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 A B S T R A C T

We introduce stochastic choice models that feature neural networks, one of which is called 
the logit neural-network utility (NU) model. We show how to use simple neurons, referred to 
as behavioral neurons, to capture behavioral effects, such as the certainty effect and reference 
dependence. We find that simple logit NU models with natural interpretation provide better out-
of-sample predictions than expected utility theory and cumulative prospect theory, especially 
for choice problems that involve lotteries with both positive and negative prizes. We also find 
that the use of behavioral neurons mitigates overfitting and significantly improves our models’ 
performance, consistent with numerous successes in introducing useful inductive biases in the 
machine-learning literature.

. Introduction

Over the last decade, machine-learning models have demonstrated strong predictive power in many decision problems. For 
xample, when we shop at Amazon, Amazon recommends products to us with the help of machine learning. For a machine-learning 
odel to perform well in this regard, the model must make good predictions about the likelihood that a consumer will buy a product 
fter it is recommended.
The fact that a machine-learning model predicts people’s behavior well, however, does not necessarily make it a good model of 

ecision-making. For example, suppose there is a true model that describes how a decision maker behaves. From the model, one 
ay gain insights about the decision process. A machine-learning model may approximate the true model in some decision problems 
ell—and therefore predict well for those problems—but the insights from the true model may be lost in the approximation.
Nonetheless, it is possible that of the numerous machine-learning models with the potential to predict well, some are indeed 

ood models of how people make decisions. In a recent paper by Ke and Zhao (2024), the authors show that a decision model that 
eatures neural networks called the neural-network utility (NU) model can be a good model of how people make choices: The model 
s characterized by simple axioms motivated by empirical evidence imposed on people’s choice behavior, and yields an intuitive 
nd plausible interpretation of how people make choices.
The primitive of Ke and Zhao (2024), however, is a decision maker’s preference. In other words, their model is deterministic. It 

s well known that stochastic choice models are more suitable for empirical analyses than deterministic ones. Hence, in this paper 
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we introduce and axiomatically characterize stochastic-choice versions of the NU model. One of them is a logit version of the NU 
model, which we use for empirical analyses. We show empirically that some simple logit NU models that are easy to interpret 
perform better than expected utility theory and cumulative prospect theory out of sample.

Specifically, consider a convex set of choice alternatives 𝑋 in R𝑁 . For example, an alternative may be a product described by 
its 𝑁 attributes or may be a lottery that specifies the probability that the decision maker will receive each of the 𝑁 prizes. To 
explain our models and findings, we first describe the NU model. In an NU model, the decision maker takes an alternative as the 
input of a feedforward neural network and derives the utility of the alternative as the output of the network. A feedforward neural 
network may have multiple hidden layers, and each hidden layer may have multiple neurons. A neuron consists of two operations. 
First, it applies an affine aggregation to its child neurons’ values.1. Second, it compares the outcome of aggregation to a normalized 
threshold 0, which determines whether a neuron is activated.

In our empirical analysis, 𝑋 is the probability simplex and choice alternatives are lotteries. In that case, the interpretation of 
the NU model is as follows. Note that an affine function on the probability simplex is equivalent to an expected utility function. 
Therefore, in an NU model, it is as if that the decision maker first considers multiple expected utility functions (the affine functions 
of the first hidden layer’s neurons) plausible, and uses the activated ones to evaluate a lottery. Next, the decision maker aggregates 
the multiple risk attitudes. Again, she may not have a unique way to aggregate them. This is captured by the second hidden layer. 
The aggregation continues recursively until the decision maker reaches the last hidden layer and forms the final evaluation of the 
lottery.

The primitive of our theory is a stochastic choice function that specifies the choice frequency of each alternative in an arbitrary 
set of alternatives. Let 𝜌(𝑥,𝐴) denote the choice frequency of alternative 𝑥 when the available set of alternatives is 𝐴. We introduce 
and characterize two stochastic-choice versions of the NU model. The Luce NU model has an NU function 𝑈 and a strictly increasing 
and positive-valued function 𝜙 such that

𝜌(𝑥,𝐴) =
𝜙(𝑈 (𝑥))

∑

𝑦∈𝐴 𝜙(𝑈 (𝑦))
.

The logit NU model uses the familiar logit formula:

𝜌(𝑥,𝐴) = Prob
[

𝑈 (𝑥) + 𝜀𝑥 ⩾ max
𝑦∈𝐴

𝑈 (𝑦) + 𝜀𝑦

]

= 𝑒𝑈 (𝑥)
∑

𝑦∈𝐴 𝑒𝑈 (𝑦)
,

in which 𝜀𝑦’s are independent and identically distributed random variables that follow the Gumbel distribution (type-I generalized 
extreme value distribution) with scale parameter 1. Clearly, the logit NU model is a special case of the Luce NU model.

The Luce NU model and the logit NU model both contain an NU function. We show how to construct simple neural-network 
structures in an NU function to capture well-known behavioral phenomena such as the certainty effect, reference dependence, etc. 
We call these structures behavioral neurons. They will play an important role in our empirical analyses.

We study the empirical performance of the logit NU model, examine the complexity required for a neural network to explain 
and predict people’s choice behavior well, and identify the choice problems in which the logit NU model outperforms benchmark 
models. The answer to the second question is useful because, arguably, if a rather complex neural network is required to explain 
and predict the data well, the interpretation the logit NU model offers might be too complex to be interesting or insightful.

We analyze the logit NU model using the training and testing datasets provided by the Choice Prediction Competition 2018 
(see Plonsky et al. (2019)). After aggregating the individual choice data, each data point consists of a description of two lotteries 
(see Fig.  6) and the proportion of experiment participants who choose the first lottery over the second. We use the training dataset 
to estimate a model and then measure the model’s out-of-sample performance by computing its mean square error in the testing 
dataset (testing error).

To do so, we begin by taking expected utility theory and cumulative prospect theory (see Tversky and Kahneman (1992)) as the 
benchmark. We must parameterize these models to avoid overfitting. For example, rather than estimating a general Bernoulli index 
for expected utility, which requires a large amount of data, we may estimate the constant-absolute-risk-aversion (CARA) special case. 
The same applies to cumulative prospect theory. Our first observation is that, consistent with recent empirical findings, expected 
utility theory performs well: Cumulative prospect theory under standard parameterization cannot outperform CARA expected utility 
in out-of-sample prediction.2

Similarly, we need to parameterize the NU function in the logit NU model to mitigate overfitting. We combine two ideas to 
achieve this. First, note that the affine aggregation functions of the first-hidden-layer neurons of the NU function are defined on the 
probability simplex. An affine function on the probability simplex is equivalent to an expected utility function. Therefore, a natural 
idea is to require that those functions be CARA expected utility functions.3 Second, recall that we can use behavioral neurons to 
capture well-documented behavioral effects. These behavioral neurons are parameterized and may provide useful flexibility for the 
NU function. Therefore, to parameterize the NU function, we require that its first hidden layer consist of at most the following three 

1 For a neuron in the first hidden layer, its child neurons are all components of the alternative. For a neuron in the 𝑛th hidden layer (𝑛 > 1), its child neurons 
are all neurons in the (𝑛 − 1)th hidden layer

2 See, among others, Harless and Camerer (1994); Blavatskyy et al. (2022); Bouchouicha et al. (2023); and Dembo et al. (2024).
3 If we only utilize this idea for parameterization, we will remove too much flexibility from the NU function: The model’s performance is essentially identical 

to the CARA expected utility benchmark.
2 
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types of neurons: (i) neurons that evaluate CARA expected utility, (ii) neurons that capture the certainty effect, and (iii) neurons 
that capture reference dependence. Then, additional standard hidden layers may be concatenated with this first hidden layer.

We consider different configurations of the network structure and find that a two-hidden-layer logit NU model with all three 
types of neurons used in the first layer has the lowest testing error. In addition, the testing error of this logit NU model is lower 
than that of the CARA expected utility model. Hence, a reasonably complex NU function that has a natural interpretation has the 
best performance.

Moreover, the two-hidden-layer logit NU model’s estimated parameters reveal some interesting characteristics. First, most 
neurons that capture reference dependence have reference points close to zero in absolute value. As a result, for pure-gain or 
pure-loss lotteries, the model is essentially expected utility with a boost for higher probabilities of winning a prize (due to neurons 
that capture the certainty effect). Second, indifference curves exhibit more complex patterns for mixed lotteries—i.e., lotteries with 
both gains and losses, which potentially reflects the difficulty of evaluating such lotteries for the decision maker. Third, when 
evaluating a mixed lottery, the ratio of the probability of gaining over the probability of losing seems to be a key factor for making 
choices.

Remarkably, we find that the logit NU model performs well in choice problems with mixed lotteries, but the CARA expected 
utility model does not. In fact, the dominance of the logit NU model over the CARA expected utility model is mainly driven by their 
performances in those choice problems. Most of the recent empirical studies that support the expected utility model have primarily 
focused on pure-gain lotteries.4 Therefore, our findings imply that non-expected utility models may be more effective in dealing 
with mixed lotteries.

Overall, the use of behavioral neurons improves the logit NU model’s performance significantly, which shows that economists’ 
domain knowledge in decision-making is useful even for predictions using powerful machine-learning methods. This observation 
echoes numerous successful examples in deep learning. In deep learning, there is a recurring theme called the inductive bias. 
This refers to a set of assumptions on the structure of neural networks or training algorithms that guide the learning process and 
incorporate prior knowledge of the true model so that deep learning can be more efficiently implemented in a more restricted 
subspace (see Neyshabur et al. (2014); Goyal and Bengio (2022); and Goldblum et al. (2023)). Inductive biases may allow neural-
network models to learn faster and generalize better out of sample. Our approach introduces behavioral neurons as the inductive 
bias to neural networks. Compared with general neural networks, our inductive bias restricts the search space to the model class 
that better captures human behavior. Consequently, we achieve significantly better generalization performance.

As mentioned earlier, our paper provides an axiomatic characterization of the Luce and logit NU models. These axioms are useful 
in two ways. First, while predictive accuracy matters to us, maximizing predictive accuracy is not our primary objective. Rather, we 
seek predictive accuracy within a coherent economic framework. Without this restriction, one might freely choose among various 
machine learning methods and simply select the model with the highest predictive accuracy.5 In this sense, the axioms define the 
economic framework that constrains our empirical analysis: We rule out models inconsistent with our axioms. Second, the axiomatic 
characterization clarifies how our model generalizes or differs from existing economic models, and provides a foundation for future 
research in this interdisciplinary area. Hence, the axiomatic characterization is not independent of our empirical analysis, but an 
essential component of its foundation.

1.1. Related literature

The Luce NU model and logit NU model are stochastic choice models. Many other axiomatic stochastic choice models that are 
related to the Luce rule or the logit model have been studied. Kovach and Tserenjigmid (2022a) characterize an axiomatic model 
called nested stochastic choice, as well as one of its special cases, the nested logit model, which is a well-known solution to the red-
bus-blue-bus problem (see Debreu (1960)). Kovach and Tserenjigmid (2022b) introduce a generalization of the Luce rule in which 
the decision maker divides the available alternatives into two groups; one group is focal and more likely to be chosen. Saito (2018) 
characterizes another generalization of the logit model that is widely used in empirical studies—the mixed logit model—and Lu and 
Saito (2022) analyze the differences between the mixed logit model and pure characteristic models. Echenique and Saito (2019) 
extend the Luce rule to deal with zero-probability choices. Fudenberg and Strzalecki (2015) study a dynamic extension of the logit 
model with aversion to large menus.

A growing literature combines economic theory with machine learning. Similar to our work, Plonsky et al. (2017), Plonsky 
et al. (2019), and Peterson et al. (2021) also combine behavioral economics with machine learning methods to study choice 
behavior. Their approach is closer to machine learning. Their models do not have axiomatic foundations and may violate, for 
example, basic behavioral properties such as transitivity, which is different from our approach. Peterson et al. (2021) measure the 
performance of their models using cross-validation errors, while the other two papers and ours measure out-of-sample prediction 
errors. Fudenberg and Liang (2019) combine game theory with machine learning and use the decision tree algorithm to study the 
initial play of games. Cho and Libgober (2021) study a problem in which an agent uses historical data and algorithms to provide 
action recommendations to a sequence of players in order to maximize their average long-run payoffs. Caplin et al. (2022) and Ke 
et al. (2024) analyze how to model machine learning and how to model people learning from complex machine-learning algorithms, 
respectively.

4 See Blavatskyy et al. (2022); Bouchouicha et al. (2023); Dembo et al. (2024); and McGranaghan et al. (2024).
5 See the related discussion on Plonsky et al. (2017) and Plonsky et al. (2019) in Section 6.
3 
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Our empirical analysis is related to the empirical analysis of non-expected utility theory, such as Chew and Waller (1986); Battalio 
et al. (1990); Harless and Camerer (1994); Starmer (2000); Wu et al. (2005); Choi et al. (2007); Bernheim and Sprenger 
(2020); Blavatskyy et al. (2022); Bouchouicha et al. (2023); Dembo et al. (2024); and McGranaghan et al. (2024). Among 
these, Harless and Camerer (1994) show that in some cases expected utility theory has the best performance, which is consistent 
with one of our findings. Different from our analysis, they do not examine models’ predictive power using a testing dataset that 
is not accessed when estimating models. Bernheim and Sprenger (2020) find that decision weights are not sensitive to the ranks 
of outcomes. Our finding is consistent with theirs—when we estimate the probability-weighting function of cumulative prospect 
theory, we find little distortion of probabilities. Also consistent with our finding, Blavatskyy et al. (2022), Bouchouicha et al. (2023), 
and Dembo et al. (2024) find that expected utility theory performs well empirically.

Our paper is also related to the machine-learning literature that focuses on interpreting machine-learning models, especially 
neural-network models; see Murdoch et al. (2019) for a survey. Our paper provides an axiomatic foundation and interpretation for 
our neural-network model. In addition, our use of behavioral neurons is related to introducing inductive biases to neural networks. 
For example, see Neyshabur et al. (2014); Goyal and Bengio (2022); and Goldblum et al. (2023).

The rest of the paper is organized as follows. Sections 2 and 3 introduce the Luce NU model, the logit NU model, and behavioral 
neurons. Section 4 takes the logit NU model to data. Section 5 provides an axiomatic characterization for our models, and Section 6 
concludes.

2. Setup and models

Let 𝑋 ⊆ R𝑁  be nonempty convex and compact and have nonempty interior. An element 𝑥 = (𝑥1,… , 𝑥𝑁 ) of 𝑋 represents a choice 
alternative. One may think of 𝑋 as a space of products that are described by their attributes, in which case 𝑥𝑖 is the value of product 
𝑥’s 𝑖th attribute. One can also let 𝑋 be the probability simplex in R𝑁 , and think of it as the set of all probability measures over 𝑁
prizes. In this case, we call 𝑥 ∈ 𝑋 a lottery. We use 𝑤, 𝑥, 𝑦, 𝑧 to denote generic elements of 𝑋, and for any 𝜆 ∈ [0, 1], we use 𝜆𝑥𝑦 to 
denote the convex combination 𝜆𝑥+ (1− 𝜆)𝑦. Let  denote the collection of nonempty finite subsets of 𝑋. Elements of , denoted 
by 𝐴,𝐵, 𝐶, are called menus.

The primitive of our model is a stochastic choice function (SCF) that describes for any menu the choice probability of each 
alternative in the menu.

Definition 1.  A function 𝜌 ∶ 𝑋 × → [0, 1] is an SCF if for any 𝐴 ∈ , ∑𝑥∈𝐴 𝜌(𝑥,𝐴) = 1.

When the menu is 𝐴, the choice probability of 𝑥 ∈ 𝐴 is 𝜌(𝑥,𝐴). As usual, there are two ways to interpret an SCF. The group 
interpretation, which is more relevant for our empirical study, says that for a fixed group of homogeneous decision makers, the 
SCF specifies the choice frequency distribution for any menu when all decision makers in that group choose from the menu 
independently.6

We introduce and later will characterize two representations of the decision maker’s SCF. One of them, the logit NU model, will 
be used in the empirical analysis. We first define the NU function. Given any vector-valued function 𝜏, we use 𝜏(𝑗) to denote the 𝑗th 
component of 𝜏.

Definition 2.  A function 𝑈 ∶ 𝑋 → R is an NU function if there exist
(i) ℎ,𝑤0,… , 𝑤ℎ+1 ∈ N with 𝑤0 = 𝑛 and 𝑤ℎ+1 = 1, and
(ii) affine functions 𝜏𝑖 ∶ R𝑤𝑖−1 → R𝑤𝑖 , 𝑖 = 1,… , ℎ + 1, such that for any 𝑥 ∈ 𝑋, 

𝑈 (𝑥) = 𝜏ℎ+1◦𝜃◦𝜏ℎ◦… ◦𝜃◦𝜏2◦𝜃◦𝜏1(𝑥), (1)

in which 𝜃 is an entry-wise operation such that for any 𝑤 ∈ N and 𝑏 ∈ R𝑤, we have 𝜃(𝑏) = (max{𝑏𝑖, 0},… ,max{𝑏𝑤, 0}).

In Definition  2, 𝜃◦𝜏𝑖 is called the 𝑖th hidden layer, and (𝜃◦𝜏𝑖)(𝑗) = max{𝜏(𝑗)𝑖 (⋅), 0} is called a neuron.7 Hence, Eq. (1) characterizes a 
network of neurons with ℎ hidden layers, and the 𝑖th hidden layer has 𝑤𝑖 neurons. Fig.  1 provides an example of an NU function.

Suppose 𝑋 is the probability simplex. The economic interpretation of the NU function is as follows. Recall that an affine function 
defined on the probability simplex must be an expected utility function and vice versa. Therefore, if the decision maker’s preference is 
represented by an NU function, it is as if she first considers multiple ways to evaluate the uncertainty of a lottery, which corresponds 
to the affine functions of the first hidden layer. For instance, she may have one neuron that activates when the expected value of 
prizes is high and another that activates whenever the downside risk is high.

With multiple risk attitudes, the decision maker wants to aggregate them. She may also consider multiple ways to do so. This 
is captured by the second hidden layer, with each affine function of the second-hidden-layer neuron representing one way of 
aggregation if activated. The aggregation continues recursively until the decision maker reaches the final evaluation of the lottery.8

Finally, we introduce two representations of the SCF.

6 In the other interpretation, fixing one decision maker, the SCF specifies for any menu the decision maker’s ex ante choice probability of each alternative 
in that menu.

7 The function 𝜃 is called the activation function. It may take other functional forms in general, but the form we assume in Definition  2, known as the rectified 
linear unit, is considered to be the most popular and to have strong biological motivations (see Hahnloser et al. (2000) and LeCun et al. (2015), among others).

8 The interpretation of the NU function when 𝑋 is, for example, a space of products characterized by their attributes can be found in Ke and Zhao (2024). 
The probability simplex case is more relevant in our analysis.
4 
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Fig. 1. This NU function evaluates an alternative 𝑥 = (𝑥1 , 𝑥2 , 𝑥3) through a neural network that has two hidden layers, with each layer having two neurons. Each 
affine 𝜏 (𝑗)1  is from the choice domain (a subset of R3) to R, and each affine 𝜏 (𝑗)2  is from R2 to R. Neurons in the first layer are called child neurons of neurons 
in the second layer. Neurons in the second layer are called parent neurons of neurons in the first layer.

Fig. 2. In the first neuron, 𝑉  is an expected utility function, which is affine. If the probability of receiving a prize is larger than 0.99 (𝑥𝑖 > 0.99 for some 
𝑖 ∈ {1, 2, 3}), one of the three other neurons that capture the bias toward certainty will be activated. Finally, 𝑈 (𝑥) is equal to a weighted sum of all neurons’ 
values.

Definition 3.  The SCF has a Luce NU representation if there exists an NU function 𝑈 ∶ 𝑋 → R and a strictly increasing continuous 
function 𝜙 ∶ 𝑈 (𝑋) → R++ such that for any 𝐴 ∈  and any 𝑥 ∈ 𝐴, 𝜌(𝑥,𝐴) = 𝜙(𝑈 (𝑥))

∑

𝑦∈𝐴 𝜙(𝑈 (𝑦)) .

If a random variable 𝜀 follows the Gumbel distribution (the type-I generalized extreme value distribution) with scale parameter 
1, we write 𝜀 ∼ GEVI(1).

Definition 4.  The SCF has a logit NU representation if there exists an NU function 𝑈 ∶ 𝑋 → R such that for any 𝐴 ∈  and any 
𝑥 ∈ 𝐴,

𝜌(𝑥,𝐴) = Prob
[

𝑈 (𝑥) + 𝜀𝑥 ⩾ max
𝑦∈𝐴

𝑈 (𝑦) + 𝜀𝑦

]

= 𝑒𝑈 (𝑥)
∑

𝑦∈𝐴 𝑒𝑈 (𝑦)
,

in which 𝜀𝑦
iid∼ GEVI(1).

3. Behavioral neurons in NU functions

From here on, we focus on the case in which 𝑋 is the probability simplex. We first introduce a few examples to show how we 
can construct neurons in an NU function to capture well-known empirical findings. Such construction will be useful in our empirical 
analysis of the logit NU model.

3.1. Behavioral neurons of certainty effects

The first example appeared in Ke and Zhao (2024). Suppose there are three prizes and 𝑋 is the set of all lotteries for these prizes. 
From the Allais paradox, we know that decision makers are often biased toward certainty. Fig.  2 presents an NU function in which 
the first neuron captures standard expected utility evaluation, while the other three neurons capture the bias toward certainty for 
the three prizes respectively.9 We call the neurons that capture the bias toward certainty certainty-effect neurons.

The first neuron in Fig.  2 does not compare the outcome of its aggregation to zero, as required for an NU function. This is for 
simplicity and without loss of generality. Let 𝑉 = min𝑥∈𝑋 𝑉 (𝑥). If 𝑉 ⩾ 0, 𝑉 (𝑥) = max{𝑉 (𝑥), 0}. Otherwise, we replace the first neuron 
with max{𝑉 (𝑥) − 𝑉 , 0} = 𝑉 (𝑥) − 𝑉 . Then, at its parent neurons, we add 𝑉  back to the affine aggregation.

9 This function appears in Chapter 2.4.4.2 of Schmidt (1998), although its connection to neural-network models is not explored. We thank David Dillenberger 
for pointing this out.
5 
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3.2. Behavioral neurons of reference dependence

The second example is related to reference dependence. Suppose there are 𝑛 monetary prizes denoted by {𝜋1,… , 𝜋𝑛} ⊆ R and 𝑋
is the set of all lotteries on those prizes. As pointed out by Kahneman and Tversky (1979) and many other papers, prizes are often 
evaluated relative to a reference point, and people treat gains and losses (i.e., prizes better than and worse than the reference point, 
respectively) differently. It is also documented that the difference disappears when prizes do not deviate much from the reference 
point (see, for example, Ert and Erev (2013)).

We can use an NU function to capture these ideas in a natural way. Let there be two neurons in the first hidden layer. The first 
neuron, 𝑉 (𝑥) =

∑

𝑖 𝑥𝑖𝑣(𝑥𝑖), again computes the expected utility of 𝑥, with 𝑣 being the Bernoulli index. The second neuron captures 
loss aversion relative to the reference point 𝛾 ∈ R with a threshold 𝜀 > 0:

𝑉𝑙(𝑥) = max

{ 𝑛
∑

𝑖=1
𝑥𝑖 max{𝛾 − 𝜋𝑖, 0} − 𝜀, 0

}

.

We call such neurons reference-dependence neurons. Note that ∑𝑛
𝑖=1 𝑥𝑖 max{𝛾 −𝜋𝑖, 0}−𝜀 is an affine function of 𝑥, and the loss of prize 

𝜋𝑖 is given by max{𝛾 −𝜋𝑖, 0}. The neuron 𝑉𝑙 is activated if and only if the expected loss is larger than 𝜀. Finally, 𝑈 (𝑥) = 𝑉 (𝑥)−𝜆𝑉𝑙(𝑥), 
with 𝜆 > 0 being the loss-aversion coefficient. Clearly, in this NU function, loss aversion only occurs when prizes deviate from the 
reference point significantly.

4. Empirical analysis of the logit NU model

In this section, we show how one can estimate the logit NU model and how it performs empirically; that is, how well it explains 
and predicts people’s choice behavior out of sample. We will examine the complexity required for a neural network to explain and 
predict well, and identify the choice problems in which the logit NU model outperforms the benchmark. About the former, we might 
believe that—even as an as-if model—the decision maker’s logit NU function should not be too complex. A simple logit NU function 
is easier to interpret and may provide more useful insights. We will examine whether this conjecture is correct.

4.1. Data description and training models

We use the training and testing datasets provided by the aggregate-behavior track of the Choice Prediction Competition 2018 
(see Plonsky et al. (2019)).10 The datasets come from several experiments conducted at the Hebrew University of Jerusalem and 
Technion–Israel Institute of Technology. Each participant in the experiments faces 750 binary choice problems over lotteries, in 
which a lottery is instantiated by the description of a probability vector defined over its support, a nonempty finite set of monetary 
prizes (see the horizontal axis of Fig.  3 for the set of all possible monetary prizes in these experiments).11 In each binary choice 
problem, a participant must choose one lottery of the two.12

The 750 binary choice problems each participant faces consist of 30 different problems (with each problem characterized by the 
pair of lotteries that the participant faces) presented in a random order, and given the random order of the 30 different problems, 
each of the 30 different problems is repeated 25 times consecutively. For example, a participant may face the choice between lotteries 
𝑤 and 𝑥 for 25 times consecutively, then face the choice between lotteries 𝑦 and 𝑧 for 25 times, and so on. Different participants 
may face different binary choice problems.

In total, there are 270 different binary choice problems that any of the participants may face in the experiment. Henceforth, 
when we say a binary choice problem, we mean one of the 270 different ones. Of these, 210 are in the training dataset and 60 in the 
testing dataset. Moreover, 30 binary choice problems are designed to replicate 14 well-known behavioral phenomena, including the 
certainty effect, the reflection effect, overweighting of small probabilities, etc.13 They are in the training dataset. The other binary 
choice problems are generated somewhat randomly (see Erev et al. (2017) for more details). Crucially, we take as given the division 
of the training data and the testing data in Plonsky et al. (2019)—we have no control over how the dataset is divided.

Some information from the original datasets is discarded. First, our analysis does not make use of the demographic information. 
We could have first divided the dataset by participants’ demographic information and then estimated a model for each type of 
participants. However, as will be explained in Footnote , this turns out to worsen the overfitting problem at least for the benchmark 
cases. Second, recall that each binary choice problem is repeated 25 times for each participant. After the first 5 repetitions, a 
participant can observe the realization of the lotteries from previous repetitions. Our theory has little to offer about how choice 
behavior will be affected by feedback. Therefore, in our empirical analysis, we do not use this information. We treat all repetitions 
of the same binary choice problem equivalently. Finally, our theory cannot deal with binary choice problems that involve ambiguity 
(lotteries’ probabilities are not specified) and have little to say about binary choice problems in which realizations of lotteries are 
correlated. We exclude those binary choice problems (41 in the training dataset and 15 in the testing dataset) from our analysis. 
Eventually, the training dataset contains 169 data points and the testing dataset contains 45 data points.

10 The datasets are publicly available at https://cpc-18.com.
11 Since the total number of prizes that show up in the datasets is finite, we continue using our notations from Section 2 for lotteries and prizes.
12 See Fig.  6 in Appendix  A.
13 The behavioral biases are successfully replicated, but the magnitude is smaller than in the original studies that document the biases. See Erev et al. (2017) 

for more details.
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Fig. 3. The horizontal axis represents the prizes. The vertical axis corresponds to the value of the estimated Bernoulli index for the expected utility model. Note 
that only finitely many prizes are in the support of the lotteries involved in the experiments. Therefore, we see only dots in the plot of the Bernoulli index.

We aggregate individual choice data for each of the 214 (169+45) binary choice problems; that is, for each binary choice problem, 
we calculate the fraction of participants who choose each lottery. We call these fractions choice probabilities. A data point contains 
information about the two lotteries (as the covariate) and the choice probabilities (as the response).

For each model we consider, we estimate/train the model using the training dataset, and then evaluate its performance on the 
testing dataset. Following Plonsky et al. (2019), we use the mean squared error (MSE) of predicted choice probabilities (compared 
with actual choice probabilities) as the metric to evaluate the performance of the model.

We will compare the performance of the logit NU model with two benchmarks: expected utility, and cumulative prospect theory 
(CPT). For these two, we take the standard approach to combine them with the logit model for estimation (see Train (2003)). For 
example, for the expected utility benchmark, take any expected utility function 𝑈 ∶ 𝑋 → R. Given any data point with lotteries 𝑥
and 𝑦, we use the probability that 𝑈 (𝑥) + 𝜀𝑥 > 𝑈 (𝑦) + 𝜀𝑦 to predict the choice probability of 𝑥 over 𝑦, in which 𝜀𝑥, 𝜀𝑦

iid∼ GEVI(1).14 
To evaluate the performance, we first find the expected utility function that minimizes the MSE using the training dataset (the
training MSE). Then, we take the estimated expected utility function to compute the MSE using the testing dataset (the testing MSE) 
to measure the expected utility model’s performance. We will use the same approach to analyze the CPT model.

We roughly describe how we train the logit NU model and evaluate its performance. More details can only be provided later 
(see Section 4.3), after we describe how we will parameterize the model. We estimate the logit NU model based on the training 
dataset using cross-validation and evaluate its performance with the test dataset. Our estimation procedure has two steps. The first 
step is to select the  hyperparameters, such as the number of hidden layers and the width of each hidden layer. Obviously, if we 
select hyperparameters by minimizing the training MSE, we will want bigger networks and may overfit. Therefore, for each set of 
hyperparameters, we use the training dataset to estimate the logit NU model and compute the leave-one-out cross-validation (LOOCV) 
MSE (see Chapters 5 and 7 of Hastie et al. (2009)). We select the hyperparameters that yield the lowest LOOCV MSE. The second 
step is to estimate/train the logit NU model under the selected hyperparameters using the training dataset and compute its training 
MSE. To evaluate the performance of the model, we take the trained logit NU model to compute the testing MSE using the testing 
dataset. As is standard in machine learning literature, the training algorithm is random in nature. Thus, we estimate the logit NU 
model under the selected hyperparameters for multiple times, evaluate the testing MSE each time, and report the average testing 
MSE across the repetitions.

4.2. Parameterization of the benchmark

Two classic theories will be used as our benchmark, expected utility theory and CPT. Our first observation is that under the 
current data we must parameterize the models, including the expected utility model, to avoid overfitting.

Let us illustrate this through the expected utility model. Let {𝜋1,… , 𝜋𝑛} ⊆ R denote the set of all monetary prizes. The expected 
utility model is 𝑈 (𝑥) =

∑𝑛
𝑖=1 𝑥𝑖𝑢(𝜋𝑖) for each lottery 𝑥, in which 𝑢 is the Bernoulli index. Also consider the CARA15 expected utility 

14 The literature using this approach to estimate expected and non-expected utility models is immense. See Harrison et al. (2007) and Noussair et al. (2014), 
among others.
15 We do not consider the alternative and equally popular expected utility model, the constant-relative-risk-aversion (CRRA) expected utility model, mainly 

because some prizes are negative and hence are not well defined for the CRRA Bernoulli index.
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model: For each lottery 𝑥, 

𝑈CARA(𝑥) =
𝑛
∑

𝑖=1
𝑥𝑖𝑢(𝜋𝑖) with 𝑢(𝜋𝑖) =

𝛽
𝛼
(𝑒𝛼𝜋𝑖 − 1). (2)

As usual, −𝛼 measures the decision maker’s risk aversion. As 𝛼 approaches 0, 𝑢(𝜋𝑖) converges to 𝛽𝜋𝑖, which is a risk-neutral Bernoulli 
utility index. The parameter 𝛽 ∈ R+ is a normalization parameter that is necessary in discrete choice estimations.

Combining these with the logit model, as explained in the previous subsection, we can find the best expected utility function 
and the best CARA expected utility function. The training and testing MSE×100 for the CARA expected utility model are 2.28 and 
1.98, respectively, with essentially zero standard deviations. Compared with the CARA expected utility model, the expected utility 
model’s training MSE is certainly lower, since the expected utility model is more general, but its testing MSE turns out to be about 
10 times higher.16

This is largely due to overfitting (see Fig.  3). A more general model can explain more phenomena (have a lower training MSE), 
but that does not imply that it will predict well.17 The classic example is to use a polynomial to fit a dataset generated by a linear 
function plus noises. The same issue applies to the CPT model and the logit NU model. Hence, parameterization will be necessary 
for the CPT model and the logit NU model as well.

Next, we examine the CPT benchmark, which is arguably the most popular non-expected utility model. We consider a standard 
parameterization in the literature: The probability-weighting function is equal to 𝛿𝑝𝛾

𝛿𝑝𝛾+(1−𝑝)𝛾  for any cumulative/survival probability 
𝑝 ∈ [0, 1] irrespective of the outcome. The value function takes the CARA form in both the gain (risk-averse) and loss (risk-seeking) 
regions, with a loss-aversion coefficient weakly larger than 1. Note that due to the convexity of the value function in the loss region, 
even when probabilities are not distorted the CARA expected utility model is not a special case of the CPT model. These two models 
only intersect at the risk-neutral case without probability distortion.

We find that CPT’s training MSE×100 is 2.26 and testing MSE×100 is 1.98. Hence, under the current dataset, CPT does not 
seem to outperform the (CARA) expected utility model in terms of predictive power, although its performance is significantly better 
than the risk-neutral expected utility model.18 One potential reason is that the testing dataset does not include the kind of lotteries 
involved in the fourfold pattern of risk attitudes, since the binary choice problems designed to replicate well-known behavioral 
phenomena are all in the training dataset. This also explains why for most of our results the testing MSE is lower than the training 
MSE—presumably, the replication problems are likely the harder ones for the participants.

It should also be noted that our analysis omits a factor that might influence the relative performance of the expected utility model 
and the CPT model. Specifically, each problem in the dataset is repeated 25 times, and after the first 5 repetitions, participants can 
observe the realized outcomes of lotteries from previous repetitions. Hertwig and Erev (2009) point out that decision makers tend 
to overestimate/overweight rare events when learning about lotteries through descriptions, but tend to underestimate/underweight 
these events when learning from experience, such as observing lottery outcomes. In our empirical analysis, we do not differentiate 
between choices made before and after observing lottery realizations, as our theoretical framework is silent about this distinction. 
Therefore, pooling these two types of choices might affect the relative predictive accuracy of the expected utility and CPT models. 
However, our subsequent analysis using the logit NU model should not be much affected, since the benchmark we adopt from this 
subsection is already optimized for the pooled choice data.

Note that our CPT estimation suggests little probability distortion, which is consistent with recent findings by Bernheim and 
Sprenger (2020). In addition, in our estimation, the constraint that the subjects are risk seeking in the loss domain turns out to be 
binding, suggesting that this behavioral phenomenon may not be consistent with the dataset. Our finding that the expected utility 
model performs well is also consistent with a series of recent empirical results (see Footnote 1).

Therefore, for the rest of the paper, we use the CARA expected utility model as the benchmark, whose training MSE×100 is 2.28 
and testing MSE×100 is 1.98.

4.3. Behavioral neurons and parameterization of the NU function

As we have explained, given the current dataset, parameterization is necessary for the logit NU model. In particular, the 
parameterization we are looking for ought to help overcome the overfitting problem and, at the same time, retain the model’s 
flexibility in the right manner.

The first idea comes from the observation that the affine functions in the first hidden layer of the NU function are expected 
utility functions. Therefore, it is possible that replacing first-hidden-layer neurons with CARA expected utility functions could help. 

16 If we have a large amount of data, the expected utility model should outperform the CARA expected utility model—but given the current dataset, the 
expected utility model’s training MSE×100 is 1.07 and its testing MSE×100 is 19.47. Note that there are prizes that appear in the testing dataset but not in the 
training dataset. For those prizes, their Bernoulli indices cannot be properly estimated. However, even if we exclude the binary choice problems that contain 
prizes that only appear in the testing dataset, the testing MSE×100 of the expected utility model only reduces to 17.82, which is still much higher than that of 
the CARA expected utility model.
17 We also examine a generalization of the above CARA expected utility model by allowing the CARA parameter to depend on participants’ genders. The 

resulting testing MSE×100 is higher than 1.98 for both genders (2.03 for females and 2.14 for males), which suggests that analyzing the pooled data may be 
more effective.
18 The testing error is still higher than the CARA expected utility model’s if the value function is parameterized via the CRRA form, or if we allow the value 

function to be convex in the gain region or concave in the loss region so that the CARA expected utility model is nested as a special case. We also compute the 
testing MSE of the estimated CPT model from Tversky and Kahneman (1992) with our data, which turns out to be significantly higher.
8 
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By doing so, we also drop the activation function in the first hidden layer. However, the resulting model is still a logit NU model 
(see Section 3.1).

It turns out that this restriction destroys too much flexibility of the logit NU model. We allow the first hidden layer’s width to be 
15, 20, or 25; the number of hidden layers above the first to be 0, 1, or 2; and the width of the hidden layers above the first to be 15, 
20, or 25. The best testing MSE×100 we obtain from these NEU functions is 1.97, which is barely better than the CARA benchmark.

To see what kind of useful flexibility has been removed, consider the certainty-effect neurons and reference-dependence neurons 
from Sections 3.1 and 3.2. These are neurons in the first hidden layer and help us capture well-documented behavioral effects, but 
are assumed away if we focus on CARA expected utility functions for the first hidden layer.

Presumably, there are other useful behavioral neurons and we may use statistical methods to endogenously select which 
behavioral neurons are best to use. This will be a more general approach, but it is not entirely clear which list of behavioral neurons 
should be used. In this paper, we take a simple approach. We show that by requiring that the first hidden layer consist of at most the 
following three kinds of neurons, a CARA expected utility function, certainty-effect neurons, and reference-dependence neurons, we 
can already mitigate the overfitting problem and obtain significant empirical performance improvements. This special first hidden 
layer will be called a behavioral layer. The behavioral layer is subsequently concatenated with additional standard hidden layers 
(see Definition  2), except that we will apply one restriction to the second-hidden-layer neurons due to the use of certainty-effect 
neurons, which we will explain shortly.

Specifically, the behavioral layer may consist of the following three types of neurons:

1. The CARA neuron: A CARA neuron is the function 𝑈CARA ∶ 𝑋 → R defined in (2). When estimating its parameters 𝛼 and 𝛽, 𝛼
is initialized uniformly at random in [−1, 1] and 𝛽 is initialized uniformly at random in [0, 1].

2. The certainty-effect (CE) neuron: For any lottery 𝑥, a CE neuron with respect to the 𝑖th prize is a function from 𝑋 to R that 
takes the following form:

𝑈 𝑗
CE𝑖

(𝑥) = max{𝑥𝑖 − 𝜂𝑗 , 0},

𝑗 = 1, 2 (see Section 3.1); that is, we allow the decision maker to have two types of CE neurons, each with a possibly different 
𝜂𝑗 (the threshold parameter).
Fixing 𝑗, we require that 𝜂𝑗 be identical across different prizes. Otherwise, if some prize never shows up in the training 
dataset, we will not be able to estimate the two threshold parameters for that prize. For the same reason, fixing 𝑗, we require 
that every second-hidden-layer neuron attach the same weight to the CE neurons 𝑈 𝑗

𝐶𝐸𝑖
, 𝑖 = 1,… , 𝑛, in the affine aggregation. 

This is the restriction on the second hidden layer we stated previously. The threshold parameter 𝜂𝑗 is initialized uniformly 
at random in [0.9, 0.99].

3. The reference-dependence (RD) neuron: For any lottery 𝑥, an RD neuron is a function from 𝑋 to R that takes the following 
form:

𝑈 𝑗
RD(𝑥) = max

{ 𝑛
∑

𝑖=1
𝑥𝑖 max{𝜆𝑗𝜋𝑖 − 𝛾𝑗 , 0}, 𝜅𝑗

}

,

𝑗 ∈ {1,… , 𝑛RD}, in which 𝜋𝑖 is the monetary prize to which 𝑥 assigns probability 𝑥𝑖.19 We allow the decision maker to have 
𝑛RD types of RD neurons, each of which is characterized by three parameters: the loss-aversion coefficient −𝜆𝑗 , the reference 
point 𝛾𝑗𝜆𝑗 , and the threshold parameter 𝜅𝑗 . All three parameters are initialized at random according to the standard Gaussian 
distribution, and 𝑛𝑅𝐷 is left as a hyperparameter.

To summarize, in the behavioral layer we at most have one CARA neuron, two types of CE neurons, and 𝑛RD RD neurons. We do 
not turn the number of types of CE neurons into a hyperparameter only to shorten computation time. The CE neurons only affect a 
small area of 𝑋, and we believe that allowing for two types of CE neurons will be adequate. We only use one CARA neuron because 
we have seen that having multiple CARA neurons does not help much. Next, additional hidden layers will be concatenated with 
the behavioral layer, whose number of layers and width are hyperparameters. The affine-aggregation parameters of those layers are 
initialized by the standard Gaussian distribution. See Fig.  4 for an illustration.

4.4. Training, regularization, and hyperparameter selection

Now we are ready to provide more details about how we estimate the logit NU model with the behavioral layer. We train the 
logit NU model with the behavioral layer using state-of-the-art machine-learning methods via the following neural network. Recall 
that each data point has two lotteries 𝑥 and 𝑦. First, the neural network takes both 𝑥 and 𝑦 as the input. Next, it derives 𝑈 (𝑥)
and 𝑈 (𝑦) through two separate and identical neural networks implied by the NU function 𝑈 with the behavioral layer. Last, it uses 
the probability that 𝑈 (𝑥) + 𝜀𝑥 > 𝑈 (𝑦) + 𝜀𝑦 as the output to predict the choice probability of 𝑥 for this data point, in which again 
𝜀𝑥, 𝜀𝑦

iid∼ GEVI(1).
We train this neural network using adaptive moment estimation (also known as Adam; see Kingma and Ba (2017)) with 

minibatches of size 20, which are randomly selected at each epoch. The learning rate is 0.0002 for parameters of the additional 

19 We have used 𝜆 and 𝛾 at other places but, with an abuse of notation, the ones with subscripts are reserved for RD neurons.
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Fig. 4. In the empirical analysis, we will vary the number of standard hidden layers and the neurons we include in the behavioral layer.

hidden layers and the output layer, and 0.00002 for the parameters of the behavioral layer. To regularize the training, we use 
𝓁2-norm regularization with coefficient 0.0002 (see Chapter 7 of Goodfellow et al. (2016)). Meanwhile, we stop the training after 
5,000 epochs, in which each epoch goes through the 9 minibatches in a random order. Again, we use the MSE of the model as the 
metric to evaluate the performance of a logit NU model.

To select the hyperparameters (or equivalently, the architecture of the neural network), we divide the logit NU models into 
groups. For the specification of the behavioral layer, we consider CARA+RD, CARA+CE, and CARA+RD+CE. For the number of 
hidden layers, we consider three cases, one, two, and three/four. Note that a logit model with one hidden layer only has the 
behavioral layer. We divide them in this way because logit NU models with one hidden layer and logit NU models with two layers 
have rather different interpretations, and both are much easier to interpret than logit NU models with more layers. In total, we 
consider 3 × 3 = 9 groups of architectures.

We use LOOCV to select an architecture (i.e., a set of hyperparameters) within each group on the training dataset (of size 169). 
The width of the additional hidden layers (if any) concatenated with the behavioral layer may be uniformly 15, 20, or 25. The 
number of RD neurons may be 15, 20, or 25. For example, in the two-hidden-layer CARA+RD+CE group, there are 3×3 = 9 different 
architectures.

LOOCV trains each candidate model on only 168 data points and then makes a prediction on the left-out data point. Each of the 
169 data points will be left out once. Then, LOOCV selects the candidate model with the least average LOOCV MSE over the 169
choices of left-out data points.

Given the selected model (set of hyperparameters), we train the logit NU model on the training dataset (of size 169), and then 
the trained model is taken to the testing dataset (of size 45) to compute the testing MSE. Since Adam is random in nature, this 
train-and-test procedure is repeated for 15 iterations and the average testing MSE is reported.20

4.5. Results

In Table  1, we report the selected architecture, the training MSE together with its standard deviation, and the testing MSE 
together with its standard deviation for each group of models. 

Our first finding is that reasonably complex neural networks that have intuitive interpretations have the best performance. 
Measured by the testing MSE, a two-hidden-layer logit NU model (with the first hidden layer being the behavioral layer) that uses 
all three types of neurons in the behavioral layer—the CARA, CE, and RD neurons—has the best out-of-sample performance. Its 
testing error is more than one standard deviation lower than the CARA benchmark. Moreover, the architectures with width 25 in 
its additional layers or with 25 RD neurons are never selected in each group. While additional width or RD neurons decrease the 
training error, they may come at the cost of overfitting.

20 With more repetitions the standard deviations will likely become much smaller, but this may significantly increase the computation time.
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Table 1
Selection, training MSE, and testing MSE of groups of logit NU models: In the “CARA+RD” column, we require that the number 
of CE neurons be zero in the behavioral layer. In the “CARA+CE” column, we require that the number of RD neurons instead 
be zero. In the “CARA+RD+CE” column, the setup of the behavioral layer is as described in Section 4.3.
 Number of Hidden Layers CARA+RD CARA+CE CARA+RD+CE  
 1 RD: 20 – RD: 20  
 2 RD: 15, Width: 15 Width: 20 RD: 20, Width: 15 
 > 2 RD: 15, Width: 15 Width: 15 RD: 20, Width: 15 

(A): Selected architecture in each group
 Number of Hidden Layers CARA+RD CARA+CE CARA+RD+CE  
 1 2.223 (0.043) 2.327 (0.015) 2.205 (0.061)  
 2 1.993 (0.065) 2.243 (0.013) 1.880 (0.082)  
 > 2 1.473 (0.233) 2.194 (0.017) 1.680 (0.121)  

(B): Training MSE×100 for the selected architecture in each group
 Number of Hidden Layers CARA+RD CARA+CE CARA+RD+CE  
 1 1.996 (0.118) 2.014 (0.012) 2.002 (0.144)  
 2 1.844 (0.151) 2.043 (0.040) 1.741 (0.173)  
 > 2 2.426 (0.870) 2.143 (0.041) 2.028 (0.407)  

(C): Testing MSE×100 for the selected architecture in each group

Table 2
 The two-hidden-layer CARA+RD+CE group: All architectures in the group outperform the CARA 
benchmark. While the minimum testing MSE is achieved with width 20 and 25 RD neurons, this 
architecture does not perform better than the selected architecture according to LOOCV MSE.
 RD Width LOOCV MSE×100 Training MSE×100 Testing MSE×100 
 15 15 2.685 1.934 (0.099) 1.884 (0.131)  
 15 20 2.830 1.851 (0.099) 1.798 (0.172)  
 15 25 2.824 1.822 (0.109) 1.815 (0.174)  
 20 15 2.580 1.880 (0.082) 1.741 (0.173)  
 20 20 2.997 1.830 (0.077) 1.774 (0.240)  
 20 25 3.004 1.774 (0.109) 1.750 (0.253)  
 25 15 2.762 1.789 (0.096) 1.757 (0.232)  
 25 20 2.817 1.748 (0.100) 1.679 (0.231)  
 25 25 2.973 1.676 (0.062) 1.751 (0.264)  

Our second finding is that including the CE and RD neurons can improve the performance of the logit NU model under the 
right architecture (recall the testing MSE×100 of the CARA benchmark is 1.98). However, including only CE neurons (together with 
the CARA neuron) is not very helpful. It is when both CE and RD neurons are included in the behavioral layer and one additional 
hidden layer is concatenated that the logit NU model starts to stand a chance to outperform the CARA benchmark significantly. 
This finding suggests that allowing multiple ways to aggregate the behavioral neurons in the model may better capture the decision 
making process. In Table  2, we report the LOOCV MSE, the training MSE, and the testing MSE for each of the 9 architectures in the 
two-hidden-layer CARA+RD+CE group. Every architecture in this group outperforms the CARA benchmark.

Our findings suggest that imposing assumptions on neural networks’ structures based on economists’ knowledge from decision 
theory and behavioral economics is useful in predictions. In deep learning, people have found that introducing inductive biases 
is extremely useful. Common forms of inductive biases include specific choices of neural network structures and optimization 
algorithms. For example, applying certain optimization algorithm (e.g., stochastic gradient descent) to certain neural-network models 
(e.g., residual neural networks) may favor simpler models over more complex ones (Neyshabur et al., 2014). Convolutional neural 
networks borrow ideas from how human beings understand pictures, and have been proven to be extremely useful for image 
recognition (see Aghdam and Heravi (2017)). Our approach introduces behavioral neurons as the inductive bias, which restricts 
the model class to one that better captures human behavior.21 Consequently, we achieve significantly better performance both in 
sample and out of sample.

At the first glance, Table  1 may seem problematic since the testing MSEs are mostly lower than the corresponding training MSEs, 
and the training MSEs of some logit NU models can be higher than the CARA benchmark (2.28). This is in fact not surprising. While 
the CARA benchmark is obtained by minimizing the training MSE, we are not selecting architectures based on training MSE for 
logit NU models. Instead, we select architectures based on LOOCV MSE. Essentially, we sacrifice the fit on the training dataset 
in return for better out-of-sample predictions. Moreover, as we have explained before, the training dataset includes binary choice 
problems designed to replicate classic behavioral phenomena. By contrast, the testing dataset are mostly random binary choice 
problems. Thus, it seems plausible to us that the binary choice problems in the training dataset may be more prone to mistakes, 
which negatively affects the training MSEs.

21 The idea of constructing variables/features based on behavioral effects as the input of machine-learning models has also appeared in Erev et al. (2017) 
and Plonsky et al. (2017). Our approach differs from theirs: We only consider assumptions that are compatible with our axioms.
11 
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Fig. 5. Indifference curves of the estimated model within certain subspaces.

4.5.1. The best-performed model and mixed lotteries
Recall that we select hyperparameters by cross-validation based on the training dataset, and with the selected hyperparameters, 

we train the model based on the training dataset and compute its performance on the testing dataset. The reported MSEs and 
standard errors in Table  1c are calculated over 15 iterations of the train–test procedure. Out of the 15 iterations for what turns out 
to be the best-performed architecture (two-hidden-layer logit NU with CARA+RD+CE), the minimum testing MSE achieved is as 
little as 1.36. We report the estimated parameters in Appendix  C.

Upon inspecting the estimated parameters of the logit NU model that achieved the minimum testing MSE, we find some 
interesting characteristics. Among others, the estimated reference points ( 𝛾𝑖𝜆𝑖 ’s) are mostly close to zero in absolute value. As a 
result, for pure-gain or pure-loss lotteries, the estimated model exhibits similar patterns to the example shown in Fig.  2—the utility 
function is largely an expected utility one with a boost when the probability of receiving a prize is larger than the CE neurons’ 
thresholds. In Fig.  5, we plot the indifference curves of the model within various subspaces over different prize combinations.

Within subspaces that involve both gains and losses, however, as can be seen from Fig.  5(c), the indifference curves exhibit 
distinct patterns for lotteries that have positive expected values and those that have negative expected values, potentially reflecting 
the difficulty of evaluating such lotteries for the decision maker. Given that the best-performed logit NU model behaves similarly 
to expected utility for pure-gain and pure-loss lotteries, it is likely that the binary choice problems that involve lotteries with both 
gains and losses (called mixed lotteries) are those in which the logit NU model performs the best relative to the CARA benchmark.

To investigate this, we compute the MSE for the best-performed logit NU model and the previously estimated CARA expected 
utility benchmark, respectively, on such binary choice problems in the testing dataset. Among 45 binary choice problems in the 
12 
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testing dataset, 25 of them involve mixed lotteries. We find that the testing MSE×100 of logit NU is 1.16 and that of the CARA 
benchmark is 2.24, which confirms our hypothesis.22

Several recent studies (Blavatskyy et al. (2022); Bouchouicha et al. (2023); and Dembo et al. (2024)) have found that expected 
utility theory performs well empirically. However, these studies mainly focus on pure-gain lotteries. Our observation that the 
expected utility model does not perform well over mixed lotteries is consistent with experimental evidence in Chew et al. (2022), 
which documents that participants’ choices are significantly more stochastic over mixed lotteries than their choices over pure-
gain/pure-loss lotteries. Thus, while expected utility theory explains choices over pure lotteries well, non-expected utility models 
may be more effective in dealing with mixed lotteries.

It is worth noting that the kinks in the indifference curves generally face toward or away from the origin. This indicates that 
the ratio of the probability of winning to the probability of losing may be a significant factor in the decision-making process of 
the subjects.23 The estimated level of utility tends to increase when the ratio of winning to losing is either high or relatively low. 
Furthermore, when the ratio exceeds one but is not excessively high, the estimated level of utility remains relatively stable while 
holding the probability of receiving the intermediate prize constant. This non-monotonic pattern is prevalent in subspaces that 
involve both positive and negative prizes, indicating the need for further investigation.

5. Axiomatic characterization

In this section, we introduce axioms to be imposed on the SCF and characterize the Luce NU model and the logit NU model. The 
role of the axioms is explained at the end of the Introduction. The first two axioms are from McFadden (1973).

Axiom 1 (Positivity).  For any 𝐴 ∈  and 𝑥 ∈ 𝐴, 𝜌(𝑥,𝐴) > 0.

Axiom 2 (Independence of Irrelevant Alternatives).  For any 𝑥, 𝑦 ∈ 𝑋 and 𝐴 ∈  such that 𝑥, 𝑦 ∈ 𝐴, 𝜌(𝑥,𝐴)𝜌(𝑦, {𝑥, 𝑦}) = 𝜌(𝑦, 𝐴)𝜌(𝑥, {𝑥, 𝑦}).

McFadden (1973) argues that a zero probability is empirically indistinguishable from a positive but small probability. Therefore, 
there is little loss of generality from imposing positivity. Independence of irrelevant alternatives (IIA) is a more controversial axiom, 
but the reason it is violated is not crucial for our analysis in this paper. McFadden shows that these two axioms characterize the 
logit model, which we will formally define later. In Section 6, we will briefly discuss a potential nested logit generalization of the 
logit NU model.

Following Block and Marschak (1960), we use the SCF to define a binary relation on 𝑋 called the stochastic preference.

Definition 5.  For any 𝑥, 𝑦 ∈ 𝑋, we say that 𝑥 is stochastically preferred to 𝑦, denoted by 𝑥 ≿ 𝑦, if 𝜌(𝑥, {𝑥, 𝑦}) ⩾ 𝜌(𝑦, {𝑥, 𝑦}).

We use ≻ and ∼ to denote ≿’s asymmetric and symmetric parts, respectively. The axiom below requires that the SCF be 
continuous.

Axiom 3 (Continuity). For any sequence (𝑥𝑛) in 𝑋 whose limit is 𝑥 ∈ 𝑋, 𝜆 ∈ [0, 1], and 𝑦 ∈ 𝑋 distinct from (𝑥𝑛) and 𝑥, if 
𝜌(𝑥𝑛, {𝑥𝑛, 𝑦}) ⩾ (⩽)𝜆 for all 𝑛, then 𝜌(𝑥, {𝑥, 𝑦}) ⩾ (⩽)𝜆.

The next axiom is one of the main axioms from Ke and Zhao (2024). A subset of 𝑋 is said to be a neighborhood of an alternative 
𝑥 if it is open and convex and contains 𝑥.

Axiom 4 (Weak Local Bi-independence). Any 𝑧, 𝑧̃ ∈ 𝑋 with 𝑧 ∼ 𝑧̃ have neighborhoods 𝐿 and 𝐿̃, respectively, such that for any 𝑥 ∈ 𝐿, 
𝑥̃ ∈ 𝐿̃, and 𝜆 ∈ (0, 1), we have 𝑥 ≿ 𝑥̃ ⇔ 𝜆𝑥𝑧 ≿ 𝜆𝑥̃𝑧̃.

This axiom weakens a condition that appears in expected utility theory. In expected utility theory, the independence axiom 
characterizes linear/expected utility functions, and is equivalent to the following condition called bi-independence in Ke and Zhao 
(2024): For any 𝜆 ∈ (0, 1) and lotteries 𝑥, 𝑥̃, 𝑧, 𝑧̃ such that 𝑧 ∼ 𝑧̃, we have 𝑥 ≿ 𝑥̃ ⇔ 𝜆𝑥𝑧 ≿ 𝜆𝑥̃𝑧̃.

Motivated by the fact that decision makers’ preferences often cannot be represented by linear functions due to violations of 
(bi-)independence, but may exhibit some form of linearity locally, Ke and Zhao (2024) propose weak local bi-independence to 
weaken bi-independence. Under weak local bi-independence, fixing any 𝑧 and 𝑧̃, locally around 𝑧 and 𝑧̃, alternatives that are mixed 
with 𝑧 and 𝑧̃, respectively, must satisfy the property stated in bi-independence.

To understand the motivation for weak local bi-independence, consider a well-known violation of independence, the Allais 
paradox. Given the following two pairs of lotteries, most decision makers choose the left-hand lottery from the first pair and the 
right-hand lottery from the second:

22 Note that allowing for probability weighting, loss aversion, and risk seeking over losses does not help much. In our estimation, CPT’s out-of-sample 
performance exhibit similar patterns as CARA expected utility. Over mixed lotteries, its testing MSE×100 is 2.28; over pure-gain/pure-loss lotteries, its testing 
MSE×100 is 1.61.
23 This pattern is robust across subspaces that involve both positive and negative prizes, regardless of their magnitudes. See Appendix  C for additional 

indifference maps in various subspaces.
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First pair Second pair

100%: $1M
3%:  $0 87%: $0

13%: $1M
90%: $0
10%: $1.5M87%: $1M

10%: $1.5M

Such choices imply a violation of independence. To see this, let 𝛿𝑟 be the degenerate lottery that pays $𝑟 for sure. Let 𝑥 = 𝛿1M, 
𝑦 = 10

13 𝛿1.5M + 3
13 𝛿0, 𝑧 = 𝛿1M, and 𝑧′ = 𝛿0. Under these notations, the first pair of lotteries becomes 0.13𝑥𝑧 and 0.13𝑦𝑧, and the second 

pair becomes 0.13𝑥𝑧′ and 0.13𝑦𝑧′. Independence implies that 0.13𝑥𝑧 ≿ 0.13𝑦𝑧 ⟺ 0.13𝑥𝑧′ ≿ 0.13𝑦𝑧′. Therefore, the Allais paradox 
violates independence and hence bi-independence. The interpretation of this violation is that decision makers tend to prefer risk-free 
alternatives, compared to what expected utility theory predicts, which is sometimes called the certainty effect.

Ke and Zhao (2024) point out that if the two pairs of lotteries are reconstructed so that the right-hand lottery in the first pair 
becomes almost risk-free, then the decision maker may not be attracted by 𝛿1M in the first pair nearly as much, and hence the 
certainty effect may not be that strong to trigger violations of (bi-)independence. To see this more concretely, consider the example 
below with 0.013𝑥𝑧 and 0.013𝑦∗𝑧 in the first pair and 0.013𝑥𝑧∗ and 0.013𝑦∗𝑧∗ in the second, in which 𝑦∗ = 10

13 𝛿1.5𝑀 + 3
13 𝛿0.5𝑀  and 

𝑧∗ = 𝛿0.5M:

First pair Second pair

100%: $1M
0.3%:  $0.5M 98.7%: $0.5M

1.3%:  $1M
99%: $0.5M
1%:  $1.5M98.7%: $1M

1%:  $1.5M

Intuitively, the certainty effect in the above example should be much weaker, and therefore it seems more plausible to require that 
some notion of independence hold locally rather than globally.

Ke and Zhao (2024) show that a complete, transitive, and continuous binary relation satisfies weak local bi-independence if and 
only if the binary relation can be represented by an NU function. Before defining the NU function, we introduce our final axiom. As 
will be seen in Theorem  1, weak local bi-independence is too weak to yield the logit NU model. The following axiom strengthens 
weak local bi-independence.

Axiom 5 (Weak Local Bi-invariance).  Any 𝑧, 𝑧̃ ∈ 𝑋 with 𝑧 ∼ 𝑧̃ have neighborhoods 𝐿 and 𝐿̃, respectively, such that for any 𝑥 ∈ 𝐿, 𝑥̃ ∈ 𝐿̃, 
𝛼, 𝛽 ∈ [0, 1], and 𝜆 ∈ (0, 1), we have 𝑥 ≿ 𝑥̃ ⇔ 𝜌(𝜆𝑥(𝛼𝑥𝑧), {𝜆𝑥(𝛼𝑥𝑧), 𝜆𝑧(𝛼𝑥𝑧)}) ⩾ 𝜌(𝜆𝑥̃(𝛽𝑥̃𝑧̃), {𝜆𝑥̃(𝛽𝑥̃𝑧̃), 𝜆𝑧̃(𝛽𝑥̃𝑧̃)}).

Weak local bi-invariance combines weak local bi-independence with the idea of an axiom in Ke (2018) that is crucial to the 
characterization of the logit expected utility model. That axiom essentially requires that for any 𝑥, 𝑦, 𝑧, 𝑥̃, 𝑦̃, 𝑧̃ ∈ 𝑋 such that 𝑧 ∼ 𝑧̃, 
𝑥 ∼ 𝑥̃, and 𝜆 ∈ (0, 1), we have 𝜌(𝜆𝑥𝑦, {𝜆𝑥𝑦, 𝜆𝑧𝑦}) = 𝜌(𝜆𝑥̃𝑦̃, {𝜆𝑥̃𝑦̃, 𝜆𝑧̃𝑦̃}). Note that in weak local bi-invariance, we pick 𝑦 = 𝛼𝑥𝑧 and 
̃ = 𝛽𝑥̃𝑧̃, so that all lotteries involved in 𝐿 are mixtures of 𝑥 and 𝑧, and all lotteries involved in 𝐿̃ are mixtures of 𝑥̃ and 𝑧̃, which 
captures the same idea as how weak local bi-independence weakens bi-independence. We show in the Appendix that, given the 
other axioms, weak local bi-invariance implies weak local bi-independence.

Our main theoretical result is the following.

Theorem 1.  The SCF 𝜌 has a Luce NU representation if and only if 𝜌 satisfies positivity, IIA, continuity, and weak local bi-independence. 
The SCF 𝜌 has a logit NU representation if and only if 𝜌 satisfies positivity, IIA, continuity, and weak local bi-invariance.

The first statement of the theorem is straightforward. Under positivity and IIA, there must exist a function 𝑉 ∶ 𝑋 → R++ such 
that for any menu 𝐴 and 𝑥 ∈ 𝐴,

𝜌(𝑥,𝐴) =
𝑉 (𝑥)

∑

𝑦∈𝐴 𝑉 (𝑦)
.

This is called a Luce rule (Luce, 1959). Next, it can be shown that the stochastic preference is complete and transitive. Together with 
continuity and weak local bi-independence, from Ke and Zhao (2024), we know that the stochastic preference can be represented 
by an NU function 𝑈 . Moreover, it can be shown that both 𝑈 and 𝑉  represent the stochastic preference. Therefore, there exists a 
strictly increasing function that transforms 𝑈 into 𝑉 . Denoting that function as 𝜙, we obtain the first statement of the theorem.

According to Ke and Zhao (2024), an NU function 𝑈 must be a continuous finite piecewise linear function, and a continuous 
finite piecewise linear representation of a binary relation is unique up to a strictly increasing continuous finite piecewise linear 
transformation. It is well known that 𝑉  in the Luce rule is unique up to a positive scalar multiplication. Hence, uniqueness results 
of 𝜙 can be easily obtained, although it is not important to our analysis.

The Luce NU representation becomes a logit NU representation when the function 𝜙 is exponential, which is not true in general. 
When it is, the standard random utility formulation of the logit model applies. See Ke (2018) for examples of non-exponential 𝜙
functions and discussion of the distinction between Luce rules and logit models.

The second statement of Theorem  1 says that if we replace weak local bi-independence with weak local bi-invariance, we can 
ensure that the function 𝜙 in the Luce NU representation is exponential. The proof of the theorem can be found in Appendix  A.
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6. Concluding remarks

In this paper, we introduce, empirically analyze, and characterize the logit neural-network utility model. In the context of 
decision-making under risk, the model feeds the probability distribution of a lottery to a neural network and essentially outputs 
the Luce value of the lottery. We show how to use behavioral neurons to capture behavioral patterns and mitigate overfitting. We 
find that simple logit NU models with behavioral neurons predict better than expected utility theory and cumulative prospect theory 
out of sample. In particular, the logit NU models perform well in binary choice problems involving lotteries with both positive and 
negative prizes.

There are many alternative ways to apply machine learning techniques to predict choices under uncertainty. For example, 
using the same dataset, Plonsky et al. (2017) and Plonsky et al. (2019) estimate mappings from binary choice problems to choice 
probabilities using random forests enhanced with behavioral features. Although these models achieve higher predictive accuracy 
than ours, their underlying axiomatic foundations remain unclear at this stage. In contrast, our analysis deliberately focuses on 
special cases of the logit NU model, which has clearly defined and economically meaningful behavioral axioms. Moreover, it is 
straightforward to see how our axioms generalize or differ from those of classic economic models. Put differently, our primary 
objective is not to maximize predictive accuracy per se, but to optimize predictive power within a theoretically grounded economic 
framework.

One advantage of our approach is that the behavioral properties of our model are better understood. For instance, our axiomatic 
characterization demonstrates that the logit NU model satisfies a form of stochastic transitivity, a property that is generally 
considered desirable (see He and Natenzon (2024)). Therefore, all special cases of the logit NU model used in our empirical analysis 
satisfy this property. By contrast, the models employed by Plonsky et al. (2017) and Plonsky et al. (2019) are likely to violate this 
property, and it is unclear what forms of stochastic transitivity these alternative models may satisfy.

Our empirical strategy differs from the standard approach in the non-expected utility literature—we evaluate models by their 
our-of-sample predictive power. In particular, we take the separation of the training dataset and the testing dataset as given and 
have no control in this regard. Such a clean separation of training and testing datasets is a critical aspect of our approach.

In our model, the NU function is paired with the logit model. It is well known that the logit model is subject to the critique of 
the red-bus-blue-bus problem (see Debreu (1960)). One solution to the red-bus-blue-bus problem is called the nested logit model 
(see Train (2003)). It is straightforward to write down a nested logit version of our logit NU model so that our model can also avoid 
the red-bus-blue-bus problem. What might be more challenging is the generalization of our axiomatic characterization. Fortunately, 
recent work—by Kovach and Tserenjigmid (2022a), for example—has shown how to relax IIA to characterize the nested logit model. 
Therefore, it is possible to relax our axioms in a way similar to how Kovach and Tserenjigmid relax IIA to derive a characterization 
of the nested logit version of our model.

There are additional limitations of the logit model worth mentioning. For example, Apesteguia and Ballester (2018) show that 
the logit model may violate an intuitive monotonicity property, and Lu and Saito (2022) establish that the logit model—and indeed 
almost all mixed logit models—violates a natural behavioral condition known as convex substitutability. Our paper is among the 
first to integrate machine learning methods into economics through an axiomatic approach. Combining the NU function with the 
logit model is a natural first step in this direction. We anticipate that future research will explore alternative machine learning 
methods and pair them with stochastic choice models that exhibit more desirable behavioral properties.
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Appendix A. Proof of Theorem  1

Proof.  For any 𝐿 ⊆ 𝑋, let int(𝐿), cl(𝐿), 𝜕𝐿, aff(𝐿), dim(𝐿) denote the interior, closure, boundary, affine hull, and the dimension of 
the affine hull of 𝐿, respectively, in R𝑁 . For any 𝑥 ∈ 𝑋 and 𝜀 > 0, let 𝐵𝜀(𝑥) denote the open ball centered at 𝑥 with radius 𝜀. For 
any finite set of choice alternatives {𝑥1,… , 𝑥𝑚}, let 𝑥1 … 𝑥𝑚 ∶=  co({𝑥1,… , 𝑥𝑚}) be the convex hull of {𝑥1,… , 𝑥𝑚}.

The first statement is an immediate implication of Ke and Zhao (2024) and McFadden (1973). We will focus on the second 
statement. We will first show the sufficiency of the axioms and then the necessity. In this part of the proof, we will maintain the 
assumption that 𝜌 satisfies, positivity, IIA, continuity, and local mixture bi-invariance.

By McFadden (1973), positivity and IIA imply that there exists a positive-valued function 𝑉 ∶ 𝑋 → R such that for any menu 𝐴
and 𝑥 ∈ 𝐴, 𝜌(𝑥,𝐴) = 𝑉 (𝑥)∕

∑

𝑦∈𝐴 𝑉 (𝑦). Because 𝜌(𝑥, {𝑥, 𝑦}) = 𝑉 (𝑥)∕(𝑉 (𝑥) + 𝑉 (𝑦)), we also know that 𝑥 ≿ 𝑦 if and only if 𝑉 (𝑥) ⩾ 𝑉 (𝑦). 
In other words, ≿ can be represented by 𝑉 . Therefore, ≿ is complete and transitive.

The first lemma shows that under positivity and IIA, if 𝜌 satisfies weak local bi-invariance, then ≿ satisfies weak local 
bi-independence.

Lemma 1.  If 𝜌 satisfies positivity, IIA and weak local bi-invariance, then ≿ satisfies weak local bi-independence.
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Proof.  Given 𝑧 ∼ 𝑧̃, let the neighborhoods in weak local bi-invariance be 𝐿 and 𝐿̃, respectively. Pick any 𝑥 ∈ 𝐿 and 𝑥̃ ∈ 𝐿̃, and 
let 𝛼 = 𝛽 = 0. Then weak local bi-invariance implies that for all 𝜆 ∈ (0, 1), 𝑥 ≿ 𝑥̃ ⇔ 𝜌(𝜆𝑥𝑧, {𝜆𝑥𝑧, 𝑧}) ⩾, 𝜌(𝜆𝑥̃𝑧̃, {𝜆𝑥̃𝑧̃, 𝑧̃}). Note that 
under positivity and IIA, 𝑧 ∼ 𝑧̃ implies 𝑉 (𝑧) = 𝑉 (𝑧̃). Thus, 𝜌(𝜆𝑥𝑧, {𝜆𝑥𝑧, 𝑧}) ⩾ 𝜌(𝜆𝑥̃𝑧̃, {𝜆𝑥̃𝑧̃, 𝑧̃}) if and only if 𝑉 (𝜆𝑥𝑧) ⩾ 𝑉 (𝜆𝑥̃𝑧̃), which is 
equivalent to 𝜆𝑥𝑧 ≿ 𝜆𝑥̃𝑧̃. Thus, ≿ satisfies weak local bi-independence. □

Hence 𝜌 has a Luce NU representation; that is, there exists an NU function 𝑈 ∶ 𝑋 → R and a strictly increasing continuous 
function 𝜙 ∶ 𝑈 (𝑥) → R++ such that 𝑉 (𝑥) = 𝜙(𝑈 (𝑥)). By Corollary 1 in Ke and Zhao (2024), there exists a finite collection of 
regular closed subsets, denoted as 𝑋1, 𝑋2,… , 𝑋𝑛, whose union is 𝑋, such that 𝑈 is affine on each of those subsets. Without loss 
of generality, we can assume each 𝑋𝑘 is a convex polytope—the bounded intersection of finitely many closed half-spaces in R𝑁 . 
Clearly, each neuron in the first hidden layer defines a closed half-space; each neuron in the later layers, combined with its parent 
(and grand-parent, etc.) neurons, defines a finite collection of closed half-spaces.

Lemma 2.  There exists 𝑚 ∈ N+ and 𝑢1,… , 𝑢𝑚 such that min𝑥∈𝑋 𝑈 (𝑥) = 𝑢1 < 𝑢2 < ⋯ < 𝑢𝑚 = max𝑥∈𝑋 𝑈 (𝑥), and for all 𝑖 ∈ {1,… , 𝑚} and 
𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1],

𝜙(𝑢) = 𝑐𝑖𝑒
𝑢∕𝑎𝑖

for some 𝑎𝑖, 𝑐𝑖 > 0. Furthermore, 𝑐𝑖𝑒𝑢𝑖+1∕𝑎𝑖 = 𝑐𝑖+1𝑒𝑢𝑖+1∕𝑎𝑖+1  for all 𝑖 ∈ {1,… , 𝑚 − 1}.

Proof.  It suffices to show the claim with 𝑋 replaced by 𝑋𝑘 for an arbitrary 𝑘 ∈ {1, 2,… , 𝑛}. We will focus on the case in which 𝑈
is not constant on 𝑋𝑘, since the claim is trivial otherwise. Pick 𝑧ℎ = argmax𝑥∈𝑋𝑘

𝑈 (𝑥) and 𝑧𝑙 = argmin𝑥∈𝑋𝑘
𝑈 (𝑥). We can find such 

lotteries since 𝑈 is affine on 𝑋𝑘.
For all 𝑧 ∈ 𝑧ℎ𝑧𝑙, by weak local bi-invariance with 𝑧̃ = 𝑧 and 𝑥̃ = 𝑥, there exists 𝜀𝑧 > 0 such that for all 𝑥 ∈ 𝐵𝜀𝑧 (𝑧), 𝛼, 𝛽 ∈ [0, 1]

and 𝜆 ∈ (0, 1), we have
𝜌(𝜆𝑥(𝛼𝑥𝑧), {𝜆𝑥(𝛼𝑥𝑧), 𝜆𝑧(𝛼𝑥𝑧)}) = 𝜌(𝜆𝑥(𝛽𝑥𝑧), {𝜆𝑥(𝛽𝑥𝑧), 𝜆𝑧(𝛽𝑥𝑧)}),

which implies for all 𝑢, 𝑢′ ∈ [min{𝑈 (𝑥), 𝑈 (𝑧)},max{𝑈 (𝑥), 𝑈 (𝑧)}] and 𝜆 ∈ (0, 1),
𝜙(𝜆𝑈 (𝑥) + (1 − 𝜆)𝑢)
𝜙(𝜆𝑈 (𝑧) + (1 − 𝜆)𝑢)

=
𝜙(𝜆𝑈 (𝑥) + (1 − 𝜆)𝑢′)
𝜙(𝜆𝑈 (𝑧) + (1 − 𝜆)𝑢′)

.

Pick arbitrary 𝑥 ∈ 𝐵𝜀𝑧 (𝑧) such that 𝑈 (𝑥) > 𝑈 (𝑧). We have for all 𝜆̃ ∈ (0, 𝑈 (𝑥) − 𝑈 (𝑧)) and 𝛾, 𝛿 ∈ [0, 𝑈 (𝑥) − 𝑈 (𝑧) − 𝜆̃],

𝜙𝑥,𝑧(𝜆̃ + 𝛾)
𝜙𝑥,𝑧(𝛾)

=
𝜙𝑥,𝑧(𝜆̃ + 𝛿)
𝜙𝑥,𝑧(𝛿)

,

in which 𝜙𝑥,𝑧(𝑢̃) = 𝜙(𝑈 (𝑧) + 𝑢̃) for all 𝑢̃ ∈ [0, 𝑈 (𝑥) − 𝑈 (𝑧)]. We also have 

𝜙∗
𝑥,𝑧(𝜆̃ + 𝛾) = 𝜙∗

𝑥,𝑧(𝜆̃)𝜙
∗
𝑥,𝑧(𝛾) (3)

for all 𝜆̃, 𝛾 ∈ R++ such that 𝜆̃ + 𝛾 < 𝑈 (𝑥) − 𝑈 (𝑧), in which 𝜙∗
𝑥,𝑧 = 𝜙𝑥,𝑧∕𝜙𝑥,𝑧(0).

Eq.  (3) is the multiplicative form of Cauchy’s functional equation.24 Since 𝜙∗
𝑥,𝑧 is continuous and strictly positive, it is clear that 

there exists 𝑎𝑥,𝑧 > 0 such that 𝜙∗
𝑥,𝑧(𝑢) = 𝑒𝑢∕𝑎𝑥,𝑧  for all 𝑢 ∈ (0, 1). It then follows that for all 𝑢 ∈ (𝑈 (𝑧), 𝑈 (𝑥)),

𝜙(𝑢)∕𝜙(𝑈 (𝑧)) = 𝜙𝑥,𝑧(𝑢 − 𝑈 (𝑧))∕𝜙𝑥,𝑧(0) = 𝑒
1

𝑎𝑥,𝑧
(𝑢−𝑈 (𝑧))

.

Thus, it is easy to see that for all 𝑥 ∈ 𝐵𝜀𝑧 (𝑧) such that 𝑈 (𝑥) > 𝑈 (𝑧), 𝑎𝑥,𝑧 ≡ 𝑎𝑧. Thus, for all 𝑥 ∈ 𝐵𝜀𝑧 (𝑧) such that 𝑈 (𝑥) > 𝑈 (𝑧),

𝜙(𝑈 (𝑥)) = 𝜙(𝑈 (𝑧))𝑒
1
𝑎𝑧

(𝑈 (𝑥)−𝑈 (𝑧)).

By a symmetric argument, there exists 𝑏𝑧 > 0 such that for all 𝑥 ∈ 𝐵𝜀𝑧 (𝑧) such that 𝑈 (𝑥) < 𝑈 (𝑧),

𝜙(𝑈 (𝑥)) = 𝜙(𝑈 (𝑧))𝑒
1
𝑏𝑧

(𝑈 (𝑥)−𝑈 (𝑧)).

Note that {𝐵𝜀𝑧 (𝑧) ∶ 𝑧 ∈ 𝑧ℎ𝑧𝑙} forms an open cover of 𝑧ℎ𝑧𝑙 and thus has a finite sub-cover. Combining this observation with the 
solutions to the Cauchy equations, we conclude that there exist 𝑧1,… , 𝑧𝑚 such that 𝑈 (𝑧𝑙) = 𝑈 (𝑧1) < 𝑈 (𝑧2) < ⋯ < 𝑈 (𝑧𝑚) = 𝑈 (𝑧ℎ)
such that for all 𝑖 ∈ {1,… , 𝑚} and 𝑢 ∈ [𝑈 (𝑧𝑖), 𝑈 (𝑧𝑖+1)],

𝜙(𝑢) = 𝑐𝑖𝑒
𝑢∕𝑎𝑖

for some 𝑎𝑖, 𝑐𝑖 > 0. In addition, continuity of 𝜙 requires that 𝑐𝑖𝑒𝑈 (𝑧𝑖+1)∕𝑎𝑖 = 𝑐𝑖+1𝑒𝑈 (𝑧𝑖+1)∕𝑎𝑖+1  for all 𝑖 ∈ {1,… , 𝑚− 1}. Let 𝑢𝑖 = 𝑈 (𝑧𝑖) and 
we are done. □

The final step is to perform a continuous finite piecewise linear (CFPL) transformation of 𝑈 and normalize 𝜙 to the exponential 
function.

24 See Aczél (1966) for a thorough treatment of Cauchy’s equations.
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Lemma 3.  There exists an NU function 𝑈̃ that represents ≿ and 𝜙◦𝑈 = 𝑒𝑈̃ .

Proof.  Let 𝑢𝑖, 𝑎𝑖, 𝑐𝑖 be given by Lemma  2 for 𝑖 = 1,… , 𝑚. Define 𝑓 ∶ 𝑈 (𝑋) → R as follows: 𝑓 (𝑢) = 𝑢∕𝑎𝑖 + ln 𝑐𝑖 for 𝑢 ∈ [𝑢𝑖, 𝑢𝑖+1] for 
𝑖 = 1,… , 𝑚−1. The second statement in Lemma  2 ensures that 𝑓 is continuous. Thus 𝑓 is a strictly increasing CFPL transformation. 
By Proposition 2 and Corollary 1 in Ke and Zhao (2024), 𝑈̃ ∶= 𝑓 ◦𝑈 is also an NU representation of ≿. It is easy to see that 
𝜙◦𝑈 = 𝑒𝑈̃ . □

Now we show the necessity of the axioms for the second statement. We focus on weak local bi-invariance since the necessity of 
the other axioms are trivial. Suppose 𝜌 has a logit NU representation; that is, there is an NU function 𝑈 such that

𝜌(𝑥,𝐴) = 𝑒𝑈 (𝑥)
∑

𝑦∈𝐴 𝑒𝑈 (𝑦)

for all 𝐴 ∈  and 𝑥 ∈ 𝐴.
Clearly, 𝑈 is also a CFPL function. By Theorem 2.1 in Ovchinnikov (2002), there exists distinct affine functions 𝑈1,… , 𝑈𝑛 and 

index sets 𝐼1,… , 𝐼𝑚 such that

𝑥 ≿ 𝑦 ⟺ max
1⩽𝑗⩽𝑚

min
𝑖∈𝐼𝑗

𝑈𝑖(𝑥) ⩾ max
1⩽𝑗⩽𝑚

min
𝑖∈𝐼𝑗

𝑈𝑖(𝑦).

Since 𝑈1,… , 𝑈𝑛 are distinct, for each 𝑖 ≠ 𝑗, aff({𝑥 ∈ 𝑋 ∶ 𝑈𝑖(𝑥) = 𝑈𝑗 (𝑥)}) is either empty or defines an affine hyperplane in R𝑁 . Let 
 be the collection of these affine hyperplanes. Thus,  is an arrangement of hyperplanes in R𝑁 . A region of  in 𝑋 is a connected 
component of 𝑋∖(

⋃

𝐻∈ 𝐻). Let () be the collection of regions of  in 𝑋. For each 𝐿 ∈ (), it is easy to see that 𝐿 is nonempty, 
open, and cl(𝐿) is a polytope. Let () ∶= {cl(𝐿) ∶ 𝐿 ∈ ()}. Since  is finite, () must be finite. Clearly ⋃𝑃∈(𝐴) 𝑃 = 𝑋, and 
for any 𝑃 ∈ () there exists 𝑘 such that max1⩽𝑗⩽𝑚 min𝑖∈𝐼𝑗 𝑈𝑖(𝑥) = 𝑈𝑘(𝑥) for every 𝑥 ∈ 𝑃 .

For any 𝑥 ∈ 𝑋, let (𝑥) ∶= {𝐻 ∈  ∶ 𝑥 ∈ 𝐻} and consider ′ = ∖(𝑥). Basically, we remove all the hyperplanes that contains 
𝑥, if any. Clearly, there exists 𝐿𝑥 ∈ (′) such that 𝑥 ∈ 𝐿𝑥. It is clear that 𝑥 ∈

⋂

{𝑃 ∈ () ∶ 𝑥 ∈ 𝑃 }.
Next, we show that 𝐿𝑥 = int

(
⋃

{𝑃 ∈ () ∶ 𝑥 ∈ 𝑃 }
)

. The claim is trivially true if (𝑥) = ⊋. If (𝑥) ≠ ⊋, then by construction 
(𝑥) is an arrangement of hyperplanes in R𝑁 . Moreover, 𝑥 ∈

⋂

𝐻∈(𝑥) 𝐻 . It follows that 𝑥 is in every closed half-spaces defined by 
hyperplanes in (𝑥). Thus, 𝑥 ∈ 𝑃 ′ for every 𝑃 ′ ∈ ((𝑥)). Since 𝑥 ∈ 𝐿𝑥, we have that 𝑥 ∈ 𝑃 ′ ∩𝐿𝑥 for every 𝑃 ′ ∈ ((𝑥)). It is clear 
that

{𝐿′ ∩ 𝐿𝑥 ∶ 𝐿′ ∈ ((𝑥))} = {𝐿 ∈ () ∶ 𝐿 ⊆ 𝐿𝑥}.

It follows that 𝑥 ∈ 𝑃  for every 𝑃 ∈ () such that 𝑃 ⊆ cl(𝐿𝑥). Since 𝑥 ∈ 𝐿𝑥, we have 𝑥 ∉ 𝑃  if 𝑃 ⊈ cl(𝐿𝑥). Hence,

cl(𝐿𝑥) = cl
(

⋃

{𝐿′ ∩ 𝐿𝑥 ∶ 𝐿′ ∈ ((𝑥))}
)

= cl
(

⋃

{𝐿 ∈ () ∶ 𝐿 ⊆ 𝐿𝑥}
)

=
⋃

{𝑃 ∈ () ∶ 𝑃 ⊆ cl(𝐿𝑥)}

=
⋃

{𝑃 ∈ () ∶ 𝑥 ∈ 𝑃 }.

Note that since 𝐿𝑥 is the interior of a polytope, it is regular open. Thus, 𝐿𝑥 = int(cl(𝐿𝑥)) and we are done with this step.
The last step is to show that this 𝐿𝑥 construction is exactly what we want for weak local bi-invariance. Given 𝑧, 𝑧̃ ∈ 𝑋 with 𝑧 ∼ 𝑧̃, 

by the convexity of each 𝑃 ∈ (), it is clear that for any 𝑥 ∈ 𝐿𝑧 and 𝑥̃ ∈ 𝐿𝑧̃, 𝑥𝑧 ⊆ 𝑃  and 𝑥̃𝑧̃ ⊆ 𝑃 ′ for some 𝑃 , 𝑃 ′ ∈ (). Since 𝑈
coincides with an affine function within 𝑃  and 𝑃 ′, we have for all 𝑥 ∈ 𝐿𝑧, 𝑥̃ ∈ 𝐿𝑧̃, 𝛼, 𝛽 ∈ [0, 1], 𝜆 ∈ (0, 1),

𝜌(𝜆𝑥(𝛼𝑥𝑧), {𝜆𝑥(𝛼𝑥𝑧), 𝜆𝑧(𝛼𝑥𝑧)}) = 𝑒𝜆𝑈 (𝑥)+(1−𝜆)𝑈 (𝛼𝑥𝑧)

𝑒𝜆𝑈 (𝑥)+(1−𝜆)𝑈 (𝛼𝑥𝑧) + 𝑒𝜆𝑈 (𝑧)+(1−𝜆)𝑈 (𝛼𝑥𝑧)
= 𝑒𝜆𝑈 (𝑥)

𝑒𝜆𝑈 (𝑥) + 𝑒𝜆𝑈 (𝑧)
,

and

𝜌(𝜆𝑥̃(𝛼𝑥̃𝑧̃), {𝜆𝑥̃(𝛼𝑥̃𝑧̃), 𝜆𝑧̃(𝛼𝑥̃𝑧̃)}) = 𝑒𝜆𝑈 (𝑥̃)+(1−𝜆)𝑈 (𝛼𝑥̃𝑧̃)

𝑒𝜆𝑈 (𝑥̃)+(1−𝜆)𝑈 (𝛼𝑥̃𝑧̃) + 𝑒𝜆𝑈 (𝑧̃)+(1−𝜆)𝑈 (𝛼𝑥̃𝑧̃)
= 𝑒𝜆𝑈 (𝑥̃)

𝑒𝜆𝑈 (𝑥̃) + 𝑒𝜆𝑈 (𝑧̃)
.

Since 𝑈 (𝑧) = 𝑈 (𝑧̃), we conclude that weak local bi-invariance holds. □
17 
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Appendix B. Sample choice problems in Plonsky et al. (2019)

See Fig.  6.

Fig. 6. Examples of the binary choice problems over lotteries in the experiments of Plonsky et al. (2019).
18 
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Appendix C. The best-performed model

In this section, we report the best-performed model in our estimation. To describe the neural network, we will first present the 
indifference maps within various subspaces and then the exact estimates of the parameters.

C.1. Indifference maps

C.1.1. Subspaces with both positive and negative prizes
19 
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C.1.2. Subspaces with nonnegative prizes
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C.1.3. Subspaces with nonpositive prizes

C.2. Estimated neural network

C.2.1. The parameters of the CARA neuron and the CE neurons
Recall that the selected architecture has one CARA neuron and two CE neurons in the behavioral layer. In the best-performed 

model, the CARA neuron has a reasonable level of 𝛼 and the two CE thresholds coincide with each other.

 𝛼 𝛽 𝜂1 𝜂2  
 2.456 1.268 0.900 0.900 

C.2.2. The parameters of the RD neurons
Recall that the selected architecture has 20 RD neurons in the behavioral layer.

 𝜆𝑖  
 −0.2423 0.8690 0.9490 −1.1009 −1.8825 
 0.2890 −0.0348 −0.0213 −1.5899 0.3629  
 0.1764 −1.3350 −0.4814 0.2009 0.2528  
 0.3216 1.7527 −1.5367 −2.3024 0.1011  
 𝛾𝑖  
 0.4846 0.5749 −1.0015 −0.7963 −0.1861 
 1.3081 −0.3849 0.6741 1.3114 −1.2115 
 −0.3528 0.5260 0.0001 1.4063 −0.3760 
 0.3216 0.5472 −0.2428 0.3262 0.5538  
 𝜅𝑖  
 −0.9536 −1.3531 0.9147 1.3647 0.1489  
 0.7659 −0.6733 1.6707 −0.6014 −1.9913 
 −0.3619 1.5037 0.0000 −0.5946 −0.0216 

 −0.0675 0.7970 0.8573 1.5972 0.4117  

21 
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C.2.3. The parameters of the additional hidden layer
Recall that there are 15 neurons in the additional hidden layer. Each neuron takes a weighted average of the outputs from the 

23 neurons in the behavioral layer (1 CARA, 2 CE, 20 RD), adds a bias to the weighted average, compares the result with 0, and 
outputs the result if it is positive and zero otherwise. Finally, the neural network takes a weighted average of the outputs of the 
additional hidden layer to compute the utility.

(A) Weights of the neurons in the additional hidden layer Neurons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CARA 0.0805 0.0414 0.0051 0.0527 −0.1095 0.1405 0.1098 −0.1145 0.0837 −0.0355 −0.0297 −0.1028 0.0359 −0.0062 0.0000 CE 1 0.1907 0.0580 −0.0504 0.1176 −0.2673 −0.0421 −0.0122 −0.0275 −0.1076 −0.0665 0.1114 −0.2454 −0.0114 −0.0124 0.0000 CE 2 0.1847 0.0574 −0.0493 0.1149 −0.2449 −0.0404 −0.0160 −0.0317 −0.0919 −0.0658 0.1103 −0.2542 −0.0114 −0.0124 0.0000 RD 1 0.3060 0.0119 −0.3884 −0.0148 0.4107 −0.0220 0.3257 0.1411 0.1138 0.2519 0.0831 0.1326 0.1811 0.0185 0.0000 RD 2 0.4945 −0.3647 0.4452 0.1405 −0.4141 −0.3331 0.0378 −0.1788 −0.3489 0.2901 0.3230 −0.3738 0.1355 −0.1132 0.0000 RD 3 0.5147 −0.0757 −0.2326 −0.3663 0.2318 0.5072 0.1885 −0.5404 0.5467 −0.2331 −0.3339 0.4594 −0.4719 0.0010 0.0000 RD 4 0.4272 −0.2009 −0.3472 0.1000 −0.0009 −0.5134 −0.0386 0.2090 −0.2290 0.0450 0.0782 −0.0684 −0.2758 −0.0157 0.0000 RD 5 0.4118 −0.1189 −0.2059 0.2274 0.2030 0.0292 0.1535 −0.5111 −0.2729 0.4797 0.0740 −0.4599 0.5172 −0.1880 0.0000 RD 6 0.0629 0.3150 0.2950 0.1520 0.1116 0.6450 −0.1722 0.4354 −0.1203 −0.4955 −0.4202 0.3021 −0.2969 −0.0494 0.0000 RD 7 0.1735 0.0578 0.1231 0.0855 −0.1555 0.2508 −0.0098 −0.1270 0.0291 −0.0099 −0.0649 −0.3075 −0.1023 −0.0103 0.0000 RD 8 0.0000 0.0438 −0.5856 0.0000 0.0000 0.1528 −0.1843 −0.3301 −0.3625 0.1492 0.0248 0.0000 −0.3362 0.0000 0.0000 RD 9 −0.2390 −0.3206 −0.0025 0.3392 0.2215 0.4892 −0.0435 −0.3375 0.5832 0.1674 0.3253 0.4327 0.0028 0.3023 0.0000 RD 10 0.0558 0.3048 0.1432 −0.2104 −0.0156 0.0192 0.1154 −0.3112 0.3688 0.0263 0.2398 −0.4356 −0.4952 −0.1173 0.0000 RD 11 −0.2496 0.0348 −0.2004 0.0988 0.2898 −0.1560 −0.0383 0.0583 −0.2610 0.1706 0.0692 0.1066 −0.3755 0.0178 0.0000 RD 12 0.1143 −0.1725 0.1802 0.3767 0.3508 0.4574 −0.1628 0.2614 0.2114 −0.2173 0.2202 0.4930 −0.4325 0.2204 0.0000 RD 13 0.1515 −0.0584 0.2740 −0.1107 0.2683 0.1448 0.0574 −0.2725 0.0123 0.3538 0.0159 0.2801 −0.4718 0.1183 0.0000 RD 14 0.1238 0.0914 0.4155 0.2640 0.2400 0.3715 0.2359 −0.2959 −0.2420 −0.0165 −0.3749 −0.2453 −0.2369 −0.0658 0.0000 RD 15 0.2558 0.0768 0.3759 0.3532 0.1872 −0.1390 0.4280 −0.2774 0.0919 0.2347 −0.0629 −0.3067 −0.1911 0.0350 0.0000 RD 16 −0.2149 0.0427 −0.2219 0.1392 −0.3732 0.3467 0.2825 0.4568 −0.1552 0.0120 −0.1138 0.1416 0.3476 0.0390 0.0000 RD 17 −0.4582 0.2030 −0.2305 0.0908 0.3685 0.0066 0.2739 0.5102 −0.0925 0.5253 −0.3564 0.4927 −0.1798 0.2292 0.0000 RD 18 −0.0832 0.4517 0.3768 0.4306 −0.4791 −0.2881 0.0849 0.1906 −0.3216 0.1398 0.1886 0.4300 0.2875 −0.0902 0.0000 RD 19 0.1987 0.0837 0.2144 0.5113 0.1070 −0.5514 −0.1198 0.0139 −0.3803 −0.1791 0.2126 −0.0962 0.4534 0.0605 0.0000 RD 20 0.1188 0.1721 −0.3292 −0.0625 −0.4791 0.0943 0.0926 −0.1723 −0.0756 0.0901 −0.2825 0.1629 0.2708 0.0054 0.0000

(B) Biases of the neurons in the additional hidden layer Neurons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Biases 0.0000 0.0099 −0.3195 0.0000 0.0000 −0.0448 −0.1017 −0.0994 0.0630 0.0886 −0.0056 0.0000 −0.3886 0.0000 0.0000

(C) Utility weights of the neurons in the additional hidden layer Neurons 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Utility weights −0.5437 −0.2091 −0.5713 −0.3341 0.7878 −0.6671 −0.7185 0.8277 −1.0413 0.2155 −0.2630 0.7289 0.6113 0.0344 0.0000

In the following table, we first report the weights each neuron assigns to the behavioral neurons, then the biases of each neuron, 
finally the weights the NU function assigns to each neuron in the additional hidden layer. Note that the Neuron 15 is never activated 
in the estimation process and thus redundant.

Data availability

Data will be made available on request.
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