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Test of the physical significance of
Bell non-locality

Carlos Vieira 1,2 , Ravishankar Ramanathan 1 & Adán Cabello 3,4

Loophole-free violations of Bell inequalities imply that at least one of the
assumptions behind local hidden-variable theories must fail. Here, we show
that, if only one fails, then it has to fail completely, therefore excluding
models that partially constrain freedom of choice or allow for partial retro-
causal influences, or allow partial instantaneous actions at a distance. Spe-
cifically, we show that (i) any hidden-variable theory with outcome
independence (OI) and arbitrary joint relaxation of measurement indepen-
dence (MI) and parameter independence (PI) can be experimentally exclu-
ded in a Bell-like experiment with many settings on high-dimensional
entangled states, and (ii) any hidden-variable theory withMI, PI and arbitrary
relaxation of OI can be excluded in a Bell-like experiment with many settings
on qubit-qubit entangled states.

In the early days of quantum theory, the question of whether there is
deeper theory underlying quantum theory was considered “a philo-
sophical question for which physical arguments alone are not
decisive”1. Bell’s theorem2,3 made it possible to exclude experimentally
some of these deeper theories, called hidden-variable (HV) theories4.
Today, Bell tests5–9 have convinced us that some HV theories cannot
explain what we see.

In a Bell test, a source of pairs of particles sends each particle to
a different laboratory. In the first laboratory, an observer (Alice)
chooses to measure x ∈ X and obtains a ∈ A. In the second labora-
tory, a different observer (Bob) chooses to measure y ∈ Y and
obtains b ∈ B. After many repetitions, Alice and Bob compute the
joint probability of (a, b) given (x, y), denoted p(a, b∣x, y). The set
{p(a, b∣x, y)}x∈X,y∈Y,a∈A,b∈B is called a correlation for the Bell scenario
(∣X∣, ∣A∣; ∣Y∣, ∣B∣), in which Alice can choose between ∣X∣measurement
settings with ∣A∣ possible outcomes and Bob between ∣Y∣ settings
with ∣B∣ outcomes.

Bell’s theorem asserts that no HV model satisfying some
assumptions can reproduce certain quantum correlations. These
models are collectively called “local” HV models and are defined as
those satisfying the following assumptions10,11:

(0) Hidden variables. There are hidden variables that associate to
each pair of particles a state λ∈ Λ and underlying probability densities

p(a, b∣λ, x, y) and p(λ∣x, y) so

pða,bjx, yÞ=
Z

dλpðλjx, yÞpða,bjλ, x, yÞ: ð1Þ

(1)Measurement independence (MI): For every pair of particles, the
measurements (x, y) are not correlatedwith λ. That is,p(x, y∣λ) = p(x, y),
which, through Bayes’s theorem, is equivalent to

pðλjx, yÞ=pðλÞ: ð2Þ
Therefore, the knowledge of λ gives no information about (x, y), and
vice versa.

(2)Outcome independence (OI)11 also referred toas completeness10,12:
p(a∣λ, x, y, b) is independent of b, and hence may be written

pðajλ, x, y,bÞ=pðajλ, x, yÞ: ð3Þ

Similarly, p(b∣λ, x, y, a) = p(b∣λ, x, y).
(3) Parameter independence (PI)11, initially called locality10:

p(a∣λ, x, y) is independent of y, and hence may be written as

pðajλ, x, yÞ=pðajλ, xÞ: ð4Þ

Similarly, p(b∣λ, x, y) = p(b∣λ, y).
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Assumptions (2) and (3) are independent10 and, together, imply
that

pða,bjλ, x, yÞ=pðajλ, xÞpðbjλ, yÞ, ð5Þ

which is Bell’s original assumption2 which is now called local factoriz-
ability or local causality.

Assumption (0) is the expression of the belief in a deeper theory
underlying quantum theory. MI is motivated by the assumption that
each of the observers has freedom of choice13 or, more generally, by
the assumption that which specific measurements are actually per-
formed is not governed by the HVs that govern the particles. OI is
based on the assumption that, as it happens in deterministic models
[i.e., when p(a, b∣λ, x, y) ∈ {0, 1}], if we would know λ, we would
observe that p(a, b∣λ, x, y) = p(a∣λ, x, y)p(b∣λ, x, y)14. PI is grounded on
the assumption that superluminal signalling between one party’s
choice and the other party’s spacelike separated outcome is
impossible10.

Existing experiments are inconclusive about which assumptions
fail. As a consequence, possible explanations include HV theories with
different degrees of “measurement dependence”12,14–21 (thatmay occur
due to limitations to freedom of choice22,23 or to retrocausal
influences24,25), different amounts of instantaneous “actions at a
distance”26–32, and combinations thereof33. At least one of the four
assumptions is false. But which one or which ones?11[pp. 124, 149,
96],34[p. 66]. The prevalent view is that advancing in the resolution of
this problem is notpossible “onpurely physical grounds but it requires
an act of metaphysical judgement”35. Here, we challenge this view and
present two results. Result 1 shows that there arequantumcorrelations
that cannot be simulated with any HV theory assuming OI but partial
(as opposed to complete) measurement dependence (MD) or partial
parameter dependence (PD). Result 2 shows that there are quantum
correlations that cannot be simulatedwith anyHV theory assumingMI,
PI but partial outcome dependence (OD).

In Sec. II A, we introduce the standard ways to quantify MI, PI and
OI. Result 1 is presented in Sec.II B, where we also describe an
experiment to exclude HV theories with partial MD and PD. Result 2 is
presented in Sec. II C, which includes the description of an experiment
to exclude HV theories with partial OD. The consequences and appli-
cations of the results are discussed in Sec. III.

Results
Relaxing the assumptions
Quantifying measurement dependence. To quantify any lack of MI,
and therefore to quantify MD, we have to take into account the dis-
tribution of x and y and, therefore, we have to consider the full dis-
tribution p(a, b, x, y) rather than only p(a, b∣x, y). The full distribution
p(a, b, x, y) can be reproduced with an l-measurement dependent (l-
MD) HV model36 if it can be reproduced with an HV model such that,
for all x ∈ X, y ∈ Y, and for all λ,

pðx, yjλÞ≥ l ≥0: ð6Þ

If there are only two inputs per party, a value l= 1/4 implies thatp(x, y∣λ)
mustbeuniform.Therefore, in this case, p(a,b, x, y) canbe reproduced
with an HVmodel withMI in which there is no correlation between the
hidden variables of the particles and the measurement settings.
However, this isnot the case for0≤l< 1/4.We say thatp(a,b, x, y) canbe
reproduced with an HV model with partial MD if there is an (l-MD)
model for some l > 0. We say that p(a, b, x, y) can only be reproduced
with an HV model with complete MD if p(a, b, x, y) cannot be repro-
ducedwith any (l-MD)model for any l >0; the only possibleHVmodels
have p(x, y∣λ) = 0 for somepair of settings (x, y) and some λ. If there are
only two inputs per party, any p(a, b, x, y) corresponding to any non-

signaling correlation can be reproduced with an HV model with
complete MD. The complete relaxation of MI using alternative ways of
quantifying MD14,18 matches the above definition of complete MD (see
also Supplementary Note1).

Quantifying parameter dependence. A correlation p(a, b∣x, y) can be
reproduced with an (εA, εB)-parameter dependent [(εA, εB)-PD] HV
model14 if it can be reproduced with an HV model such that, for all x,
y, y′ (y, x, x′), and for all λ,

1
2

X
a

jp ajλ, x, yð Þ � p ajλ, x, y0ð Þj≤ εA , ð7aÞ

1
2

X
b

jp bjλ, x, yð Þ � p bjλ, x0, yð Þj≤ εB : ð7bÞ

Therefore, p(a, b∣x, y) can be reproduced with an HV model with PI if,
and only if, it can be reproduced with an (εA, εB)-PD HV model with
εA = εB = 0. If not, we say that p(a, b∣x, y) can be reproduced with an HV
model with partial PD if it can be reproduced with an (εA, εB)-PD HV
model for some0< εA, εB< 1. Finally,p(a,b∣x, y) canonlybe reproduced
with HV models with complete PD if p(a, b∣x, y) cannot be reproduced
with any (εA, εB)-PD HV model for any εA, εB < 1. Any non-signaling
correlation can be reproduced with HV models with complete PD.

Quantifying outcome dependence. A correlation p(a, b∣x, y) can be
reproducedwith a δ-outcomedependent (δ-OD)HVmodel14 if it canbe
reproduced with anHVmodel such that, for all x, y, a, a′, and for any λ,

1
2

X
b

∣pðbjλ, x, y,aÞ � pðbjλ, x, y,a0Þ∣≤ δ: ð8Þ

Therefore, p(a, b∣x, y) can be reproduced with an HV model with OI if,
and only if, it can be reproduced with a δ-OD HVmodel with δ = 0. We
say that p(a, b∣x, y) can be reproduced with an HV model with partial
OD if it can be reproduced with a δ-ODHVmodel with 0 < δ < 1.We say
that p(a, b∣x, y) can only be reproduced with an HV model with com-
plete OD if it cannot be reproduced with any δ-OD HV model for any
δ < 1. Any non-signaling correlation can be reproducedwithHVmodels
with complete OD.

Result 1: Quantumcorrelations that cannot be simulated if there
is arbitrarily small MI or PI
Consider thebipartite Bell experiment inwhichAlice andBobhave two
measurement options x, y∈ {0, 1}, each of themwith 2N possible results
which can be expressed as a string of N bits,
a, b ∈ {(0, 0,…, 0), (0, 0,…, 1),…, (1, 1,…, 1)}. Suppose that Alice and
Bob share the following 2N × 2N-dimensional entangled state:

∣ψ
�
= ∣ϕ

�
A1 ,B1

� � � � � ∣ϕ
�
AN ,BN

, ð9Þ

where

∣ϕ
�
=að∣01i+ ∣10iÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
∣11i, ð10Þ

with a=
ffiffi
5

p
�1
2 , is a two-qubit state with the first qubit in Alice’s side and

the second qubit in Bob’s side. Suppose that Alice’s and Bob’s
measurements are of the form

Aa1 , ...,aN jx =Aa1 jx � � � � � AaN jx , ð11aÞ

Bb1 , ...,bN jy =Bb1 jy � � � � � BbN jy , ð11bÞ
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where, here, the tensor product refers to the qubits in each observer’s
system and the specific form of the factors is given by

A1jx =1� A0jx , ð12aÞ

B1jy =1� B0jy , ð12bÞ

where

A0j0 =B0j0 = ∣0i 0h ∣, ð13aÞ

A0j1 =B0j1 = ∣φ
�
φ
�

∣, ð13bÞ

with ∣φ
�
= 1ffiffiffiffiffiffiffiffi

1�a2
p ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2a2

p
∣0i � a∣1iÞ. That is, each of the 2N-outcome

measurements can be seen as N (nonindependent) two-outcome
measurements performed simultaneously on a 2N-dimensional quan-
tum system.These state andmeasurements produce a correlationwith
the following properties:

pð0, 1,a2, b2, . . . ,aN ,bN j0, 1Þ = . . . =pða1,b1, . . . ,aN�1, bN�1, 0, 1j0, 1Þ =0,
ð14aÞ

pð1, 0,a2, b2, . . . ,aN ,bN j1, 0Þ = . . . =pða1,b1, . . . ,aN�1, bN�1, 1, 0j1, 0Þ =0,
ð14bÞ

pð0,0,a2,b2, . . . ,aN ,bN j1, 1Þ = . . . =pða1,b1, . . . ,aN�1, bN�1, 0, 0j1, 1Þ =0,
ð14cÞ

for all a1, …, aN, b1, …, bN ∈ {0, 1}. Eq. (14a) indicates that, if the mea-
surements are x = 0 for Alice and y = 1 for Bob, then, in theN-bit strings
that Alice and Bob obtain as outputs cannot be one position where
Alice has 0 and Bob has 1. Similarly, for Eqs. (14b) and (14c). These state
andmeasurements are the ones needed for theparallelised version37 of
the optimal version of the proof of Bell non-locality proposed by
Hardy38.

Let us define

pN
H :=

X
a1, . . . ,aN ,b1, . . . ,bN

a1,b1

� �
= ð0,0Þ _ . . . _ aN ,bN

� �
= ð0, 0Þ

p a1,b1, . . . ,aN ,bN j0,0
� �

,

ð15Þ
where

∨

is the logical OR.
Result 1 can be stated as follows: In any l-MD and (εA, εB)-PD HV

model satisfying OI and Eqs. (14a), (14b) and (14c), for all l > 0 and allN,

pN
H ≤ εA + εB � εAεB: ð16Þ

The proof is in the Supplementary Note 2. Therefore, if εA < 1 and εB < 1,
then pN

H < 1. In contrast, in quantum theory37, as N tends to infinity,

pN
H �!N!1

1: ð17Þ

Consequently, for any l-MD and (εA, εB)-PD HVmodel with l > 0, εA < 1,
εB < 1, satisfying OI, there is N such that quantum theory predicts a
value for pN

H that cannot be simulated.
For example, Table 1 gives the values of ε = εA = εB that cannot be

simulated if nature achieves the quantum value for pN
H . Notice that the

number of excludedHVmodelsgrowswithN. AsN tends to infinity, the
only surviving HV models are those with ε = 1.

The correlations defined by Eqs. (10)–(13) are special: they define
an extremal non-exposed point of the quantum set of correlations for

the two-observer two-setting two-outcome Bell scenario39. Any other
correlation with this property can also be used in the experiment. The
full characterisation of these points is in40.

A natural question is what conditions a correlation must
satisfy to allow for arbitrarily small MI and PI, and whether there
are quantum correlations in Bell scenarios with finite number of
inputs that allow for such relaxation. In the Supplementary
Note 3, we show a necessary condition - the quantum correlation
must necessarily lie on or be arbitrarily close to the nonsignaling
boundary. We also illustrate by an explicit example that this
condition is not sufficient. We leave as an open question whether
there is a finite input-output quantum correlation that proves
Result 1.

Experimental test to excludeHV theorieswithpartialMDandPD
So far, we have identified a quantum correlation that cannot be
simulated by any l-MD and (εA, εB)-PD HV model with l > 0, εA < 1,
εB < 1, satisfying OI. This correlation is a point in the set of
quantum correlations. The problem is that, due to experimental
errors, an actual experiment will fail to exactly produce this
point. Here, we reformulate Result 1 in a way that the existence of
correlations that cannot be simulated by l-MD and (εA, εB)-PD HV
models with l > 0, εA < 1, εB < 1, and satisfying OI, can be
experimentally tested.

It can be proven (see Supplementary Note 4) that, for any l-MD
and (εA, εB)-PD HV model with l > 0, εA < 1, εB < 1, satisfying OI, the
following Bell-like inequality holds:

INκ ðpÞ≤ ~εA + ~εB � ~εA~εB, ð18Þ

where

INκ ðpN
H Þ :=

X
a1, . . . ,aN ,b1, . . . ,bN

a1,b1

� �
= ð0, 0Þ _ . . . _ aN ,bN

� �
= ð0, 0Þ

p a1,b1

� �
, . . . , aN ,bN

� �j0, 0� �

� κ
X

a1, . . . ,aN ,b1, . . . ,bN

a1,b1

� �
= ð0, 1Þ _ . . . _ aN ,bN

� �
= ð0, 1Þ

p a1,b1

� �
, . . . , aN ,bN

� �j0, 1� �

� κ
X

a1, . . . ,aN ,b1, . . . ,bN

a1,b1

� �
= ð1, 0Þ _ . . . _ aN ,bN

� �
= ð1, 0Þ

p a1,b1

� �
, . . . , aN ,bN

� �j1, 0� �

� κ
X

a1, . . . ,aN ,b1, . . . ,bN

a1,b1

� �
= ð0, 0Þ _ . . . _ aN ,bN

� �
= ð0,0Þ

p a1,b1

� �
, . . . , aN ,bN

� �j1, 1� �
,

ð19Þ

Table 1 | Relaxation of PI as a function of the number of
parallel copies

N ε pN
H

1 < 0.0461 0.0902

2 < 0.0901 0.1722

3 < 0.1321 0.2469

4 < 0.1722 0.3148

5 < 0.2104 0.3766

6 < 0.2468 0.4328

7 < 0.2816 0.4839

8 < 0.3147 0.5304

9 < 0.3463 0.5727

10 < 0.3765 0.6113

N is the number of parallel copies and 2N is the number of outputs in the Bell test. ε = εA = εB
quantifies the relaxation of PI and pN

H is the upper bound in the probability given by Eq. (16) for l-

MD and (ε, ε)-PD HVmodels satisfyingOI. HVmodelswith ε above the threshold indicated in the
Table cannot be excluded by the corresponding experiment.
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with

κ >
N2

lð1� εÞ2
, ð20Þ

where ε= maxfεA, εBg, and

~εA = εA +N

ffiffiffiffiffi
2
lκ

r
, ð21aÞ

~εB = εB +N

ffiffiffiffiffi
2
lκ

r
: ð21bÞ

This means that, for any l-MD and (εA, εB)-PD HV model with l > 0,
εA < 1, εB < 1, satisfying OI, for sufficiently large κ, the quantity
INκ ðpÞ is upper bounded by a value that is always smaller than 1.
Furthermore, for fixed N, this bound approaches the bound for
(16) when we take large values of κ and is therefore violated by
the quantum state and measurements described earlier.

Result 2: Quantum correlations which cannot be simulated if
there is arbitrarily small OI
Consider the bipartite Bell experiment in which Alice and Bob have
M + 1 measurement options x, y ∈ {0, 1, …, M}, each of them with 2
possible results, a, b ∈ {0, 1}. Suppose that Alice and Bob share the
following two-qubit entangled state:

∣ϕ
�
=

1ffiffiffiffiffiffiffiffiffiffiffi
1 + t2

p ðt∣00i � ∣11iÞ, ð22Þ

where t ∈ [0, 1] is the value that maximises

max
0≤ t ≤ 1

t2

1 + t2
1� t2M

1 + t2M + 1

� �2

: ð23Þ

Alice’s and Bob’s measurements are of the form Aajx = jπajxihπajx j and
Bbjy = jσbjyihσbjyj, with

jπ0jxi= cosax j0i+ sinax j1i,8x 2 f0, . . . ,Mg,
jπ1jxi= � sinax j0i+ cosax j1i,8x 2 f0, . . . ,Mg, ð24Þ

and

jσ0jyi= cosbyj0i+ sin byj1i, 8y 2 f0, . . . ,Mg,
jσ1jyi= � sinbyj0i+ cosbyj1i,8y 2 f0, . . . ,Mg, ð25Þ

with

ak =bk = arctan ð�1Þktk + 1=2
h i

8k 2 f0, . . . ,Mg: ð26Þ

These state and measurements produce a correlation with the fol-
lowing properties:

pð0, 0j0,0Þ=0, ð27aÞ

pð0, 1jk, k � 1Þ=0 8k 2 f1, . . . ,Mg, ð27bÞ

pð1, 0jk � 1, kÞ=0 8k 2 f1, . . . ,Mg, ð27cÞ

and correspond to the optimal implementation of the “ladder” version
of Hardy’s proof21,38,40.

Let us define

pM
H : =pð0, 0jM,MÞ: ð28Þ

Result 2 can be formulated as follows: In any δ-OD HVmodel that
satisfies MI, PI and Eq. (27),

pM
H ≤

δq

2
, ð29Þ

where q= M + 1
2 . The proof is provided in the Supplementary Note 5.

Therefore, if δ < 1, it follows that pM
H <

1
2. In contrast, in quantum

theory21,40, as M approaches infinity,

pM
H �!M!1 1

2
: ð30Þ

Consequently, for any HVmodel withMI, PI and δ-OD, with δ < 1, there
is M such that quantum theory predicts a value for pM

H that cannot be
simulated. In addition, it can be proven (see Supplementary Note 6)
that the set of correlations produced by HV with MI, PI and complete
OD is the set of nonsignaling correlations.

The above proof is based on the assumption that Eq. (27) hold. In
an actual experiment, instead of the zeros Eq. (27), we will obtain small
values. Once we have them, we can derive an optimal Bell-like
inequality that will allows us to discard any HV model with δ-OD for
some δ < 1.

Discussion
The results presented have consequences both for foundations and
applications in quantum information processing, communication and
computation. For foundations, our results bring us closer to the
solution of a problem proposed by Shimony11[pp. 96, 124, 149]34[p. 66]
and which can be formulated as follows: “One of these three premises
[MI, PI and OI] must be false and it is important to locate the false
one”11[p. 96]. If we assume that only one is false (and that it is the same
one for all non-local quantum correlations), then
I. If the assumption that fails is MI, Result 1 shows that, MI has to fail

completely because there are quantum correlations that can only
be explained with complete MD.

II. If the assumption that fails is PI, Result 1 shows that, PI has to fail
completely because the same correlations used in [I] can only be
explained with complete PD.

III. If the assumption that fails is OI, Result 2 shows that OI has to fail
completely because there are quantum correlations that can only
be explained with complete OD.

Each of these solutions to Shimony’s problem requires extra
causal influences which are not needed if HVs do not exist. These extra
causal influences are shown with non-black colours in Fig. 1a–c,
respectively. The causal influences if HVs do not exist are shown
in Fig. 1d.

More generally, our results allow us to experimentally narrow
down the possible explanations of Bell non-locality and the whole
quantum theory, since they allow to experimentally excluding large
subsets of HV models that are not excluded by previous experiments.
Specifically, in principle, any l-MD, (εA, εB)-PD HV model with l > 0,
εA < 1, εB < 1, satisfying OI can be experimentally excluded. Similarly,
any δ-OD HV model with δ < 1 and satisfying MI and PI can be, in
principle, experimentally excluded. Still, the experiments cannot
exclude HV models with complete MD22 or complete PD26,32 or com-
plete OD.

Result 1 extends the observation in36 that there are quantum
correlations that cannot be obtained from an l-MD HV model that
satisfies OI and PI, for all values of l > 0. In36, the difference between
quantum theory and the models with OI, PI and arbitrarily small MI is
so small that any relaxation of PImakes the difference to vanish. In this
respect, Result 1 makes testable the impossibility of HV models with
partial MD and PD.
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Result 2 is related to the observation in31 that there are quantum
correlations that cannot be simulated with the assumptions of causal
models (CM), MI, causal parameter independence (CPI) and the com-
plete relaxation of causal outcome independence (COI). This observa-
tion is not made in the framework of the four assumptions of Bell’s
theorem (HV, MI, PI, OI) but in the framework of causal models41. In
general, neither HV and CM, nor PI and CPI, nor OI and COI, are
equivalent.

In addition, Results 1 and 2 confirm that there is some inter-
changeability between MD and (PD+OD)42,43. However, our results go
beyond that as they show that epsilon of each of MD and (PD+OD) is
not enough: complete MD or complete PD or complete OD is needed.

One reason why it is important to exclude HVmodels with partial
(but not complete) MD is that these models have been proposed to
explain quantum correlations12,14–21. In addition, partial MD or, more
precisely partial human’s free will, has been proposed in philosophy to
resolve the conflict between the concept of an omniscient God and
God’s commandment not to commit sin44.

One reason why it is important to exclude HVmodels with partial
(but not complete) actions at a distance is that thesemodels have been
proposed to explain quantumcorrelations27–32. A second reason, which
also applies to HVmodels with partial MD, is that excluding larger sets

of HVmodels facilitates the discussion of the remainingmodels and, in
particular, the discussion of the thermodynamics of the HV models45

that could not be discarded.
Our results are also of practical interest in quantum informa-

tion processing, quantum communication and quantum computa-
tion. In the first place, for a general reason: the results show that
quantum correlations do not only offer advantage with respect to
local correlations, but also with respect to correlations assisted by
partial instantaneous actions at a distance or even assuming the
existence of partial constraints to freedom of choice or partial
retrocausal influences. This can make a big difference in quantum
computational advantage. For example, when mapping quantum
non-local correlations into the circuit model, the advantage of
quantum theory with respect to local HV theories translates into a
non-oracular quantum advantage46,47. Our results show that there is
also advantage with respect to non-local correlations with partial
MD, PD and OD. This may translate into new forms of quantum
computational advantage.

Another reason why our results are of practical interest is device-
independent (DI) quantum information processing48,49. DI protocols
for random number generation50, quantum key distribution48, state
tomography51 and self-testing of quantum devices52 achieve advantage

Fig. 1 | Space-time diagrams of the causal influences needed, in every round of
the Bell-like test, for each of the possible solutions to Shimony’s problem in
light of our results. In all diagrams, black arrows represent causal influences
common to all possibilities. a Complete measurement dependence. It can occur in,
essentially, two ways. The first is with complete superdeterminism without retro-
causality. In this case, Alice and Bob do not have freedom of choice to choose the
measurement settings, X and Y, respectively. Instead, the settings are determined
by the distribution of the HVs in the past light cones of X and Y, represented by the
lower node Λ. The causal influences between the lower Λ and X and Y are repre-
sented by violet continuous arrows. The secondwaycompleteMDcan occur is with
complete retrocausality with freedom of choice. In this case, Alice and Bob have
freedom to choose the “nominal” measurement settings X and Y, but the actual
measurements are determined by the distribution of the HVs in the future light

cones of X and Y, represented by the upper node Λ. The causal influences between
the upper Λ and X and Y are represented by violet dashed arrows. b Complete
parameter dependence. X is decided by Alice and Y is decided by Bob. However, X
does not only influence Alice’s measurement outcome, represented by A, but also
Bob’s measurement outcome, represented by B, which is outside the light cone of
X. This superluminal influence (or “action at a distance'') is represented by a red
arrow. Similarly, Y does not only influence B, but also A. c Complete outcome
dependence. X is decided by Alice and Y is decided by Bob. However, A and B are
causally connected despite they are space-like separated. These superluminal
influences are represented by blue arrows. d No hidden variables. X is decided
freely by Alice and Y is decided freely by Bob. A is causally connected only to the
quantum state, represented byΨ, and X. Similarly, B is causally connected only to
Ψ and Y.
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allowing users to monitor the performance of their devices irrespec-
tive of noise, imperfections, and lack of knowledge regarding the inner
workings - the users simply treat their devices as black boxes with
classical inputs and outputs. An obstacle for practical DI protocols is
the experimentally challenging requirement of a Bell test with: (I)
quantum devices being isolated from each other, (II) with the inputs
being chosen with uniform randomness and (III) with the detection
loophole53 closed. Experiments in different platforms54–56 allow for Bell
tests with the detection loophole closed and high DI randomness
generation rates. However, in these platforms, the quantum systems
are very close, primarily to drive high entanglement generation rates
via non-negligible coupling. The problem is that, precisely because the
systems are close to one another, they can no longer be regarded as
isolated in the sense needed for a Bell test. Sophisticated theoretical
techniques have been devised to handle the issues of cross-talk and
weak seeds separately. A Bell-like test allowing for arbitrary relaxation
of MI and PI provides a simple and elegant solution to the problem of
leakage of input information. A Bell-like test allowing for simultaneous
relaxation of MI, PI and OI would allow DI randomness generation
tolerating weak seeds and cross-talk. We hope that our results will
stimulate research in these directions.

Data availability
No data sets were generated or analysed during the current study.
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