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The Holocene East Asian summer monsoon (EASM) evolution has been extensively investigated, yet proxy re-
cords show inconsistent variations during the Bronze Age, and spatial patterns of hydroclimatic conditions
remain controversial, limiting our understanding of monsoonal behavior and its potential association with
culture development. Here we present multiple biomarker records from the northern coast of the South China
Sea, which document the strength of monsoon-induced upwelling/mixing effect, to infer Holocene EASM vari-
ability. Our multiple biomarker records consistently indicate enhanced EASM circulation during ~6000-9000 cal
a BP and ~3300-4500 cal a BP, superimposed on the long-term weakening trend. The enhanced EASM circu-

lation during the Early to Middle Bronze Age challenges the presumed cool/dry climate background and lends
support to a tripole pattern of hydroclimatic variability over East China during this period.

1. Introduction

Investigating Holocene East Asian summer monsoon (EASM) vari-
ability and hydroclimatic changes in monsoonal region offers crucial
insights into our understanding of monsoon dynamics and future climate
projections. Direct or indirect EASM records inferred from various ar-
chives and proxies generally suggest a long-term Holocene EASM
weakening trend (An et al., 2000; Liu et al., 2015; Wang et al., 2005), yet
millennial-scale EASM variability and precipitation/hydrological
changes over monsoonal regions of East Asia remain controversial (Liu
et al., 2015; Zhou et al., 2016). In China and surrounding regions, the
Bronze Age (—4000-2200 cal a BP) is characterized by the foundation of
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the first Chinese dynasty, enhanced cultural exchange between western
and eastern Eurasia, and year-round human settlement on the
high-altitude northeastern Tibetan Plateau (Chen et al., 2015; Sun et al.,
2019; Zhang et al., 2021a). However, several hydrological records from
Central East China indicate particularly dry conditions during the Early
to Middle Bronze Age (Huang et al., 2018; Xie et al., 2013; Zhang et al.,
2021a), while high lake-level/wet conditions and thus increased
monsoonal precipitation during this period have been widely docu-
mented in lacustrine records from marginal monsoon regions of North-
ern China (Jiang et al., 2022, 2024; Liu et al., 2015; Zhou et al., 2016).
Moreover, stalagmite oxygen isotopic records from East Asia (Dykoski
et al., 2005; Wang et al., 2005; Yang et al., 2019), interpreted as EASM
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strength or source water isotopic signal indicators (Dykoski et al., 2005;
Zhang et al., 2018), exhibit inconsistent variations during the Bronze
Age (Cai et al., 2021; Dykoski et al., 2005; Wang et al., 2005; Zhang
etal., 2021a). Hence, the climate background during the Bronze Age and
its association with cultural development have been much disputed (Xie
etal., 2013; Yuetal., 2020; Zhang et al., 2021a). The presumed cool/dry
conditions in East Asia during the Bronze Age (Chen et al., 2015; Sun
et al., 2019) seem to follow the conventionally recognized climatic
conditions of the “4.2 ka event” (deMenocal, 2001; Railsback et al.,
2018), a well-studied abrupt climatic event at ~4200 cal a BP that lasted
for ~200 years (deMenocal, 2001; Railsback et al., 2018). However,
recent studies propose that climatic expressions of the “4.2 ka event”
appear to be regionally diverse (Lin et al., 2022; Railsback et al., 2018)
and may not be as remarkable as generally assumed (Mckay et al.,
2024).

The spatial patterns of hydroclimatic conditions in East Asia across
different climatic periods have been extensively studied (Cao et al.,
2024; Chiang et al., 2017; Jiang et al., 2021; Liu et al., 2014; Xu et al.,
2024; Zhang et al., 2018). The meridional tripole pattern of monsoonal
precipitation, suggesting wet conditions over Northeastern and South-
eastern China corresponding to dry conditions over Central East China at
interannual timescale, has been proposed (Chiang et al., 2017), and
recent studies also suggest a tripole pattern of monsoonal precipitation
in East Asia during the Last Glacial Termination (Zhang et al., 2018) and
over the last millennium (Jiang et al., 2021; Xu et al., 2024). However,
model simulations and pollen records show a north-south dipole pattern
of Holocene precipitation/hydroclimatic changes in East Asia (Li et al.,
2024; Liu et al., 2014; Xu et al., 2024). The spatial patterns of hydro-
climatic conditions over this region during the Bronze Age remain
poorly examined, largely due to limited records from Southeastern
China and uncertainties in hydrological records from such a humid re-
gion. Biomarker records from the Chinese Marginal Seas provide critical
insights into EASM variations (Jiang et al., 2025; Lee et al., 2019; Wang
et al., 2021), which are particularly valuable for filling spatial gaps in
monsoonal records from Southeastern China and clarifying EASM vari-
ability during the Bronze Age, with important implication in decipher-
ing spatial pattern of hydroclimatic conditions in East Asia and
understanding its influences on human-environment interactions.

Here we present high-resolution Holocene alkenone and glycerol
dialkyl glycerol tetraether (GDGT) records from core HKGS-A
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(22°09'09"N, 114°26/55"E) that can be linked to the strength of coastal
upwelling/mixing at the northern coast of the South China Sea (SCS)
(Figs. 1 and 2, S1, Supplementary Data). Sea surface temperature (SST)
in certain upwelling regions along the northern continental margin of
the SCS is noticeably influenced by cooling effects associated with
monsoon-induced coastal upwelling (Fig. 1). Previous studies (Lee et al.,
2019; Wang et al., 2021) have suggested that when SST changes in
upwelling regions are inconsistent with global/open ocean SST, SST and
vertical thermal gradient can largely document the strength of
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Fig. 2. Holocene biomarker records from core HKGS-A. (A) Ug;-SST, (B)
TEXge-based subsurface temperature, (C) vertical thermal gradient
(U§7—TEX36). Blue bars highlight the time intervals with strengthened summer
upwelling at the northern coast of the SCS and thus enhanced EASM strength.

July SST (°C)

Fig. 1. Site location map. Locations of core HKGS-A (pink star) and other records discussed in the main text (green dots). Site 1: Qionghai, 2: YJ, 3: MD06-3040, 4:
Huguangyan Maar Lake, 5: Dahu Swamp, 6: Shiwangutian Peatland, 7: Daping Swamp, 8: Dapingtang Swamp, 9: Dongge Cave, 10: Jiulong Cave, 11: Shennong Cave,
12: Heshang Cave, 13: Dajiuhu Peatland, 14: Lake Qinghai, 15: Lake Moon, 16: Lake Yihesariwusu, 17: Sahiya Cave, 18: Tham Doun Mai Cave, 19: Thien Duong Cave.
Sites 20-30 listed in Table S1. Basemap shows July mean SST for 1955-2017 AD from World Ocean Atlas (2018) (Locarnini et al., 2018). The inset shows
high-resolution July mean SST for 1985-2006 AD from the AVHRR data set (Casey et al., 2013), which indicates our site located at summer-upwelling region at the

northern coast of the SCS.



J. Jiang et al.

monsoon-induced upwelling/mixing effect and thus EASM variability.
Our multiple biomarker records documenting Holocene EASM vari-
ability, together with existing terrestrial and marine records, enable the
assessment of EASM behavior and spatial patterns of hydroclimatic
variability over East Asia during the Bronze Age.

2. Materials and methods
2.1. Materials and chronology

A 60.2-m-long gravity core HKGS-A (22°09'09"N, 114°26/'55"E) was
retrieved from the southeastern waters off Hong Kong at ~30 m water
depth through a Hong Kong Geological Survey Project (Fig. 1). This site
displays prominent seasonal variations in sea surface salinity (SSS,
~29.5 psp in June-July-August, JJA, and ~32.5 psp in December-
January-February, DJF, Lee et al., 2019; Zweng et al., 2019) and SST
(~27.5 °C in JJA and ~18.5 °C in DJF, Casey et al., 2013; Lee et al.,
2019). Summer SSS variations at this site are influenced by the Pearl
River discharge, while freshwater discharge does not show evident
impact on SST changes (Lee et al., 2019). Summer SST along the
northern SCS coasts reveal that our site experiences noticeable cooling
effects of ~1 °C, which is linked to the monsoon-induced upwelling
(Fig. 1, Lee et al., 2019; Zweng et al., 2019). Lithological (Fig. S1A, Fyfe
et al., 1999) and seismic profiles suggest that the upper ~15 m of this
core is composed of continuously deposited soft sediments containing
bioturbation and shells, roughly covering the Holocene (Davis, 1999;
Fyfe et al., 1999). The U§7 -SST record from the upper ~3 m of this core,
which presents high-resolution monsoon-induced upwelling variations
in the northern SCS coast over the last two millennia, has been reported
previously (Lee et al., 2019).

The chronology of the upper ~15 m of core HKGS-A was established
using twelve 1C dates, including seven reported previously (Lee et al.,
2019) and five additional dates (Fig. S1B, Supplementary Data). We
prepared samples of complete shells (or their fragments) for '*C dating
at Beta Analytic Inc., USA. These age control points were then operated
within the R script-based BACON software (Blaauw and Christen, 2011)
through default parameters. The software incorporated the Marine20
calibration curve, incorporating a 50-year correction for regional
reservoir age based on the nearest sites in the Marine20 database
(Heaton et al., 2020). The core chronology suggests an age of ~12,300
cal a BP at the depth of ~15 m (Fig. S1B, Supplementary Data).

The upper ~15 m of core HKGS-A was sampled at intervals of ~2-10
cm for biomarker analysis. Based on the core chronology (Fig. S1B,
Supplementary Data), this sampling approach that yielded ~450 sam-
ples, provides a high temporal resolution of ~10-50 years throughout
the Holocene. The alkenone results for the upper ~3 m have been re-
ported by Lee et al. (2019), and here we analyzed alkenones in the
remaining samples and GDGTs in all samples.

2.2. Biomarker analysis

Freeze-dried samples were extracted ultrasonically (3 x 30 min) with
solvent of dichloromethane: methanol (9:1, v/v, 15 ml each time). The
total lipids were dried under N3 and saponified with 6 % KOH in MeOH
for at least 12 h at room temperature. Subsequently, 1.5 ml of NaCl in
water (5 %, w/w) was added, and the neutral solution was extracted
with 4 ml n-hexane. The neutral solution was then separated into three
fractions with silica gel column chromatography using 4 ml n-hexane, 4
ml dichloromethane, and 4 ml methanol, respectively, while the
dichloromethane fraction contains alkenones and the methanol fraction
contains GDGTs.

The alkenone fraction was analyzed on an Agilent 7890 Gas Chro-
matography (Agilent DB-1 column: 60 m x 250 pm x 0.10 pm film
thickness) with Flame Ionization Detection (FID) at The University of
Hong Kong, using n-Cse n-alkane as internal standard for quantification.
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Each sample was injected in a splitless mode, with H as carrier gas. The
oven temperature program for alkenone analysis was: 60 °C (1 min) to
270 °C at 13 °C/min, and then to 310 °C at 3 °C/min (held 30 min). The
laboratory standards were repeatedly analyzed to assess the analytical
precision. The U§7 index was calculated according to the equation by
Prahl et al. (1988) and converted to SST values based on the SCS
regional calibration (Pelejero and Grimalt, 1997):

U§7 = Cy72 / (Ca72 + Ca7:3) 6h)
SST = (U§, -0.092) / 0.031 @

where Cs7.0 and Csy.3 are concentrations of di- and tri-unsaturated Cs;
alkenones, respectively. Different alkenone -calibration equations
(Tierney and Tingley, 2018; Pelejero and Grimalt, 1997) would yield the
same pattern of SST changes, which is also true for the TEXg¢ proxy
(Schouten et al., 2002). Analytical uncertainties in our lab were typically
less than 0.005 unit for U, (equivalent to ~0.2 °C for SST estimate) and
5 % for the C3zy concentration.

The GDGTs fraction was analyzed on a Shimadzu LC-MS 8030 high-
performance liquid chromatography with atmospheric pressure chemi-
cal ionization-mass spectrometry in Xi’an at the Institute of Earth
Environment, Chinese Academy of Sciences. Briefly, the methanol
fraction was dried under Ny, re-dissolved in n-hexane/isopropanol
(99:1; v/v) and filtered through a 0.22 pm polytetrafluoroethylene filter
after adding a known amount of C4¢ internal standard. Separation of
GDGTs was achieved with an Inertsil CN-3 column (250 mm x 4.6 mm,
3 pm; GL Sciences Inc.) at 40 °C using n-hexane/isopropanol (9:1, v/v)
and n-hexane as elutes for pump A and pump B, respectively. Mass
spectrometry scanning was performed in selected ion monitoring mode
that targeted specific [M + H]™ ions (isoprenoid GDGTs: caldarchaeol/
GDGT-0, 1302.3; GDGT-1, 1300.3; GDGT-2, 1298.3; GDGT-3, 1296.3;
cren, 1292.3; crenarchaeol (cren’), 1292.3). The TEXgg (tetraether index
of 86 carbon atoms, Schouten et al., 2002) and TEXge-based temperature
(Kim et al., 2010) are calculated as follows:

TEXgg = (GDGT-2 + GDGT-3 + cren’) / (GDGT-1 + GDGT-2 + GDGT-3
+ cren’) 3

SST = 68.4 x log(TEXge) + 38.6 )

Analytical uncertainties for our laboratory standards are typically
less than 0.01 unit for TEXge. The breaks of TEXgg-based temperature
record at the top ~0.6 m and ~2.6-3.0 m depth (Fig. 2B, Supplementary
Data), due to missing GDGT fractions, roughly corresponding to the past
~700 years and the time interval of ~1500-2000 cal a BP, respectively,
do not affect the overall variation pattern of the record.

3. Results

The U‘;}-SST record does not appear to show discernible long-term
trend over the investigated period, with low values occurring at the
time intervals of ~6000-9000 cal a BP, ~3300-4500 cal a BP,
~1500-2000 cal a BP, and ~600-1100 cal a BP (Fig. 2A). The TEXgg-
based temperature record displays a long-term Holocene cooling trend,
with relatively high values observed at low U§7-SST intervals (Fig. 2A
and B). Two samples show anomalously low TEXge (Supplementary
Data), indicating substantial non-Thaumarchaeota contribution in ma-
rine settings (Wang et al., 2023a) that could confound the TEXgg-tem-
perature estimation, and therefore, were excluded from TEXgg-based
temperature record (Fig. 2B). The difference between U§7 and TEXgg--

based temperatures (U§77 TEXge) show relatively low values during
6000-9000 cal a BP and ~3300-4500 cal a BP (Fig. 2C), superimposed
on a long-term increasing trend. The two intervals, with lower UX,-SST
values at the site, generally correspond to the Holocene Climatic Opti-
mum and the Early to Middle Bronze Age, respectively. Alkenone Cs;
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content shows an increasing trend during the early to mid-Holocene,
with high values occurring at the time interval of ~3000-4500 cal a
BP (Supplementary Data).

4. Discussion
4.1. Proxy interpretation

The UE,-SST signal intrinsically records both winter and summer
imprints, with interpretation of this index depending on the specific
oceanographic settings (Kong et al., 2014, 2015; Lee et al., 2019; Wang
et al., 2021; Zhang et al., 2019, 2021b). The U§;-SST value for core-top
sample in HKGS-A is higher than modern annual mean SST but close to
summer SST (Supplementary Data, Casey et al., 2013; Lee et al., 2019).
This is consistent with surface sediment calibration from the coastal
regions of the Chinese Marginal Seas (Wang et al., 2023b) and existing
cores from the northern SCS coast (Kong et al., 2015), which seems to be
associated with high-nutrient conditions (Wang et al., 2023b). The
UK -SST record from core HKGS-A does not display a discernible
long-term trend during the Holocene (Fig. 2A), and is inconsistent with
existing UX,-SST records from the northern SCS interpreted as winter
imprints (Kong et al., 2014; Zhang et al., 2019) and synthesized tropical
SST record (Marcott et al., 2013). Previously reported U§;-SST records
from upwelling regions of the northern SCS coast are also incon-
sistent/inverse with global/tropical SST variations (Kong et al., 2015;
Lee et al., 2019; Wang et al., 2021). This cannot be explained by the
winter imprint, as cooler winters generally occur under cooler climatic
conditions. Cooling induced by summer coastal upwelling appears to be
the (only) plausible explanation for our SST signal, which must have
substantially altered the global temperature background and winter
imprint (Lee et al., 2019; Wang et al., 2021). Therefore, decreased local
SST effectively reflects enhanced summer upwelling at the northern SCS
coast that could be linked to enhanced EASM strength.

Recent studies suggest that TEXge values tend to represent temper-
ature of subsurface water rather than surface water over the western
Pacific marginal sea (Xing et al., 2015) and the northern coast of the SCS
(Wang et al., 2021; Zhang et al., 2021c). Considering the inverse vari-
ations between paired TEXge-based temperature and onsite U,-SST
(Fig. 2A and B), we here also interpret the TEXgg thermometer as an
indicator of integrated water column temperature biased toward sub-
surface (Wang et al., 2021; Zhang et al., 2021c). Hence, U§77 TEXge
could largely represent the vertical thermal gradient without the impact
of chronological uncertainty. The Ug;f TEXge record displays a
long-term increasing trend with low values occurring at the SST cooling
intervals (Fig. 2A-C), indicating enhanced upwelling substantially alters
the original SST signal and thus reduced vertical thermal gradient.

The inconsistency between US,-SST and tropical/open ocean SST,

together with reversed UX,-SST and onsite TEXgg-based temperature
variations, strongly suggest the monsoon-induced upwelling effects at
our site, thereby enabling the inference of Holocene EASM variability.

4.2. Holocene summer upwelling and EASM variability

Decreased UK -SST that contrasts with increased onsite TEXgg-based
subsurface temperature, indicate enhanced summer upwelling in the
northern coast of the SCS and thus strengthened EASM, and vice versa.
The increased vertical thermal gradient towards the late Holocene
(Fig. 2C) suggest a long-term Holocene EASM weakening trend
following the decreased summer insolation (Laskar et al., 2004),
consistent with existing EASM records (Dykoski et al., 2005; Liu et al.,
2015; Wang et al., 2005). Notably, Ug;-SST indicate substantially
enhanced EASM strength during ~6000-9000 cal a BP and
~3300-4500 cal a BP, superimposed on the long-term weakening trend
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(Fig. 2A-C). Enhanced EASM strength during the early Holocene has
been well documented in various terrestrial records (Liu et al., 2015;
Wang et al., 2005), while the EASM behavior during ~3300-4500 cal a
BP is less well addressed. Terrestrial anthropogenic impacts were rela-
tively limited in southeastern China before ~2000-3000 cal a BP (Ma
et al., 2020), with minimum anthropogenic perturbations on coastal
environment. Hence, high alkenone Csz; content during ~3300-4500 cal
a BP (Supplementary Data) might be associated with more
upwelling-induced subsurface nutrients (Lee et al., 2019; Wang et al.,
2021), again indicating enhanced EASM strength. Notably, §'0 records
from South Asia show relatively negative values, also indicating
enhanced monsoon circulation, during ~3300-4500 cal a BP (Fig. 3C,
Gupta et al., 2024; Kathayat et al., 2017), while several Chinese sta-
lagmite 5'80 records do not suggest particularly enhanced EASM during
this period (Fig. 3D-Wang et al., 2005; Yang et al., 2019). The weak
expression of substantially enhanced EASM strength in Chinese stalag-
mite 8'80 records during this period remains enigmatic.

4.3. Enhanced EASM during the early to middle Bronze age

Holocene millennial-scale climatic fluctuations are suggested to be
linked to solar activities (Bond et al., 2001; Wang et al., 2005). No
particular changes in greenhouse gas and volcanic forcings were
observed during ~3300-4500 cal a BP, while solar activity remained
high (Fig. 3A, Steinhilber et al., 2012). Substantially enhanced EASM
strength during ~3300-4500 cal a BP, corresponds to the Early to
Middle Bronze Age, could be inferred from SST gradient variations and
other marine records from the Chinese marginal seas (Fig. 4C-E). The
U§7 -SST gradient between HKGS-A and YJ, a site located at the northern
coast of the SCS but experienced limited upwelling effects (Fig. 1, Zhang
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Fig. 3. Holocene climatic records and forcings. (A) Total solar irradiance (TSI,
Steinhilber et al., 2012), (B) U§'77TEX86 (purple line, this study) and mean July
insolation at 20°N (orange line, Laskar et al., 2004), (C) 5'%0 record from
Sahiya and Mahadev Cave (dark and light blue line, respectively, Gupta et al.,
2024; Kathayat et al., 2017), (D) 580 record from Dongge Cave (grey line,
Wang et al., 2005) and synthesized speleothem §'®0 record from monsoonal
China (blue line, Yang et al., 2019). Blue bars highlight the time intervals with
strengthened summer upwelling at the northern coast of the SCS and thus
enhanced EASM strength.
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Pollen-based mean annual precipitation (MAP) record from Shiwangutian
peatland (Zhao et al., 2024), (G) Fagus percentage records from Daping Swamp
and Dapingtang Peatland (green and brown line, respectively, Li et al., 2019;
Zhong et al., 2015), (H) pollen-based synthesis of mean annual precipitation in
South China (Li et al., 2024). Blue bars highlight the time intervals with
strengthened summer upwelling at the northern coast of the SCS and thus
enhanced EASM strength.

et al., 2019), could effectively reflect the monsoon-induced upwelling
variability while eliminating the influence of environmental tempera-
ture background (Fig. 4C). Relatively low SST gradient during SST col-
ling intervals at HKGS-A (Fig. 4A-C) suggests a substantial upwelling
control on SST at HKGS-A that exceeds the environmental temperature
changes. The overall increase in SST gradient since ~3000 cal a BP re-
verses the SST cooling trend (Fig. 4A-C), largely reflecting upwelling
changes within the late Holocene cooling context and highlighting the
substantially enhanced EASM strength during the Early to Middle
Bronze Age. Additionally, coral-based SST records from Qionghai, also
located at an upwelling region of the northern SCS coast (Fig. 1), show
relatively low SST during ~3500-4000 cal a BP (Fig. 4D-Chen et al.,
2023) and thus enhanced EASM strength. The UX,-SST record from the
upwelling region of the East China Sea coast (Fig. 1) displays low values
during ~3500-4500 cal a BP (Fig. 4E-Kajita et al., 2018), while such
cooling signals have not been observed in open oceans (Zhang et al.,
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2021b). This indicates enhanced upwelling in the East China Sea coast
was also linked to enhanced EASM strength during the Early to Middle
Bronze Age.

Modern observations, proxy reconstructions, and model simulations
collectively suggest that precipitation changes in Northeastern and
Southeastern China appear to be positively linked to EASM strength
(Chiang et al., 2017; Ding et al., 2008; Liu et al., 2014). Here we sum-
marize terrestrial precipitation/hydrological records from these regions
to infer EASM behavior during the Early to Middle Bronze Age (Figs. 4
and 5A-F). Alkenone %Csy.4 and pollen records from marginal monsoon
regions of Northern China (Fig. 5A-C, Jiang et al., 2022; Jiang et al.,
2024; Wu et al., 2019) suggest high lake-level/wet conditions during the
Early to Middle Bronze Age. Moreover, an increased frequency of Yellow
River flooding during the Early to Middle Bronze Age has been reported
(Yu et al., 2020), indicating excessive precipitation and overall wet
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Fig. 5. EASM records from core HKGS-A and terrestrial hydrological records
from East Asia. (A) Alkenone %Csy.4 record from Lake Yihesariwusu (Jiang
et al., 2024), (B) tree pollen percentage record from Lake Moon (Wu et al.,
2019), (C) alkenone %Csy.4 records from Lake Qinghai (Jiang et al., 2022), (D)
813C0rg record from Dahu Swamp and n-alkane 8'3Cg31.99 record from
Huguangyan Maar Lake (green and brown line, respectively, Jia et al., 2015;
Zhong et al., 2010), (E) U§;—SST from core HKGS-A (this study), (F) U§'77TEX36
from core HKGS-A (purple line, this study), and mean July insolation at 20°N
(orange line, Laskar et al., 2004), (G) environmental magnetism parameter
ARM/SIRM record from Heshang Cave and mass accumulation rate of aerobic
hopanoids in Dajiuhu peatland (brown and green line, respectively, Xie et al.,
2013), (H) normalized speleothem 8'3C records from Shennong and Jiulong
caves (Zhang et al., 2021a). Blue bars highlight the time intervals with
strengthened summer upwelling at the northern coast of the SCS and thus
enhanced EASM strength.
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conditions. Meanwhile, carbon isotopic records from Southeastern
China (Fig. 5D-Jia et al., 2015; Zhong et al., 2010) indicate wet con-
ditions during the Early to Middle Bronze Age and long-term Holocene
drying trends. Several pollen records from this region also suggest wet
conditions during the Early to Middle Bronze Age (Fig. 4F-H, Li et al.,
2024; Li et al., 2019; Zhao et al., 2024; Zhong et al., 2015). Hence,
terrestrial hydrological records from Northeastern and Southeastern
China strongly support substantially enhanced EASM strength during
the Early to Middle Bronze Age.

Terrestrial hydrological records from Southeastern China show wet
conditions during ~6000-9000 cal a BP (Fig. 5D-Jia et al., 2015; Zhong
et al., 2010), indicating enhanced EASM strength as inferred from ma-
rine records (Fig. 5A-D). However, hydroclimatic conditions in some
regions of Northern China could have been influenced by the inland
high-pressure system associated with atmospheric changes during the
early to mid-Holocene (Jiang et al., 2024), and the low lake-level/dry
conditions during ~6000-9000 cal a BP (Fig. 5A-C, Jiang et al., 2022;
Jiang et al., 2024; Wu et al., 2019) appear to reflect such atmospheric
control rather than monsoonal precipitation changes.

4.4. Spatial patterns of hydroclimatic variability

Marine and terrestrial records collectively suggest substantially
enhanced EASM strength during the Early to Middle Bronze Age (Figs. 4
and 5A-F). We further summarize terrestrial hydrological records to
infer spatial patterns of hydroclimatic variability over East Asia during
this period (Fig. 6, Table S1). Wet conditions during the Early to Middle
Bronze Age have been widely documented in lacustrine, peat, and
paleosol records from Northeastern and Southeastern China (Fig. 5A-D,
6, Table S1, Cheng et al., 2013; Hong et al., 2005; Jia et al., 2015; Jiang
et al., 2006; Jiang et al., 2022; Jiang et al., 2024; Li et al., 2019; Li and
Liu, 2018; Stebich et al., 2015; Wang et al., 2014; Wu et al., 2019; Xiao
et al., 2004; Zhao et al., 2024; Zhong et al., 2010; Zhong et al., 2015;

45°N

35°N

25°N

100°E 110°E 120°E

Fig. 6. Tripole pattern of hydroclimatic variability over East China during the
Early to Middle Bronze Age. Star represents site HKGS-A from this study, dots
and dashed square represent sites from previous studies. The blue color in-
dicates wet conditions/enhanced ESAM strength during the Early to Middle
Bronze Age, the pink color indicates dry conditions during this period. Records
and references are listed in Table S1, numbers refer to site locations in Fig. 1
and Table S1. Basemap showing tripole pattern of modern interannual vari-
ability of precipitation over East Asia (Zhang et al., 2018. No data available
above 45°N, marked with shading), green and yellow colors indicate wet and
dry conditions, respectively.
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Zhou et al., 2016), while hydrological records inferred from various
proxies and archives in Central East China generally indicate dry con-
ditions (Fig. 5G, H, 6, Table, S1, Huang et al., 2018; Lu et al., 2019; Tan
et al., 2018; Xie et al., 2013; Zhang et al., 2021a; Zhao et al., 2016). The
contrasting hydrological variations in Northeastern/Southeastern China
and Central East China, together with substantially enhanced EASM
strength supported by marine records from the Chinese marginal seas,
during the Early to Middle Bronze Age, support the meridional tripole
pattern of hydroclimatic variability over East China during this period.
The tripole pattern of hydroclimatic variability during the Early to
Middle Bronze Age observed from climatic records (Figs. 5 and 6) is
inconsistent with the simulated millennial-scale hydrological vari-
ability, which tends to show a dipole pattern in East China (Fig. 3 in
Zhang et al., 2018), and the north-south dipole pattern of Holocene
precipitation/hydrological changes suggested by model and pollen re-
sults (Li et al., 2024; Liu et al., 2014). Wet conditions in Southeastern
China and dry conditions in Central East China during ~6000-9000 cal
a BP (Fig. 5G-G, H) are consistent with the contrasting hydroclimatic
changes during the Early to Middle Bronze Age. However, the hydro-
climatic variability over East Asia during ~6000-9000 cal a BP does not
follow the tripole pattern observed during the Early to Middle Bronze
Age, which appears to be associated with atmospheric control on early
to mid-Holocene drought in Northeastern China (Fig. 5A-C).

Previous studies hypothesized that the climate background during
the Early to Middle Bronze Age have been notably influenced by a severe
cool/dry event that occurred at ~4200 cal a BP (Blanco-Gonzalez et al.,
2018; Sun et al., 2019), while recent data integrations suggest that cli-
matic expressions of the “4.2 ka BP event” appear to be regionally
diverse (Lin et al., 2022; Railsback et al., 2018). Substantially enhanced
EASM strength and thus overall wet conditions in Northeastern and
Southeastern China challenge the presumed cool/dry conditions over
East China during the Early to Middle Bronze Age (Chen et al., 2015; Sun
et al.,, 2019). In the context of contrasting hydrological variations in
Northeastern and Central East China, the northeastward migration of
archaeological sites in East China (Hosner et al., 2016), the final demise
of the Neolithic cultures in the lower Yangtze region (Zhang et al.,
2021a), and higher frequency of floods in the middle to lower Yellow
River region (Yu et al., 2020) over the Early to Middle Bronze Age
appear to be corroborated by a plausible climatic explanation.

Controlling mechanisms of the tripole pattern of hydroclimatic
variability in monsoonal East Asia across different timescales are much
disputed (Huang et al., 2023; Jiang et al., 2021; Xu et al., 2024; Zhang
et al., 2018). Wet conditions observed in Northeastern and Southeastern
China and thus increased monsoonal precipitation during the Early to
Middle Bronze Age appear to be associated with enhanced EASM
strength. However, dry conditions in Central East China under an
enhanced EASM background may suggest the dominant control of
Western Pacific Subtropical High (WPSH) or westerlies dynamics on
regional hydrological variability. Recent studies attribute dry conditions
in Central East China over the last millennium primarily to the westward
extension of the WPSH (Xu et al., 2024). Yet, this mechanism does not
adequately reconcile with decreased SST signal observed in the up-
welling region of the East China Sea during the Early to Middle Bronze
Age (Kajita et al., 2018), which indicates enhanced coastal upwelling
mechanistically linked to EASM intensification. Alternatively, the
northward displacement of westerlies, suggested by model simulations
and reconstructions (Chiang et al., 2017; Zhang et al., 2018), may
induce drier conditions in Central East China and thus a tripole pattern
of hydroclimatic variability. Additionally, recent studies reveal excep-
tional warm conditions in northwestern China during the Early to
Middle Bronze Age (Jiang et al., 2022; Xiang et al., 2024). Combined
with our evidence of enhanced EASM strength, further investigation is
needed to clarify the climatic context and interactions between EASM
and westerlies circulation during this period.
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5. Conclusions

In summary, we have presented multiple biomarker records from the
upwelling region of the northern SCS coast, which consistently docu-
ment the strength of summer monsoon-induced upwelling and thus
Holocene EASM variability. Our results show substantially enhanced
EASM strength during ~6000-9000 cal a BP and ~3300-4500 cal a BP,
superimposed on the long-term Holocene EASM weakening trend. The
enhanced EASM strength during the Early to Middle Bronze Age chal-
lenges the presumed cool/dry climate background and offers a crucial
climate context for the cultural developments and human evolution in
East Asia. Our records, together with existing marine and terrestrial
records, support a meridional tripole pattern of hydroclimatic vari-
ability over East Asia during the Early to Middle Bronze Age.
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