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Foxp3 confers long-term efficacy of chimeric antigen
receptor-T cells via metabolic reprogramming
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In brief

Niu et al. report that engineering CAR-T
cells with Treg transcription factor Foxp3
confers tumor microenvironment-
resilient metabolic adaptations while
avoiding Treg-like immunosuppression.
These metabolic alterations enable
CAR-T cells to exhibit sustained
antitumor potency with attenuated
exhaustion phenotypes, offering a
therapeutic strategy to enhance CAR-T
cell efficacy through metabolic
adaptation engineering.
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SUMMARY

The tumor microenvironment, characterized by low oxygen tension and scarce nutrients, impairs chimeric
antigen receptor (CAR)-T cell metabolism, leading to T cell exhaustion and dysfunction. Notably, Foxp3 con-
fers a metabolic advantage to regulatory T cells under such restrictive conditions. Exploiting this property, we
generated CAR-Tgoxp3 Cells by co-expressing Foxp3 with a third-generation CAR construct. The CAR-Tgoxps
cells exhibited distinct metabolic reprogramming, marked by downregulated aerobic glycolysis and oxida-
tive phosphorylation coupled with upregulated lipid metabolism. This metabolic shift was driven by Foxp3’s
interaction with dynamin-related protein 1. Crucially, CAR-Trxp3 cells did not acquire regulatory T cellimmu-
nosuppressive functions but instead demonstrated enhanced antitumor potency and reduced expression of
exhaustion markers via Foxp3-mediated adaptation. The potent antitumor effect and absence of immuno-
suppression were confirmed in a humanized immune system mouse model. Our findings establish a meta-
bolic reprogramming-based strategy to enhance CAR-T cell adaptability within the hostile tumor microenvi-

ronment while preserving therapeutic efficacy.

INTRODUCTION

Chimeric antigen receptor (CAR)-T immunotherapy is effective
against hematological cancers.’ However, its effectiveness in
solid tumors is low, and responses are transient.*> CAR-T cells
are always malnourished in the tumor microenvironment (TME)
and are stimulated continually by tumor antigens, resulting in
their exhaustion and ATP synthesis deficiency.®’ This is consid-
ered one of the major bottlenecks in CAR-T immunotherapy for
solid malignancies.

Physiologically, the metabolism of distinct T cell subpopulations
differs, and T cells switch their metabolic pathways during differen-
tiation. Naive T (Tn) lymphocytes remain quiescent and rely on
oxidative phosphorylation (OXPHOS) to maintain survival.®® After
antigen stimulation, Tn cells differentiate into effector T cells (Teffs)
and shift their metabolic strategy from OXPHOS to aerobic glycol-
ysis, which enables them to perform effector functions.'®'" As a
subpopulation of T cells, regulatory T cells (Tregs) exhibit a meta-

bolism distinct from that of Teffs, characterized by elevated lipid
metabolism and diminished aerobic glycolysis and OXPHOS.">"°
Tregs are less susceptible to glycolysis,'®'® and genetic deletion
of the glucose transporter Glut1 does not have any effect on Tregs
but inhibits CD4* T cell differentiation.'® The low OXPHOS in Tregs
is attributed to decreased mTORC2 activity,'* and upregulation of
OXPHOS during Treg polarization by a-ketoglutarate diminishes
the differentiation of Tn cells to Tregs substantially.® Increasing
evidence suggests that distinctive metabolic patterns of Tregs
cause their long-term survival and potent expansion in the hypoxic
and acidic TME created by highly proliferating cancer cells.'®2?
Moreover, recent studies have highlighted Foxp3 as a key regu-
lator of Treg metabolism.'*?*** However, it remains unclear
whether Foxp3 can be overexpressed in Teffs, especially in
CAR-T cells, to alter their metabolic characteristics and enable
long-term survival and function in TME.

To evaluate this aspect, in this study, CAR-Tgoxp3 cells were
constructed by co-expressing Foxp3 with third-generation
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Figure 1. CAR-Tgqxp3 Cells acquire distinct metabolic characteristics from CAR-T¢qn, cells

(A) Schematic diagram of third-generation GPC3-CARs.

(B) ECAR and OCR of different CAR-T cells and quantification of glycolysis, glycolytic capacity, maximal respiration, and spare respiratory capacity (n = 4
biological replicates). Representative results from two independent experiments.

(C and D) Schematic representations of metabolic flux from [U-C13]-glucose and [U-C13]-glutamine. The white circle represented the C12 atom, and the orange
circle represented the radiolabeled C13 atom. During the cellular metabolism of [U-C13]-glucose and [U-C13]-glutamine, unique labeling patterns in the

(legend continued on next page)
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CAR to reprogram CAR-T cell metabolism. We explored the
cytotoxicity and persistence and excluded the immunosuppres-
sion of CAR-Troxps cells in vitro and in vivo. The data could
facilitate the development of metabolic reprogramming-based
strategies for improving CAR-T cell immunotherapy.

RESULTS

CAR-Tgoxps cells acquire distinct metabolic
characteristics from CAR-T¢cony cells

We first investigated whether Foxp3 overexpression could alter
CAR-T cell metabolism. Given the superior expansion and
persistence of the third-generation CAR compared with its sec-
ond-generation counterpart,”® we utilized the third-generation
CAR. We activated human T lymphocytes from healthy donors
and infected them with GPC3-CAR to generate conventional
GPC3-CAR-T (CAR-Tgony) cells or with GPC3-CAR plus Foxp3
to develop GPC3-CAR-Troyxps (CAR-Troxpa) cells (Figures 1A
and S1A). We measured metabolic parameters such as the
extracellular acidification rate (ECAR) and oxygen consumption
rate (OCR), and CAR-Tgops3 Cells demonstrated lower ECAR
and OCR than CAR-T¢ony cells following GPC3 protein stimula-
tion (Figures 1B and S1B). Using liquid chromatography-mass
spectrometry (LC-MS), we assessed the metabolic flux of
[U-C13]-glucose (Figures 1C, 1E, and S1C) and [U-C13]-gluta-
mine (Figures 1D, 1F, and S1D) to examine metabolic behaviors
of these CAR-T cells post GPC3 antigen stimulation. CAR-Troyp3
cells produced less (M + 3) lactate from [U-C13]-glucose,
showing reductions in (M + 2) citrate and (M + 2) malate levels,
than that in CAR-Tgony cells (Figure 1E). The [U-C13]-glutamine
metabolic flux indicated reduced incorporation of glutamine
into the tricarboxylic acid (TCA) cycle, as evidenced by
lower levels of (M + 5) glutamate, (M + 4) malate, (M + 4) aspar-
tate, and (M + 4) citrate in CAR-Tgoxp3 Cells relative to those in
CAR-Tcony Cells (Figure 1F). Direct pyruvate addition did not
restore the reduced ECAR and OCR levels in CAR-Tgoyp3 cells
compared with those in CAR-T¢ony cells (Figure S1E). Further-
more, we observed lower intracellular ATP levels and a higher
NAD/NADH ratio in CAR-Tgoxps Cells compared with those in
CAR-Tconv cells (Figure 1G), indicating moderate downregula-
tion of both glycolysis and OXPHOS in CAR-Tgoyxps Cells.

Next, we thoroughly investigated the metabolite composition
using non-targeted LC-MS screening. We identified differentially
expressed metabolites associated with lipid and amino acid
metabolic pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database, highlighting pathways such as glyc-
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erophospholipid metabolism, sphingolipid metabolism, and
glutathione metabolism, as well as aspartate and glutamate
metabolism pathways (Figures S1F and S1G). Lipidomics
further confirmed a significant increase in triglyceride levels
in CAR-Troxps cells compared with those in CAR-Tcqn, cells
(Figures 1H and S1H). BODIPY dye staining also indicated a
substantial elevation in intracellular lipid droplet content in
CAR-Troxps cells relative to that in CAR-Tcony cells (Figure 11).
Treatment with sodium dichloroacetate (DCA), known to
enhance conversion of cytosolic pyruvate to mitochondrial
acetyl-CoA and increase OXPHOS,?%?" significantly reduced
intracellular lipid droplet content in CAR-Trqyp3 Cells compared
with that in untreated cells (Figure 1), implying that Foxp3-medi-
ated reduction in OXPHOS contributes to upregulation of
lipid-related metabolism. Additionally, we noted an observable
reduction in mitochondrial membrane potential (MMP) and
mitochondrial mass in CAR-Troxp3 Cells compared with those
in CAR-Tcony cells (Figure 1J), indicating altered mitochondrial
functions. Collectively, our data suggest that CAR-Tgoxps Cells
possess metabolic characteristics largely resembling those of
Tregs'®'® but distinct from those of CAR-Tgony cells.

Metabolic characteristics of CAR-Tgqxp3 Cells are
determined by Foxp3 binding to Drp1

Given alterations in MMP and mitochondrial mass, we investi-
gated whether the metabolic pattern of CAR-Troxp3 Cells resulted
from the direct effect of Foxp3 on mitochondrial dynamics-
related proteins, including optic atrophy 1 (Opal), dynamin-
related protein 1 (Drp1), mitofusin 1 (Mfn1), and mitofusin 2
(Mfn2).?%2° Bimolecular fluorescence complementation (BiFC)
experiments (Figure S2A) revealed interaction between Foxp3
and Drp1 but not with other mitochondrial dynamics-related pro-
teins in HEK293T cells (Figures 2A and S2B). We further vali-
dated this interaction using a glutathione S-transferase (GST)
pull-down assay in HEK293T cells (Figure 2B). Although Foxp3
is primarily recognized as a transcriptional regulator within the
nucleus, further investigations have identified its presence in
the cytoplasm.®® Therefore, we generated Neongreen-Foxp3
and mCherry-Drp1 fusion proteins to explore their distribution
in HEK293T cells (Figure S2C). Drp1 localized exclusively in
the cytoplasm, whereas Foxp3 was present in both the cyto-
plasm and nucleus, corroborating its colocation with Drp1 in
the cytoplasm (Figure 2C). Immunofluorescence of HEK293T
cells helped confirm their colocalization in the cytoplasm
(Figure 2D). We also validated this phenomenon in CAR-T cells,
using purified circulating Tregs as a control. In CAR-Tgoxp3 Cells,

downstream metabolites were produced by enzyme processes that rearranged carbon atoms. Figure 1C represented the specific labeled metabolites produced
by [U-C13]-glucose through glycolysis and TCA cycle. Figure 1D depicted the specific labeled metabolites generated by [U-C13]-glutamine through TCA cycle.
(E) Analysis of [U-C13]-glucose derivatives, including (M + 6) fructose-1,6-bisphosphate (FBP), (M + 3) lactate, (M + 2) citrate, and (M + 2) malate in CAR-Troxps
and CAR-Tcony cells (n = 3 biological replicates).

(F) Analysis of [U-C13]-glutamine derivatives, including (M + 5) glutamate, (M + 4) malate, (M + 4) aspartate, and (M + 4) citrate in CAR-Tgoxp3 and CAR-Tcopy Cells
(n = 3 biological replicates).

(G) Quantification of intracellular ATP and NAD*/NADH ratio in CAR-Tgony @and CAR-Tgoxps cells (n = 3 independent volunteers).

(H) Triglyceride Z-score plot of CAR-Tgoxps Cells vs. CAR-Tcony Cells (n = 5 biological replicates).

() Quantification of intracellular lipid droplet gMFI in CAR-Tgony Cells, CAR-Troxps Cells, and CAR-Troxp3 Cells treated with DCA (n = 3 independent volunteers).
(J) Representative flow plots and quantification of mitochondrial mass gMFI and MMP gMFI in CAR-T¢on, @and CAR-Troxps Cells (n = 3 independent volunteers).
gMFI, geometric mean fluorescence intensity. MMP, mitochondrial membrane potential.

Data are presented as mean + SD (B, E-G, |, and J). Statistical significance was calculated using unpaired Student’s t tests (B, E-G, and J) and one-way ANOVA
(I). NS, not significant, *p < 0.05, **p < 0.01, **p < 0.001.
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Figure 2. Metabolic characteristics of CAR-Tg,3 cells are determined by Foxp3 binding to Drp1
(A) Representative images of BiFC assay in HEK293T cells transfected with Foxp3-VC155 and one of the Opa1-VN173, Mfn1-VN173, Mfn2-VN173, and Drp1-
VN173 plasmids; scale bar, 50 pm. Representative images from two independent experiments.
(B) Representative results and quantification of GST pull-down assay confirming the interactions between Drp1 and Foxp3 (n = 3 biological replicates).
Representative images from three independent experiments.
(C) Representative confocal microscopy images of HEK293T cells transfected with Neongreen-Foxp3 and mCherry-Drp1 fusion plasmids; scale bar, 10 pm.
Representative images from two independent experiments.
(D) Representative immunofluorescence images of HEK293T cells infected with GPC3-CAR-Foxp3 lentivirus; scale bar, 10 pm. Representative images from two
independent experiments.
(E) Representative confocal microscopy images of Treg, CAR-Troyp3, and CAR-Tco, cells stained for DAPI, Drp1, and Foxp3; scale bar, 5 pm. Representative
images from two independent experiments.
(F) Quantification of Drp1 expression and Drp1 phosphorylation at serine 616 and serine 637 in different CAR-T cells (n = 3 independent volunteers).
(G) Representative confocal microscopy images of CAR-Tcony, CAR-Troxps, and CAR-Troxps (340-300) Cells stained for DAPI and Tom20; scale bar, 5 pm.
Representative images from two independent experiments.
(H) Representative electron microscope imaging of CAR-Tcony, CAR-Troxpa, and CAR-Troxps (340-390) Cells. Representative results from two independent
experiments.
(I) Quantification of mitochondrion number and intracellular lipid droplet gMFI in CAR-Tcony, CAR-Troxps, and CAR-Troxps (340-300) Cells (n = 3 independent
volunteers).
(legend continued on next page)
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Foxp3 exhibited cytoplasmic translocation and colocalization
with Drp1, which also could be found in Tregs, whereas
Foxp3 expression was undetectable in CAR-Tgon, cells
(Figure 2E). Drp1-mediated mitochondrial fission is triggered
by phosphorylation at serine 616, whereas fusion is facilitated
by phosphorylation at serine 637.%'° Therefore, we analyzed
Drp1 phosphorylation levels in CAR-T cells upon antigen stimu-
lation using flow cytometry and western blotting. We observed
that Foxp3 did not affect Drp1 expression or phosphorylation
at serine 637 but significantly decreased phosphorylation at
serine 616 (Figures 2F and 2M). AlphaFold software was
used to predict the crystal structures of Foxp3 and Drp1
(Figure S2D). Foxp3-Drp1 docking results indicated that phos-
phorylation at serine 616 significantly increased the potential en-
ergy (from 16196.656 to 17679.332) and impacted the stability
between Foxp3 and Drp1 (Figure S2E). Both confocal and elec-
tron microscopy indicated that, unlike the scattered mitochon-
dria in CAR-Tcony cells, those in CAR-Troyp3 Cells were clustered
and elongated (Figures 2G and 2H). Moreover, the number of
mitochondria in CAR-Tgoxps Cells was much fewer than that in
CAR-Tconv cells (Figure 21). We also observed no obvious inhib-
itory effect of Foxp3 on the well-established upstream kinases
(cyclin dependent kinase 1 [CDK1] and extracellular signal-regu-
lated kinase 1/2 [ERK1/2]) of Drp1 (Figure 2M). These data indi-
cate that the combination of Foxp3 and Drp1 might impair the
Drp1 phosphorylation at serine 616 and mitochondrial fission
to reprogram CAR-T cell metabolism.

Docking studies were performed using Schrodinger software
to investigate the binding site between Foxp3 and Drp1. From
70,000 calculations, the top five poses (poses 11, 21, 18, 16,
and 12) exhibiting the highest binding stability were selected
(Figure S2F). Based on these predictions, we constructed
various plasmids with partially deleted Foxp3 sequences
(Figure S2G). These plasmids were used at identical concentra-
tions to ensure comparable expression levels in HEK293T cells
(Figure S2H). The BIFC assay indicated disruption of the
Foxp3-Drp1 interaction only when the fragment spanning amino
acids 340-390 was deleted (Figure S2l). Subsequently, to inves-
tigate whether Foxp3 reprograms CAR-Troxp3 Cell metabolism
via binding to Drp1, we established 340-390 fragment-deficient
CAR-Tgoxps Cells (CAR-Teoxps (340-390)), Which expressed similar
levels of CAR and Foxp3 to CAR-Troxps cells (Figure S2J).
Following deletion of the 340-390 fragment, the fused mitochon-
dria in CAR-Troxps Cells were eliminated (Figures 2G and
2H), and the reduced number of mitochondria was restored
compared with CAR-Tgony cells and CAR-Tgoxps cells
(Figure 2I). CAR-Troxps (340-390) Cells also exhibited decreased
lipid droplet content (Figure 21), as well as increased mitochon-
drial mass, MMP, ECAR, and OCR, compared with that in
CAR-Tgoxps cells (Figures 2J-2L). Notably, deletion of the 340-
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390 fragment in Foxp3 did not alter expression levels of CDK1
or phospho-ERK1/2 but significantly enhanced Drp1 phosphor-
ylation at serine 616 in CAR-Troxp3 (340-300) Cells compared with
that in CAR-Troxps cells (Figure 2M). Based on the predicted pro-
tein-protein interaction site data, the 340-390 fragment of Foxp3
may bind to the 600-620 segment of Drp1 (Figure S2K). To vali-
date this prediction, we constructed a Drp1 variant with the 600—
620 fragment deleted. Compared with wild-type Drp1, this
variant significantly reduced the mean fluorescence intensity of
BiFC (Figure S2L), indicating the involvement of the 600-620
fragment of Drp1 in the interaction between Foxp3 and Drp1,
which may also explain the downregulation of Drp1 phosphory-
lation at serine 616. Collectively, our findings suggest that the
metabolic reprogramming of CAR-Tgoxp3 cCells is mediated by
Foxp3 binding to Drp1.

CAR-Tgoxps cells do not gain the chromatin accessibility
and suppressive function of Tregs

Considering the critical role of Foxp3 in Treg development and
differentiation, we determined whether CAR-Tgop3 cells
were converted to Tregs from the chromatin landscape. There-
fore, we analyzed chromatin accessibility across the genome
among Tregs, CAR-Tcony, and CAR-Tgqxps Cells. We observed
that assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) peaks were predominantly
located in the promoter, intron, and distal intergenic regions
(Figure S3A), and dimensionality reduction analysis effectively
distinguished these cell types (Figure 3A). After aligning and
removing duplicate and low-mapping-quality reads, we calcu-
lated the average ATAC-seq signals around transcription start
sites (TSSs). These data indicated that Tregs exhibited lower
read concentrations than those in the other two groups, whereas
CAR-Tcony and CAR-Troxps cells exhibited similar ATAC-seq sig-
nals around TSSs (Figure 3B). Subsequent analysis using the R
package DiffBind helped identify discriminating ATAC-seq
peaks between Treg and CAR-Tcony Cells (Figure 3C). Peaks
significantly elevated in Tregs were highly enriched in motifs
recognized by transcriptional repressor GATA binding 1
(TRPS1), RUNX family transcription factor 2 (RUNX2), basic
leucine zipper ATF-like transcription factor (BATF), ETS-related
gene (ERG), and MYB proto-oncogene like 2 (BMYB) transcrip-
tion factors (Figure 3D), some of which have been reported to
engage in the inhibitory function of Tregs.***° However, these
peaks were not enriched in CAR-Tgops cells, highlighting
a fundamental difference in chromatin landscape between
CAR-Troxps and Treg cells (Figure 3E). We then analyzed Treg
cell-related markers and cytokines in CAR-Tgony, CAR-Troxps,
Treg, and conventional T (Tceny) Cells. Compared with Tregs,
CAR-Troxps cells secreted lower levels of interleukin-10 (IL-10)
and transforming growth factor p (TGF-B) and expressed

(J) Quantification of mitochondrial mass gMFI and MMP gMFI in CAR-Tcony, CAR-TEoxps, @nd CAR-Troxps (340-300) Cells (n = 3 independent volunteers).
(K) ECAR and OCR of CAR-Tcony, CAR-Troxpa, and CAR-Troxps (340-300) Cells (n = 4 biological replicates). Representative results from two independent

experiments.
(L) Quantification of (K).

(M) Western blot analysis of Drp1, p-Drp1(S616), p-Drp1(S637), Erk, p-Erk, and CDK1 in different CAR-T cells.
gMFI, geometric mean fluorescence intensity. MMP, mitochondrial membrane potential.
Data are presented as mean + SD (F and |-L). Statistical significance was calculated using unpaired Student’s t tests (F) and one-way ANOVA (1, J, and L). NS, not

significant, *p < 0.05, *p < 0.01, **p < 0.001.
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Figure 3. CAR-Troxp3 cells do not gain the chromatin accessibility and suppressive function of Tregs
(A) Principal-component analysis (PCA) analysis of ATAC-seq data for CAR-Troxp3, CAR-Tcony, and Treg cells from the same donor (n = 3 biological replicates).

(B) Representative enrichment scores of ATAC-seq data across TSSs +/— 2

kb.

(legend continued on next page)
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reduced levels of the cytotoxic T-lymphocyte associated protein
4 (CTLA-4) inhibitory receptor, which aligned closely with CAR-
Tconv Cells (Figure 3F). Expressions of CD39 and CD73 among
CAR-Troxps: CAR-Tcony, and Treg cells did not significantly differ
following GPCS3 antigen stimulation (Figure 3F). We further inves-
tigated the suppressive effect of CAR-Troxps Cells on Teony cell
proliferation by co-culturing CAR-Tgony, CAR-Tgoxps, OF Treg
cells with carboxyfluorescein diacetate succinimidyl ester
(CFSE)-labeled naive Tcony cells under Dynabeads stimulation.
Tconv cell proliferation in the CAR-Troxp3 group was significantly
stronger than that in the Treg group but almost identical to that in
the CAR-T¢cony group (Figure S3B), suggesting an absence of
inhibitory effect in CAR-Tgoxps Cells. Only a few peaks upregu-
lated in CAR-Tgoxp3 but downregulated in CAR-T¢ony cells were
co-enriched in Tregs (Figures 3G and 3H). Pathway enrichment
analysis revealed that these peaks concentrated in cellular meta-
bolic processes, such as the positive regulation of biosynthetic
processes, macromolecular metabolic processes, and nitrogen
compound metabolic processes (Figure 3l). Given the reported
epigenetic regulatory functions of cellular metabolites,*”° we
used mass spectrometry to detect metabolites in CAR-Tcony
and CAR-Troxps Cells. The results indicated significantly lower
levels of lactate, fumarate, and NADH in CAR-Tgoyp3 cells
than those in CAR-T¢ony cells (Figure S3C), potentially explai-
ning the changes in chromatin accessibility associated with
cellular metabolism in CAR-Tgoxps cCells. These findings under-
score a fundamental difference in the chromatin landscape
and inhibitory effects of CAR-Troxps cells compared with those
of Tregs.

Foxp3-mediated metabolism downregulates the
expression of exhaustion-associated inhibitory
molecules in CAR-Tgoxp3 Cells

We next explored whether Foxp3-mediated metabolism contrib-
utes to CAR-Tgops cell activation and function. We incubated
CAR-Troxps and CAR-Tgony cells with GPC3* Huh7 tumor cells
for 72 h. We assessed activation markers (CD27, CD28, and
CD69), phenotypic markers (CD45RA, CD62L, and CD95), and
key transcription factors (B cell lymphoma 6 [BCL-6], eomeso-
dermin [EOMES], and T cell factor 1 [TCF-1]) using spectral
flow cytometry. High-dimensional, multicolor spectral flow data
were visualized using T-distributed stochastic neighbor embed-
ding (tSNE) methodology (Figure 4A). CAR-Troxps cells exhibited
higher levels of CD27, CD28, CD62L, and BCL-6 and lower levels
of CD95 and EOMES, as well as slightly lower TCF-1 compared
with those in CAR-T¢ony cells (Figure 4B). Cytotoxicity evalua-
tions, including a CCK8-based assay (Figure S4A), videos
(Video S1 and Video S2), and the fluorescence intensity change
curve (Figure 4C) of live cell imaging, demonstrated that CAR-
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Troxps Cells exhibited a consistent killing ability similar to that of
CAR-Tgony cells. Moreover, after GPC3 antigen stimulation,
CAR-Troxps cells released fewer cytokines (granzyme B, inter-
feron [IFN]-y, and tumor necrosis factor [TNF]-a) than those
released by CAR-Tgony cells (Figure 4D). Following 72 h of
GPC3 tumor antigen stimulation, CAR-Tro,p3 cells expressed
lower percentages of programmed cell death-1 (PD-1), lympho-
cyte activation gene-3 (LAG-3), and T cell immunoglobulin
domain and mucin domain-3 (TIM-3) and displayed less triple
or double positivity for these exhaustion markers compared
with those of CAR-T¢ony Cells (Figures 4E and 4F). Nonetheless,
exhaustion marker levels in CAR-Troyp3 (340-390) Cells were higher
than those in CAR-Tgoxps cells but similar to or slightly lower than
those in CAR-T¢ony cells (Figure 4F). We subjected CAR-T cells
to GPC3 antigen stimulation every 4 days across three rounds
to evaluate the persistence and exhaustion of CAR-T cells
(Figure S4B). CAR-Troxps cells outnumbered CAR-Tcon, cells
on days 4 and 8 (Figure S4C). By day 12, a significant decrease
in exhaustion molecules (PD-1 and TIM-3) and an increase in the
stem cell marker (CD62L) were observed in CAR-Troxp3 Cells
compared with those in CAR-Tcony cells (Figures 4G and S4D).
However, this decrease in exhaustion markers and increase in
cell number in CAR-Tgoxp3 Cells were not maintained in CAR-
Troxpa (340-300) Cells after 12 days of antigen stimulation
(Figures 4G and S4C). We then pre-treated CAR-Tgon and
CAR-Trgoxps cells with P110, which bound directly to Drp1 and
significantly increased the phosphorylation of Drp1 at serine
616 (Figure S4E). The percentages of PD-1, LAG-3, and TIM-3
increased significantly in P110-pre-treated CAR-Tgoxpa cells
compared with those without P110 treatment (Figure 4H),
whereas no differences were observed between CAR-T¢, Cells
with and without P110 (Figure 4H). These data suggest that both
Foxp3-mediated interactions with Drp1 and p-Drp1 impairment
contribute to the downregulation of exhaustion markers in
CAR-Troxps cells. Additionally, we examined whether the
reduced exhaustion markers in CAR-Troxp3 Cells were associ-
ated with Foxp3-mediated metabolic patterns. We treated
CAR-Tcony and CAR-Tgqyp3 cells with DCA upon GPC3 stimula-
tion. Flow cytometry results indicated that exhaustion marker
percentages significantly increased after adding DCA in CAR-
Troxps cells but not in CAR-T¢qny cells (Figure 4l). Furthermore,
trimetazidine-induced inhibition of long-chain 3-ketoyl coen-
zyme A thiolase, which is involved in fatty acid p-oxidation,
significantly increased the expression of exhaustion markers
(TIM-3 and LAG-3) in CAR-Troxps cells but not in CAR-Tcony cells
(Figure S4F). Collectively, these results suggest that Foxp3-
mediated metabolism does not affect cytotoxicity but downre-
gulates the expression of inhibitory molecules linked to exhaus-
tion in CAR-Troxps célls.

(C) Differential peaks plot between CAR-Tcony Cells and Tregs identified by the DiffBind package (n = 3 biological replicates).

(D) Top five motifs and factors enriched in Treg cell highly elevated peaks using Homer software (LogFC > 2 and FDR < 0.05).

(E) Heatmap of Treg cell highly elevated peaks (LogFC > 2 and FDR < 0.05) in CAR-T¢ony and CAR-Troxps cells.

(F) Quantification of Treg-related cytokines and markers in CAR-Tcony, CAR-Troxps, Treg, and Teony Cells (n = 3 independent volunteers).

(G) Heatmap of peaks were co-enriched in Treg and CAR-Tgqyp3 cells.

(H) Enrichment score profile of representative genes, which are derived from (G).

() Enriched Gene Ontology (GO) terms for peaks co-enriched in Treg and CAR-Tgoxp3 Cells.

PCA, principal-component analysis; FDR, false discovery rate.

Data are presented showing all individual data points (F). Statistical significance was calculated using one-way ANOVA (F). *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 4. Foxp3-mediated metabolism downregulates the expression of exhaustion-associated inhibitory molecules in CAR-Tgo4,3 cells

(A) Activation markers (CD27, CD28, CD69), phenotype markers (CD45RA, CD62L, CD95), and transcription factors (BCL-6, TCF-1, EOMES) of CAR-Tgoxps and
CAR-Tcony cells were analyzed via spectral flow cytometry 3 days after antigen-specific stimulation and depicted as tSNE plots (n = 2 donors in quadruplicate).
(B) Quantification of (A).

(C) The fluorescence intensity change curve of live cell imaging for evaluating cytotoxic activity of different CAR-T cells against hepatocellular carcinoma cell line
Huh7 at an E/T ratio of 4:1 (n = 3 biological replicates).

(D) Quantification of granzyme B (GZMB) gMFI, IFN-y gMFI, and TNF-a gMFI in CAR-Tgoxp3 and CAR-Tg,n, Cells after co-culture with Huh7 cells for 6 h (n = 3
independent volunteers).

(E) Quantification of triple or double positivity for PD-1, TIM-3, and LAG-3 receptors on different CAR-T cells after antigen-specific stimulation (n = 2 donors in
triplicate). To plot the pie chart, CAR-T cells were specifically stimulated for 3 days, and the expression of inhibitory receptors was analyzed and counted, where
PD-1*TIM-3*LAG-3" indicated 3-positive and PD-1TIM-3"LAG-3" indicated 3-negative.

(F) Quantification of exhaustion markers on CAR-Tcony, CAR-Troxpa, @and CAR-Troxps 340-390) Cells after antigen-specific stimulation for 3 days (n = 2 donors in
triplicate).

(G) Quantification of exhaustion markers on CAR-Tcony, CAR-Troxps, and CAR-Troxp3 (340-390) Cells in the end of three rounds of GPC3 antigen stimulation in vitro
(n = 3 independent volunteers).

(legend continued on next page)
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CAR-Tgoxps cells exhibit potent antitumor activity with
reduced exhaustion markers in vivo

To determine whether CAR-Tgp3 Cells could display enhanced
antitumor ability in vivo, we established a subcutaneous xeno-
graft tumor model in mice. Untransduced T cells or various
CAR-T cells were injected on day 8, when tumors reached
approximately 100 mm?® (Figure 5A). Tumor growth curves
(Figures 5B and 5C) indicated that mice treated with CAR-Troxps
cells exhibited the slowest tumor growth, confirmed by tumor
weight (Figure 5D). We harvested tumors from each group for
flow cytometry analysis on day 20 and observed that CD28
expression was markedly increased, and exhaustion markers
(PD-1, LAG-3, and TIM-3) were markedly decreased in CAR-
Troxps cCells compared with those in CAR-Tgon, cells
(Figures 5E, 5G, and S5A). Moreover, the triple or double positiv-
ity for PD-1, TIM-3, and LAG-3 receptors was substantially less
in CAR-Troxps cells (Figure 5F). Confocal immunofluorescence
analyses showed that the ratio of PD-1 integrated density
(IntDen) to CD3 IntDen was markedly reduced in tumor-infil-
trating CAR-Troxps Cells compared with that in CAR-Tgop, cells
(Figures 5H and 5I).

For further analysis, we conducted RNA sequencing (RNA-
seq) on tumor-infiltrating CAR-Troxps OF CAR-Tcony Cells post-
fluorescence-activated cell sorting. Principal-component anal-
ysis distinguished CAR-Tgoxps from CAR-Tcony cells significantly
(Figure S5B). Foxp3 expression was persistently elevated,
whereas the expression of TIM-3, LAG-3, EOMES, and
CXCL13 was significantly downregulated in CAR-Tgoxps cells
compared with those in CAR-Tgony cells (Figures 5J and S5C).
Gene set enrichment analysis (GSEA) showed that CAR-Troyps
cells were in a lower exhaustion state than that of CAR-Tgony
cells (Figure 5K). Tregs and CD4* Ty cells were included in
the analysis, and the upregulated genes of Tregs were identified
(Figure S5D). The expression of these genes in Tregs was signif-
icantly different from those in CAR-Troyp3 and CAR-Tcony Cells
(Figure S5E), indicating the fact that tumor-infiltrating CAR-
Troxps Cells and Tregs were fundamentally different at the
transcriptome level. Moreover, some upregulated genes in
CAR-Troxps cells overlapped with Tregs and were enriched for
cellular metabolic pathways (Figure 5L), supporting similar meta-
bolic characteristics of tumor-infiltrating CAR-Troxp3 cells to
Tregs. Pathways related to mitochondria were also significantly
enriched in CAR-Tgoxps Cells compared with that in CAR-Tgony
cells (Figure S5F). Among the well-defined target genes of
Foxp3,"° only IFNG was downregulated, whereas KLF2,
TRIB2, S1PR1, SELL, and ZC3H12D were upregulated in CAR-
Troxps Cells (Figure S5G), highlighting the partially distinct roles
of Foxp3 in CAR-Tgoxps Cells and Tregs. These results suggest
that CAR-Troxps Cells exhibit a more potent antitumor ability
and lower exhaustion-associated inhibitory molecules than
those of CAR-T¢ony cells.

Cell Metabolism

Foxp3 sustains long-lasting antitumor effects and low
levels of exhaustion markers in CAR-Tgqxp3 cells in vivo
To investigate whether Foxp3-mediated metabolism contributes
to the antitumor effects of CAR-T cells, we established a tumor
rechallenge model. CAR-T cells were administered preemptively
when tumors measured 50 mm?® on day 4 (Figure 6A). All tumors
were eliminated, with the CAR-Tgoxp3 group showing slightly
faster tumor clearance than that of the CAR-Tgony group
(Figure 6B). After the initial tumor clearance on day 25, no differ-
ences in peripheral blood CAR-T cell counts were observed be-
tween CAR-Tcony and CAR-Troxps cells (Figure 6C). Notably,
compared with CAR-Tgon, Cells, CAR-Troyp3 Cells exhibited a
higher percentage of naive/stem cell memory T (TN/TSCM) cells
and a lower percentage of terminal effector memory T (TEMRA)
cells (Figures 6D and 6E). Additionally, CAR-Tgqp3 cells showed
a slightly higher central memory (TCM) or lower effector memory
(TEM) and TEMRA than that of CAR-Tgony cells before tumor
challenge (Figures S6A and S6B). On day 29, cured mice from
various CAR-T cell groups were rechallenged with 8 x 10°
Huh7 tumor cells (Figure 6A), with tumor growth being the slow-
est in the CAR-Trop3 group (Figure 6F).

Further, to validate the role of Foxp3 in antitumor activity
in vivo, we injected CAR-Troxps (340-390), CAR-Troxps, and CAR-
Tcony cells into Huh7-bearing mice (Figure 6G). Tumor elimina-
tion was swift in all groups (Figure 6H). On day 29, cured mice
from all groups were rechallenged with 8 x 108 Huh7 tumor cells,
and the tumor volume was monitored throughout the experiment
(Figure 6G). Tumor growth curves (Figure 6l) showed that the
growth rates in mice treated with CAR-Troxps (340-390) Cells
were similar to those in the CAR-Tgony group but faster than
those in the CAR-Tgoxp3 group, as confirmed by tumor volume
and weight (Figure S6C). The percentages of TIM-3 and LAG-3
inthe CAR-Troxps (340-390) group matched those in the CAR-Tgony
group but were much higher than those in the CAR-Tgoxp3 group
(Figure S6D). These findings confirm that the enhanced anti-
tumor effect and reduced exhaustion-associated inhibitory mol-
ecules of CAR-Tgops Cells depend on Foxp3 residues 340-390.

CAR-Troxps cells acquire potent antitumor activity but
not immune suppression in humanized NSG models

To evaluate the antitumor effect of CAR-Tgyp3 cells in an immu-
nocompetent model and their impact on other immune cells, we
constructed human immune system reconstituted (humanized)
NOD.Cg-Prkdcs9||2rge™Smee (NSG) mice using CD34* he-
matopoietic stem cells. We detected various human immune
cells, including T cells, B cells, natural killer (NK) cells, dendritic
cells (DCs), and monocytes, in the peripheral blood and spleens
of these mice (Figures S7A and S7B). In the peripheral blood, the
average ratio of human immune cells (hCD45%) to total immune
cells (hCD45" or mCD45") exceeded 60%, and the ratio of hu-
man immune cells to living cells could even reach 80% in spleens

(H) Quantification of exhaustion markers on CAR-T¢on, and CAR-Troxp3 Cells after antigen-specific stimulation for 3 days in the presence or absence of P110

(n = 2 donors in triplicate).

(I) Quantification of exhaustion markers on CAR-Tcon, and CAR-Tr,3 Cells after antigen-specific stimulation for 3 days in the presence or absence of DCA (n =2

donors in triplicate).

tSNE, t-distributed stochastic neighbor embedding; GZMB, granzyme B; IFN, interferon; TNF, tumor necrosis factor.
Data are presented as mean + SEM (C) or SD (B, D, and F-l). Statistical significance was calculated using unpaired Student’s t tests (B and D), one-way ANOVA
(F-1), and two-way ANOVA (C). NS, not significant, *p < 0.05, **p < 0.01, **p < 0.001.
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Figure 5. CAR-Tgoxp3 Cells exhibit potent antitumor activity with reduced exhaustion markers in vivo
(A) Experimental timeline of the cell line-derived xenograft (CDX) tumor model.
(B and C) Time-dependent changes in tumor volume after tail vein injection of different CAR-T cells (n = 5 mice per group).

(legend continued on next page)
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(Figures S7A and S7B). We established a subcutaneous xeno-
graft tumor model and administered various CAR-T cells for
treatment (Figure 7A). Tumor growth curves demonstrated that
CAR-Troxps Cells effectively inhibited tumor growth, achieving
complete remission in two out of five mice and significantly
reducing tumor sizes in the remaining three mice compared
with the untransduced T cell and CAR-Tgony groups
(Figures 7B and 7C). On day 25, we harvested and analyzed tu-
mor-infiltrating CAR-T cells and other immune cells via flow cy-
tometry. Compared with CAR-T¢ony group, CAR-Troxps cells ex-
hibited lower levels of exhaustion-associated inhibitory
molecules (PD-1 and LAG-3) and higher tumor infiltration of
CD4" T cells (Figures 7D and 7F). The compositions of tumor-
infiltrating human immune cells (CD8" T cells, B cells, NK cells,
cDC cells, and monocytes) in the CAR-Tgoxp3 group were like
those in the CAR-Tony group (Figure 7F). Furthermore, we noted
no significant differences in spleen weight and vital organs of
mice between the two groups (Figures 7E and S7C). Multiplex
cytokine detection in peripheral blood indicated that TNF-a
and IL-10 secretions were much lower in the CAR-Tgoxp3 group
than in the CAR-T¢ony group (Figure 7G). Unlike the varying cyto-
kine levels within the CAR-Tgony group, cytokine levels in the
CAR-Troxps group remained stable. Although not statistically sig-
nificant, mean levels of IL-18, IL-4, IL-6, IL-12p70, and IFN-y in
CAR-Tconv group were notably higher than those in the CAR-
Troxps group (Figure 7G), suggesting a reduced cytokine storm
following Foxp3 modification in CAR-T cells. Moreover, the con-
centration of IL-2, a crucial cytokine for the activation and prolif-
eration of CAR-T cells, did not differ significantly between the
groups (Figure 7G). These findings indicate that CAR-Trq,p3 cells
not only demonstrate enhanced antitumor activity but also main-
tain safety without inducing immune suppression in humanized
NSG models.

DISCUSSION

CAR-T cells are susceptible to exhaustion in the TME, which is
considered a major obstacle in CAR-T cell therapy. Considering
that immunosuppressive Tregs can thrive inside solid tumors
and promote tumor progression,*’** we aimed to mimic Treg
metabolism in CAR-T cells to overcome TME and prevent
CAR-T cell exhaustion. Here, we demonstrated that overex-
pressing Foxp3 in CAR-T cells is an extremely efficient metabolic

Cell Metabolism

intervention that depends on the interaction of Foxp3 with Drp1.
Furthermore, modification of the CAR-T cell metabolic pattern
directly avoids tumor-infiltrating CAR-T cell exhaustion, boosts
their cytotoxic capabilities, and improves their long-term immu-
nosurveillance functions.

Tregs can survive, expand, and function in most solid tumors
owing to their metabolic advantages; however, the metabolic
pathways of Tregs remain controversial. Some studies have re-
ported that Tregs exhibit lower OXPHOS and glycolysis levels,
and increasing OXPHOS impairs Treg differentiation.’'®
Whereas other studies have suggested that TGF-p-induced
Tregs exhibit a high level of OXPHOS, enabling them to possess
metabolic advantages in low-glucose, lactate-rich environ-
ments.>*>2*“% |t has been reported that the costimulatory do-
mains of CARs are involved in CAR-T cell metabolism, with the
CD28 domain favoring glycolysis via mTOR signaling and the
4-1BB domain enhancing OXPHOS through AMPK activa-
tion.***® The metabolic profiles of third-generation CAR-T cells
co-expressing CD28 and 4-1BB domains remain unclear, poten-
tially distinct from second-generation CAR-T cells given their
demonstrated superior efficacy.”® In this study, we found
Foxp3 could interact with Drp1 and affect mitochondrial function
and morphology. Mitochondria undergo fission and expansion
after CAR-T cells are activated, and mitochondrial fission re-
quires the participation of Drp1. Foxp3 may limit mitochondrial
fission, reducing mitochondrial number, mitochondrial mass,
and MMP, which may be the reason for decreased OXPHOS in
CAR-Troxps cells. Besides, Tregs have also been shown to
exhibit increased lipid uptake and upregulate lactic acid meta-
bolic pathways to maintain their suppressive capabilities.?’*>*"
Despite the controversial metabolic patterns, Tregs have a meta-
bolic advantage within solid tumors. Foxp3 is constitutively ex-
pressed in Tregs and contributes to both metabolic regulation
and Treg commitment. In the absence of Foxp3, Tregs lose their
suppressor function.*® In addition, Foxp3 strengthens the stabil-
ity and molecular characteristics of the Treg lineage, including
anergy and the inability to produce cytokine IL-2.%° Clinically,
Foxp3 mutation causes immune dysregulation, polyendocrinop-
athy, enteropathy, and X-linked syndrome, which is caused by a
lack of suppressive functional Tregs.*® According to our RNA-
seqg and ATAC-seq results, overexpressing Foxp3 in CAR-T cells
only changed the metabolic pathway—not the expression and
chromatin accessibility of Treg inhibitory function-related genes.

(D) Huh7 tumor weight on day 20 (n = 5 mice per group).

(E) Representative flow plots of activation and exhaustion markers on tumor-infiltrating CAR-T cells isolated from the Huh7 tumor on day 20 (n = 3 biological

replicates).

(F) Quantification of triple or double positivity for PD-1, TIM-3, and LAG-3 receptors on tumor-infiltrating CAR-T cells on day 20. To plot the pie chart, we set up

three independent mice to calculate the mean values and plotted pie charts.
(G) Quantification of (E).

(H) Quantification of PD-1 IntDen/CD3 IntDen ratio (n = 3 biological replicates).

() Representative confocal immunofluorescence microscopy images of Huh7 tumor stained for DAPI, CD3, and PD-1; scale bar, 100 pm (n = 3 biological
replicates).

(J) Differentially expressed gene volcano plot between tumor-infiltrating CAR-Trxp3 cells and CAR-T¢,n, cells identified by the limma package (n = 3 biological
replicates).

(K) GSEA plot showing enrichment of PD-1"9" CD8* T cell signature genes in CAR-Tcony Cells compared with CAR-Tgoxps Cells.

(L) Heatmap and enriched Gene Ontology (GO) terms for CAR-Tgop3 Cell highly elevated genes across several groups (CAR-Tcon, cells, n = 3 biological replicates;
CAR-Troxps cells, n = 3 biological replicates; CD4" Tcony cells, n = 2 biological replicates; Tregs, n = 2 biological replicates).

Data are presented as mean + SEM (C) or SD (D, G, and H). Statistical significance was calculated using unpaired Student’s t tests (G and H), one-way ANOVA (D),
and two-way ANOVA (C). NS, not significant, *o < 0.05, **p < 0.01.
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Figure 6. Foxp3 sustains long-lasting antitumor effect and low levels of exhaustion markers in CAR-Tgqxp3 cells in vivo

(A) Experimental timeline of the tumor rechallenge model.

(B) Time-dependent tumor volume changes in the first tumor antigen stimulation (n = 6 mice per group).

(C) Quantification of peripheral blood CAR-T cells on day 25.

(D) Representative flow plots of differentiation markers (CD45RA, CD62L) on peripheral blood CAR-T cells after first tumor clearance on day 25 (n = 3 biological
replicates).

(E) Quantification of (D).

(F) Time-dependent tumor volume changes after tumor rechallenge (control group, n = 4 biological replicates; CAR-Tcony group, n = 6 biological replicates;
CAR-Troxps group, n = 6 biological replicates).

(G) Experimental timeline of the tumor rechallenge model.

(H) Time-dependent tumor volume changes in the first tumor antigen stimulation (n = 5 mice per group).

(I) Time-dependent tumor volume changes after tumor rechallenge (n = 5 mice per group).

Data are presented as mean + SEM (I) or SD (C, E, and F). Statistical significance was calculated using unpaired Student’s t tests (C and E) and two-way ANOVA
(F and I). NS, not significant, *p < 0.05, **p < 0.01, **p < 0.001.
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Figure 7. CAR-Tgoxp3 Cells acquire potent antitumor activity but not immune suppression in humanized NSG models

(A) Experimental timeline of humanized NSG model.

(B) Time-dependent tumor volume changes in humanized NSG model (un-transduced T cells, n = 4 biological replicates; CAR-Tcony cells, n = 5 biological

replicates; CAR-Troxps3 Cells, n = 5 biological replicates).

(C) Quantification of Huh7 tumor volume and tumor weight on day 25 (CAR-Tcony cells, n = 5 biological replicates; CAR-Troxps Cells, n = 3 biological replicates).
(D) Quantification of tumor-infiltrating CAR-T cell exhaustion molecules (CAR-Tcony cells, n = 5 biological replicates; CAR-Tgqyp3 Cells, n = 3 biological replicates).
(E) Quantification of spleen weight and spleen length (CAR-Tc,,, cells, n = 5 biological replicates; CAR-Trqxp3 Cells, n = 5 biological replicates).

(F) Quantification of tumor-infiltrating immune cell compositions (CAR-T¢ony cells, n = 5 biological replicates; CAR-Troxp3 Cells, n = 3 biological replicates).

(G) Statistical analysis of peripheral blood human cytokine concentrations (CAR-Tcon, cells, n = 4 biological replicates; CAR-Troxp3 Cells, n = 5 biological

replicates).

Data are presented showing all individual data points (G) or mean + SD (C-F). Statistical significance was calculated using unpaired Student’s t tests (C-G). NS,

not significant, “o < 0.05, **p < 0.01, ***p < 0.001.

In addition, our in vitro and in vivo functional experiments
excluded the suppressive effect of CAR-Tgqyp3 cells. The expres-
sion of Treg inhibitory function-associated genes requires not
only transcription factors but also core histone acetylation,
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which opens chromatin structures and allows transcription fac-
tor binding. Foxp3 alone may not be sufficient to regulate the
complete Treg transcriptome because it directly binds only
around 10% of the genes responsible for Treg inhibitory
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activity.®® However, chromatin opening of some metabolism-
related genes was increased in CAR-Tgq,p3 cells. Meanwhile,
CAR-Troxps cells displayed an increased level of lipid meta-
bolism but a lower level of glycolysis and OXPHOS, which helped
CAR-Troxps Cells to better adapt to the hypoxic TME and sup-
pressed exhaustion-associated inhibitory molecules.

How Foxp3 affects Treg metabolism regulation is debatable.
In Foxp3-deficient mice, dysregulation of mTORC2 signaling aug-
ments aerobic glycolysis and OXPHOS."* TGF-p-polarized Tregs
increase mitochondrial respiration, and Foxp3 suppresses c-
Myc signaling, which represses glycolysis and glutaminolysis.**
In addition, Foxp3 could prevent fatty acid-induced apoptosis by
enhancing fatty acid metabolic pathways in T cells.?* This disparity
might be explained by variances in polarization methods and cell
origin. In this study, Foxp3 could shuttle into the cytoplasm and
interact with Drp1, which suggested the direct control of mitochon-
drial metabolism by Foxp3. Drp1, an essential protein for mito-
chondrial dynamics, regulates mitochondrial fission. Both
Ser616 (S616), which initiates mitochondrial fission, and Ser637
(S637), which inhibits mitochondrial fission, are potential sites of
phosphorylation for Drp1.2'+3? After antigen stimulation, the activa-
tion of mitogen-activated protein kinases (MAPKs) and elevation of
ERK phosphorylation led to Drp1 phosphorylation at S616, which
initiates mitochondrial fission and promotes aerobic glycolysis and
OXPHOS.*® Based on the predicted Foxp3 and Drp1 interaction
sites and our functional experiments, we found that the fragments
600-620 of Drp1 involved in the interaction of Foxp3 and Drp1,
which may explain the decrease in Drp1 phosphorylation only at
serine 616 by Foxp3; however, further research is required to
determine the fundamental mechanisms.

In summary, we demonstrated that Foxp3 remodeled CAR-T
cell metabolism to suppress glycolysis and OXPHOS and in-
crease lipid metabolism. The novel CAR-Tgqy,3 cells exhibited
substantial antitumor efficacy against solid tumors in a human
tumor xenograft model and a humanized immune system model,
which was attributed to Foxp3-mediated metabolism. Overall,
our research emphasizes the prospect of Foxp3-reprogramming
metabolism to improve antitumor efficacy of CAR-T cells and
may have important implications for clinical immunotherapy.
However, the efficacy and persistence of CAR-Tgoxps cells
need to be investigated further in a clinical trial.

Limitations of the study

Herein, we demonstrated that Foxp3 overexpression repro-
grams CAR-Tgoxps cell metabolism via cytoplasmic Foxp3-
Drp1 interaction. However, the precise mechanism by which
Foxp3 specifically reduces Drp1 phosphorylation exclusively at
serine 616 remains to be elucidated. Notably, unlike natural reg-
ulatory Tregs, Foxp3 overexpression does not confer immuno-
suppressive capacity to CAR-Tgoyps cells. This functional
discrepancy could potentially be attributed to fundamental dif-
ferences in chromatin accessibility patterns and inhibitory mole-
cule expression profiles between CAR-Tgq4p3 cells and natural
Tregs, though the underlying regulatory mechanisms governing
these distinctions warrant systematic exploration. Finally, while
Foxp3 in CAR-Troxps3 cells is primarily localized in the cytoplasm
with detectable nuclear expression, the functional relevance of
nuclear Foxp3, particularly its potential role in transcriptional
regulation, remains undefined.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

SAMBAMBA A. Tarasov, A.J. Vilella, E. Cuppen GitHub — biod/sambamba: Tools for
working with SAM/BAM data

FlowJo v10 FlowdJo, LLC https://www.flowjo.com

GraphPad Prism v8.0 GraphPad https://www.graphpad.com

Wave Agilent https://www.agilent.com/en/product/cell-
analysis/real-time-cell-metabolic-analysis/
xf-software/seahorse-wave-desktop-
software-740897

FastQC Simon Andrews https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/

MultiQC Philip Ewels https://multigc.info/

Trim Galore Felix Krueger https://www.bioinformatics.babraham.ac.
uk/projects/trim_galore/

HISAT2 Daehwan Kim http://daehwankimlab.github.io/hisat2/

Subread Yang Liao https://subread.sourceforge.net/

Samtools Heng Li, Bob Handsaker https://github.com/samtools/samtools

deepTools Ramirez, Fidel https://deeptools.readthedocs.io/en/
develop/

Limma Matthew E. Ritchie http://bioconductor.org/packages/release/
bioc/html/limma.html

Bowtie2 Langmead B, Salzberg S Bowtie 2: fast and sensitive read alignment
(sourceforge.net)

GSEA Aravind Subramanian https://www.gsea-msigdb.org/gsea/

Gene Ontology Resource
The Integrative Genome Viewer (IGV)
pheatmap

clusterProfiler

Open Biological Ontologies Foundry
Broad Institute
Raivo Kolde

Guangchuang Yu

index.jsp
http://geneontology.org/
https://github.com/igvteam/igv

https://www.rdocumentation.org/
packages/pheatmap/versions/1.0.12/
topics/pheatmap
https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

ChIPseeker Wang Q, Li M https://bioconductor.org/packages/
release/bioc/html/ChlPseeker.html

MACS2 Tao Liu https://pypi.org/project/ MACS2/

Bedtools Quinlan AR and Hall IM bedtools: a powerful toolset for genome
arithmetic — bedtools 2.31.0
documentation

Homer cbenner@ucsd.edu http://homer.ucsd.edu/homer/motif/

BioRender BioRender Software https://www.biorender.com/

Other

RPMI 1640 medium, no glucose
RPMI 1640 medium, no glutamine
DMEM medium

RPMI 1640 Medium

Fetal Bovine Serum, Australia origin

Thermo Fisher
Thermo Fisher
Thermo Fisher
Thermo Fisher
Thermo Fisher

Cat#11879020
Cat#21870076
Cat#C11995500BT
Cat#C11875500BT
Cat#10099141

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines

The hepatocellular carcinoma cell line Huh7 and embryonic kidney cell line 293T (HEK293T) were purchased from the Cell Bank of
Chinese Academy of Sciences (Shanghai, China). Both cell types were mycoplasma free and were maintained in Dulbecco’s
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modified Eagle’s medium (Gibco, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 100 U/
mL penicillin-streptomycin (Gibco). Cell lines were seeded at a density of 4 x 10° cells/mL and passaged at 90% confluence for 20
passages.

Primary cell culture

Human PBMCs were collected from fresh peripheral blood of healthy donors at the Huashan Hospital of Fudan University Shanghai,
China. Informed consent was obtained from all subjects involved and the project was approved by the Institutional Review Board of
Huashan Hospital, Fudan University (no. 2022-913). Human T lymphocytes were purified using the Pan T cell Isolation Kit (Miltenyi
Biotec, Bergisch Gladbach, Germany). T lymphocytes were seeded at a density of 1 x 10° cells/mL and cultured in RPMI 1640 me-
dium supplemented with 10% FBS, 2 mM glutamine, 1% MEM non-essential amino acid solution, 10 mM HEPES, and 1 mM sodium
pyruvate (All from Gibco).

Animals

NSG mice (NOD.Cg-Prkdcs°l2rg®™m°%) were purchased from Shanghai Model Organisms Center, Inc (Shanghai, China). Human-
ized immune system NSG mice (huHSC-C-NKG-ProF) were constructed in Cyagen Biosciences (Suzhou, China) based on hemato-
poietic stem cells (HSCs), and mice with comparable levels of immune system humanization (where T cells constitute over 30%,
B cells over 10%, and NK cells over 5% of peripheral blood human immune cells) were selected. All animals were housed under path-
ogen-free, humidity- and temperature-controlled (20-24°C) specific conditions at Fudan University, with free access to water and
standard laboratory rodent chow. All animal experiments were approved by the Institutional Animal Care and Use Committee of Fu-
dan University (No. 20210302-124) and conformed to the relevant regulatory standards. In all Huh7 tumor trials, female mice of
the same age and similar weight were randomly assigned to different experimental groups. Subcutaneous xenograft tumor model
was created in mice and different CAR-T cells were injected for treatment, while un-transduced T cells were used as negative control.
The tumor volume in all experiments was calculated as (Length x Width?) /2, and a tumor volume > 2000 mm?® was considered as the
experimental endpoint.

METHOD DETAILS

Generation of CAR-T cells

The structure of third-generation GPC3-CAR included a CD28 intracellular domain, 4-1BB intracellular domain, and CD3 zeta intra-
cellular domain, along with a GPC3-specific target scFv derived from the HU9F2 antibody. Foxp3 was co-expressed with GPC3-CAR
via the T2A peptide in GPC3-CAR-Foxp3. Genes encoding GPC3-CAR and GPC3-CAR-Foxp3 were inserted into the lentiviral vector
pWPT-GFP (Cat#12255, Addgene) via Mlul and Sall cloning sites. To produce lentiviruses, the lentiviral packaging vectors psPAX2
(Cat#12260, Addgene), pMD2.G (Cat#12259, Addgene), and CAR plasmids were transfected into HEK293T cells using polyethyle-
nimine (Polysciences, Warrington, USA). Naive T lymphocytes were activated using anti-CD3 antibody (BioLegend, San Diego, CA,
USA) and anti-CD28 antibody (BioLegend) coated wells, and then infected with concentrated lentivirus in RetroNectin (Takara, Shiga,
Japan) coated plates to create CAR-T cells. And un-transduced T cells as negative controls underwent the same activation and
expansion procedure with CAR-T cells but without viral infection.

Staining and flow cytometry

Cells were washed and blocked with Fc Receptor Blocking Solution (Human TruStain FcX; BioLegend). Next, using certain antibodies
and reactive dye, the cells were stained for 30 min at 4°C. After two rounds of washing, the cells were analyzed using a FACSCanto Il
or FACSCelesta (BD Biosciences, San Jose, CA, USA). Each duplicate consisted of at least 10,000 events, and unstained, untreated
cells were also used as controls. Finally, the data were analyzed using FlowJo software (Tree Star, Ashland, Oregon, USA).

ECAR and OCR measurements

The OCR and ECAR were monitored using a Seahorse Bioscience XFe96 Extracellular Flux Analyzer (Seahorse Bioscience, Billerica,
MA, USA) in accordance with the manufacturer’'s recommendations. Different CAR-T cells were purified using flow cytometry sorter
(Sony MA900), and 6 x 10* CAR-T cells/well were plated on Seahorse XFe96 plates. For measuring OCR, the cells were exposed to
1.5 uM oligomycin, 2.0 uM FCCP, 0.5 uM rotenone, and antimycin A (All from Agilent, Santa Clara, CA, USA) at final concentrations. In
contrast, 10 mM D-glucose, 1 mM oligomycin, and 50 mM 2-deoxyglucose (All from Agilent) were injected sequentially to measure
the ECAR.

Non-targeted mass spectrometry and analysis

After two washes in PBS, the same number and positive rate of CAR-T¢on, and CAR-Trqyp3 Cells were lysed with an extraction so-
lution (Acetonitrile : methanol : water = 2 : 2 : 1) that contained a mixture of isotopically labeled internal standards. Samples were
vortexed for 30 sec, followed by three rounds of freezing and thawing in liquid nitrogen. After sonication in an ice water bath for
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10 min, samples were incubated at —40°C for 1 h. Thereafter, samples were centrifuged at 13,000 x g for 15 min at 4°C, and the
supernatant was collected for LC-MS analysis at Shanghai Baiqu Biomedical Technology Co., Ltd. (Shanghai, China). LC-MS
was performed on a Vanquish UHPLC system (Thermo Fisher) with a UPLC BEH Amide column (2.1 mm x 100 mm, 1.7 um) coupled
to a Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo Fisher). The original data were processed using ProteoWizard and
peak identification, extraction, alignment, and integration were carried out using an internal tool. An in-house MS2 database was
used for metabolite annotation with a cutoff of 0.3. The supervised OPLS-DA method was used to determine the VIP value of the first
principal component and to visually distinguish groups and identify metabolites with significantly different levels, which were selected
by VIP > 1 and P < 0.05. The significantly different metabolites were displayed and pathway enrichment analysis was carried out.

[U-C13]-Glucose and [U-C13]-glutamine metabolism

Metabolic tracer analyses using [U-C'®]-glucose and [U-C'°]-glutamine as substrates were performed to monitor glycolysis and the
TCA cycle. The same number and positive rate of CAR-T¢ony, and CAR-Tro,p3 Cells were harvested, washed twice with PBS, and
lysed with an extract solution (Acetonitrile : methanol : water =2 : 2 : 1) after different CAR-T cells were labeled for 6 hin T cell medium
supplemented with [U-C'°]-glucose (11.11 mM) or [U-C'®]-glutamine (2 mM). The supernatants were collected and submitted to the
Institute of Metabolism and Integrative Biology (Fudan University, Shanghai, China) for LC-MS analysis. LC-MS analyses were per-
formed using AB SCIEX ExionLC AC high-performance liquid chromatography with an iHILIC-(P) Classic HILIC column
(2.1 mm x 150 mm, 5 pm) coupled to an AB SCIEX TripleTOF 6600" mass spectrometer. ProteoWizard was used to process the
original data and EI-MAVEN was used to perform peak extraction to gather the response data for each metabolite, and the results
were analyzed using R.

RNA extraction and RNA-seq

At the end of animal experiment in Figure 5A, intratumoral CAR-T cells from CAR-Tgoxp3 @and CAR-Tcony groups were purified using
flow cytometry sorter (Sony MA900), total RNA was extracted and evaluated using Bioanalyzer. cDNA library was constructed using
the Hieff NGS MaxUp Il Dual-mode mRNA Library Prep Kit for lllumina (Yeasen, Shanghai, China). After quality control, 150 bp paired-
end reads were sequenced on an lllumina NovaSeq 6000 platform (lllumina, San Diego, CA, USA), acquiring approximately 30 million
reads. Next, RNA-seq raw data were checked for quality and trimmed using FastQC and Trim Galore, respectively. Hisat2 was used
for mapping sequence reads to the human genome (hg38), and Subread was used to count reads. In subsequent differential expres-
sion analysis, the limma package was used to filter differentially expressed genes using logFC > 1 and P < 0.05 as threshold criteria.

BiFC assay

For BiFC analysis, the complete coding sequence (CDS) or partially deleted Foxp3 were cloned into pBiFC-VC155 (Cat#22011,
Addgene) vector and combined with the C-terminal segment of Venus to form a Foxp3-Cvenus fusion protein. Meanwhile, the entire
CDS of Drp1, Mfn1, Mfn2, and Opa1 were inserted into pBiFC-VN173 (Cat#22010, Addgene) vector and combined with the N-ter-
minal fragment of Venus. Subsequently, pBiFC-Drp1-VN173, pBiFC-Mfn1-VN173, pBiFC-Mfn2-VN173, and pBiFC-Opa7-VN173
plasmids were respectively transfected into HEK293T cells with pBiFC-Foxp3-VC155 plasmid. The fluorescence of the HEK293T
cells was observed using fluorescence microscopy and flow cytometry after 72 h.

GST pull-down assays

The GST-Drp1 fusion protein was created by cloning the full-length GST CDS with Drp1. The Foxp3 gene was tagged with a 6*His-
tag. Plasmids encoding GST, GST-Drp1, and Foxp3-6*His were inserted into the PCDH-CMV-EF1a-GFP vector (Cat#CD511B-1,
System Biosciences) via EcoRlI cloning sites. Proteins were expressed in HEK293T cells via plasmid transfection. After cell lysis,
the GST and GST-Drp1 fusion proteins were purified using Glutathione-Magarose Beads (Changzhou Smart-Lifesciences Biotech-
nology Co., Ltd., Changzhou, China). Whole-cell lysates containing Foxp3-6*His were generated from HEK293T cells transfected
with PCDH-CMV-Foxp3-6*His plasmid and incubated with purified GST and GST-Drp1 proteins (~10 pg) for 2 h at 4°C. After
washing, the retained proteins were eluted by boiling and analyzed via western blot using antibodies against GST (Cat#66001-
2-lg, Proteintech) and His-tag (Cat#66005-1-Ig, Proteintech).

Protein interaction analysis

AlphaFold was employed to predict the crystal structures of Foxp3 and Drp1. The protein crystals obtained were subjected to protein
preprocessing, regenerating states of the native ligand, H-bond assignment optimization, protein energy minimization, and water
removal using Schrédinger software. Next, Foxp3-Drp1 docking was conducted using protein-protein docking module. The number
of ligand rotations to the probe was set to 70000 and the maximum number of poses to return was set to 30. The lower the docking
score, the stronger the binding stability.

Live cell imaging for cytotoxicity assay

For live cellimaging, different CAR-T cells were purified using flow cytometry sorter (Sony MA900), and Huh7 cells were stained with
eFluor™ 670 (Thermo Fisher) and incubated with CAR-T cells at a ratio of 4 : 1. Cytotoxicity was observed using a Nikon Ti2E fluo-
rescence microscope coupled to a Yokogawa W1 Spinning Disk, connected to two SCMOS ZYLA cameras, and equipped with an
incubation chamber, Okolab, that controls temperature, CO,, and humidity. More than 80 Huh7 cells were monitored using this live
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cell imaging setup. Cytotoxicity was measured based on the total fluorescence intensity calculated using Fiji software (National In-
stitutes of Health, Maryland, USA).

ATAC-seq and data processing

Tregs, CAR-Tcony, and CAR-Troxps cells from the same donor were isolated and purified using flow cytometry sorter (Sony MA900).
After 3 days of antigen-specific stimulation, CAR-Tcony and CAR-Troxps Cells were subjected to ATAC-seq analysis using the lllumina
NovaSeq 6000 platform (lllumina), along with activated Tregs. FastQC and Trim Galore were used for data quality evaluation and
removal of adapter sequences and low-quality bases. SAMtools and Sambamba were used to filter duplicate and multi-mapped
reads after Bowtie2 matched the reads to the genome. MACS2 was used for peak calling, and DiffBind was employed to detect dif-
ferential ATAC-seq peaks. Heatmaps and matrices of the ATAC-seq signals in the TSSs were calculated using the ComputeMatrix
tool in DeepTools. ChiPseeker was used to annotate the ATAC-seq peaks and motif analysis based on HOMER.

T cell proliferation suppression assay

Human PBMCs were purchased from Shanghai Oribiotech Biotechnology Co. (Shanghai, China). Treg cells (CD4*CD25*CD127")
were isolated from these PBMCs using flow cytometry (Sony MA900) and then expanded with Dynabeads (Thermo Fisher,
11132D). Meanwhile, CAR-T cells and naive T cells were also prepared from these PBMCs of the same donor. After that, naive
T cells were labeled with CFSE and co-cultured with Treg cells or CAR-T cells at a ratio of 2:1 under Dynabeads stimulation for
72 h. Cell proliferation were evaluated by monitoring the dilution of green fluorescent dye CFSE using flow cytometry. The cell pro-
liferation suppression was calculated by Percent suppression = 100 - (Percentage of proliferating cell with Treg or CAR-T cells / Per-
centage of proliferating cell in group) * 100.

Illustration tool
BioRender is employed for creating the graphical abstract image.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was conducted using GraphPad Prism 8.0 (GraphPad, La Jolla, CA, USA), and all data are indicated as mean +
standard deviation or mean + standard error of the mean. We employed F-test for comparing variances and two-tailed, unpaired
Student’s t-test to determine the statistical discrepancy for two groups. For three and more groups, one-way and two-way
ANOVA was employed. Statistical significance was set at P < 0.05 and figure legends include the statistical information for each
experiment.
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