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A B S T R A C T

Mathematics development draws on various cognitive and mathematics skills, which may have distinct influence 
on students at different achievement levels. The current study explored how students’ skill profiles contribute to 
their mathematics achievement levels. Two-hundred-and-seventy-two fourth graders completed assessments on 
various cognitive and mathematics abilities. Latent profile analysis identified four math achievement classes, 
namely, mathematics learning disability (MLD), average achievers, high achievers, and mathematical giftedness. 
Multinomial logistic regression further revealed that, compared to average achievers, students struggling with 
fraction magnitude understanding and number sentence construction in word problems are more likely to have 
MLD, students with better spatial skills and fraction magnitude understanding are more likely to be high 
achievers, and students with better arithmetic principle understanding are more likely to be mathematically 
gifted. The current findings illustrate the unique cognitive characteristics of students at different achievement 
levels, which allow practitioners to make level-specific adjustments to their teaching.
Education relevance statement: The current study identified four mathematics achievement classes and examined 
the skills that contributed to the cognitive profile of these ability groups. Our results revealed the critical skills 
that differentiated between these achievement groups. Notably, number sentence construction and fraction 
number line differentiated students with mathematics learning difficulties from average performers. Under
standing of abstract arithmetic principles was also found to be the distinctive skill for the highest achievers. The 
findings informed assessment and subsequent intervention for learners at different mathematics achievement 
levels. Further research and educational practices (remediation, curriculum differentiation, acceleration) could 
be developed to tailor their unique learning needs.

1. Introduction

Mathematics is a compulsory subject in primary and secondary 
schools around the world. Mathematics achievement during school 
years has a significant impact on various life outcomes, such as academic 
attainment, psychological well-being, and occupational status (Geary, 
2011; Parsons & Bynner, 2005; Ritchie & Bates, 2013). Considering the 
profound influence of mathematics achievement, it is crucial to identify 
specific strategies to support the mathematics learning of students with 
different needs. At the low and high ends of the mathematics perfor
mance spectrum, both students with mathematics learning disability 
(MLD) and mathematically gifted (MG) students deserve attention and 

support to thrive and fulfill their potential in mathematics. In order to 
facilitate appropriate educational intervention, it is important to iden
tify potential students with MLD or MG. Prior literature typically 
examined children’s mathematical development and its predictors by 
treating them as a homogeneous group while MLD- and MG- related 
research remains limited (Caviola et al., 2022; Lewis & Fisher, 2016). 
This limits potential efforts in addressing the unique needs of these 
students through relevant intervention strategies.
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1.1. Mathematics learning disability (MLD) and mathematical giftedness 
(MG)

Children with MLD comprise approximately 5–8 % of the school- 
aged population (Lewis & Fisher, 2016; Morsanyi et al., 2018). Stu
dents with MLD often struggle with mathematics learning and under
standing, which subsequently leads to poorer academic motivation, 
emotional well-being, and even socioeconomic status in adulthood 
(Geary, 2011; Ritchie & Bates, 2013). Given the consequences of 
mathematics difficulties, it is important to identify students with MLD 
and provide suitable assistance in their mathematics learning. Common 
ways to identify MLD cases involve comparing students’ mathematics 
performance against their peers using standardized achievement tests. 
These tests utilize certain cutoff thresholds (e.g., 10th percentile, 1.5 SD 
below average) to define MLD status (Lewis & Fisher, 2016). Recent 
research has highlighted the utility of data-driven approaches (e.g., 
latent analyses, cognitive diagnostic models) to classify and categorize 
students’ mathematics achievement levels (Ouyang et al., 2023; Zhang 
et al., 2020). Understanding the specific deficits in cognitive and 
mathematics skills exhibited by students with MLD is especially 
important, since such knowledge enables educators to provide specific 
instructional accommodations that help students with MLD overcome 
challenges related to particular mathematics skills, which may be 
especially pertinent to the etiology of MLD (Karagiannakis & Cooreman, 
2014).

On the other hand, it is equally important to identify MG students 
and provide support for their mathematics learning and development. 
Recognizing MG students is especially important in the STEM age, as 
these students possess the potential to contribute to and drive mean
ingful advancements in relevant fields, which could foster scientific 
progress and societal development (Ficici & Siegle, 2008; Myers et al., 
2017). Nevertheless, there is much less research focusing on their needs 
compared to their MLD peers (Caviola et al., 2022; Myers et al., 2017). In 
the standardized education landscape, MG students are often presented 
with comparable educational opportunities as their average achieving 
peers, without any adjustment to address their exceptional talents and 
needs (Maggio & Sayler, 2013; Özdemir & Bostan, 2021). This may often 
be attributed to teachers’ lack of knowledge and skills needed to identify 
and support potential MG students, leaving MG students undetected and 
their needs unsatisfied (Chamberlin & Chamberlin, 2010; Gadanidis 
et al., 2011). Under such circumstances, MG students may experience 
boredom due to a lack of challenge and demotivation (Özdemir & 
Bostan, 2021), which could further lead to students dropping out and 
losing their gifted potentials (Landis & Reschly, 2013; Renzulli & Park, 
2000). Therefore, it is important to identify the specific mathematics 
skills that are essential for students with potential to flourish, enabling 
the development of specific support strategies for the growth of these 
students.

1.2. Theoretical motivation

To identify skills that may support mathematics development and 
benefit children in attaining higher mathematics achievement levels, 
several theories related to mathematics development and relevant 
cognitive skills were reviewed to guide the selection of the current study 
variables.

The works of Cragg et al. (2017) and LeFevre et al. (2010) both 
highlighted the potential roles of domain-general skills in supporting 
mathematics learning. In Cragg et al.’s (2017) theoretical framework, it 
was proposed that various executive functions, such as working mem
ory, inhibition, and shifting, support students’ mathematics learning 
through facilitating their arithmetic fact retrieval, procedural skills, and 
conceptual understanding. Their findings also showed that working 
memory and inhibition are particularly relevant to students’ mathe
matics achievement. Meanwhile, LeFevre et al.’s (2010) Pathway model 
emphasized the unique role of spatial attention in early mathematical 

success, which was found to be distinct from quantitative and linguistic 
processes. Notably, existing evidence also supported the relevance of 
spatial processes in numerical magnitude, problem representation, and 
overall mathematics competence across different developmental stages 
(Dehaene, 2004; Leung & Wong, 2023; Siegler, 2016; Tam et al., 2019). 
Based on these theories, verbal working memory, visuospatial working 
memory, inhibitory control, and spatial skills were selected as measures 
of domain-general skills that may predict students’ mathematics 
achievement classes.

For domain-specific skills, Wong’s (2021) three-component frame
work of mathematical competence was referred to better understand 
how school-aged children’s mathematics and cognitive skills construe 
profiles for learners at different achievement levels. In the framework, 
the author identified three underlying domain-specific skill components 
that contribute to mathematical competence (i.e., numerical magnitude, 
problem representation, understanding of mathematical symbols and 
their relevant principles) by decomposing the mathematical problem- 
solving process. Other than numerical magnitude, which has been 
widely investigated in the field of mathematical cognition (Schneider 
et al., 2018), the framework further highlights the potential significance 
of problem representation and the understanding of mathematical 
principles. Deficits in these skill components may also warrant investi
gation on their relationship with MLD. Guided by this framework, 
fraction magnitude understanding, number sentence construction, and 
arithmetic principles were selected as measures of domain-specific skills 
that may predict students’ mathematics achievement classes.

Based on the above theoretical models, the current study aimed to 
investigate how these identified domain-general and domain-specific 
skill components predict membership of different ability groups in 
mathematical competence. The following section offers a detailed 
explanation of these variables and their relations with mathematics 
achievement across students in different achievement groups.

1.3. Executive functions and mathematics achievement

Working memory, encompassing verbal and visuospatial compo
nents, have consistently been found to associate with overall mathe
matics achievement (Friso-van den Bos et al., 2013; Peng & Fuchs, 
2016). Specifically, verbal working memory enables the retention of 
mathematics terms, procedures, and problem-solving steps (Raghubar 
et al., 2010), facilitating tasks such as organizing numerical sequences, 
operating mathematical rules, and maintaining intermediate results 
during multi-step arithmetic (Ashkenazi & Danan, 2017; Attout et al., 
2014). On the other hand, visuospatial working memory allows the 
effective organization of visual elements in mathematics such as geo
metric figures and spatial relations in mathematics problems (Giofrè 
et al., 2013). These cognitive functions aid students retain and process 
numbers, operations, and spatial relations, supporting problem-solving 
and comprehension in mathematical contexts (Lee et al., 2009; Raghu
bar et al., 2010; Toll et al., 2016).

Additionally, research has found inhibitory control to be essential for 
mathematics achievement (Cragg & Gilmore, 2014; cf. Lee & Lee, 2019). 
It aids students in suppressing impulsive response, selecting efficient 
strategies, and improving speed and accuracy during problem solving 
(Khng & Lee, 2009; Lemaire & Lecacheur, 2011). Particularly, students 
with strong inhibitory control may filter distracting information that 
could impede problem-solving and concentrate on relevant elements of 
the given tasks (Gilmore et al., 2015; cf. Ng et al., 2017). Moreover, 
inhibitory control helps students to resist instinctive but incorrect de
cisions and develop a more thoughtful approach to problems (McNeil 
et al., 2017; Ng & Lee, 2005).

These skills may play a role in determining students’ mathematics 
class membership (i.e., MLD, typical, MG). Ample evidence has sup
ported the relationships between MLD status and verbal working 
memory, visuospatial working memory, and inhibitory control. Longi
tudinal and meta-analytic studies have highlighted the 
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underperformance in both working memory domains among students 
with MLD compared to their typically-developing peers (Klesczewski 
et al., 2018; Kroesbergen et al., 2023). Research also indicated that MLD 
children may have reduced capacity to resist interference that contrib
utes to difficulties in arithmetic problem solving (Barrouillet et al., 1997; 
De Visscher & Noël, 2013). Relatively little research has examined the 
cognitive precursors of MG. Gifted students were found to have superior 
verbal and visuospatial working memory and perform better in tasks 
requiring inhibitory control compared to typical children (Berg & 
McDonald, 2018; Johnson et al., 2003). These findings were further 
corroborated by neuroimaging studies indicating higher activation in 
brain regions associated with visuospatial processing and quicker 
inhibitory responses (Desco et al., 2011; Duan et al., 2009).

1.4. Spatial skills and mathematics achievement

Spatial skills, which is the ability to visualize and manipulate spatial 
information for problem solving, has been consistently found to be 
linked to mathematics achievement (Atit et al., 2022; Hawes et al., 2022; 
Newcombe, 2010; Xie et al., 2020). It was found to be important for 
computation and problem solving (Tam et al., 2019; Thompson et al., 
2013). Specifically, spatial skills may promote a mature number- 
magnitude representation in a spatial format, which could facilitate 
arithmetic computation (Tam et al., 2019; Yang & Yu, 2021). Moreover, 
spatial skills may facilitate learners to form visual representations for 
word problems that organize relevant problem parts in a spatial manner, 
which was found to be important for mathematics problem solving 
among students with learning difficulties and those with exceptional 
abilities (Krawec, 2014; van Garderen & Montague, 2003).

Spatial skills matter to learners at different achievement levels in 
mathematics (Zhang et al., 2020). Specifically, deficits in spatial skills 
were found to differentiate students with MLD and low achievers 
(Ouyang et al., 2023; Zhang et al., 2020). However, a recent meta- 
analysis did not find significant differences in the strength of the 
spatial-math effect between typically-developing students and those 
with learning difficulties (Xie et al., 2020). On the other hand, spatial 
visualization was found to be one of the important skills that differen
tiated students with exceptional mathematical performance and typical 
learners, indicating the importance of spatial skills for high achieving 
students (Bakker et al., 2022). The current study aimed to further clarify 
whether spatial skills could explain the differences between students 
across mathematics ability groups.

1.5. Fraction magnitude understanding and mathematics achievement

In terms of domain-specific mathematics skills, fraction magnitude 
estimation may differentiate students’ mathematics achievement levels. 
Number magnitude understanding is commonly measured by number 
line tasks, which assess students’ ability to locate specific numbers on an 
empty number line between a pair of lower and upper limit (Siegler & 
Opfer, 2003). Students with better numerical magnitude understanding 
may have a more refined mental number line, which was argued to be 
fundamental to the acquisition of broader mathematical competencies 
(Siegler, 2016).

Number magnitude understanding of different types of number (e.g., 
whole numbers, fractions) were shown to be consistently associated 
with mathematics performance (Schneider et al., 2018). In particular, 
fraction magnitude understanding was shown to correlate stronger with 
mathematics achievement than whole number magnitude understand
ing (Schneider et al., 2018). Indeed, measuring magnitude under
standing with fractions is age-appropriate for Grade 4 students – the 
current sample age. Evidently, Grade 4 students may perform reason
ably well in number line tasks with whole number estimates (Zhu et al., 
2017), such that these tasks may not be able to effectively separate 
students across achievement levels. Fraction number line, on the other 
hand, may represent a more suitable task to measure number magnitude 

understanding in these students since there may be greater range of 
individual differences (Schneider et al., 2018).

A handful of studies have investigated whole number magnitude 
understanding, but not fraction magnitude understanding, in the MLD 
population. Geary et al. (2008) and Andersson and Östergren (2012)
showed that MLD children had lower levels of number magnitude un
derstanding compared to their typically-achieving peers. Resnick et al. 
(2016) reported a group of students that were persistently weak in 
fraction magnitude understanding who also showed minimal growth 
over time, which is in line with the characteristics of the growth tra
jectories of students with MLD (Murphy et al., 2007). These findings 
suggested that students with MLD may have poorer fraction magnitude 
understanding than their typically-achieving peers.

1.6. Number sentence construction and mathematics achievement

Number sentence construction, referring to the ability to convert 
word problems into corresponding mathematical expressions (also 
known as number sentences), may also be critical to students’ mem
bership in mathematics achievement classes. Given the prominence of 
word problems in the modern mathematics curriculum, they have 
become an indicator of mathematics performance in teaching and 
assessing students’ understanding across all mathematical topics 
(Verschaffel et al., 2020). When students solve word problems, they 
would first form an arithmetic or algebraic number sentence and then 
perform the necessary computations to obtain the solution (Tolar et al., 
2012; Wong & Ho, 2017). Although both steps are fundamental to 
solving word problems, research has uncovered that more word problem 
mistakes are caused by errors in forming number sentence than per
forming computation (Lewis & Mayer, 1987; Wong & Ho, 2017). 
However, less attention has been directed towards the potential role of 
number sentence construction in the mathematical problem-solving 
process.

Despite the scant research in this area, Yip et al. (2020) has recently 
found that students with MLD had poorer understanding of the under
lying semantic structures of word problems, which is a crucial factor for 
forming correct number sentences (Reusser, 1990). Yip et al. (2020) has 
further demonstrated that the ability to recognize problem types in 
addition or subtraction problems could predict MLD class membership 
after controlling for students’ arithmetic skills. Intervention studies with 
students with MLD targeting their ability to form accurate problem 
representations have also shown positive effects on word problem per
formance and overall mathematics achievement (Lein et al., 2020). 
Relatively less attention has been directed towards number sentence 
construction skills among MG students, though gifted students may 
indeed have superior number sentence construction skills for having 
better understanding and representation of word problems when 
compared to their typical peers (Heinze, 2005).

1.7. Arithmetic principle understanding and mathematics achievement

Arithmetic principle understanding may be another skill that pre
dicts students’ level of mathematics achievement. Arithmetic principle 
understanding refers to students’ ability to draw out rules and regular
ities that apply to arithmetic operations (Prather & Alibali, 2009). Ex
amples of arithmetic principle include commutativity (e.g., a + b = b +
a), associativity (e.g., a + (b + c) = (a + b) + c), inversion (e.g., a × b ÷ b 
= a), and complement (e.g., if a – b = c, then a – c = b). Students with 
better arithmetic principle understanding may take advantage of the 
regularities in arithmetic operations, leading to reduced cognitive load 
and increased accuracy in solving arithmetic problems. For example, 
students with commutativity knowledge may be able to store and 
retrieve certain arithmetic facts (e.g., single-digit addition and multi
plication) more efficiently, as these facts can be retrieved from two 
sources and are activated twice as frequently (e.g., 4 + 7 and 7 + 4; 
Rickard et al., 1994). Previous evidence has shown students with better 
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arithmetic principle understanding demonstrated higher levels of 
computational skills (Ching & Nunes, 2017; Yip et al., 2023).

Given the benefits of arithmetic principle understanding on mathe
matical computation, it is surprising that little research has investigated 
arithmetic principle understanding among students with MLD. Jordan 
et al. (2003) found that students with MLD in second grade had poorer 
arithmetic principle understanding than their typically-achieving peers. 
Andersson (2010) reported a similar effect in third and fourth grade 
students. No research so far has explored this skill among MG students. 
The current study attempted to extend prior findings on the group dif
ferences between students with MLD and their peers in arithmetic 
principle understanding by investigating whether such performance 
difference was also observed between MG students and their typically- 
achieving peers.

1.8. The current study

The current study aimed to identify the mathematics achievement 
classes among Grade 4 students, compare skill profiles across the iden
tified achievement classes, and explore the specific skills that may pre
dict achievement class memberships.

Previous studies have found significant associations between 
nonverbal intelligence and various mathematics skills, such as numeri
cal processing, calculation, and algebra, as well as overall mathematics 
achievement (Peng et al., 2019). Thus, we will control for nonverbal 
intelligence in our models to elucidate the unique contributions of both 
domain-general and domain-specific skills towards classifying students 
into different mathematics learning profiles.

Existing findings reported significant differences in the cognitive and 
mathematics skill levels between students at different mathematics 
achievement levels, which were also expected and hypothesized in the 
current study. However, these findings did not allow the investigation of 
whether specific skills differentiated students’ achievement class mem
bership. The current study aims to fill this research gap by exploring the 
specific skills that may predict students’ mathematics achievement class 
membership.

2. Methods

2.1. Participants

A total of 273 Cantonese-speaking fourth graders were recruited 
from nine local mainstream primary schools in Hong Kong as part of a 
longitudinal study. One participant was excluded due to anomalous 
performance in the arithmetic principle understanding task (see last 
paragraph of Section 2.4.1.). The final sample was 272 students (111 
male), with a mean age of 10.29 years (SD = 0.86 years).

2.2. Procedures

Ethical approval was obtained from the Human Research Ethics 
Committee of the corresponding author’s affiliated university. In
vitations letters were sent to primary schools in Hong Kong. Consent 
forms were then distributed to the parents. After obtaining parental 
consents, participants were invited for individual assessments at home 
or at school. Each data collection session lasted about 90 to 120 min, 
with breaks given when needed. Parents of the participants received HK 
$50 supermarket or book coupons as a token of gratitude.

All assessments were carried out by trained test evaluators, who were 
postgraduate and undergraduate students majoring in psychology. Prior 
to data collection, test evaluators satisfactorily completed a training 
module conducted by a doctoral student in psychology who was expe
rienced in educational assessment. The training started with a group 
didactic component, followed by individual supervised data collection 
sessions in which the test evaluators administered all study measures in 
one-to-one data collection sessions with randomly assigned study 

participants under the supervision of the doctoral student. These pro
cedures help ensure the accuracy and fidelity of data collection 
procedures.

2.3. Transparency and openness

This study was not preregistered. It was part of a longitudinal 
research project on arithmetic principle understanding and its rela
tionship with mathematics learning. Data used in this study are available 
at the Open Science Framework (https://osf.io/3ce5p). Research ma
terials are available upon request.

2.4. Measures

2.4.1. Domain-general and domain-specific skills
Verbal working memory was assessed by the backward syllable span 

task. In each trial, a string of Cantonese syllables was played at the pace 
of one syllable per second. Participants were instructed to recall the 
syllables in reverse order. There were three trials per level, and seven 
levels in total. One syllable was added to each level as the task pro
ceeded. The task was terminated when participants scored zero in all 
trials on a level. Two practice trials were provided for familiarization 
before the task began. Each correct trial was awarded one point. Higher 
scores indicated greater verbal working memory span.

Visuospatial working memory was assessed by the backward Corsi 
block tapping task (Corsi, 1973). In each trial, participants were shown a 
board with nine paper boxes randomly built on it. Then, they were 
shown a video of box tapping in a specific sequence. Each tap was 
separated by a one-second interval. Participants were asked to recreate 
the sequence in the video in reverse order by tapping the boxes on the 
board. There were three trials per level, and seven levels in total. One tap 
was added to each level as the task proceeded. The task was terminated 
when participants scored zero in all trials on a level. Two practice trials 
were provided for familiarization before the task began. Each correct 
trial was awarded one point. Higher scores indicated greater visuospa
tial working memory span.

Inhibitory control was assessed by the colour Stroop task (Stroop, 
1935). The task consisted of three parts. The first part involved naming 
colours (red, yellow, green, blue, purple) in 40 colour boxes. The second 
part involved naming 40 Chinese colour words printed in black. The 
third and final part involved naming the colours of 40 coloured Chinese 
words printed with incongruent ink colours (e.g., the word “red” was 
printed in green). Participants were instructed to name the colour (for 
the first and third parts) or words (for the second part) as quickly as they 
could. The first five items in each part served as practice for task 
familiarization. Participants’ performance was indicated by the inverse 
difference in the time taken for the final part and the mean reaction time 
taken for the first and second part (i.e., TimePart 3 – (TimePart 1 + TimePart 

2)/2)− 1. Higher scores indicated better inhibitory control.
Spatial skills were assessed by the Card Rotation Test (Ekstrom et al., 

1976). The test consisted of two identically-structured sessions, each 
with 10 items and a 3-min time limit. Participants were presented with 
one example and two practice items before the test began. Each item in 
the test consisted of an irregular polygon (the target shape) along with 
eight alternative shapes (options). Participants were instructed to select 
all the options that were planar rotations of the target shape, among 
distractors of rotated mirror images mixed in the options. One point was 
awarded to each correct choice, and one point was deducted for each 
incorrect choice. No penalty was given for omitting correct answers. 
Higher scores indicated better spatial skills.

Fraction magnitude understanding was assessed by the fraction 
number line task (Wong, 2018; Wong & Morsanyi, 2023). There were 24 
trials in this computerized task. In each trial, participants were shown a 
number line with 0 on the left and 1 on the right. They were then 
instructed to move the cursor and indicate the position of a designated 
fraction on the number line. The absolute difference between 
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participants’ marking and the correct location divided by the scale of the 
number line, known as the percentage absolute error (PAE), was 
measured for each item. Participants’ performance was indicated by one 
minus the mean PAE across trials. Higher scores indicated better fraction 
magnitude understanding.

Number sentence construction for word problems was assessed by 
the number sentence construction task (Wong & Ho, 2017; Wong & Yip, 
2023). Participants were instructed to write down the number sentences 
and answers for 10 word problems, arranged in ascending order of dif
ficulty. Only the number sentence was scored. Each correct number 
sentence was awarded one point. Number sentences or algebraic equa
tions were both accepted. Higher scores indicated better number sen
tence construction skills.

Arithmetic principle understanding was assessed by a series of 
computerized test for commutativity, associativity, inversion, and 
complement (Torbeyns et al., 2016). In each item, participants were 
presented with two arithmetic problems: a reference problem at the top 
of the screen and a target problem at the centre of the screen. Partici
pants were instructed to solve the target problem and were informed 
that the reference problem may or may not be useful. In half of the items 
(core items), the reference problem facilitated the problem-solving 
process through enabling relevant arithmetic principle shortcuts (e.g., 
for commutativity, reference problem: 375 + 518 = 893, target prob
lem: 518 + 375 =?). In the other half (distractor items), the reference 
problem and the target problem were unrelated (e.g., for commutativity, 
reference problem: 327 + 453 = 780, target problem: 443 + 347 =?). 
Participants responded by pressing keyboard keys to choose one out of 
the three answer options provided.

For the arithmetic principle understanding task, time limits were set 
for each item to ensure that participants solved the target problems 
through relevant arithmetic principle shortcuts. The time limits for 
commutativity, associativity, inversion, and complement were 7, 9, 8, 
and 9 s respectively. These limits were obtained from pilot testing such 
that participants had sufficient time to use the arithmetic principle 
shortcuts but not enough for actual computation. One participant was 
excluded from the sample for displaying significantly above-chance 
performance in the distractor items. Two examples and four practice 
items were given before the test began. There were 72 items in this task 
(36 core items). Each correct response in the core items was awarded 
one point. Distractor items served as a validity check and were not 
scored. Higher scores indicated better arithmetic principle 
understanding.

2.4.2. Mathematics achievement
Numerical operations ability was assessed by the numerical opera

tions subtest of the Weschler Individual Achievement Test – Third Edi
tion (WIAT-III; Wechsler, 2009). There were 61 items in this task, 
presented in increasing level of difficulty. Participants attempted a 
subset of items as determined by the grade-specific start point, the basal, 
and the ceiling of the task (i.e., task terminates upon four consecutive 
incorrect answers). The items included basic arithmetic operations of 
whole numbers, fractions, and decimals, and were presented in vertical 
or horizontal formats. Rough work was allowed, but only the final an
swers were scored. Each correct answer was awarded one point. Higher 
scores indicated better numerical operations ability.

Math problem-solving ability was assessed by the math problem 
solving subtest of the Weschler Individual Achievement Test – Third 
Edition (WIAT-III; Wechsler, 2009). There were 72 items in this task, 
presented in increasing level of difficulty. Participants attempted a 
subset of items as determined by the grade-specific start point, the basal, 
and the ceiling of the task (i.e., task terminates upon four consecutive 
incorrect answers). Items were orally presented alongside the corre
sponding visual stimuli. Participants were instructed to give verbal an
swers, and rough work was allowed. The subtest was translated by the 
corresponding author into Chinese and then back-translated by an un
dergraduate majoring in English. Each correct answer was awarded one 

point. Higher scores indicated better math problem-solving ability.

2.4.3. Cognitive correlate
Nonverbal intelligence was assessed by the Raven’s Standard Pro

gressive Matrices (Raven et al., 2003). The full scale of 60 items was 
administered. In each item, participants were presented with an 
incomplete pattern of shapes and were instructed to identify the missing 
part by selecting the appropriate option. Each correct answer was 
awarded one point. Higher scores indicated higher nonverbal 
intelligence.

2.5. Data analyses

The current analysis plan was adapted from prior studies with similar 
objectives of classifying individuals into subgroups, studying variations 
in individual characteristics among these subgroups, and identifying 
predictors of subgroup membership (Sun & Xie, 2020; Vanslambrouck 
et al., 2019; Zhang et al., 2020).

Latent profile analysis (LPA) was conducted to identify different 
mathematics achievement profiles, with numerical operations and math 
problem solving as observed variables. LPA was conducted to multiple 
models starting from a one-class model and adding one class at a time, 
until an optimal model was identified. The choice of optimal model was 
informed based on various criteria: the Bayesian information criterion 
(BIC), the Lo-Mendell-Rubin likelihood ratio test (LMR-LRT), the boot
strapped likelihood ratio test (BLRT), and entropy of the models. A 
model solution was considered optimal when it had the lowest BIC value 
among the models and non-significant p-values in the LMR-LRT and 
BLRT between the model and the next model with one more class. En
tropy of the models was also examined, with values over 0.8 indicating 
minimal classification uncertainty.

Additionally, ANOVA was conducted to examine the differences in 
domain-general and domain-specific skills between profile groups, as 
well as to validate the classes obtained from LPA. Post-hoc tests (Tukey) 
were followed for significant omnibus differences. Finally, a multino
mial logistic regression model was fitted to reveal significant predictors 
of mathematics achievement class membership. A stepwise model was 
specified for the regression model, where nonverbal intelligence as a 
cognitive correlate was entered in the first step (Model 1), and domain- 
general and domain-specific skills (i.e., verbal working memory, vi
suospatial working memory, spatial skills, fraction magnitude under
standing, number sentence construction, arithmetic principle 
understanding) were entered in the second step (Model 2). The LPA was 
conducted using R with the mclust package (Scrucca et al., 2023), while 
the ANOVA, post-hoc tests, and multinomial logistic regression analysis 
were conducted using SPSS 28.

3. Results

3.1. Descriptive statistics

Table 1 presents the descriptive statistics, internal reliability of each 
measure, and correlations among the measured variables. All measures 
displayed satisfactory reliability (0.75 ≤ αs ≤ 0.95). Correlation ana
lyses showed that verbal working memory, visuospatial working mem
ory, nonverbal intelligence, spatial skills, fraction magnitude 
understanding, number sentence construction, arithmetic principle un
derstanding, numerical operations, and math problem solving had sig
nificant positive correlation with one another (0.19 ≤ rs ≤ 0.66, ps ≤
.001). Inhibitory control had significant positive correlation with most 
variables (0.15 ≤ rs ≤ 0.27, ps ≤ .01), except with visuospatial working 
memory (r = 0.12, p = .052), fraction magnitude understanding (r =
0.05, p = .412) and number sentence construction (r = 0.03, p = .622).
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3.2. Profile groups of mathematics achievement

Table 2 presents fit indices of LPA models with one to five classes 
examining mathematics achievement profiles, with numerical opera
tions and math problem solving as observed variables. As the number of 
classes increased, the BIC values decreased and reached a minimum with 
the four-class model, where it subsequently increased with the five-class 
model. Furthermore, increasing model classes stepwise from one class to 
four classes yielded significant p-values for LMR-LRT (ps < .001) and 
BLRT (ps = .001) tests, yet the four-class and five-class models showed 
non-significant differences in both LMR-LRT (p = .060) and BLRT (p =
.212) tests. This indicates that, while the model fits significantly 
improved as more classes were introduced from one class to four classes, 
the model fits between the four-class and five-class models did not 
significantly differ. Hence, a four-class model was selected due to best 
model fit and parsimony, as consistently supported by the fit indices. 
The four-class model was further supported by its entropy value 0.844, 
indicating that the model classification was reliable.

3.3. Differences in measured skills and achievement levels between profile 
classes

Fig. 1 presents the estimated mean z-scores of the measured skills 
and achievement levels among the four profiled classes. Of note, the 
mean z-scores of the mathematics achievement measures in the lowest 
achieving class were − 1.25 (i.e., bottom 10.56 %) for numerical oper
ations and − 1.58 (i.e., bottom 5.67 %) for math problem solving. 
Relatedly, the mean z-scores of the mathematics achievement measures 
in the highest achieving class were 3.09 (i.e., top 0.10 %) for numerical 
operations and 1.87 (i.e., top 3.09 %) for math problem solving. Hence, 
the four classes identified were, from lowest to highest achieving: 
mathematics learning disability (MLD; n = 39), average achieving (AA; 
n = 183), high achieving (HA; n = 38), and mathematically gifted (MG; 
n = 12). Except for inhibitory control, students with MLD were char
acterized by poor performance across all measures when compared to 
other classes, whereas MG students were characterized by superior 

performance across all measures when compared to AA and MLD 
students.

Table 3 presents the descriptive statistics of the measured skills and 
achievement levels among the four profiled classes, along with ANOVA 
results examining class differences between the measured skills and 
achievement levels. Post-hoc power analyses showed that all variables in 
the ANOVA model demonstrated sufficient power (> 0.80) with the 
current sample size, except for inhibitory skills (power = 0.29). The 
main effects were all significant for most measures (p < .001), except for 
inhibitory control (p = .133). Since inhibitory control did not signifi
cantly differ between students across mathematics achievement levels, it 
was excluded from subsequent analyses.

For mathematics achievement measures, the effect sizes (η2) were 
0.693 for numerical operations and 0.769 for math problem solving. 
Post-hoc comparisons showed that performance in mathematics 
achievement measures were significantly different between all pairs of 
classes for numerical operations (ps < .006) and math problem solving 
(ps < .001). The current sample also demonstrated sufficient power (>
0.80) for these pairwise tests. The significant differences in the perfor
mance between classes for both mathematics achievement measures, in 
addition to the very large effect sizes, further supported the four-class 
model from the LPA.

For domain-general and domain-specific skills, the effect sizes (η2) of 
significant effects ranged from 0.082 (medium) to 0.307 (large). Post- 
hoc comparisons showed that students with MLD performed signifi
cantly below other classes in all skills. On the contrary, MG students 
performed significantly better in most skills, except visuospatial work
ing memory, when compared to AA students. The current sample also 
demonstrated sufficient power (> 0.80) for these pairwise tests, except 
for visuospatial working memory (power = 0.40).

3.4. Predicting class membership in mathematics achievement

Table 4 presents the results of multinomial logistic regression of 
students’ class membership in mathematics achievement on their per
formance in the measured skills. The variance inflation factors observed 
in the regression models were below 1.80, indicating minimal evidence 
for multi-collinearity (Thompson et al., 2017). Post-hoc power analyses 
showed that most variables in the regression model demonstrated suf
ficient power (> 0.80), except for spatial skills (power = 0.66) and vi
suospatial working memory (power = 0.12). The full logistic model 
(Model 2) including nonverbal intelligence and study variables 
demonstrated better fit beyond the partial model (Model 1) with 
nonverbal intelligence only (χ2(18) = 123.88, p < .001).

Between MLD and AA classes, after controlling for participants’ 
nonverbal intelligence, verbal working memory, fraction magnitude 
understanding, and number sentence construction skills significantly 
contributed to the differentiation between the two classes. Specifically, 

Table 1 
Descriptive Statistics, Reliability of Each Measure, and Correlations Among Measured Variables.

Measure Maximum possible Mean SD α Correlation

1 2 3 4 5 6 7 8 9 10

1. VWM 21 7.76 2.81 0.76 –
2. VSWM 21 9.71 2.87 0.75 0.28*** –
3. IC NA 35.48 12.87 NA 0.25*** 0.12 –
4. NVI 60 40.58 7.00 0.86 0.41*** 0.35*** 0.27*** –
5. SS 160 43.39 21.85 0.95 0.29*** 0.31*** 0.15* 0.46*** –
6. FM NA 0.14 0.11 0.93 0.23*** 0.25*** 0.05 0.38*** 0.38*** –
7. NSC 10 5.51 3.03 0.75 0.22*** 0.27*** 0.03 0.37*** 0.26*** 0.29*** –
8. AP 36 19.71 6.90 0.85 0.29*** 0.21*** 0.16** 0.39*** 0.19** 0.21*** 0.19** –
9. NO 61 34.66 3.81 0.82 0.36*** 0.25*** 0.17** 0.51*** 0.33*** 0.43*** 0.43*** 0.37*** –
10. MPS 72 50.54 5.20 0.85 0.48*** 0.30*** 0.17** 0.62*** 0.46*** 0.54*** 0.38*** 0.36*** 0.66*** –

Note. *** p < .001; ** p < .01; * p < .05. VWM = Visual Working Memory; VSWM = Visuospatial Working Memory; IC = Inhibitory Control; NVI = Nonverbal In
telligence; SS = Spatial Skills; FM = Fraction Magnitude Understanding; NSC = Number Sentence Construction; AP = Arithmetic Principle Understanding; NO =
Numerical Operations; MPS = Math Problem Solving. NA = Not Appliable.

Table 2 
Fit Indices of Models with Different Numbers of Classes.

Class BIC LMR-LRT (p-value) BLRT (p-value) Entropy

One class 1416.696 NA NA 1
Two classes 1364.247 < .001 .001 0.412
Three classes 1361.533 < .001 .001 0.950
Four classes 1355.034 < .001 .001 0.844
Five classes 1367.869 .060 .212 0.810

Note. BIC = Bayesian information criterion; LMR-LRT = Lo-Mendell-Rubin 
likelihood ratio test; BLRT = bootstrapped likelihood ratio test. Row in boldface 
indicates final model selected. NA = Not Appliable.
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when compared to AA students, a one-SD increase in verbal working 
memory, fraction magnitude understanding, and number sentence 
construction skills were associated, respectively, with 53.4 %, 63.4 %, 
and 60.7 % reduced odds of MLD class membership.

Between HA and AA classes, after controlling for participants’ 
nonverbal intelligence, verbal working memory, spatial skills, and 
fraction magnitude understanding significantly contributed to the dif
ferentiation between the two classes. Specifically, when compared to AA 
students, a one-SD increase in verbal working memory and spatial skills 
were associated, respectively, with 122 % and 82.1 % increased odds of 
HA class membership. A one-SD increase in the percentage absolute 
error in fraction magnitude understanding, moreover, was associated 
with 98.2 % reduced odds of HA class membership.

Between MG and AA classes, after controlling for participants’ 

nonverbal intelligence, verbal working memory and arithmetic principle 
understanding significantly contributed to the differentiation between 
the two classes. Specifically, when compared to AA students, a one-SD 
increase on verbal working memory and arithmetic principle under
standing was associated, respectively, with 109 % and 539 % increased 
odds of MG class membership.

4. Discussion

The current study identified mathematics achievement profile 
groups among Grade 4 students, compared skill profiles across the 
identified achievement classes, and explored specific skills that pre
dicted achievement class memberships. Four classes of students with 
different mathematics achievement levels were identified, namely, the 

Fig. 1. Estimated Standardized Scores of the Measured Skills and Achievement Levels Among the Four Profiled Classes. 
Note. MLD = Students with mathematics learning disability; AA = Average achieving students; HA = High achieving students; MG = Mathematically gifted students. 
VWM = Visual Working Memory; VSWM = Visuospatial Working Memory; IC = Inhibitory Control; NVI = Nonverbal Intelligence; SS = Spatial Skills; FM = Fraction 
Magnitude Understanding; NSC = Number Sentence Construction; AP = Arithmetic Principle Understanding; NO = Numerical Operations; MPS = Math Problem 
Solving. Error bars indicate standard errors.

Table 3 
Statistics for MLD, AA, HA, and MG Groups of Each Measure.

Measure MLD (n = 39) AA (n = 183) HA (n = 38) MG (n = 12) ANOVAs

M SD M SD M SD M SD F η2 Post-hoc

VWM 5.821 1.848 7.497 2.467 10.105 2.768 10.750 3.571 25.575*** 0.223 MG = HA > AA > MLD
VSWM 8.103 2.789 9.699 2.850 10.868 2.171 11.333 3.055 7.988*** 0.082 MG = HA = AA > MLD
IC 3.080 0.941 3.101 1.047 3.545 1.503 3.372 1.226 1.880 0.021 NA
NVI 33.077 6.301 40.454 5.908 46.105 4.974 49.333 4.355 42.528*** 0.323 MG = HA > AA > MLD
SS 25.641 20.113 42.913 20.184 58.263 17.894 61.250 17.602 20.942*** 0.190 MG = HA > AA > MLD
FM 0.734 0.101 0.868 0.100 0.945 0.024 0.944 0.034 39.515*** 0.307 MG = HA > AA > MLD
NSC 2.667 2.069 5.710 2.785 6.605 3.184 8.167 2.758 19.902*** 0.182 MG > AA > MLD, MG = HA, HA = AA > MLD
AP 16.154 5.756 19.016 6.322 23.474 7.229 29.917 2.392 20.106*** 0.184 MG > HA > AA > MLD
NO 29.897 2.827 34.464 1.892 36.789 1.919 46.417 3.260 201.279*** 0.693 MG > HA > AA > MLD
MPS 42.308 3.458 50.208 2.258 57.500 2.263 60.250 3.306 297.509*** 0.769 MG > HA > AA > MLD

Note. *** p < .001. MLD = Students with mathematics learning disability; AA = Average achieving students; HA = High achieving students; MG = Mathematically 
gifted students. VWM = Visual Working Memory; VSWM = Visuospatial Working Memory; IC = Inhibitory Control; NVI = Nonverbal Intelligence; SS = Spatial Skills; 
FM = Fraction Magnitude Understanding; NSC = Number Sentence Construction; AP = Arithmetic Principle Understanding; NO = Numerical Operations; MPS = Math 
Problem Solving. NA = Not Appliable.
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mathematics learning disability (MLD), average achieving (AA), high 
achieving (HA), and mathematically gifted (MG) classes. Consistent with 
our hypotheses, students between the bottom (i.e., MLD), average (i.e., 
AA), and top (i.e., MG) classes significantly differed in their verbal 
working memory, visuospatial working memory, spatial skills, fraction 
magnitude understanding, number sentence construction skills, and 
arithmetic principle understanding. Specifically, MG students per
formed better in all these skills than AA students, and AA students 
performed better in all these skills than students with MLD. Further
more, when compared to the AA class, while verbal working memory, 
fraction magnitude understanding, and number sentence construction 
predicted MLD class membership, verbal working memory, spatial skills, 
and fraction magnitude understanding predicted HA class membership, 
and verbal working memory and arithmetic principle understanding 
predicted MG class membership.

4.1. Executive functions and mathematics achievement classes

In line with previous findings (Friso-van den Bos et al., 2013; Peng & 
Fuchs, 2016), the current research found significant differences in stu
dents’ visual and visuospatial working memory between mathematics 
achievements levels. Extending these findings, the current results 
revealed the significant role of verbal working memory in classifying 
students across all mathematics achievement classes.

The important role of verbal working memory in students’ achieve
ment classes may be explained by its benefits on students’ enhanced 
processing of various verbal information (e.g., numbers, semantic ele
ments) in mathematics problems. Superior verbal working memory may 
enable students to retain and manipulate various verbal information 
simultaneously (Friso-van den Bos et al., 2013; Swanson, 2011). This 
facilitates better online performance in comprehending problems and 
selecting appropriate mathematics procedures, leading to more effective 
and accurate problem-solving approaches (Gilmore et al., 2017). In 
contrast, students with lower verbal working memory may be over
whelmed by verbal demands associated with more complex problems 
(Swanson, 2020). They may struggle to hold and manipulate all relevant 
problem elements concurrently, leading to a reduced capacity to process 
problem information (Kyttälä et al., 2010). As a result, they may face 
difficulties in efficiently generating solutions and applying mathemat
ical concepts correctly, contributing to increased susceptibility to MLD 
(Peng & Fuchs, 2016).

Consistent with some (Cantin et al., 2016; Gerst et al., 2017; Roebers 
et al., 2012), but not all (Schmerold et al., 2017; St Clair-Thompson & 
Gathercole, 2006), previous studies, the current results found significant 
positive correlations between students’ inhibitory control and mathe
matics achievement. Despite being positive, the correlations between 
inhibitory control and the two indicators for mathematics achievement, 
i.e., numerical operations (r = 0.17, 95 % CI [0.05, 0.28]) and math 
problem solving (r = 0.17, 95 % CI [0.05, 0.28]), were weak. These 
correlations were comparable to recent meta-analytic findings on the 

association between the Stroop task and mathematics intelligence (r =
0.24, 95 % CI [0.05, 0.43]; Emslander & Scherer, 2022). Further analysis 
in the current study, however, did not find significant differences in 
students’ inhibitory control skills across mathematics achievement 
classes. These findings suggest that, while inhibitory control may 
correlate with mathematics achievement, other cognitive characteristics 
(e.g., working memory, nonverbal intelligence) may associate more 
strongly with students’ mathematics achievement classes and the latent 
trait that determined these classes. Consequently, differences in inhibi
tory control may not be reflected between students across mathematics 
achievement classes.

4.2. Spatial skills and mathematics achievement classes

Consistent with prior research supporting the link between spatial 
and mathematics abilities (Atit et al., 2022; Xie et al., 2020), our study 
found positive associations between students’ spatial skills and mathe
matics achievement levels. The unique contribution of our study, how
ever, lies in the discovery that students who have better spatial skills are 
more likely to be high achievers than average achievers.

The association between spatial skills with the class status of high 
achieving students may be explained by the potential positive influence 
of spatial skills on both their problem-solving ability and arithmetic 
computation. When challenged with a novel problem, students would 
need to form a mental representation of the problem from which they 
could plan strategies to solve it (Sorby et al., 2022). Students with 
stronger spatial abilities may create a more coherent visual-schematic 
representation of word problems, which integrates all solution- 
relevant text elements holistically, rather than only focusing on spe
cific elements in the problem (Boonen et al., 2013; Wang et al., 2022). 
The production of visual-schematic representations facilitates a clearer 
understanding of the problem and has been found to mediate the re
lationships between spatial and mathematics abilities (Boonen et al., 
2013). For example, when presented with an arithmetic word problem, 
students with good spatial ability can depict not only the objects 
mentioned in the problem but also the relationships (e.g., ratios, relative 
positions) between them. These visual-schematic representations enable 
students to form a correct equation that accurately reflects the re
lationships of the elements in the problem.

With the correct equation, students would proceed to perform 
arithmetic computations. Spatial skills may also benefit such computa
tion by promoting students’ representation and understanding of 
arithmetic and numerical symbols (Ouyang et al., 2022; Yang & Yu, 
2021). Specifically, students with well-developed spatial skills may be 
able to mentally manipulate the numerical information spatially to 
connect different problem components, such as aligning digits in multi- 
digit arithmetic computation. Moreover, spatial skills may also allow 
students to visualize the processes of arithmetic operations, such as 
picturing objects being grouped together for addition or objects being 
removed from a group for subtraction, leading to a deeper 

Table 4 
Multinomial Logistic Regression Results.

Measure MLD/AA HA/AA MG/AA

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Cognitive correlate, OR
Nonverbal intelligence 0.263*** 0.539* 4.030*** 1.733 12.540*** 3.224
Study variables, OR
Verbal working memory 0.466* 2.215** 2.085*
Visuospatial working memory 1.025 0.951 0.922
Spatial skills 0.736 1.821* 1.720
Fraction magnitude understanding 0.366*** 54.483*** 4.769
Number sentence construction 0.393** 1.023 2.034
Arithmetic principle understanding 0.779 1.421 6.390**

Note. *** p < .001; ** p < .01; * p < .05. OR = Odds ratio. MLD = Students with mathematics learning disability; AA = Average achieving students; HA = High 
achieving students; MG = Mathematically gifted students.
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understanding of arithmetic operations that can foster a higher level of 
arithmetic proficiency. Taken together, spatial skills may promote an 
organized and systematic approach to arithmetic computation, thereby 
enhancing students’ accuracy and efficiency in solving mathematics 
problems.

4.3. Fraction magnitude understanding and mathematics achievement 
classes

Echoing previous meta-analytic findings (Schneider et al., 2018), our 
study found significant differences in students’ fraction magnitude un
derstanding across mathematics achievement classes. Building on this 
work, our study further showed that fraction magnitude understanding 
could differentiate MLD and high achieving students from average 
students.

The current finding is in keeping with theories that posit the skills 
involved in the number line estimation task could support the acquisi
tion of broader mathematical concepts and, thus, facilitate advanced 
mathematical development (Siegler & Lortie-Forgues, 2014). Specif
ically, the mental number line may afford a retrieval structure to facil
itate the encoding, storage, and retrieval of magnitude-related 
numerical information (Siegler & Ramani, 2009), which could, in turn, 
facilitate students’ acquisition and retrieval of arithmetic facts around 
the magnitude of numbers (Tam et al., 2019). Relatedly, number line 
representation may also facilitate a schema presentation for represent
ing different numerical components and their relations involved in a 
word problem (Ouyang et al., 2021).

As Grade 4 students start to work with fractions, fraction magnitude 
understanding may be especially important to their mathematics 
development (Namkung et al., 2018). When students evaluate the 
magnitude of a fraction, they have to consider the fact that the numer
ator and denominator have opposing effects on the magnitude of the 
fraction. In connection to the aforementioned theories, students may 
better understand these properties of fractions and the relations between 
fractions if they have an accurate mental fraction number line. Specif
ically, the mental number line may render a useful structure to organize 
simple fraction concepts (e.g., larger denominator with the same 
nominator means smaller fraction) and thus help students consolidate 
basic fraction knowledge and generalize to more complex fraction 
computation (Schneider et al., 2018). This may contribute to reduced 
computational error and increased efficiency in problem representation 
during mathematics problem solving. On the contrary, students who do 
not have sufficient fraction magnitude understanding may suffer 
pervasive deficits in mathematics learning and performance.

4.4. Number sentence construction and mathematics achievement classes

Previous works have consistently reported difficulties in forming 
number sentences among students with MLD and their significant 
underperformance compared to their typically-achieving peers (Yip 
et al., 2020). Expanding on this work, the current results showed that 
students’ ability to form number sentences also help differentiate be
tween MLD and non-MLD classes.

The complex demands of constructing a number sentence may give 
insight as to why difficulties in this area are particularly relevant to MLD 
classification. These demands include comprehension of problem text 
and mathematics terms, representation of word problem in various 
schema, and translation of problem schema into mathematical expres
sions (Reusser, 1990). There is evidence that students with MLD are 
impaired in all these demands (Lin et al., 2021; Yip et al., 2020). For 
instance, poor comprehension of mathematical terms may hinder stu
dents’ understanding of related mathematics concepts in their abstract 
forms (Lin et al., 2021), leading to erroneous translation between 
mathematical terms and operations (e.g., directly associating words like 
“more” or “less” with addition and subtraction; Hegarty et al., 1995). 
Similarly, not being able to represent word problems in various schema 

may also hint at students’ inadequate conceptual understanding of 
mathematics operations, resulting in the wrong mental model to 
approach the problem (Yip et al., 2020). These suboptimal un
derstandings towards mathematics terminologies and concepts prevent 
students from successfully constructing number sentences and could be 
detrimental to their overall mathematics development.

4.5. Arithmetic principle understanding and mathematics achievement 
classes

The current study documented good arithmetic principle under
standing among MG students. Extending previous literature on the close 
association between arithmetic principle understanding and mathe
matical performance (Wong, 2023; Yip et al., 2023), arithmetic princi
ple understanding was found to significantly discriminate MG students 
from average achieving students.

There are at least two rationales for good arithmetic principle un
derstanding being a defining feature of high-achievers. First, under
standing of arithmetic principles may enhance the use of efficient 
problem-solving strategies. For example, when calculating 36 + 98 +
2, students with good associativity understanding may recognize the 
advantage of adopting a “right-to-left” procedure and begin the 
computation with 98 + 2, instead of the typical “left-to-right” proced
ure. Through facilitating these efficient strategies, arithmetic principle 
understanding may help reduce students’ computational errors in more 
complex operations (e.g., carrying in 36 + 98), thereby enhancing their 
accuracy of arithmetic computation and translating to their high 
mathematics achievement (Torbeyns et al., 2009).

Second, given their mathematics competence, MG students may 
experience lower cognitive load during arithmetic computation. 
Domain-general resources may therefore be freed up for the discovery 
and application of arithmetic principles. For example, Baroody et al. 
(1983) found that complement shortcuts were applied more often to 
addition doubles (e.g., 14–7) than other combinations, which was sug
gested to be associated with students’ higher competence with the 
double facts. As MG students have gained proficiency in arithmetic 
computation, they are more likely to reallocate their mental resources 
towards identifying the underlying regularities, instead of following the 
typical algorithms (Siegler & Araya, 2005). Although there have been 
mixed findings on the contribution of calculation skills to arithmetic 
principle understanding (e.g., Siegler & Araya, 2005; Watchorn et al., 
2014; Yip et al., 2023), this provides another possible theoretical ac
count for the finding that high achievers differed from other classes 
mainly in terms of arithmetic principle understanding.

4.6. Theoretical implications

The current study uncovered the skills that could distinguish be
tween different mathematics achievement classes among late elemen
tary students. In addition to summarizing the significant differences in 
specific mathematics skill levels between achievement classes, the cur
rent results also revealed the contribution of these skills in influencing 
students’ statuses in the mathematics achievement taxonomy. Given 
that students at different achievement levels require different academic 
support in terms of intensity and approaches (Karagiannakis & Coore
man, 2014; Özdemir & Bostan, 2021), it is important to pinpoint specific 
mathematics areas to be targeted that can help advance students’ 
mathematics proficiency. Notably, the current results highlighted the 
unique contributions of verbal working memory, spatial skills, fraction 
magnitude understanding, number sentence construction, and arith
metic principle understanding in differentiating performance across the 
mathematics development spectrum. Improvement in these areas may 
decrease students’ odds of falling into the MLD class and increase their 
odds of advancing into higher achieving classes (e.g., HA, MG).
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4.7. Educational implications

To support the needs of students across different mathematics 
achievement classes, educators should implement relevant interventions 
to enhance students’ performance in areas that are most pertinent to 
their needs.

Since number sentence construction was found to discriminate stu
dents with MLD from their peers, future practitioners should consider 
directing more resources in word problem training for students with 
MLD, particularly in building problem schema and transferring them 
into mathematical expressions (Lein et al., 2020). As for fraction 
magnitude understanding, given its encompassing impact on students’ 
achievement categorization across MLD, average achieving, and high 
achieving classes, future practitioners should consider enhancing stu
dents’ fraction number sense and magnitude representational system in 
general to support their advanced mathematical development (e.g., 
Dyson et al., 2020; Hamdan & Gunderson, 2017).

Additionally, based on the current findings, spatial skills training 
may help average achieving students progress in their mathematics 
performance. However, despite the robust spatial-math link found in the 
literature (Atit et al., 2022; Newcombe, 2010; Xie et al., 2020), not all 
spatial skills interventions have shown positive results in transferring 
their effects onto mathematical domains (Hawes et al., 2022; Woolcott 
et al., 2022). Future research may further investigate the specific spatial 
processes that could benefit students’ mathematics development.

Finally, arithmetic principle understanding was the only mathe
matics skills investigated that significantly differentiated MG students 
from other groups of students. This suggests that deepening arithmetic 
principle understanding could be an avenue for students with consid
erable potential to further excel in their mathematics achievement. This 
also points to the utility of training in relevant areas to improve abled 
students’ arithmetic principle understanding, specifically on their abil
ity to recognize the regularities between arithmetic identities and apply 
them in their mathematics computation (Eaves et al., 2019; Nunes et al., 
2012).

4.8. Limitations and future directions

The current study was not without limitations. First, the current 
study did not explore the subtypes of MLD (e.g., procedural, semantic 
memory, spatial; Geary, 1993) due to the limited sample size. As far as 
verbal working memory, fraction magnitude understanding, and num
ber sentence construction was found to associate with MLD classifica
tion, it remains uncertain whether these skill deficits are associated with 
different subtypes of MLD. Future studies may examine the contribution 
of these skills in elucidating MLD subtypes.

Second, our cross-sectional design did not allow us to examine the 
causal relations between specific skills and overall mathematics 
achievement. Relatedly, the current analyses were not able to explore 
whether students’ performance in specific skills could contribute to their 
mathematics learning and growth. Future studies may utilise longitu
dinal designs and growth models to extend the current findings.

Third, the current participants were tested in varied environments 
(either at school or home) based on parental or school preferences. This 
may introduce potential variability in their task performances. Future 
studies may conduct assessments in a standardized testing environment 
as long as it is practically feasible.

Fourth, post-hoc power analyses revealed low statistical power for 
spatial skills and visuospatial working memory in the current multino
mial logistic regression model. These low power values suggest potential 
limitations in detecting true effects associated with these variables. 
Future studies may recruit a larger sample to verify the current findings.

Fifth, the current study measured mental rotation as a proxy of stu
dents’ overall spatial skills for its stable and strong associations with 
mathematics achievement (Ganley & Vasilyeva, 2011; Tam et al., 2019). 
Nevertheless, other spatial domains may also contribute to students’ 

mathematics development and achievement classes (Pring et al., 2010; 
Yazdani et al., 2021). Future researchers may utilise a wider range of 
spatial measures to study the relationships between different spatial 
skills domains and mathematics achievement, and how spatial skills 
differentiate students between mathematics achievement classes.

Relatedly, the current study measured arithmetic principle under
standing with the application of procedures paradigm, which captures 
students’ competence in directly applying the principles when solving 
arithmetic equations. However, students may be aware of certain 
arithmetic principles but do not apply the principles themselves (Siegler 
& Crowley, 1994). Future researchers may utilise other assessment 
modalities (e.g., explicit recognition, evaluation of examples; Prather & 
Alibali, 2009; Wong et al., 2021) to gain a more comprehensive account 
of the relationship between arithmetic principle understanding and 
mathematics development.

4.9. Conclusion

In conclusion, our findings uncovered the specific contributions of 
various skills in classifying students into mathematics learning disability 
(MLD), average achieving (AA), high achieving (HA), and mathemati
cally gifted (MG) classes. Verbal working memory, fraction magnitude 
understanding, and number sentence construction was associated with 
MLD membership, verbal working memory, spatial skills, and fraction 
magnitude understanding was associated with HA membership, and 
verbal working memory and arithmetic principle understanding was 
associated with MG membership. The current findings pointed to the 
utility of specific skill trainings that could benefit students at different 
mathematics achievement levels. Educators may tailor mathematics 
interventions based on students’ mathematics achievement levels to 
better suit their specific learning needs.
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De Visscher, A., & Noël, M.-P. (2013). A case study of arithmetic facts dyscalculia caused 
by a hypersensitivity-to-interference in memory. Cortex, 49(1), 50–70. https://doi. 
org/10.1016/j.cortex.2012.01.003

Dehaene, S. (2004). Evolution of human cortical circuits for reading and arithmetic: The 
“neuronal recycling” hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & 
G. Rizzolatti (Eds.), From monkey brain to human brain: A Fyssen Foundation 
symposium (pp. 133–157). MIT Press. https://doi.org/10.7551/mitpress/ 
3136.003.0012. 

Desco, M., Navas-Sanchez, F. J., Sanchez-González, J., Reig, S., Robles, O., Franco, C., … 
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