
for ω = 3 sized n = 2 maximum cliques with ω − 2 = 1 common
vertices is equivalent (in terms of number of classical deterministic
strategies) to the table with ω = 2 sized n = 2 disconnected maxi-
mum cliques.

C1 C2

b = 0 b = 1 b = 2 b = 0 b = 1 b = 2

a = 0 1 0 0 0 ∗ ∗
C1 a = 1 0 1 0 0 ∗ ∗

a = 2 0 0 1 1 0 0

a = 0 0 0 1 1 0 0
C2 a = 1 ∗ ∗ 0 0 1 0

a = 2 ∗ ∗ 0 0 0 1

C1 C2

b = 0 b = 1 b = 0 b = 1

∼= C1 a = 0 1 0 ∗ ∗
a = 1 0 1 ∗ ∗

C2 a = 0 ∗ ∗ 1 0
a = 1 ∗ ∗ 0 1

amount of classical public coin necessary for a graph where all
the maximum size cliques share ω − 2 vertices. Such a graph
will saturate the lower bound. The order of the graph in this
case is |V| = ω + 2(n − 1).

We also observe that for such a graph the associated con-
ditional probability nω × nω table with entries P(b|Cx,Cy, a),
the number and structure of the free entries ∗ is equivalent to
that of a graph with n disconnected maximum cliques of size
ω = 2. Thus, the number of classical deterministic strategies
and therefore classical public coin required for these two
graphs is the same. For example, in the case of the graph
shown in Fig. 6 (or left side of Fig. 8) we see that Table VII is
the conditional probability table which is also equivalent (in
terms of ∗) to the conditional probability table for the graph
on the right G (n=2,ω=2) in Fig. 8. Therefore we have shown
that we can calculate the lower bound for the classical public
coin required for a graph with ω-sized n maximum cliques by
calculating the classical public coin needed for a graph with n
maximum cliques of size 2 that are disconnected. �

FIG. 8. Calculating the lower bound on classical public coin for a
graph with ω sized n maximum cliques with ω − 2 common vertices
is equivalent (in terms of the number of classical deterministic strate-
gies) to a graph with ω = 2 sized n disconnected maximum cliques,
as shown in this example continuing the simple example provided
before in Fig. 6.
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FIG. 9. Two graphs with (ω = 5, n = 2), the graph on the left
G1 has two maximum cliques of size ω = 5 and ω − 2 = 3 vertices
common between these maximum cliques. The graph on the right G2

consists of two disconnected maximum cliques of size ω = 5.

APPENDIX H: PROOF OF COROLLARY 1

Proof. Using Theorem 5, to find the lower bound on clas-
sical public coin required for a graph G (n,ω) to accomplish
reconstruction of relation R(G (n,ω) ), i.e., satisfy (T0) and
(T1), we equivalently calculate the classical public coin re-
quired for the same task when considering a graph G (n,ω=2)

where any two maximum cliques are disconnected and one
bit communication is allowed.

For reconstruction of R(G (n,ω=2)), we require a convex
combination of deterministic strategies while communicating
a classical system of ω dimension. The conditional prob-
ability table M resulting from the convex combination of
these strategies must have positive entries in the off-diagonal
block matrix (Cx,Cy 	=x ) while the diagonal block matrices
(Cx,Cx ) must be equal to the identity matrix I2. Thus, in
the conditional probability table M, for every (Cx, a,Cy 	=x )
there must be at least a pair of deterministic table/strategy
such that one has P(b|Cx, a,Cy ) = 0 and the other table has
P(b|Cx, a,Cy ) = 1 as its entry. Any classical deterministic
strategy constitutes of filling the table of conditional proba-
bility such that every off-diagonal block matrix of this table
(Cx,Cy 	=x ) is either I2 or σx, where σx is the Pauli-x opera-
tor (or the NOT operator). The set of n classical strategies
to achieve reconstruction are the following. The ith strategy
corresponds to the table where only off-diagonal block matrix
(C1,Ci ) = σx and rest (C1,Cj( 	=i) ) = I2 ∀i ∈ {2, . . . , n}. Note
that fixing the block matrices in the first row alone fixes
the entire table if the amount of classical communication is
restricted to 1 bit (see Appendix C).

Note that taking each such n deterministic classical strat-
egy discussed earlier and their convex combinations yields
a table of conditional probabilities P(b|Cx, a,Cy ), M, that
leads to some nonzero payoff. It is worth mentioning that
the payoff for the above strategy is PR(G (n,2) ) = 1

n > 0 and
since a nonzero payoff ensures relation reconstruction, thus
we satisfy (T0) and (T1). However, this does not always
help achieve optimal payoff P∗

R(G (n,2 )) for the graph under
consideration. �

APPENDIX I: PROOF OF COROLLARY 2

Proof. Consider a graph G (n,ω) satisfying (G0)–(G2) with
faithful orthogonal range ω. From Theorem 5, the lower
bound on classical public coin assistance to log2 ω bit chan-
nel required for relation reconstruction and obtaining optimal
payoff (T2) is equal to the lower bound on classical public
coin required to achieve P∗

R(G (n,2) ) = 0.5 for a graph G (n,ω=2)

with n disconnected maximum size cliques while communi-
cating one bit.

Similarly to the proof of Corollary 1 we will again con-
sider a convex combination of deterministic strategies while
communicating a classical system of dimension two in the
latter task. For any such deterministic strategy, the associ-
ated conditional probability table has every off-diagonal block
(Cx,Cy) to be either I2 or σx, where I2 is 2 × 2 identity
matrix. Also, for any such deterministic strategy (Cx,Cy) =
(C1,Cx ) ⊕2 (C1,Cy) where I2 → 0 and σx → 1. Note that
fixing the block matrices in the first row alone fixes the entire
table if the amount of classical communication is restricted to
1 bit (see Appendix C).

In the final table of conditional probability M, we want
each entry in every off-diagonal block (Cx,Cy) to be 0.5.
This is possible if we have a uniform convex mixture of
deterministic tables where half of them have (Cx,Cy) = σx

and the rest have (Cx,Cy) = I2 such that the effective weight
for each free entry ∗ is 0.5. For n = 2, convex combination
of two deterministic tables, one with (C1,C2) = I2 and other
with (C1,C2) = σx, give payoff PR(G (2,2) ) = 0.5. For n = 3,
we need four tables, i.e., (C1,C2) = I2 or σx and (C1,C3) =
I2 or σx. All convex combinations of any subset of these
four deterministic strategies/tables will lead to a table M
where some of the off-diagonal block matrix (Cx,Cy) have
a contribution from an unequal number of I2 and σx. For
n � 2, by the similar argument we need a minimal collec-
tion of deterministic tables such that corresponding to every
two-block matrix of the form (C1,Cj 	=1) and (C1,Cj′ 	=1),
there are an equal number of tables where (C1,Cj ) = I2 and
(C1,Cj′ ) = I2, (C1,Cj ) = I2 and (C1,Cj′ ) = σx, (C1,Cj ) =
σx and (C1,Cj′ ) = I2, and (C1,Cj ) = σx and (C1,Cj′ ) = σx.
This is exactly the problem for orthogonal arrays that have
been discussed above if we substitute I2 → 0 and σx → 1.
In other words, this corresponds to the minimum number of
rows required so that any pair of columns have in their rows
the entries {(0, 0), (0, 1), (1, 0), (1, 1)} occurring an equal
number of times. Thus, for a graph G (n,ω=2) with n(> 2) the
parties Alice and Bob need classical public coin with Tn−1

input to get optimal payoff P∗
R(G (n,2) ) = 0.5 when they are

allowed to communicate ω level classical system. For any
graph G (n,ω>2) considered here, Alice and Bob need classical
public coin with at least Tn−1 input to get optimal payoff
P∗
R(G (ω) ) for the relation R(G (n,ω>2)) when they are allowed

to communicate ω level classical system. This completes the
proof. �
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