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A B S T R A C T

The Holocene East Asian summer monsoon (EASM) evolution has been extensively investigated, yet proxy re
cords show inconsistent variations during the Bronze Age, and spatial patterns of hydroclimatic conditions 
remain controversial, limiting our understanding of monsoonal behavior and its potential association with 
culture development. Here we present multiple biomarker records from the northern coast of the South China 
Sea, which document the strength of monsoon-induced upwelling/mixing effect, to infer Holocene EASM vari
ability. Our multiple biomarker records consistently indicate enhanced EASM circulation during ~6000–9000 cal 
a BP and ~3300–4500 cal a BP, superimposed on the long-term weakening trend. The enhanced EASM circu
lation during the Early to Middle Bronze Age challenges the presumed cool/dry climate background and lends 
support to a tripole pattern of hydroclimatic variability over East China during this period.

1. Introduction

Investigating Holocene East Asian summer monsoon (EASM) vari
ability and hydroclimatic changes in monsoonal region offers crucial 
insights into our understanding of monsoon dynamics and future climate 
projections. Direct or indirect EASM records inferred from various ar
chives and proxies generally suggest a long-term Holocene EASM 
weakening trend (An et al., 2000; Liu et al., 2015; Wang et al., 2005), yet 
millennial-scale EASM variability and precipitation/hydrological 
changes over monsoonal regions of East Asia remain controversial (Liu 
et al., 2015; Zhou et al., 2016). In China and surrounding regions, the 
Bronze Age (~4000-2200 cal a BP) is characterized by the foundation of 

the first Chinese dynasty, enhanced cultural exchange between western 
and eastern Eurasia, and year-round human settlement on the 
high-altitude northeastern Tibetan Plateau (Chen et al., 2015; Sun et al., 
2019; Zhang et al., 2021a). However, several hydrological records from 
Central East China indicate particularly dry conditions during the Early 
to Middle Bronze Age (Huang et al., 2018; Xie et al., 2013; Zhang et al., 
2021a), while high lake-level/wet conditions and thus increased 
monsoonal precipitation during this period have been widely docu
mented in lacustrine records from marginal monsoon regions of North
ern China (Jiang et al., 2022, 2024; Liu et al., 2015; Zhou et al., 2016). 
Moreover, stalagmite oxygen isotopic records from East Asia (Dykoski 
et al., 2005; Wang et al., 2005; Yang et al., 2019), interpreted as EASM 
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strength or source water isotopic signal indicators (Dykoski et al., 2005; 
Zhang et al., 2018), exhibit inconsistent variations during the Bronze 
Age (Cai et al., 2021; Dykoski et al., 2005; Wang et al., 2005; Zhang 
et al., 2021a). Hence, the climate background during the Bronze Age and 
its association with cultural development have been much disputed (Xie 
et al., 2013; Yu et al., 2020; Zhang et al., 2021a). The presumed cool/dry 
conditions in East Asia during the Bronze Age (Chen et al., 2015; Sun 
et al., 2019) seem to follow the conventionally recognized climatic 
conditions of the “4.2 ka event” (deMenocal, 2001; Railsback et al., 
2018), a well-studied abrupt climatic event at ~4200 cal a BP that lasted 
for ~200 years (deMenocal, 2001; Railsback et al., 2018). However, 
recent studies propose that climatic expressions of the “4.2 ka event” 
appear to be regionally diverse (Lin et al., 2022; Railsback et al., 2018) 
and may not be as remarkable as generally assumed (Mckay et al., 
2024).

The spatial patterns of hydroclimatic conditions in East Asia across 
different climatic periods have been extensively studied (Cao et al., 
2024; Chiang et al., 2017; Jiang et al., 2021; Liu et al., 2014; Xu et al., 
2024; Zhang et al., 2018). The meridional tripole pattern of monsoonal 
precipitation, suggesting wet conditions over Northeastern and South
eastern China corresponding to dry conditions over Central East China at 
interannual timescale, has been proposed (Chiang et al., 2017), and 
recent studies also suggest a tripole pattern of monsoonal precipitation 
in East Asia during the Last Glacial Termination (Zhang et al., 2018) and 
over the last millennium (Jiang et al., 2021; Xu et al., 2024). However, 
model simulations and pollen records show a north-south dipole pattern 
of Holocene precipitation/hydroclimatic changes in East Asia (Li et al., 
2024; Liu et al., 2014; Xu et al., 2024). The spatial patterns of hydro
climatic conditions over this region during the Bronze Age remain 
poorly examined, largely due to limited records from Southeastern 
China and uncertainties in hydrological records from such a humid re
gion. Biomarker records from the Chinese Marginal Seas provide critical 
insights into EASM variations (Jiang et al., 2025; Lee et al., 2019; Wang 
et al., 2021), which are particularly valuable for filling spatial gaps in 
monsoonal records from Southeastern China and clarifying EASM vari
ability during the Bronze Age, with important implication in decipher
ing spatial pattern of hydroclimatic conditions in East Asia and 
understanding its influences on human-environment interactions.

Here we present high-resolution Holocene alkenone and glycerol 
dialkyl glycerol tetraether (GDGT) records from core HKGS-A 

(22◦09′09″N, 114◦26′55″E) that can be linked to the strength of coastal 
upwelling/mixing at the northern coast of the South China Sea (SCS) 
(Figs. 1 and 2, S1, Supplementary Data). Sea surface temperature (SST) 
in certain upwelling regions along the northern continental margin of 
the SCS is noticeably influenced by cooling effects associated with 
monsoon-induced coastal upwelling (Fig. 1). Previous studies (Lee et al., 
2019; Wang et al., 2021) have suggested that when SST changes in 
upwelling regions are inconsistent with global/open ocean SST, SST and 
vertical thermal gradient can largely document the strength of 

Fig. 1. Site location map. Locations of core HKGS-A (pink star) and other records discussed in the main text (green dots). Site 1: Qionghai, 2: YJ, 3: MD06-3040, 4: 
Huguangyan Maar Lake, 5: Dahu Swamp, 6: Shiwangutian Peatland, 7: Daping Swamp, 8: Dapingtang Swamp, 9: Dongge Cave, 10: Jiulong Cave, 11: Shennong Cave, 
12: Heshang Cave, 13: Dajiuhu Peatland, 14: Lake Qinghai, 15: Lake Moon, 16: Lake Yihesariwusu, 17: Sahiya Cave, 18: Tham Doun Mai Cave, 19: Thien Duong Cave. 
Sites 20–30 listed in Table S1. Basemap shows July mean SST for 1955–2017 AD from World Ocean Atlas (2018) (Locarnini et al., 2018). The inset shows 
high-resolution July mean SST for 1985–2006 AD from the AVHRR data set (Casey et al., 2013), which indicates our site located at summer-upwelling region at the 
northern coast of the SCS.

Fig. 2. Holocene biomarker records from core HKGS-A. (A) UKʹ
37-SST, (B) 

TEX86-based subsurface temperature, (C) vertical thermal gradient 
(UKʹ

37− TEX86). Blue bars highlight the time intervals with strengthened summer 
upwelling at the northern coast of the SCS and thus enhanced EASM strength.
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monsoon-induced upwelling/mixing effect and thus EASM variability. 
Our multiple biomarker records documenting Holocene EASM vari
ability, together with existing terrestrial and marine records, enable the 
assessment of EASM behavior and spatial patterns of hydroclimatic 
variability over East Asia during the Bronze Age.

2. Materials and methods

2.1. Materials and chronology

A 60.2-m-long gravity core HKGS-A (22◦09′09″N, 114◦26′55″E) was 
retrieved from the southeastern waters off Hong Kong at ~30 m water 
depth through a Hong Kong Geological Survey Project (Fig. 1). This site 
displays prominent seasonal variations in sea surface salinity (SSS, 
~29.5 psμ in June-July-August, JJA, and ~32.5 psμ in December- 
January-February, DJF, Lee et al., 2019; Zweng et al., 2019) and SST 
(~27.5 ◦C in JJA and ~18.5 ◦C in DJF, Casey et al., 2013; Lee et al., 
2019). Summer SSS variations at this site are influenced by the Pearl 
River discharge, while freshwater discharge does not show evident 
impact on SST changes (Lee et al., 2019). Summer SST along the 
northern SCS coasts reveal that our site experiences noticeable cooling 
effects of ~1 ◦C, which is linked to the monsoon-induced upwelling 
(Fig. 1, Lee et al., 2019; Zweng et al., 2019). Lithological (Fig. S1A, Fyfe 
et al., 1999) and seismic profiles suggest that the upper ~15 m of this 
core is composed of continuously deposited soft sediments containing 
bioturbation and shells, roughly covering the Holocene (Davis, 1999; 
Fyfe et al., 1999). The UKʹ

37-SST record from the upper ~3 m of this core, 
which presents high-resolution monsoon-induced upwelling variations 
in the northern SCS coast over the last two millennia, has been reported 
previously (Lee et al., 2019).

The chronology of the upper ~15 m of core HKGS-A was established 
using twelve 14C dates, including seven reported previously (Lee et al., 
2019) and five additional dates (Fig. S1B, Supplementary Data). We 
prepared samples of complete shells (or their fragments) for 14C dating 
at Beta Analytic Inc., USA. These age control points were then operated 
within the R script-based BACON software (Blaauw and Christen, 2011) 
through default parameters. The software incorporated the Marine20 
calibration curve, incorporating a 50-year correction for regional 
reservoir age based on the nearest sites in the Marine20 database 
(Heaton et al., 2020). The core chronology suggests an age of ~12,300 
cal a BP at the depth of ~15 m (Fig. S1B, Supplementary Data).

The upper ~15 m of core HKGS-A was sampled at intervals of ~2–10 
cm for biomarker analysis. Based on the core chronology (Fig. S1B, 
Supplementary Data), this sampling approach that yielded ~450 sam
ples, provides a high temporal resolution of ~10–50 years throughout 
the Holocene. The alkenone results for the upper ~3 m have been re
ported by Lee et al. (2019), and here we analyzed alkenones in the 
remaining samples and GDGTs in all samples.

2.2. Biomarker analysis

Freeze-dried samples were extracted ultrasonically (3 × 30 min) with 
solvent of dichloromethane: methanol (9:1, v/v, 15 ml each time). The 
total lipids were dried under N2 and saponified with 6 % KOH in MeOH 
for at least 12 h at room temperature. Subsequently, 1.5 ml of NaCl in 
water (5 %, w/w) was added, and the neutral solution was extracted 
with 4 ml n-hexane. The neutral solution was then separated into three 
fractions with silica gel column chromatography using 4 ml n-hexane, 4 
ml dichloromethane, and 4 ml methanol, respectively, while the 
dichloromethane fraction contains alkenones and the methanol fraction 
contains GDGTs.

The alkenone fraction was analyzed on an Agilent 7890 Gas Chro
matography (Agilent DB-1 column: 60 m × 250 μm × 0.10 μm film 
thickness) with Flame Ionization Detection (FID) at The University of 
Hong Kong, using n-C36 n-alkane as internal standard for quantification. 

Each sample was injected in a splitless mode, with H2 as carrier gas. The 
oven temperature program for alkenone analysis was: 60 ◦C (1 min) to 
270 ◦C at 13 ◦C/min, and then to 310 ◦C at 3 ◦C/min (held 30 min). The 
laboratory standards were repeatedly analyzed to assess the analytical 
precision. The UKʹ

37 index was calculated according to the equation by 
Prahl et al. (1988) and converted to SST values based on the SCS 
regional calibration (Pelejero and Grimalt, 1997): 

UK’

37 = C37:2
/
(C37:2 + C37:3) (1) 

SST=
(
UKʹ

37 – 0.092
) /

0.031 (2) 

where C37:2 and C37:3 are concentrations of di- and tri-unsaturated C37 
alkenones, respectively. Different alkenone calibration equations 
(Tierney and Tingley, 2018; Pelejero and Grimalt, 1997) would yield the 
same pattern of SST changes, which is also true for the TEX86 proxy 
(Schouten et al., 2002). Analytical uncertainties in our lab were typically 
less than 0.005 unit for UKʹ

37 (equivalent to ~0.2 ◦C for SST estimate) and 
5 % for the C37 concentration.

The GDGTs fraction was analyzed on a Shimadzu LC-MS 8030 high- 
performance liquid chromatography with atmospheric pressure chemi
cal ionization–mass spectrometry in Xi’an at the Institute of Earth 
Environment, Chinese Academy of Sciences. Briefly, the methanol 
fraction was dried under N2, re-dissolved in n-hexane/isopropanol 
(99:1; v/v) and filtered through a 0.22 μm polytetrafluoroethylene filter 
after adding a known amount of C46 internal standard. Separation of 
GDGTs was achieved with an Inertsil CN-3 column (250 mm × 4.6 mm, 
3 μm; GL Sciences Inc.) at 40 ◦C using n-hexane/isopropanol (9:1, v/v) 
and n-hexane as elutes for pump A and pump B, respectively. Mass 
spectrometry scanning was performed in selected ion monitoring mode 
that targeted specific [M + H]+ ions (isoprenoid GDGTs: caldarchaeol/ 
GDGT-0, 1302.3; GDGT-1, 1300.3; GDGT-2, 1298.3; GDGT-3, 1296.3; 
cren, 1292.3; crenarchaeol′ (cren′), 1292.3). The TEX86 (tetraether index 
of 86 carbon atoms, Schouten et al., 2002) and TEX86-based temperature 
(Kim et al., 2010) are calculated as follows: 

TEX86 = (GDGT-2 + GDGT-3 + cren’) / (GDGT-1 + GDGT-2 + GDGT-3 
+ cren’)                                                                                        (3)

SST = 68.4 × log(TEX86) + 38.6                                                    (4)

Analytical uncertainties for our laboratory standards are typically 
less than 0.01 unit for TEX86. The breaks of TEX86-based temperature 
record at the top ~0.6 m and ~2.6–3.0 m depth (Fig. 2B, Supplementary 
Data), due to missing GDGT fractions, roughly corresponding to the past 
~700 years and the time interval of ~1500–2000 cal a BP, respectively, 
do not affect the overall variation pattern of the record.

3. Results

The UKʹ
37-SST record does not appear to show discernible long-term 

trend over the investigated period, with low values occurring at the 
time intervals of ~6000–9000 cal a BP, ~3300–4500 cal a BP, 
~1500–2000 cal a BP, and ~600–1100 cal a BP (Fig. 2A). The TEX86- 
based temperature record displays a long-term Holocene cooling trend, 
with relatively high values observed at low UKʹ

37-SST intervals (Fig. 2A 
and B). Two samples show anomalously low TEX86 (Supplementary 
Data), indicating substantial non-Thaumarchaeota contribution in ma
rine settings (Wang et al., 2023a) that could confound the TEX86-tem
perature estimation, and therefore, were excluded from TEX86-based 
temperature record (Fig. 2B). The difference between UKʹ

37- and TEX86-
based temperatures (UKʹ

37− TEX86) show relatively low values during 
6000–9000 cal a BP and ~3300–4500 cal a BP (Fig. 2C), superimposed 
on a long-term increasing trend. The two intervals, with lower UKʹ

37-SST 
values at the site, generally correspond to the Holocene Climatic Opti
mum and the Early to Middle Bronze Age, respectively. Alkenone C37 
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content shows an increasing trend during the early to mid-Holocene, 
with high values occurring at the time interval of ~3000–4500 cal a 
BP (Supplementary Data).

4. Discussion

4.1. Proxy interpretation

The UKʹ
37-SST signal intrinsically records both winter and summer 

imprints, with interpretation of this index depending on the specific 
oceanographic settings (Kong et al., 2014, 2015; Lee et al., 2019; Wang 
et al., 2021; Zhang et al., 2019, 2021b). The UKʹ

37-SST value for core-top 
sample in HKGS-A is higher than modern annual mean SST but close to 
summer SST (Supplementary Data, Casey et al., 2013; Lee et al., 2019). 
This is consistent with surface sediment calibration from the coastal 
regions of the Chinese Marginal Seas (Wang et al., 2023b) and existing 
cores from the northern SCS coast (Kong et al., 2015), which seems to be 
associated with high-nutrient conditions (Wang et al., 2023b). The 
UKʹ

37-SST record from core HKGS-A does not display a discernible 
long-term trend during the Holocene (Fig. 2A), and is inconsistent with 
existing UKʹ

37-SST records from the northern SCS interpreted as winter 
imprints (Kong et al., 2014; Zhang et al., 2019) and synthesized tropical 
SST record (Marcott et al., 2013). Previously reported UKʹ

37-SST records 
from upwelling regions of the northern SCS coast are also incon
sistent/inverse with global/tropical SST variations (Kong et al., 2015; 
Lee et al., 2019; Wang et al., 2021). This cannot be explained by the 
winter imprint, as cooler winters generally occur under cooler climatic 
conditions. Cooling induced by summer coastal upwelling appears to be 
the (only) plausible explanation for our SST signal, which must have 
substantially altered the global temperature background and winter 
imprint (Lee et al., 2019; Wang et al., 2021). Therefore, decreased local 
SST effectively reflects enhanced summer upwelling at the northern SCS 
coast that could be linked to enhanced EASM strength.

Recent studies suggest that TEX86 values tend to represent temper
ature of subsurface water rather than surface water over the western 
Pacific marginal sea (Xing et al., 2015) and the northern coast of the SCS 
(Wang et al., 2021; Zhang et al., 2021c). Considering the inverse vari
ations between paired TEX86-based temperature and onsite UKʹ

37-SST 
(Fig. 2A and B), we here also interpret the TEX86 thermometer as an 
indicator of integrated water column temperature biased toward sub
surface (Wang et al., 2021; Zhang et al., 2021c). Hence, UKʹ

37− TEX86 
could largely represent the vertical thermal gradient without the impact 
of chronological uncertainty. The UKʹ

37− TEX86 record displays a 
long-term increasing trend with low values occurring at the SST cooling 
intervals (Fig. 2A–C), indicating enhanced upwelling substantially alters 
the original SST signal and thus reduced vertical thermal gradient.

The inconsistency between UKʹ
37-SST and tropical/open ocean SST, 

together with reversed UKʹ
37-SST and onsite TEX86-based temperature 

variations, strongly suggest the monsoon-induced upwelling effects at 
our site, thereby enabling the inference of Holocene EASM variability.

4.2. Holocene summer upwelling and EASM variability

Decreased UKʹ
37-SST that contrasts with increased onsite TEX86-based 

subsurface temperature, indicate enhanced summer upwelling in the 
northern coast of the SCS and thus strengthened EASM, and vice versa. 
The increased vertical thermal gradient towards the late Holocene 
(Fig. 2C) suggest a long-term Holocene EASM weakening trend 
following the decreased summer insolation (Laskar et al., 2004), 
consistent with existing EASM records (Dykoski et al., 2005; Liu et al., 
2015; Wang et al., 2005). Notably, UKʹ

37-SST indicate substantially 
enhanced EASM strength during ~6000–9000 cal a BP and 
~3300–4500 cal a BP, superimposed on the long-term weakening trend 

(Fig. 2A–C). Enhanced EASM strength during the early Holocene has 
been well documented in various terrestrial records (Liu et al., 2015; 
Wang et al., 2005), while the EASM behavior during ~3300–4500 cal a 
BP is less well addressed. Terrestrial anthropogenic impacts were rela
tively limited in southeastern China before ~2000–3000 cal a BP (Ma 
et al., 2020), with minimum anthropogenic perturbations on coastal 
environment. Hence, high alkenone C37 content during ~3300–4500 cal 
a BP (Supplementary Data) might be associated with more 
upwelling-induced subsurface nutrients (Lee et al., 2019; Wang et al., 
2021), again indicating enhanced EASM strength. Notably, δ18O records 
from South Asia show relatively negative values, also indicating 
enhanced monsoon circulation, during ~3300–4500 cal a BP (Fig. 3C, 
Gupta et al., 2024; Kathayat et al., 2017), while several Chinese sta
lagmite δ18O records do not suggest particularly enhanced EASM during 
this period (Fig. 3D–Wang et al., 2005; Yang et al., 2019). The weak 
expression of substantially enhanced EASM strength in Chinese stalag
mite δ18O records during this period remains enigmatic.

4.3. Enhanced EASM during the early to middle Bronze age

Holocene millennial-scale climatic fluctuations are suggested to be 
linked to solar activities (Bond et al., 2001; Wang et al., 2005). No 
particular changes in greenhouse gas and volcanic forcings were 
observed during ~3300–4500 cal a BP, while solar activity remained 
high (Fig. 3A, Steinhilber et al., 2012). Substantially enhanced EASM 
strength during ~3300–4500 cal a BP, corresponds to the Early to 
Middle Bronze Age, could be inferred from SST gradient variations and 
other marine records from the Chinese marginal seas (Fig. 4C–E). The 
UKʹ

37-SST gradient between HKGS-A and YJ, a site located at the northern 
coast of the SCS but experienced limited upwelling effects (Fig. 1, Zhang 

Fig. 3. Holocene climatic records and forcings. (A) Total solar irradiance (TSI, 
Steinhilber et al., 2012), (B) UKʹ

37− TEX86 (purple line, this study) and mean July 
insolation at 20◦N (orange line, Laskar et al., 2004), (C) δ18O record from 
Sahiya and Mahadev Cave (dark and light blue line, respectively, Gupta et al., 
2024; Kathayat et al., 2017), (D) δ18O record from Dongge Cave (grey line, 
Wang et al., 2005) and synthesized speleothem δ18O record from monsoonal 
China (blue line, Yang et al., 2019). Blue bars highlight the time intervals with 
strengthened summer upwelling at the northern coast of the SCS and thus 
enhanced EASM strength.
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et al., 2019), could effectively reflect the monsoon-induced upwelling 
variability while eliminating the influence of environmental tempera
ture background (Fig. 4C). Relatively low SST gradient during SST col
ling intervals at HKGS-A (Fig. 4A–C) suggests a substantial upwelling 
control on SST at HKGS-A that exceeds the environmental temperature 
changes. The overall increase in SST gradient since ~3000 cal a BP re
verses the SST cooling trend (Fig. 4A–C), largely reflecting upwelling 
changes within the late Holocene cooling context and highlighting the 
substantially enhanced EASM strength during the Early to Middle 
Bronze Age. Additionally, coral-based SST records from Qionghai, also 
located at an upwelling region of the northern SCS coast (Fig. 1), show 
relatively low SST during ~3500–4000 cal a BP (Fig. 4D–Chen et al., 
2023) and thus enhanced EASM strength. The UKʹ

37-SST record from the 
upwelling region of the East China Sea coast (Fig. 1) displays low values 
during ~3500–4500 cal a BP (Fig. 4E–Kajita et al., 2018), while such 
cooling signals have not been observed in open oceans (Zhang et al., 

2021b). This indicates enhanced upwelling in the East China Sea coast 
was also linked to enhanced EASM strength during the Early to Middle 
Bronze Age.

Modern observations, proxy reconstructions, and model simulations 
collectively suggest that precipitation changes in Northeastern and 
Southeastern China appear to be positively linked to EASM strength 
(Chiang et al., 2017; Ding et al., 2008; Liu et al., 2014). Here we sum
marize terrestrial precipitation/hydrological records from these regions 
to infer EASM behavior during the Early to Middle Bronze Age (Figs. 4 
and 5A–F). Alkenone %C37:4 and pollen records from marginal monsoon 
regions of Northern China (Fig. 5A–C, Jiang et al., 2022; Jiang et al., 
2024; Wu et al., 2019) suggest high lake-level/wet conditions during the 
Early to Middle Bronze Age. Moreover, an increased frequency of Yellow 
River flooding during the Early to Middle Bronze Age has been reported 
(Yu et al., 2020), indicating excessive precipitation and overall wet 

Fig. 4. Holocene climatic records from the Chinese marginal seas and South
eastern China. (A) UKʹ

37-SST (this study), (B) UKʹ
37− TEX86 (purple line, this study) 

and mean July insolation at 20◦N (orange line, Laskar et al., 2004), (C) UKʹ
37-SST 

gradient between HKGS-A and YJ (Zhang et al., 2019), HKGS-A minus YJ, 
ΔSST, (D) coral Sr/Ca-based SST anomaly records from Qionghai (Chen et al., 
2023), (E) UKʹ

37-SST record from core MD06-3040 (Kajita et al., 2018), (F) 
Pollen-based mean annual precipitation (MAP) record from Shiwangutian 
peatland (Zhao et al., 2024), (G) Fagus percentage records from Daping Swamp 
and Dapingtang Peatland (green and brown line, respectively, Li et al., 2019; 
Zhong et al., 2015), (H) pollen-based synthesis of mean annual precipitation in 
South China (Li et al., 2024). Blue bars highlight the time intervals with 
strengthened summer upwelling at the northern coast of the SCS and thus 
enhanced EASM strength.

Fig. 5. EASM records from core HKGS-A and terrestrial hydrological records 
from East Asia. (A) Alkenone %C37:4 record from Lake Yihesariwusu (Jiang 
et al., 2024), (B) tree pollen percentage record from Lake Moon (Wu et al., 
2019), (C) alkenone %C37:4 records from Lake Qinghai (Jiang et al., 2022), (D) 
δ13Corg record from Dahu Swamp and n-alkane δ13C31-29 record from 
Huguangyan Maar Lake (green and brown line, respectively, Jia et al., 2015; 
Zhong et al., 2010), (E) UKʹ

37-SST from core HKGS-A (this study), (F) UKʹ
37− TEX86 

from core HKGS-A (purple line, this study), and mean July insolation at 20◦N 
(orange line, Laskar et al., 2004), (G) environmental magnetism parameter 
ARM/SIRM record from Heshang Cave and mass accumulation rate of aerobic 
hopanoids in Dajiuhu peatland (brown and green line, respectively, Xie et al., 
2013), (H) normalized speleothem δ13C records from Shennong and Jiulong 
caves (Zhang et al., 2021a). Blue bars highlight the time intervals with 
strengthened summer upwelling at the northern coast of the SCS and thus 
enhanced EASM strength.
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conditions. Meanwhile, carbon isotopic records from Southeastern 
China (Fig. 5D–Jia et al., 2015; Zhong et al., 2010) indicate wet con
ditions during the Early to Middle Bronze Age and long-term Holocene 
drying trends. Several pollen records from this region also suggest wet 
conditions during the Early to Middle Bronze Age (Fig. 4F–H, Li et al., 
2024; Li et al., 2019; Zhao et al., 2024; Zhong et al., 2015). Hence, 
terrestrial hydrological records from Northeastern and Southeastern 
China strongly support substantially enhanced EASM strength during 
the Early to Middle Bronze Age.

Terrestrial hydrological records from Southeastern China show wet 
conditions during ~6000–9000 cal a BP (Fig. 5D–Jia et al., 2015; Zhong 
et al., 2010), indicating enhanced EASM strength as inferred from ma
rine records (Fig. 5A–D). However, hydroclimatic conditions in some 
regions of Northern China could have been influenced by the inland 
high-pressure system associated with atmospheric changes during the 
early to mid-Holocene (Jiang et al., 2024), and the low lake-level/dry 
conditions during ~6000–9000 cal a BP (Fig. 5A–C, Jiang et al., 2022; 
Jiang et al., 2024; Wu et al., 2019) appear to reflect such atmospheric 
control rather than monsoonal precipitation changes.

4.4. Spatial patterns of hydroclimatic variability

Marine and terrestrial records collectively suggest substantially 
enhanced EASM strength during the Early to Middle Bronze Age (Figs. 4 
and 5A-F). We further summarize terrestrial hydrological records to 
infer spatial patterns of hydroclimatic variability over East Asia during 
this period (Fig. 6, Table S1). Wet conditions during the Early to Middle 
Bronze Age have been widely documented in lacustrine, peat, and 
paleosol records from Northeastern and Southeastern China (Fig. 5A–D, 
6, Table S1, Cheng et al., 2013; Hong et al., 2005; Jia et al., 2015; Jiang 
et al., 2006; Jiang et al., 2022; Jiang et al., 2024; Li et al., 2019; Li and 
Liu, 2018; Stebich et al., 2015; Wang et al., 2014; Wu et al., 2019; Xiao 
et al., 2004; Zhao et al., 2024; Zhong et al., 2010; Zhong et al., 2015; 

Zhou et al., 2016), while hydrological records inferred from various 
proxies and archives in Central East China generally indicate dry con
ditions (Fig. 5G, H, 6, Table, S1, Huang et al., 2018; Lu et al., 2019; Tan 
et al., 2018; Xie et al., 2013; Zhang et al., 2021a; Zhao et al., 2016). The 
contrasting hydrological variations in Northeastern/Southeastern China 
and Central East China, together with substantially enhanced EASM 
strength supported by marine records from the Chinese marginal seas, 
during the Early to Middle Bronze Age, support the meridional tripole 
pattern of hydroclimatic variability over East China during this period. 
The tripole pattern of hydroclimatic variability during the Early to 
Middle Bronze Age observed from climatic records (Figs. 5 and 6) is 
inconsistent with the simulated millennial-scale hydrological vari
ability, which tends to show a dipole pattern in East China (Fig. 3 in 
Zhang et al., 2018), and the north-south dipole pattern of Holocene 
precipitation/hydrological changes suggested by model and pollen re
sults (Li et al., 2024; Liu et al., 2014). Wet conditions in Southeastern 
China and dry conditions in Central East China during ~6000–9000 cal 
a BP (Fig. 5G–G, H) are consistent with the contrasting hydroclimatic 
changes during the Early to Middle Bronze Age. However, the hydro
climatic variability over East Asia during ~6000–9000 cal a BP does not 
follow the tripole pattern observed during the Early to Middle Bronze 
Age, which appears to be associated with atmospheric control on early 
to mid-Holocene drought in Northeastern China (Fig. 5A–C).

Previous studies hypothesized that the climate background during 
the Early to Middle Bronze Age have been notably influenced by a severe 
cool/dry event that occurred at ~4200 cal a BP (Blanco-González et al., 
2018; Sun et al., 2019), while recent data integrations suggest that cli
matic expressions of the “4.2 ka BP event” appear to be regionally 
diverse (Lin et al., 2022; Railsback et al., 2018). Substantially enhanced 
EASM strength and thus overall wet conditions in Northeastern and 
Southeastern China challenge the presumed cool/dry conditions over 
East China during the Early to Middle Bronze Age (Chen et al., 2015; Sun 
et al., 2019). In the context of contrasting hydrological variations in 
Northeastern and Central East China, the northeastward migration of 
archaeological sites in East China (Hosner et al., 2016), the final demise 
of the Neolithic cultures in the lower Yangtze region (Zhang et al., 
2021a), and higher frequency of floods in the middle to lower Yellow 
River region (Yu et al., 2020) over the Early to Middle Bronze Age 
appear to be corroborated by a plausible climatic explanation.

Controlling mechanisms of the tripole pattern of hydroclimatic 
variability in monsoonal East Asia across different timescales are much 
disputed (Huang et al., 2023; Jiang et al., 2021; Xu et al., 2024; Zhang 
et al., 2018). Wet conditions observed in Northeastern and Southeastern 
China and thus increased monsoonal precipitation during the Early to 
Middle Bronze Age appear to be associated with enhanced EASM 
strength. However, dry conditions in Central East China under an 
enhanced EASM background may suggest the dominant control of 
Western Pacific Subtropical High (WPSH) or westerlies dynamics on 
regional hydrological variability. Recent studies attribute dry conditions 
in Central East China over the last millennium primarily to the westward 
extension of the WPSH (Xu et al., 2024). Yet, this mechanism does not 
adequately reconcile with decreased SST signal observed in the up
welling region of the East China Sea during the Early to Middle Bronze 
Age (Kajita et al., 2018), which indicates enhanced coastal upwelling 
mechanistically linked to EASM intensification. Alternatively, the 
northward displacement of westerlies, suggested by model simulations 
and reconstructions (Chiang et al., 2017; Zhang et al., 2018), may 
induce drier conditions in Central East China and thus a tripole pattern 
of hydroclimatic variability. Additionally, recent studies reveal excep
tional warm conditions in northwestern China during the Early to 
Middle Bronze Age (Jiang et al., 2022; Xiang et al., 2024). Combined 
with our evidence of enhanced EASM strength, further investigation is 
needed to clarify the climatic context and interactions between EASM 
and westerlies circulation during this period.

Fig. 6. Tripole pattern of hydroclimatic variability over East China during the 
Early to Middle Bronze Age. Star represents site HKGS-A from this study, dots 
and dashed square represent sites from previous studies. The blue color in
dicates wet conditions/enhanced ESAM strength during the Early to Middle 
Bronze Age, the pink color indicates dry conditions during this period. Records 
and references are listed in Table S1, numbers refer to site locations in Fig. 1
and Table S1. Basemap showing tripole pattern of modern interannual vari
ability of precipitation over East Asia (Zhang et al., 2018. No data available 
above 45◦N, marked with shading), green and yellow colors indicate wet and 
dry conditions, respectively.
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5. Conclusions

In summary, we have presented multiple biomarker records from the 
upwelling region of the northern SCS coast, which consistently docu
ment the strength of summer monsoon-induced upwelling and thus 
Holocene EASM variability. Our results show substantially enhanced 
EASM strength during ~6000–9000 cal a BP and ~3300–4500 cal a BP, 
superimposed on the long-term Holocene EASM weakening trend. The 
enhanced EASM strength during the Early to Middle Bronze Age chal
lenges the presumed cool/dry climate background and offers a crucial 
climate context for the cultural developments and human evolution in 
East Asia. Our records, together with existing marine and terrestrial 
records, support a meridional tripole pattern of hydroclimatic vari
ability over East Asia during the Early to Middle Bronze Age.
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