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Over the last two decades, the healthcare field has witnessed exponential growth in the applications of stimuli-
responsive biomaterials for diverse therapeutic purposes. This has led to the development of numerous smart
dental biomaterials tailored for the precise and on-demand delivery of therapeutic agents. By leveraging the
specific exogenous and endogenous stimuli, these smart materials fine-tune their physicochemical properties to
improve the clinical efficacy of the therapeutic agents and mitigate their side effects. This review systemically
examines the design and objectives of the smart biomaterials platforms specifically for dental and associated soft
tissue. Additionally, we comprehensively summarize various smart biomaterials-based delivery platforms,
categorized by the nature of the stimuli, including pH, enzyme, temperature, light, ultrasound, electricity, and
pressure. Furthermore, this review discusses several newly developed smart platforms utilized in different dental
conditions, with a particular focus on those undergoing clinical trials. This review aims to provide an overview of
the state-of-the-art smart drug delivery systems in dentistry and offer insights into developing next-generation
platforms to address various clinical needs, such as infection eradication, inflammation modulation, tissue

regeneration, and immunotherapy.

1. Introduction

The maintenance of dental tissue homeostasis is vital to oral health.
According to the WHO Global Oral Health Status Report (2022), nearly
3.5 billion people worldwide are affected by oral disease, and more than
60 % of these patients are directly impacted by dental diseases [1].
These epidemiological findings highlight the urgent need for specific
dental medications to restore oral homeostasis. Typically, dental path-
ological conditions, such as periodontitis, endodontitis, peri-implantitis,
and caries, are caused by various microorganisms that disrupt the ho-
meostasis of dental tissues [2-4]. Additionally, uncontrolled inflam-
mation during these pathological conditions, coupled with defects
arising from trauma, infection, tumors, and surgeries, worsens oral ho-
meostasis and hinders the regeneration of damaged tissues.

To address dental infectious diseases such as endodontics, peri-
odontics, mucositis, and peri-implantitis, traditional therapy often relies
on administering antibiotic agents to the affected area [5]. However,
effective management of those conditions necessitates the spatiotem-
porally controlled delivery of therapeutic agents to sequentially achieve
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infection eradication, inflammation control, tissue repair, and func-
tional remodeling [6-8]. Most traditional dental biomaterials that have
been used in clinical practice nowadays are not able to attain thera-
peutic outcomes without causing local or systemic adverse drug re-
actions. Moreover, most of those therapeutic strategies fail to provide
potent and long-lasting disinfection, adaptable inflammation regulation,
and targeted control of tissue regeneration. The administration of
therapeutic agents without proper control can lead to unwanted com-
plications. For example, the widely used disinfectant chlorhexidine can
cause discoloration and taste abnormalities [9,10]. Additionally, cal-
cium hydroxide, which is extensively used for remineralization, has
been reported to cause chemical burns, permanent lung damage, and
even blindness [11,12]. Moreover, many biomaterials have not yielded
promising clinical outcomes due to their inherent physicochemical
properties, such as surface topography, spatial configuration, and me-
chanical characteristics [13]. For instance, it is difficult for regenerative
biomaterials to adequately recapitulate the spatial arrangement and
mechanical properties of the ‘cementum-periodontium-alveolar bone’
complex in periodontitis patients [14,15]. Meanwhile, the degradation

0001-8686/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).


mailto:dentsj@hku.hk
mailto:drqiao@hku.hk
www.sciencedirect.com/science/journal/00018686
https://www.elsevier.com/locate/cis
https://doi.org/10.1016/j.cis.2025.103607
https://doi.org/10.1016/j.cis.2025.103607
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

S. Ghosh et al.

characteristic of the delivery platforms is also crucial as it directly im-
pacts the release profile of the therapeutic agents [16,17]. For example,
in the context of peri-implantitis, biomaterials lacking controllable
degradation exhibit limited clinical efficacy because they are not able to
sequentially accomplish microbial eradication, inflammation modula-
tion, bone regeneration, and tissue remodeling [18,19].

With recent breakthroughs in the design of biomaterials at the mo-
lecular scale and more in-depth mechanistic understandings of dental
diseases, significant advancements have been made in developing next-
generation smart biomaterials for dentistry. Smart biomaterials, also
referred to as stimuli-responsive biomaterials, are characterized by their
ability to sense endogenous cues or exogenous stimuli and respond
accordingly. This responsiveness can be leveraged to regulate various
biochemical functions, offering substantial benefits for drug delivery
applications through precise spatial, temporal, and dosage controls [20].
Furthermore, advancements in smart biomaterials open new avenues for
improving the penetration of therapeutic agents into deep tissue, pre-
venting local aggregation, and enhancing stability and spatiotemporal
controllability [21]. Additionally, through biochemical conjugation,
these materials enable precise targeting, multiple sequential drug de-
livery, with real-time on-site imaging [9,22].

Although various smart biomaterials have been developed to address
different complex clinical problems, they are specifically designed for
tackling dental diseases and remain limited. Indeed, many smart bio-
materials proposed to be used in various dental conditions are not
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originally designed with a determined goal of dental application or a
clear understanding of relevant dental diseases. More importantly, a
critical literature review to introduce smart biomaterials from the
perspective of dentistry is lacking. Therefore, we aim to comprehen-
sively review the smart drug delivery platforms, especially those with
the potential to be used in different dental scenarios. Firstly, we sys-
tematically address the complexity of dental tissue structure and discuss
various physiological barriers that impede therapeutic delivery. Next,
we provide an in-depth analysis of the design strategy for diverse smart
delivery platforms categorized based on different responsiveness to
either internal or external stimuli, which not only clarifies the design
principles and mechanisms of responsive materials but also highlights
their potential clinical translation in dentistry. We believe this catego-
rization would more effectively target the challenges and opportunities
of smart material design in clinical scenarios. Furthermore, we highlight
recent breakthroughs in stimuli-responsive delivery platforms for
various dental diseases and analyze the current clinical challenges and
therapeutic obstacles that have hindered the translation of smart bio-
materials from bench to bedside.

2. Special consideration for smart drug delivery platforms in
dentistry

Dental tissues are highly complex organs composed of many asso-
ciated soft and hard tissues with highly dynamic physicochemical

D Specific disease
condition

E Favorable for microbial
colonization

F Limited regeneration
capability

Fig. 1. Schematic illustration depicting the key challenges for the therapeutic delivery to dental and associated tissues. (A) Enamel comprises highly mineralized
inorganic components with precisely organized micro- and nano-architectures; also, the tiny micro-channels in the pulp tissue pose challenges to delivering the
therapeutic agents. (B) Diverse physicochemical and surface topography make effective biomaterial development critical. Local inflammatory conditions worsen the
drug penetration and efficacy. (C) Variances in the anatomical structures and position significantly hamper the delivery of therapeutic molecules to their target. (D)
Severe localized inflammation conditions in certain dental diseases present additional challenges for effective drug administration. (E) Due to the presence of micro-
level cellular junctions and favourable nutrient flow, dental tissue is highly susceptible to microbial colonization, which can subsequently lead to the development of
dental diseases. (F) The limited regenerative capacity of dental tissue makes functional restoration after disease recovery particularly difficult.
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microenvironments [23,24]. The complexity of the oral cavity necessi-
tates the development of advanced drug delivery systems to effectively
address current treatment challenges. Thus, the delivery of therapeutic
agents to the different regions of the oro-dental tissues requires precise
strategies to ensure these agents can exert their biological activity and
maintain oral homeostasis [25-27]. Recent advancements in bio-
nanotechnology, material science, and additive manufacturing have
introduced potential delivery platforms for various tissue-specific ap-
plications, including bone, cartilage, tendons, and neurons [28-30].
However, unlike other organs and tissues, drug delivery to the dental
tissues presents multiple impediments due to a range of challenges, as
illustrated in Fig. 1.

Firstly, the architectural complexity of dental tissue is remarkably
diverse, with varying structural compositions across different regions
[31]. For example, enamel is composed of highly mineralized inorganic
components with a sophisticated micro- and nano-architecture [32].
Due to its densely packed structure, conventional delivery platforms
encounter significant challenges in achieving site-specific therapeutic
agent release and penetration [33]. Conversely, regenerating the inter-
face between the dentin and pulp is also challenging, as it consists of a
complex organic matrix interspersed with spatially arranged odonto-
blast cells [33]. Additionally, the odontogenic zone and pulp tissue are
highly conducive to microbial colonization due to their highly confined
spaces and nutrient-rich environments [34]. Therefore, delivering
therapeutic payloads under the hard dental enamel or within confined
tubules with such micro-level proximity is exceedingly difficult
(Fig. 1A).

Secondly, different parts of dental tissues possess diverse physico-
chemical and surface characteristics (Fig. 1B). For instance, the outer
layer of the crown enamel is predominantly composed of inorganic
materials with highly compacted crystals, whereas the pulp tissue is
primarily composed of organic materials such as cells and extracellular
matrix [33]. This variation in the inorganic-to-organic ratio affects the
properties and physiological immunity of these tissues. Furthermore, the
surface topography of specific parts of the tooth tissue is crucial, serves
as the initial contact site between biomaterials and the tissue surface
[32]. Therefore, the therapeutic delivery approach to these tissues ne-
cessitates the design of highly compatible platforms.

Thirdly, tooth structure and configuration are highly variable among
individuals. Anatomical dental variances in morphology predominantly
involve disparities in the length, breadth, height, area, or volume of the
crown and root of dental tissue [35]. Conventional therapeutic strategies
often lack the adaptability required to accommodate specific anatomical
variations, such as dental cavities and root furcation areas. Therefore, it
is imperative to adopt configurable smart delivery approaches to ach-
ieve site-specific, personalized oral care (Fig. 1C).

Furthermore, the constant flow of salivary fluids containing various
protease enzymes makes the oral environment extremely dynamic
[26,36]. This dynamism significantly complicates the development of
durable, sustained delivery platforms for oro-dental tissue. Traditional
tissue-adhesive biomaterials have been developed to circumvent this
issue. However, in the case of oral diseases, the buccal mucosa is far less
permeable than the sublingual mucosa, reducing drug absorption and
bioavailability. Moreover, the sublingual mucosa is not ideal for
mucoadhesion since it is uneven, movable, and continuously salivated
[26]. Therefore, to achieve sustained release kinetics of therapeutic
agents, the delivery platforms need to be mucoadhesive for a longer
period. More importantly, biodegradable materials for dental applica-
tions are frequently used in microenvironments susceptible to the in-
fluences of humoral regulation and immune responses (Fig. 1D, E).
Under disease conditions, those biomaterials are exposed to crevicular
fluid and saliva containing various inflammatory mediators, such as
cytokines, enzymes, and peptidases [37,38]. The inflammatory micro-
environment can directly impact the degradation of biomaterials by
activating or inactivating certain catalysts typically needed for polymer
breakdown [39], thereby altering the release kinetics of loaded drugs.
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Therefore, the design of biodegradable biomaterial-based delivery
platforms should consider tuning the payload amount for specific dis-
ease severity and the host immune response.

Compared with many other tissues, the regeneration capability of
dental tissues is more limited [40]. For example, enamel is completely
acellular, making it completely non-regenerative (Fig. 1F) [33]. More-
over, the regeneration capability of dentin, periodontal ligament, or
pulp tissue is also limited, which is associated with the insufficient
supply of dental pulp stem cells (DPSCs) and periodontal ligament stem
cells (PDLSCs) [41]. Therefore, smart delivery platforms for dental tis-
sue regeneration should be able to recruit regenerative cells into pulp or
periodontium, as well as support their proliferation and differentiation
in the healing process [42,43].

Finally, active therapeutic agents may encounter different barriers at
chemical, mucosal, and cellular levels when used in dental diseases
(Fig. 2A). The presence of infection can even worsen the situation due to
the formation of microbial biofilm (Fig. 2B). Host cells perceive micro-
bial invasion and subsequently release different pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs). These molecules later recruit several immune cells and
polarized macrophages through the cytokine secretion within the peri-
odontal tissues (Fig. 2C). However, under dysregulated conditions, these
immune pathways may become severely impaired, compromising the
host defense response. Taken together, the design of smart drug delivery
systems for dental diseases should discreetly consider the unique char-
acteristics of oral and dental tissues as well as the specific pathological
conditions in these areas.

3. Smart drug delivery platforms in dentistry
3.1. Externally controlled drug delivery strategies

External stimuli-responsive delivery platforms are specialized ther-
apeutic systems that can be triggered by external stimuli, such as light,
electricity, and magnetic fields [44]. One of the significant advantages of
these biomaterials is the precise control over the magnitude or degree of
the response, which can be finely tuned by adjusting the intensity of the
stimulus [45]. Moreover, due to their spatiotemporal tunability and
rapid response capability, external stimuli responsive-based bio-
materials hold great promise for drug delivery in dental tissues [45].
Despite the outstanding therapeutic effects achieved through the
external stimuli-responsive drug delivery platforms, several limitations
must be addressed. For instance, continuous exposure to external stimuli
is required to be carefully optimized to ensure therapeutic efficacy while
minimizing adverse effects associated with prolonged exposure [46]. In
the following sections, we will delve into these specific concerns cate-
gorized by the type of stimulus.

3.1.1. Light-responsive strategies

Light- or photo-sensitive biomaterial-based platforms are widely
used stimuli-responsive strategies for delivering bioactive molecules to
specific locations [47-49]. Generally, most light-responsive strategies
can be classified into three subclasses depending on the nature of the
source photon/wavelength: ultraviolet (UV), visible light, and near-
infrared (NIR) stimulation [48,50,51]. Additionally, the molecular
mechanisms of light-responsive strategies can be categorized into three
broad classes: photochemical, photo-isomerization, and photothermal,
based on the mechanisms of the photo-sensitive moieties (Fig. 3A) [52].
Activation of these photo-sensitive moieties produces ROS that can
eliminate invading microorganisms and kill tumor cells through oxida-
tive stress. Compared to other exogenous stimuli, controllable light-
responsive strategies offer the advantages of precise local targeting,
on-demand release, and less chemotoxicity.

Based on these advantages, photodynamic therapy (PDT) has
recently been explored as a light-triggered therapeutic system. PDT of-
fers several benefits over conventional antibiotics, such as inhibiting
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Fig. 2. (A) Schematics of different levels of the barriers for the delivery of therapeutic molecules in the dental tissue. (B) Strategy and mode of action of reactive
oxygen species (ROS) mediated microbial elimination and killing by the various smart nanoparticles. (C) Schematic illustration of host cell response and macrophage
repolarization following the microbial infection of periodontal tissues. The bioactive substances of the delivery systems directly affect the release of various stim-
ulatory elements such as PAMPs and DAMPs, and modulate the release of inflammatory cytokines, resulting in inflammation modulation and host immunity.

bacterial biofilm growth without inducing bacterial resistance, owing to
its deep biofilm penetration and potent persister cell killing ability
[53,54]. For instance, Rose Bengal-based photodynamic adaptive NPs
were developed by conjugating charge-converting polymyxin B (PMB)
and gluconic acid (GA) in a layer-by-layer fashion to exhibit the pH-
sensitive interaction with gram-negative bacterial cell-walls. Upon
photo-activation, the charge conversion allows higher surface affinity
and greater PDT-mediated ROS generation for better biofilm penetration
and eradication [55]. Furthermore, photosensitive biomaterials have
also been utilized for simultaneous tooth whitening with an antimicro-
bial effect. For instance, Li et al. [56] fabricated an injectable sodium
alginate hydrogel doped with electron-hole pair-based photosensitive
bismuth oxychloride (Bi;2077Cly) and cuprous oxide (CuzO) nano-
particles, which exhibit local tooth whitening and biofilm removal
under green light activation (Fig. 3C). Zhang et al. [57] synthesized a
Zwitterion-modified porphyrin (ZMP) based on the electron donor-
acceptor approach (Fig. 3B, D). They demonstrated that ZMP stimu-
lated by purple light can degrade chromogen to whiten the tooth surface
while simultaneously disrupting the biofilm matrix [57].

Moreover, despite the significant contributions of various photo-
sensitizers with the PDT effect to drug delivery and in situ antimicrobial
killing, several challenges remain. Photosensitizers stimulated with
lower wavelength light encounter challenges with lower tissue pene-
tration, resulting in incomplete microbial elimination. Additionally, is-
sues such as duration of exposure, photo intensity, and heat generation
need to be addressed in future studies to avoid phototoxicity-mediated
tissue damage [58]. Nevertheless, UV degradation, damage to biolog-
ical molecules (e.g., DNA and proteins), and photo-dependent enzyme
inhibition remain to be addressed in the future.

3.1.2. Magnetic field-responsive strategies

The magnetic field is extensively employed in stimuli-responsive
drug delivery systems due to its ease of cell-membrane penetration,
good biocompatibility, facile large-scale production, and immunomod-
ulatory activity (Fig. 4A) [58,59]. Magnetic-responsive platforms have
been tested in dental applications. For instance, Zaharia et al. demon-
strated that reinforcement of multicore-shell with Fe304-SiO5 magnetic
nanoparticles can reduce the thickness of the adhesive layer by 30 %
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Fig. 3. Photo-sensitive drug delivery strategies. (A) Illustration of different light-responsive strategies and their mode of action to deliver the drug upon the
stimulation of suitable photons. (B) Schematic illustration of ZMP-mediated photodynamic dental therapy (PDDT) for tooth whitening by oxidizing the chromogen.
Adapted from [57]. (C) Illustration of the construction of BC-SA and the working principle. The solution of SA containing Bi;,0,7Cl, and CuO is cross-linked with
Ca®". BC-SA produces ROS under GL for localized biofilm disruption and tooth whitening. Reprinted with permission from [56]. (D) Representative confocal images
of biofilm killing ability of ZMP-mediated photodynamic dental therapy to eradicate the biofilm over ex vivo dental enamel. Adapted from [57]. (E) Illustration of the
preparation process of photodynamic NPs for enhanced penetration and antibacterial efficiency in biofilms. Reprinted with permission from [57].

under an external magnetic field compared to conventional dental ad-
hesives [60]. Similarly, Garcia et al. [61] showed improved adhesive
bond strength in superparamagnetic iron oxide nanoparticles (SPIONs)-
doped BisGMA dental resin on a tooth pulpal pressure model. They re-
ported that under the guided magnetic field, the SPION-doped adhesive
increased the bond strength through better hybridization from SPION
motion against the pulpal pressure and reduced phase separation be-
tween resin monomers [61].

Magnetic stimulus-based antimicrobial platforms have also been

investigated as an anti-infection strategy in various dental disease con-
ditions. Ji et al. demonstrated that the antimicrobial and biofilm erad-
ication ability of iron (II, III) oxide (Fe304) MNPs makes them a potential
root canal disinfectant [62]. Besides, Fes04 MNPs modified with an
endogenous oxidoreductase enzyme, namely glucose oxidase (GOx),
exhibited enhanced antibacterial and antifungal efficacy against
C. albicans and E. faecalis. Subsequently, the biofilm eradication effi-
ciency of the GOx-modified Fe304 MNPs was also improved due to the
bio-catalyzed activity of GOy, which oxidizes -p-glucose into HyO». This
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eradication. Reprinted with permission from [66].

H,0, is further catalyzed by bacterial peroxidases to disrupt the dense
biofilm matrix, along with the toxic OH radicals generated by the MNPs
[62]. The clinical efficiency of magnetic stimuli-based platforms has also
been explored for dental implant-related complications. For instance,
implant failure is predominantly caused by microbial accumulation at
the peri-implant pockets. Yang et al. demonstrated that the combination
of Silver (Ag)-modified Fe304 superparamagnetic nanoparticles coated
with poly lactic-co-glycolic acid (PLGA) polymer exhibited superior
antibacterial and cellular compatibility, significantly reducing S. mutans
adhesion on the implant surface under external magnetic fields,
compared to pure Ag and Ag-Fe3O4 combinations (Fig. 4B, C) [63].
The combination of traditional antibiotics or antimicrobial peptides
(AMP) with MNPs could exhibit several advantages over pristine agents,
such as enhanced bactericidal efficacy, reduced host cytotoxicity, and a
lower risk of microbial resistance. MNPs interact with polar components
of bacterial cell walls and enhance the permeation or cellular uptake of
membrane-active antibiotics. After cellular internalization, MNPs exert
oxidative stress, resulting in organelle damage. Niemirowicz et al.
demonstrated that the immobilization of antimicrobial agents over core-
shell MNPs composed of iron oxide and gold (Au) nanoparticles exhibits
enhanced bactericidal activity against methicillin-resistant Staphylo-
coccus aureus Xen 30 and Pseudomonas aeruginosa Xen 5 compared to
using the drug alone. This effect was ascribed to increased in-
ternalizations of the drug caused by the magnetic field [64]. Similarly,
Peng et al. reported a single-step synthesis procedure for

superparamagnetic Ni colloidal nanocrystal clusters, which can bind to
the gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli)
bacteria, as well as bacterial spores [65]. To address the challenges of
bacterial biofilm for limiting the efficacy of antimicrobial drugs, Quan
et al. recently reported that magnetic-iron-oxide nanoparticles
(MIONPs) can create artificial channels within biofilms to enhance
antimicrobial agent penetration and bacterial eradication (Fig. 4C) [66].
These micro-channels created by MIONPs significantly enhanced the
efficacy of traditional antibiotics, like gentamycin, by 4- to 6-fold in an
S. aureus biofilm model [66]. Moreover, conventional antibiotics com-
bined with MNPs have been shown to increase the bacterial cell mem-
brane  fluidity, facilitating drug penetration, = membrane
permeabilization, and depolarization, which ultimately results in
enhanced antimicrobial efficacy of the pristine drug molecules [67].
Additionally, magnetic stimulation has been utilized to generate
magnetic traction forces that propel MNPs through dentin tubules. This
technique facilitates the local delivery of therapeutic agents to reduce
the inflammation in the injured pulp tissue and enhances the penetra-
tion of dental adhesives into the dentin (Fig. 4D) [67]. However, the
clinical translation of MNPs-based therapeutics are hindered by several
challenges, including the cytotoxicity of the metallic counterparts, the
high magnetic field intensities required, and concerns for patients with
implanted medical devices such as pacemakers or metallic implants.
Additionally, precise control of magnetic fields, non-specific binding,
limited tissue penetration, and complicated regulatory approval
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processes are required to ensure the therapeutic efficacy of the magnetic
field-based therapeutic delivery systems, which can be technically
challenging and expensive [64,67].

3.1.3. Ultrasound-responsive strategies

Sono-dynamic therapy (SDT) is a class of non-invasive stimuli-
responsive strategies in which acoustic or ultrasound waves act as a
triggering signal to activate or deliver therapeutics from the corre-
sponding platforms [17,68,69]. Both high-intensity focused ultrasound
and low-intensity pulsed ultrasound (intensity ranging from 30 to 100
mW/cm?) have been explored for therapeutic and diagnostic applica-
tions [70]. Generally, low-frequency ultrasound has been observed to be
more effective for drug delivery, as it can form an aqueous bypath in the
perturbed bilayer of the cells through cavitation effects [71]. Ultrasound
waves with energies ranging from 20 kHz to 16 MHz effectively deliver
therapeutic molecules through the sonoporation process. Although the
exact molecular mechanism of the sonophoresis is not fully elucidated,
several studies have demonstrated that the efficiency of this method can
be influenced by physical characteristics, such as solubility, dissociation
and ionization constants, as well as electrical properties (including
conductivity, impedance, hydrophilicity) of the targeted molecules
[72,73]. Furthermore, the sonoporation process can be optimized by
tuning the duration of exposure and treatment cycles.

While ultrasound is quite well-established for diagnostic and tissue
healing strategies in dentistry, ultrasound-mediated drug delivery plat-
forms for dental therapeutics remain limited. Recently, Li et al. inves-
tigated an efficient strategy to release drugs upon ultrasound stimulation
at an intensity of 0.67 W/cm? and a frequency of 42 kHz. This method
specifically eradicated multidrug-resistant Mycobacterium tuberculosis
(MTB) through BM2 aptamer-conjugated levofloxacin-loaded PLGA-
PEG (poly-lactide-co-glycolide polyethylene glycol) nanoparticles [74].
Meanwhile, ultrasound waves have been used to enhance the antimi-
crobial efficacy of traditional agents. Hartmann et al. reported an
increased antimicrobial efficacy of peracetic acid and EDTA with passive
ultrasonic irrigation in an Enterococcus faecalis biofilm model [75].
While this method offers several advantages, such as non-invasiveness
and localized delivery, there remain several disadvantages and chal-
lenges, including limited penetration depth, localized heating that can
lead to tissue damage or necrosis, and cavitation effects from high-
intensity ultrasound that can mechanically disrupt cells and tissues.
Additionally, precise control of ultrasound parameters (e.g., frequency,
intensity, duration), which is critical to both efficacy and safety, can be
technically challenging [76]. Despite these limitations, ultrasound-
stimulated drug delivery remains a promising strategy, especially in
the delivery of therapeutic agents to dental tissues [74,76]. Further
research and technological advancements are necessary to optimize this
approach, ensuring its safe and effective application.

3.1.4. Electric stimulation-responsive strategies

Over the past decades, the effect of direct electrical stimulation on
various tissues has garnered significant interest [77]. Direct electrical
stimulation offers several advantages over other external stimuli,
including rapid action, precise spatiotemporal controllability, and
deeper penetration into biofilm through the iontophoresis process. The
iontophoretic drug delivery system is widely explored as a non-invasive
and safe method of delivering cationic or uncharged drug molecules
across the cellular barrier under the application of a precise external
electrical field [78,79]. In dentistry, the iontophoresis process has been
used to enhance the drug permeation into the dentin, enamel, and other
dental tissues [80]. Previous studies reported that iontophoresis-
mediated delivery was improved by 10 to 2000 times compared with
conventional forms of delivery [79]. Typically, the iontophoresis strat-
egy was developed on the principle of electrophoresis, electro-osmosis,
and electro-permeabilisation process [79]. In the electrophoresis pro-
cess, the positively charged drug molecules are repelled from the anode
electrode and vice versa under direct electrical stimulation. It has also
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been demonstrated that the use of alternating current exhibits superior
performance compared to constant current stimulation [81]. The
electro-osmosis process involves the delivery of ionic or neutral drug
molecules, along with the bulk solvent flow generated from the impact
of the electrical field, across biological membranes. In the electro-
permeabilization process, the intrinsic properties of the biological
membrane (e.g., tight junction space, membrane fluidity, and pore size)
are altered to facilitate drug penetration under the electrical
stimulation.

In dentistry, the iontophoretic drug delivery strategy was predomi-
nantly used to deliver non-steroidal anti-inflammatory drugs, local an-
esthetics, anti-bacterial drugs, and various ions of interest like fluoride,
calcium, or potassium. For instance, Peng et al. reported the electric-
stimulated system for enhanced transportation of F~, Ca?", K*, and
Na™ ions into the nanopores inside the dental enamel (Fig. 5A). They
demonstrated that using 5 V/mm DC, the ions can penetrate the entire
depth of the enamel layer (~1 mm)) through the electrokinetic flows
[82]. In another work of the same group verified that, under the elec-
trokinetic flow, molecules with sizes above a critical threshold can also
penetrate the wet normal enamel pores without prior acid etching. Using
an innovative microfluidics platform, they have demonstrated that
Thoulet’s solution with a high refractive index can penetrate 5 to 6-fold
more volume under the electrokinetic flows (Fig. 5B) [83]. Furthermore,
by leveraging the nano-dimensional size and the positive charged silver
nanocomposites, iontophoresis has also been explored for deeper
penetration of Ag?" into the dentinal tubules, reaching depths 10 times
deeper than without current stimulation [84].

Besides delivering the specific cationic ions, iontophoretic delivery
strategies were also explored for releasing antimicrobial agents. Gergova
et al. reported that iontophoresis-mediated iodine and chlorhexidine
delivery exhibited better antimicrobial efficacy than conventional
platforms [85]. Similarly, metronidazole, salicylate, and naproxen were
found to be delivered more effectively under the influence of ionto-
phoresis compared to diffusion-based strategies [86]. Iontophoresis
strategy has also been explored to treat dental hypersensitivity and pain
management. For instance, Seeni et al. [87] developed an electro-
conductive microneedle patch to deliver local anesthetic lidocaine for
painless dental anesthesia (Fig. 5D). They have demonstrated that under
a low-voltage current stimulation, an iontophoresis-mediated conduc-
tive microneedle patch could direct and accelerate the delivery of drug
molecules to targeted teeth [87].

Additionally, electrical stimuli have also been explored for the
simultaneous sensing and on-demand drug release application. Shi et al.
developed a wearable and battery-free dental patch for monitoring in
situ oral microbial dysbiosis and delivering drugs on demand (Fig. 5C)
[88]. The device is integrated with an electrochemical potentiometric
sensor, which can precisely sense the topical acidic environment vari-
ation caused by microbial metabolism and indicate the potential caries
lesions. Simultaneously, using an advanced wireless electrical stimula-
tion strategy using near-field communication technology, fluoride ions
can be delivered for antibacterial action. Moreover, this study reported
an electrical stimulation-based theranostic approach for intraoral bio-
sensing and on-demand drug release [88].

In summary, electrical stimulation-based delivery strategies have
been widely explored in dentistry for numerous applications to address
the onset of caries. However, the currently available iontophoresis
approach still needs improvement regarding the application procedure
for electrical stimulation, which requires further modification to better
function in the complex oral environment and to address the transient
unwanted effect on the host cells. For instance, long-term application of
iontophoretic devices in the highly humid oral cavity remains chal-
lenging due to factors like skin irritation, potential tissue damage, and
the need for frequent treatments [88]. Lastly, the limited understanding
of electrical properties of dental tissue (such as conductivity, resistance
and threshold for current intensity), non-uniform electric field distri-
bution that can result in uneven drug delivery, and the need for
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Fig. 5. External electrical stimulation-based delivery strategies. (A) Schematic of the microfluidic devices and iontophoretic delivery systems to deliver the F~, Ca®",
K*, and Na™ into the nanopores inside the dental enamel. Reprinted with permission from [82]. (B) Illustration of iontophoretic delivery procedure on dental crown
and the fluorescence images showing the penetration of Thoulet’s solution inside the enamel area under the influence of electro-kinetic flow. Reprinted with
permission from [83]. (C) Illustration of wireless theranostic dental patch consisting of the control circuit and the electrode array for in situ oral microenvironment
monitoring and on-demand drug delivery. Reprinted with permission from [88]. (D) Optical images showing the electroconductive microneedle-mediated delivery of
local anesthetic lidocaine for pain management in the dental tissue. The fluorescence images indicated the deeper penetration of drug molecules inside the dental
tissue under the influence of electrical stimulation. Reprinted with permission from [87].

specialized equipment and trained personnel also hinders the clinical
translation of these devices [87,88].

3.2. Internal microenvironment-responsive drug delivery strategies

In addition to smart materials responding to external stimuli, there
have been many smart materials responding to internal cues in the
microenvironment, such as pH, pressure, temperature, hypoxia, en-
zymes, and specific genes [89]. Endogenous stimuli responsive materials
possess many advantages, such as the ability to penetrate deep tissue,
less dose dumping phenomenon, reduced adverse effects and toxicity
than exogenous stimuli like ultrasounds or magnetisms [90,91]. Usually,
tissue microenvironment undergoes a rapid physicochemical transition
during the inflamed disease progression, which could be used to trigger
the drug release from smart materials [92]. In this section, recent de-
velopments of internal microenvironment-responsive drug delivery
platforms used in dental applications will be discussed.

3.2.1. ROS-responsive strategies
Under certain infective and inflammatory conditions, such as oro-

dental infection and dental pulp inflammation, ROS are produced
depending on various circumstances as a metabolic byproduct [93].
Over the years, many ROS-responsive delivery materials have been
developed to deliver antimicrobial agents. For example, Li et al. devel-
oped vancomycin-loaded surface-functionalized mesoporous silica
nanoparticles (MSN) to eradicate S. aureus [94]. The amine-
functionalized MSN is coated with a PEG-grafted via thioketal linkage,
which gets cleaved in a high ROS environment and delivers the anti-
microbial agent. In another work, a ROS-responsive hydrogel composed
of sodium alginate with a ROS indicator RhB-Ac was developed for the
delivery of mesenchymal stem cell-derived small extracellular vesicles
to treat pulpitis [95]. Concomitantly, by leveraging the endogenous
ROS, scavenging moieties incorporated with antibacterial agents are
also employed for clearing intercellular pathogens [96].

Furthermore, tuning the ROS level has also been proven to modulate
several immunological responses and exhibit antibacterial properties,
which accelerates the tissue repair process [97]. For instance, Liu et al.
reported a topical formulation of ferumoxytol nanoparticles, which
disrupted intractable oral biofilms and prevented dental caries through
its intrinsic peroxidase-like activity [98]. They demonstrated that
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ferumoxytol nanoparticles can bind to the microscopic ultrastructure of
the biofilms and generate ROS in the presence of a low concentration of
H>0,, leading to in situ bacterial death via cell membrane disruption and
EPS matrix degradation (Fig. 6A). On the similar line of investigation,
when ferumoxytol is combined with stannous fluoride (SnF5), markedly
inhibiting both biofilm accumulation and enamel damage more effec-
tively than either alone (Fig. 6B) [99]. In addition, Andrew et al. syn-
thesized nitrogen-doped TiO, particles that can produce ROS under
visible light exposure. They showed that the generated ROS significantly
reduced bacterial counts and inhibited further biofilm formation
without affecting the viability of host cells [100].

Besides the antimicrobial applications, ROS-responsive strategies
have also been utilized to remove the smear layer produced during the
use of dental instruments, such as reamers, files, and bars [101]. Taken
together, ROS-responsive materials are promising in a variety of appli-
cations in dentistry. However, controlling the endogenous ROS level and
minimizing the adverse effects of the ROS in the associated host cells
need to be considered, as there is evidence showing that uncontrolled
ROS generation, as a byproduct, causes uncontrolled cell activity,
resulting in cell death and disease in the long run [102].

3.2.2. pH-responsive strategy
Among the internal microenvironment responsive drug delivery
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strategies, pH-based delivery strategies may be the most extensively
studied because it is well-known that dental infections and tissue
inflammation will contribute to an acidic environment [103,104]. The
dental caries site generally has a pH under 4.5-5.5 because of the
colonization of acid-producing bacteria. In contrast, the inflammatory
site of the subgingival plaque has a pH of around 6.5 [105]. Nonetheless,
it has also been reported that the peri-implant infection leads to a pH of
around 5.5 on the implant surface. In inflamed dental tissues, a low pH
microenvironment induces rapid exopolysaccharide (EPS) synthesis,
where S. mutans and other cariogenic organisms thrive, which results in
biofilm accumulation, acid-dissolution of tooth enamel, and, ultimately,
the onset of carious lesions [106]. Thus, most pH-responsive smart de-
livery systems are designed to be triggered at pH levels lower than 7.4,
which predominantly exists in the inflamed, infected conditions.

In most of the pH-responsive delivery platforms, the carrier polymers
are modified with pH-sensitive linkers like tertiary amines or acid-labile
bonds, which can be protonated/deprotonated or cleave specific
chemical bonds and release the drugs during the change of pH [107].
Thus, based on the characteristics of the linkers, the pH-responsive
hydrogels can further be classified into anionic hydrogels with
pendant groups of carboxylic or sulfonic acid and cationic hydrogels
with pendant groups of amines. However, the degree of swelling of these
hydrogels depends on many factors such as concentrations, crosslinking
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density, hydrophobicity or hydrophilicity, ionic charge, and degree of
ionization [108,109].

Researchers have also developed various pH-responsive strategies
based on the conformational changes of the active moieties to combat
the pathogens responsible for dental caries. For example, Horev et al.
[110] developed core-shell nanoparticles composed of cationic poly
(dimethylaminoethyl methacrylate) (p(DMAEMA)) coronas with hy-
drophobic and pH-responsive cores. In the acidic environment of dental
caries, the loaded Farnesol was released 2-fold faster than in the neutral
environment due to the protonation of DMAEMA and propyl acrylic acid
(PAA) residues within nanoparticle cores. As a result, this smart material
contributed to significantly better biofilm removal compared to non-
responsive nanoparticles or PBS-treated controls [110]. Similarly,
Zhou et al. synthesized a Farnesol-loaded micelle using the same block
polymer [111] and demonstrated that the drug release performance can
be modulated by increasing the core molecular weight ratios. This
micelle exhibits better physiological stability and enhanced drug release
ability than those with lower core molecular weight ratios [111].
Additionally, a ‘particle-in-particle’ approach has been reported, in which
the carrier, composed of phosphonium-containing smaller therapeutic
NPs, was wrapped in a pH-responsive layer of poly(styrene)-b-poly (N,
N-dimethylaminoethyl methacrylate) [112]. These function-adaptive
clustered NPs can eliminate the dense EPS of biofilm and significantly
reduce the S. mutans viability in an ex vivo human teeth model.

In another study, Fullriede et al. developed a pH-sensitive controlled
drug delivery platform modifying nanoporous silica nanoparticles with
poly(4-vinylpyridine) using a bismaleimide as a linker [113]. They
showed that at physiological pH, the polymer chains in these modified
nanoparticles prevent the release of chlorhexidine, whereas in the acidic
environment, the polymer chains become protonated and straighten up
due to electrostatic repulsion, leading to drug release [113]. Similarly,
Dong et al. fabricated a pH-dependent AgNPs-releasing titanium nano-
tube arrays (TNT) implant for peri-implant infection control by chemi-
cally grafting AgNPs on the TNT implant surface via a low pH-sensitive
acetal linker [114]. At pH 5.5, the AgNPs released from the TNT-AL-
AgNPs implant increased significantly due to the cleavage of the
acetal linker and enhanced antimicrobial activities against gram-
positive and gram-negative bacteria compared with AgNPs released at
pH 7.4 [114].

Nevertheless, Chang et al. [115] fabricated an in situ pH-responsive
injectable hydrogel consisting of carboxymethyl hexanoyl chitosan,
glycerol, and thermosensitive p-glycerol phosphate for the delivery of
Naringin, a polyethoxylated flavonoid for periodontitis application.
They observed the release of Naringin in a pH-dependent manner due to
the protonation of the amine groups in chitosan in the acidic environ-
ment resulting from periodontitis [115]. However, the intrinsic pH-
based delivery systems exhibit several limitations, including difficulty
maintaining long-term stability due to particle aggregation, low trans-
fection efficacy, and significant batch-to-batch variation. Additionally,
anatomical variations, such as those arising from diet or disease state,
influence their performance. Furthermore, pH-responsive systems are
often constrained by a narrow operational pH range, which may not
encompass all relevant physiological or pathological conditions
[111,115]. Therefore, future studies should tackle these limitations with
the appropriate biomaterial development with highly selective chemical
moieties.

3.2.3. Engyme-responsive strategy

Previous studies demonstrated that in oro-dental disease, certain
types of enzymes, including cell-secreted matrix metalloproteinases
(MMPs), cholesterol esterase, and glutathione, are upregulated due to
the inflammatory microenvironments [117,118]. Moreover, over the
years, various enzymes, including those produced by bacteria (e.g.,
esterase, phosphatase, phospholipase, p-lactamases), as well as salivary
secreted lipase, protease, esterase, alpha-amylase, anhydrase and lyso-
zyme have also been utilized to trigger moieties due to their high
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selectivity and good catalytic activity. Upon the hydrolysis, backbone
cleavage, degradation, disassembly, phosphorylation, and dephosphor-
ylation of the carriers induced by the enzymatic activity, the loaded
active molecules get delivered to the specific sites responsively
[119,120].

Prior studies have shown that traditional antimicrobial agents such
as chlorhexidine can inhibit the proteolytic and glycoside enzyme ac-
tivity in dental plaque bacteria [121]. Finer et al. showed that the
bacterial-secreted enzyme-catalyzed hydrolysis of the resin composite
by cleaving at the ester bonds of the methacrylate-based resin mono-
meric unit in a dose-dependent manner [122]. As it was previously re-
ported that MMP-8 level in the gingival crevicular fluid was upregulated
under the inflammatory condition of chronic periodontitis [123,124],
these enzymes have been used to trigger drug release from smart ma-
terials. For instance, Guo et al. [125] fabricated a biodegradable MMP-8
responsive hydrogel using polyethylene glycol diacrylate and a cysteine-
terminated peptide crosslinker via a Michael-type addition reaction.
They also implemented the same platform to deliver minocycline,
bovine serum albumin, and antibacterial peptides for periodontitis
treatment [125]. Typically, cross-kingdom dual-species biofilm-like
C. albicans and Streptococcus mutans are predominantly observed in
dental caries, which is mediated through glucosyltransferases (GtfB)
binding to mannans on the cell wall of C. albicans [126]. To circumvent
this problem, Kim et al. demonstrate an enzymatic approach to disrupt
the interaction between the mannans and GtfB using the three mannan-
degrading enzymes, which are endoenzyme 1,4-f-mannanase and the
two exoenzymes a- and f-mannosidase [126]. They observed that after
the enzymatic treatment, there is a ~ 15-fold reduction in the binding
force of GtFB to C. albicans.

Additionally, enzyme-responsive delivery strategies have also been
explored for anti-adhesion and on-demand anti-infection activity in
treating dental implant-associated infections. During the early microbial
colonization over the implant surface, most gram-positive or negative
bacteria secrete certain enzymes, such as bacterial collagenase or hyal-
uronidase, which can act as a triggering moiety [127]. For example,
Titania nanotubes loaded into a hydrophilic, adhesive polymeric system
composed of dopamine-modified hyaluronic acid and 3,4-dihydroxyhy-
drocinnamic acid-modified chitosan were used to modify Ti-implant
coating for delivery of vancomycin [128]. Hyaluronidase-triggered
vancomycin release from the coating not only elicited superior antimi-
crobial properties but also improved osseointegration through the
upregulation of integrin av and B3 genes [128]. However, the clinical
translation of enzyme-responsive delivery platforms faces significant
challenges, including variability in enzyme concentrations among in-
dividuals and the risk of dose-dumping effects. Moreover, enzymatic
activity is influenced by the stage of disease progression and the age of
the host, which emphasizes the need for personalized medicines.

3.2.4. Thermo-responsive strategies under body temperature

Temperature differences have been used to trigger the release of
therapeutic molecules from biomaterials [129]. The injectable hydrogel
emerges as one of the most extensively investigated thermo-responsive
delivery systems in dentistry, as it allows the delivery of drugs in rela-
tively small or deep spaces such as root canals, periodontal pockets, and
decayed cavities [130]. These systems have the advantage of being
administered in a ‘sol state’ at room temperature and transforming into a
‘gel state’ at body temperature [130]. The underlying principle of
thermo-responsiveness relies on the temperature-dependent swelling
behavior of these hydrogels. When the temperature exceeds the upper
critical solution temperature, the hydrogel swells and releases the
entrapped drug molecules [131,132]. Common thermo-responsive
polymers, including methylcellulose, hydroxypropyl methylcellulose
and poly-(N-isopropyl acrylamide) (NIPAM), have been explored in the
development of smart drug delivery systems [131].

For example, Wang et al. formulated a novel polyisocyanopeptide
(PIC)-based thermo-responsive hydrogel platform capable of releasing
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Lipoxin A4 for periodontal tissue infection for over two weeks [133].
They reported that their hydrogel exhibits controlled-release charac-
teristics owing to its stiff helical polyisocyanate backbone stabilized by
the hydrogen-bonded diallyl groups, which form a semiflexible network
in water and prevent the rapid drug dissolution from the gingival
crevicular fluid [133]. Similarly, Raknam and colleagues reported
another injectable gel utilizing a non-ionic surfactant Poloxomer 407
(also known as Pluronic F-127), for delivering the cell-free supernatant
of L. rhamnosus SD11 to prevent dental caries [134]. However, consid-
ering the toxicity of Poloxomer 407 reported in rats [135], there is a
great need to develop other biocompatible and non-ionic surfactant-
based biopolymers for thermo-sensitive therapeutic agent delivery.
Indeed, most of the current thermo-responsive delivery systems have
notable limitations in terms of their biodegradability and
biocompatibility.

3.3. Multi-responsive nano-platforms

Researchers have developed many multi-responsive delivery systems
to facilitate therapeutic efficacy for better and faster therapeutic re-
sponses [6]. In general, in these delivery systems, the payloads were
delivered by controlling multiple stimuli, ensuring clinical efficiency
[136]. Recently, several researchers have explored the combination of
intrinsic stimuli, like enzymes with various extrinsic stimuli to more
precisely control the precise therapeutic activity [137]. In this regard,
Dong and colleagues reported a multi-component, multi-stimuli
responsive CoPt@graphene@glucose oxidase integrated nanosystem,
which can produce HyO; through the two-step cascade reaction (Fig. 6C)
[116]. In this platform, GOx converts glucose into gluconic acid and
H20,, which is further transformed into the hydroxyl free radical
through the peroxidase mimic CoPt@graphene counterparts [116].
Nevertheless, the magnetic property of the Co—Pt nanocrystals assists
the whole nano-system to penetrate further inside the dense biofilm
matrix. Another study by Carmen et al. [138] showed the feasibility of
magnetically driven photoactive microrobots for biofilm eradication on
dental implants. They have prepared a multi-responsive microrobot
combining ferromagnetic Fe304 nanoparticles and photoactive BiVO4
materials through polyethyleneimine micelles, in which the FesO4
serves as a propulsion force using a transversal rotating magnetic field.
Simultaneously, BiVO4 serves as the photoactive generator of ROS to
eradicate the biofilm colonies under blue light exposure. Additionally,
they tested the efficiency of these microrobots on a complex multispe-
cies biofilm composed of gram-positive Streptococcus gordonii, Actino-
myces naeslundii, Veillonella parvula, and gram-negative F. nucleatum. It
was found that the multi-responsive microrobots contributed to a ~93 %
reduction in biofilm, which is significantly more effective than an un-
coated titanium implant [138]. Although multi-responsive drug delivery
systems aim to achieve highly precise and controlled drug release, they
come with several significant disadvantages despite their potential.
Designing suitable materials that respond effectively to multiple stimuli
while maintaining stability, biocompatibility, and sufficient drug-
loading capacity is highly complex. Ensuring synergistic responsive-
ness, where the system reacts effectively to both internal and external
stimuli without interference or unintended interactions, presents
another challenge. Furthermore, the fabrication process for these dual-
responsive systems is often more complicated and costly compared to
single-responsive systems. Practically, premature activation can occur if
the system responds to unintended stimuli in non-target areas, leading to
early drug release and reduced efficacy. Conversely, incomplete release
remains a risk if the system fails to respond adequately to the intended
stimuli, resulting in suboptimal therapeutic outcomes. Regulatory hur-
dles are also heightened because these complex systems require a more
rigorous and time-consuming approval process. Finally, a lack of long-
term clinical data on safety and efficacy hinders widespread adoption.
To overcome these limitations, next-generation targeted therapeutic
strategies capable of performing tasks autonomously without off-target
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effects or toxicity concerns are being actively explored [138,139].

3.3.1. Micro/nanorobots

In the past, micro/nanorobots have been explored for a variety of
applications, including sensing, diagnosing, and imaging. They have
also been developed as multipurpose delivery systems for precise, on-
demand, off-target-controlled delivery and theragnostic strategies, out-
performing other stimuli-responsive platforms (Fig. 7A) [139,140].
These micro/nanorobots are designed to mimic biological entities, such
as cells or bacteria, in terms of behavior. For example, microbivores are
engineered to emulate white blood cells capable of phagocytosing and
digesting pathogenic infections in the bloodstream [141].

Typically, nanorobots are powered by external forces such as mag-
netic fields, electrical, US stimulation, or even chemical decomposition
[142]. In the field of dentistry, micro/nanorobots are primarily
employed to deliver antimicrobial agents to specific locations and
enhancing drug permeation into deeper tissues or biofilms [143]. For
example, Villa et al. reported a self-propelled, tubular-shaped TiO/Pt
microrobot for dental biofilm disruption [144]. Only a 5-min treatment
of the microrobots elicits >95 % eradication of biofilm due to the syn-
ergistic effects of simultaneous generation of hydroxyl radical through
the H50, oxidation and microbubble formation on the surface of the
biofilm [144]. In another work, Hwang and co-workers [145] designed
vane-like and helicoid-shaped catalytic antimicrobial robots (Fig. 7B)
based on the dual catalytic-magnetic functionality of iron-oxide nano-
particles and showed the “kill-degrade-and-remove” strategy to eradi-
cate S. aureus biofilms from the highly confined anatomical surface of
the teeth [145]. In a subsequent study, they developed magnetic-field
driven surface topography-adaptive robotic superstructures named
Surface Topography-Adaptive Robotic Superstructures (STARS)
(Fig. 7C), which can eradicate microbial biofilm and disease sampling.
Guided by precise magnetic fields, STARS can alter their shape, length,
and stiffness to perform specific tasks. As a proof-of-concept, they
demonstrated that varying the length of STARS can clear S. mutans and
C. albicans biofilms grown on enamel substrates while simultaneously
collecting microbial specimens on their bristles [146]. In conclusion,
these studies revolutionize the application of microrobots in dentistry by
enabling real-time mechanochemical biofilm removal and multi-
kingdom pathogen detection. Nevertheless, future research should
focus on developing biohybrid micro/nanorobots capable of performing
such tasks autonomously and without toxicity concerns.

4. Tissue-specific applications in dentistry

Given the significant therapeutic benefits of smart drug delivery
systems, they have been investigated for addressing a range of disease
conditions. Therefore, in the next part of this review, we will provide a
comprehensive overview of various dental applications of smart drug
delivery platforms, categorized by specific tissues or diseases.

4.1. Smart therapeutic platforms for oral mucositis

Oral mucositis is a common but severe complication that affects
immunosuppressed patients, including those who have severe infections
(Human immunodeficiency virus, Epstein-Barr virus, Mycobacterium
tuberculosis), serious systemic diseases, immunosuppressant medication,
and chemotherapy or radiotherapy [147]. Oral mucositis can induce a
range of clinical symptoms, such as oral pain, dysphagia, altered taste,
inadequate oral intake, and secondary infection, which can complicate
dental treatment, prolong hospitalization, and reduce the quality of life
[148]. The pathophysiology of mucositis involves direct DNA damage,
oxidative stress responses, and activation of the innate immune
response. Consequently, numerous studies have focused on mitigating
oxidative stress, reducing inflammatory responses, and promoting lesion
healing [149].

Several smart drug delivery strategies have been developed for
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modulating local oxidative stress levels and improving the effectiveness
of treatments for oral mucositis. Enzyme-responsive smart materials
hold significant promise for addressing this condition due to the high
levels of salivary enzymatic activity in the oral cavity. For example,
Zhang et al. developed buccal tablets that can respond to salivary am-
ylases through the incorporation of anti-inflammatory apremilast and
starch controller in porous manganese-substituted Prussian blue nano-
cubes (PMPB NCs) [150]. These PMPB NCs effectively scavenge ROS and
synergistically enhance the activity of apremilast to reduce inflamma-
tion. The starch controller is incorporated to react to SAs, enabling a
continuous, sustained apremilast release at a pre-determined rate. The
abundance of SAs and the a-amylase sensitivity of starch allow for the
prolonged release of PMPB NCs and the cascade release of apremilast.

Similarly, water-responsive platforms have been investigated owing
to the humid environment in the oral cavity. For example, core-shell
PLGA NP was fabricated for inflammation management, and the
mussel-inspired mucoadhesive film also presents a wet-adhesive
manner. These platforms exhibit superior advantages for transporting
drug molecules across the mucosal barrier with improved bioavailability
(~3.5-fold greater than the direct oral delivery) and therapeutic efficacy
in oral mucositis models (~6.0-fold improvement in wound closure
within 5 days compared with no treatment) [151]. Apart from the
mucoadhesive-based delivery, ROS scavenging strategies have also been
investigated to modulate the therapeutic agent delivery and minimize
the related toxicity. For instance, gold nanoparticles conjugated with
polyvinylpyrrolidone were reported to exhibit increased therapeutic
efficacy while reducing systemic toxicity [152].

Currently, only limited studies have investigated the use of smart
drug delivery systems in oral mucositis treatment, most researchers have
been focusing on modifying the physicochemical properties of bio-
materials and employing nanomaterials to prolong the effectiveness of
certain medications. Further studies are needed to improve the perme-
ability of the epithelial layer and prevent mucositis. It is also important
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to note that future smart biomaterials are expected to address multiple
challenges, including pain-relieving, anti-microbial properties, and anti-
inflammatory effects sequentially to improve their clinical performance
in treating mucosal lesions.

4.2. Smart therapeutic platforms for dental caries

Dental caries is an infectious condition that causes the deterioration
of tooth structure and remains one of the most prevalent biofilm-
dependent dental diseases [153]. It can lead to the loss of teeth,
affecting functions such as chewing, aesthetics, and speech [154]. Since
it is initiated by acidic by-products from cariogenic bacteria [155,156],
pH-responsive and other stimulus-responsive functional biomaterials
hold great potential in dental caries. These smart drug delivery plat-
forms integrate antibacterial therapies, remineralization of decalcified
tissue, and regulation of odontoblast cell activity [157], as summarized
in Table 1.

Over the years, bioactive glasses (BGs) [158], modified resin [159],
and mesoporous silica nanoparticles (MSN) [151] have been utilized as
pH-responsive release platforms to facilitate the recalcification of teeth.
Additionally, some ions with antibacterial effects, such as F~ and Ag™,
are delivered to inhibit the acidogenic activity of cariogenic bacteria.
Specifically, BGs exhibit the potential for pH-responsive dental tissue
regeneration as they can stimulate mineralization and adjust pH levels
[160]. Ion-releasing resins provide both ion-releasing and adhesive
functions in dental practice, while pH-responsive resins have been
developed to enhance their effectiveness [161]. Similarly, MSN was
coated or chemically modified with various pH-sensitive linkers to serve
as carriers for drug molecules [162].

For dental caries management, several attempts have been made to
avoid mechanical removal of the damaged hard tissue. However, the
clinical efficacy of non-mechanical approaches may be uncertain due to
the caries environment. Most pH-responsive biomaterials only remain in

Table 1
Smart drug delivery platforms for dental caries.
Mechanism Stimuli Application Outcome Ref.
Ca”-releasing pH ACP-based materials Release supersaturated levels of Ca?* and PO3~, with greater jon [173]
release at pH 4
Ion-releasing pH Nano-scale ACP with calcium-based pastes to Higher surface area exhibited higher bioactive functions [174]
enhance their application effectiveness.
Ion-releasing pH Nano-scale ACP incorporated as a filler in resin-  Release of Ca%* at pH 4.0 [175]
based materials
Ion-releasing pH NACP/ doxorubicin hydrochloride system Release of Ca®" at pH 4-5 [176]
Ion-releasing pH NaF-BGs with low sodium content can be added  Release of F~ for dental tissues remineralization [177]
to dental resins for dental applications
Ion-releasing, anti- pH Zn?* releasing bioglass Release higher levels of Zn?"as the pH decreases and inhibit the [178]
bacterial growth of S. mutans in mildly acidic environments
pH-adjusting pH BGs release Na and K ions Exchange with H ions in the solution, raising the pH value [179]
pH-adjusting pH Moreover, Biomimetic resins such as Ariston Release a higher concentration of ions at low pH levels [180,181]
pHc
Anti-bacterial light 3 % DMAEM to a DMAEM-modified resin Effectively inhibit S. mutans in response to LED light [182]
adhesive
Anti-bacterial Self- a-helical antimicrobial peptide (GH12) Excellent antibacterial effects at pH 5.5 [183]
assembling
Anti-bacterial pH antimicrobial agent Farnesal smart drug Effectively eradicate cariogenic S. mutans in a rat model [184]
delivery system
Anti-bacterial pH CHX/nanoparticles Penetrate dentinal tubules, releasing CHX within the dentin and [185,186]
exerting antibacterial effect [187-189]
De novo pH Adopt amelogenin-based peptide Form the oriented buddle shape of crystal and promote the forming of ~ [190]
remineralization hydroxyapatite
De novo pH Polyacrylic acid and dentin matrix dual loaded Promote in situ regeneration of defective tooth [191]
remineralization chitosan-based antibacterial drugs encapsulated
hydrogel
Functional pH PA-mediated assembly strategy Induce fusion of the ACP particles on the enamel surface resultingin ~ [192-195]
remineralization the formation of a crystalline-amorphous mineralization front with a
continuous structure
Functional pH Self-assembly peptide P11-4 Undergo self-assembly through intermolecular hydrogen bonding [196]
remineralization between peptide backbones, forming three-dimensional scaffolds

within lesions
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the superficial region of the cavity, and this superficial remineralization
can potentially promote the progression of untreated caries underneath.
Therefore, in cases of hidden caries, more effort is needed to achieve de
novo remineralization. This requires better delivery systems so the
therapeutic agent can penetrate necrotic and contaminated areas to
enhance mineralization in demineralized and translucent zones. For
instance, pH-responsive peptides such as pHly-1 have been developed to
penetrate deeper in liquid form and prevent further caries progression in
hidden caries and early-stage caries [142]. A similar study by Zhang
et al. showed that pHly-1 forms self-assembling nanoparticles and
changes p-folded to helical conformation when the surrounding envi-
ronment becomes acidic, which is common in cariogenic microenvi-
ronments [163]. Those pHly-1 in helical conformation can bind to the
bacterial membrane, leading to the destruction of the bacterial cell
membrane and subsequently the elimination of those cariogenic bacte-
ria. Similar strategies have been developed as a more comprehensive
approach to facilitate the fusion of amorphous precursors with crystals
and establish a continuous growth boundary [164-166].

While de novo remineralization has made significant advancements,
it is still challenging to functionally restore the damaged enamel, dentin,
or cementum with hierarchical structures [167,168]. Long-term remi-
neralization can be achieved through the regular cycles of the
nucleation-mineralization process that guarantee crystal growth
[167,168]. Amelogenin, collagenous fiber, and non-collagen protein
serve as templates for crystal nucleation [65]. Thus, liquid forms of
amorphous calcium phosphate (ACP) nano-precursor particles were
developed as a filling for mineral-deficient areas, which is supported by
non-collagenous protein scaffolds [169,170]. Calcium or silicon ions
were adopted to form ion clusters that initiate the self-assembly of
amphiphilic peptides for remineralization and promote the natural
biomineralization process [171]. In another study, Li et al. engineered a
dual-functional peptide that exhibited good affinity to collagen binding
and absorbed free minerals [172]. These multi-functional stimuli-
responsive peptides can penetrate subsurface lesions and later transform
aggregates within the lesion, contributing to the formation of hy-
droxyapatite nanocrystals to restore dentin.

Taken together, the development of dental caries comprises a series
of processes, including bacterial colonization, acid production, disrup-
tion of the balance between recalcification and decalcification, as well as
cavity formation. Current strategies typically only focus on addressing
one aspect of these processes, such as antibacterial, remineralization, or
surface modification. However, those strategies are not sufficient to
effectively address the issues present at different stages of caries
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development. Additionally, it is challenging to fully replicate the
complicated and well-aligned apatite structure, even though recalcifi-
cation can improve the hardness and strength of infected enamel [171].
Therefore, efforts should be made to develop multi-functional ap-
proaches to fulfil antibacterial, remineralization, and regeneration
purposes.

4.3. Smart therapeutic platforms for endodontic diseases

Pulpal and periapical diseases are common reasons for dental visits
worldwide, and the primary treatment options for endodontic diseases
are vital pulp therapy (VPT), root canal treatment (RCT), or pulp
regeneration [197]. However, distinct smart drug delivery systems are
required to achieve specific therapeutic goals for different dental pulp
diseases through VPT, RCT, or pulp regeneration. This section provides
an overview of the various smart responsive materials used in different
clinical scenarios, which are summarized in Table 2.

VPT, which includes techniques such as direct or indirect pulp
capping, pulpectomy, and partial pulpotomy, is a less invasive treatment
option for protecting and healing compromised pulp, since it does not
require removing all the pulp tissue [198]. The use of bioactive mate-
rials during classic VPT can regenerate new hard tissue on vital dental
pulp. Typically, these therapeutic agents possessed antibacterial, he-
mostatic, anti-inflammatory, and angiogenic properties, and were often
combined with exogenous stimulus-responsive biomaterials [161] to
controllably deliver drugs with corresponding functions [199]. For
instance, mineral trioxide aggregate is a common capping material used
for VPT owing to its antibacterial pH-responsive range that differs from
that of caries remineralization. Moreover, inflammation is considered a
critical part of the repair process, as it sets the stage for healing to occur
[191]. However, excessive inflammation can also lead to compromised
blood flow and even necrosis of the dental pulp in VPT [200-204].
Therefore, combating inflammatory exudates becomes particularly
important to prevent these detrimental effects [200-204]. Thus, effec-
tive management of inflammation plays a key role in the treatment of
endodontic diseases and the experience of the patients. Meanwhile,
simultaneous use of bioactive agents, such as resolvin El,
epigallocatechin-3-gallate ester of resveratrol and simvastatin, acts as an
adjunct for immunomodulation and enhanced remineralization [176].

Though VPT can be used to address mild infections, RCT needs to be
considered in instances of severe root canal infection, where the pros-
pect of salvaging the pulp is minimal. RCT is critical for eliminating
infections and maintaining an aseptic environment in the affected area

Table 2
Smart drug delivery platform for endodontic diseases.
Therapy Stimuli Application Outcome Ref.
VPT Photo Photo-responsive hydrogel Polymerizes the MMP-9, inhibits destructive effects on dental [167]
tissues
VPT pH/light SrCuSi4010 /GelMA Composite Hydrogel Eliminates S. mutans and Lactobacillus casei and inhibit biofilm [168]
formation under photothermal heating
VPT ROS Resolvin E1, epigallocatechin-3-gallate ester of Adjuncts for immunomodulation and enhanced remineralization [167]
resveratrol, simvastatin
VPT ROS Epigallocatechin gallate (EGCG) Increases SOD activity and reduce ROS expression under hypoxia [175]
VPT ROS L-arginine (L-Arg) L-Arg can release NO. NO can penetrate tissues more deeply to [176]
effectively eliminate deep-seated bacterial infections
RCT pH Egyptian propolis (ProE) encapsulated in polymeric =~ Promotes sealing ability in bacterial infections in dental pulp. [77]
nanoparticles
RCT light/ion DMAHDM and NACP functioned as a smart drug Antibiofilm activity against E. faecalis and high Ca and P ion release ~ [180]
delivery system for remineralization and sealing properties
Dentin-Pulp Complex Temperature Chitosan/pNIPAAm hydrogel Creates favourable microenvironment for proliferation and [181]
Regeneration differentiation of DPSCs
Dentin-Pulp Complex Self- Dentinogenic peptide (Sled) Self-assembles into f-sheet-based biodegradable nanofibers and [182]
Regeneration assembling support DPSCs
Pulp Revascularization pH VEGF-loaded dimethylmaleic anhydride (DMA) Accelerate angiogenesis [214]
hydrogels
Pulp Revascularization Light Poly-N-isopropylacrylamide-co-butyl acrylate (PN) Promote the differentiation of DPSCs into neuronal cells [215]

and extracellular matrix proteins
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[3,4,197,205]. However, it can lead to reduced strength, increased risk
of fracture, and discoloration due to the complete removal of pulp tis-
sues. To enhance tissue strength and potentially improve treatment
effectiveness, external stimulus-responsive biomaterials carrying drugs
with corresponding functions are often combined with root canal
treatments (Table 3). Meanwhile, ROS-responsive drug delivery plat-
forms have been developed to address inflammatory exudates, espe-
cially in diseases such as pulpitis and apical periodontitis [199]. ROS-
responsive drug delivery platforms are potential due to the significant
oxidative stress burden in these scenarios [172]. For example, Li et al.
utilized epigallocatechin gallate (EGCG) to increase superoxide dis-
mutase (SOD) activity and reduce ROS under hypoxia [192]. Similarly,
Wang et al. utilized L-arginine (L-Arg), which can release nitric oxide
(NO) by reacting with ROS and generate a driving force for deeper tissue
penetration, to eliminate deep-seated bacterial infections [193]. Addi-
tionally, magnetically driven nanobots have been shown to penetrate
dentinal tubules in radicular dentin and release specific antibiotics to
sterilize and treat root canal infections [62,66,143]. However, this non-
vital treatment compromises the blood supply and neuro-nutritive ef-
fects on dentin, resulting in increased brittleness of the tooth structure
[158]. For these reasons, it is necessary to look for other treatments,
such as pulp regeneration [206].

Pulp regeneration aims at preserving the vitality and function of
teeth. Due to the unique anatomical structure of the root canal system,
the biomaterials need to have good flowability to reach the pulp region
to facilitate tissue regeneration. Moreover, the root canal system is
protected by mineralized tissue, making it difficult to control the bio-
materials externally. Therefore, it is important for the next-generation
smart-drug delivery platform to effectively eradicate the infection,
exhibit long-term antibacterial effects to prevent recontamination, and
resolve the inflammation to relieve the symptoms [206]. Nevertheless,
the success of pulp regeneration hinges on two critical challenges: pulp
revascularization and reinnervation [207], as demonstrated in Table 2.
Newly regenerated blood vessels contribute to a favourable regenerative
niche, which provides necessary nutrition and resistance to external
infections. The delivery of bioactive factors, such as platelet-rich plasma,
inflammatory cytokines (e.g., TGF-p), and growth factors (e.g., PDGF
and VEGF), has been utilized in vascular regeneration [208]. Thus,
thermoresponsive hydrogel was adopted to deliver angiogenetic horn
peptide [209]. Similarly, a pH-responsive polymer was used for
controlled release of Simvastatin, a drug that has been proven to pro-
mote inflammation regulation and revascularization [210,211]. Rein-
nervation is also critical in pulp regeneration due to the important
sensory, nutritional, and defensive functions of the nerves in pulp tissue
[212]. Some light-cured hydrogels encapsulating dental stem cells have
achieved full-length dental pulp regeneration with nerve reinnervation
[213]. Additionally, there are abundant drug delivery materials with
stimuli-responsiveness due to their altered degradation profile in
distinct environments [210]. However, it is under debate whether these
materials can be regarded as smart drug delivery systems for endodontic
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therapeutics as these platforms focus more on modifying degradation
rates or mechanical properties rather than precisely controlled or
enhanced theraputic outcomes.

4.4. Smart therapeutic platforms for periodontal diseases

Periodontitis is one of the most common chronic, destructive, in-
flammatory dental infections that occurs due to bacterial colonization,
primarily involving anaerobic gram-negative bacteria such as
P. gingivalis, Aggregatibacter actinomycetemcomitans, and Tannerella
Forsythia [216-219]. Although periodontal treatment is imperative in
dealing with periodontitis, traditional platforms used in clinical practice
exhibit several limitations. Firstly, both topical and systemic antibac-
terial therapies can be less effective with the emergence of bacterial
resistance or insufficient drug penetration, which may lead to unwanted
adverse effects. Secondly, the management of periodontitis requires a
sequential approach involving infection control, inflammation resolu-
tion, and tissue regeneration. Thirdly, the majority of platforms cannot
fulfil all these expectations throughout the process of periodontitis
management, as simple localized adjustments may be insufficient to
effectively modulate the immune response [220].

Despite those challenges, several smart drug delivery systems have
been proposed [221], as summarized in Table 3. To increase the effec-
tiveness of smart drug delivery, thermo-responsive, pH-responsive, and
light-responsive systems have been tested [220]. For example, aspirin/
erythropoietin dual-loaded thermo-responsive hydrogel provided pro-
longed drug release for sustained anti-inflammatory effect [222]. Be-
sides, Poloxamer 407/poly (acrylic acid)-based thermo-responsive
hydrogel was used for prolonged Metronidazole release at endogenous
pH and temperature [223,224]. In addition, the release of tetracycline
was precisely controlled through gold nanocages, a light-responsive
platform [225].

The application of smart materials with multiple drugs for sequen-
tially managing the host immune response and promoting tissue
regeneration has also been explored. For instance, N, N'-carbonyl dii-
midazole and hyaluronic acid were included in a multifunctional
nanoparticle to create a platform for controlled release of curcumin and
4-hydroxybenzeneboronic acid, which have antibacterial and anti-
oxidative stress properties, respectively. The drug release achieved by
these materials induced various cellular pathways to mitigate the
infection, regulate inflammation, prevent bone loss, and stimulate bone
regeneration [226].

Moreover, some research focused on immunoregulation to
strengthen the roles of immune cells in defending against microbial
infection and limiting tissue damage [216,217]. The microenvironment
of periodontitis infections causes inflammation, hypoxia, and the pro-
duction of toxic end products from immune cells. Thus, some researchers
attempted to treat periodontitis by modulating the polarization of
macrophages and the balance of T-cell phenotypes [227], thereby
eliminating the dysregulated neutrophil-mediated killing to prevent

Table 3
Smart drug delivery platform for periodontitis management.
Function(s) Agent(s) Stimuli Carrier Outcomes Ref.
Bacterial Moxifloxacin Temperature  Polymer nanoparticle containing hydrogel Prolonged drug release, enhanced efficacy, and [231]
suppression improved nanoparticle retention
Periodontal tissue Dental pulp stem cell- Temperature  Exosomes incorporated polymeric Converts macrophages to anti-inflammatory [228]
regeneration derived exosomes nanoparticles phenotype in periodontitis microenvironment.
Inflammation Erythropoietin (ERY) Temperature  Polymer nanoparticle containing hydrogel Restores alveolar bone height, alleviates [222]
inhibition and aspirin inflammation
Immuno-modulation ~ Minocycline Glucose Metal-organic framework Improves macrophage pyroptosis; reduces pro- [232]
inflammatory factors secretion; mitigates inflame-
aging
Periodontal tissue Dexamethasone UV light Nanocomposite-injectable hydrogel Strong antibacterial properties; supports cell [233]
regeneration proliferation and osteogenesis
Multi-sequence Curcumin ROS N, N'-carbonyldiimidazole, Hyaluronic acid, =~ Antibacterial and immunomodulatory effects [226]
management 4-hydroxybenzeneboronic acid
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periodontal tissue destruction [228]. For example, doxycycline/met-
formin dual-loaded to oxidized dextran/phenylboronic acid-
functionalized poly-(ethylene imine) hydrogel was used to treat the
infection by immunomodulation. This strategy manages periodontitis by
sequentially enhancing anti-infection and anti-inflammatory properties
through the release of different immunomodulatory drugs [229,230].
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methods for antibacterial agent delivery [245]. Nowadays, the rapid
progress of nanotechnology has enabled the development of multi-
functional smart coatings for drug delivery (Table 5). However, most of
these coatings were only tested in vitro under laboratory conditions

In addition to addressing periodontitis through d pathogenic  Lomie &
na . 1tion to a resslng. periodontitis through targete Pat .ogemc Different types of smart coating on dental implants for drug delivery.
mechanisms, smart drug delivery can also act on the systemic risk fac- - - —
tors of periodontitis. For instance, since diabetes can complicate the Coating Material(s) Activity Ref.
treatment of periodontitis, glucose-responsive hydrogels were devel- Polycation Hydrophobic Prevents implant [251]
oped using glucose oxidase (GOx) and chitosan as crosslinkers to treat polycationic coating colonization with
diabeti iodontitis. GO idi 1 t d hvd . composed of N, N- biofilm; promotes bone
1a. etic periodontitis. . x oxidizes g u?ose o) pr.o. uce hy r.ogen ions, dodecylmethyl-PET healing
which protonate the amino groups of chitosan, raising osmotic pressure AMP TBP-1-GGG-hBD3 coated  Better antibacterial [247]
and enabling drug release. Similarly, Zheng et al. developed a glucose- Ti activity against different
responsive platform for managing periodontitis by protecting mito- ] Staphylococcus species
chondria from ROS, thereby inhibiting the activation of the NLRP3 in- GLI3K coated Ti ?g;‘;;ry;ng;itgmgwalis (2401
flammatory pathway and promoting the synthesis of ECM, which is Biosurfactants Rhamnolipid Inhibited biofilm [252]
essential for subsequent tissue regeneration [226]. biosurfactant R89 biomass and cell
physically adsorbed on metabolic activity for
titanium discs S. aureus, and
. .. .. S. epidermidis
4.5. Smart therap eutic p latforms f or pert lmplanﬂﬂs Antibiotics Polysiloxane coating Inactivation of microbial [253]
functionalized with species after a 15min
Bacterial colonization and biofilm formation on the implant surface chlorhexidine contact
account for most implant failures and peri-implant diseases [234,235]. digluconate
To circumvent implant-associated infections, most strategies focused on Vancomycin loaded Prevents adherence of [254]
. . . . . PLGA electrospun fibers methicillin-resistant
the eradication of biofilms and the development of fouling-resistant . N
i K on Ti implant S. aureus to a titanium
surfaces [63], and the removal of microbial cells [236,237]. Unfortu- implant in an in vivo
nately, conventional methods turned out to be not quite successful, as it rodent model
is difficult for drugs to reach the implant-bone interface and eliminate Organic-inorganic Activity against [255]
infection on the rough surface of a dental implant [238,239]. In this Gentamycin loaded sol- S epidermidis and
. . . ] gel coating on HA-coated  S. aureus; better
context, Fabio et al. tested chitosan-coated Ti implants with PDT capa- titanium osseointegration and bone
bility and found that they can significantly improve antibacterial effi- healing.
cacy against bacteria such as S. aureus, E. coli, and P. aeruginosa [240]. Bacteriophages Combination therapy 4 log reduction in [256]
Meanwhile, some other studies have tried SDT, which may address some (Phages) ‘;S“‘g l,melf"hd and bacterial adhesion
. . . t
drawbacks of PDT, such as light-mediated tissue damage [68,70,241]. i;;re;;zt:jem
Under ultrasound stimulation, SDT allows for greater cellular absorption hydroxypropyl
of drugs through acoustic microstreaming and hydrodynamic shearing, methylcellulose
thereby increasing the drug efficacy [242,243]. For instance, SDT ach- Bacteriophages Inhibited attachmentand ~ [257]
ieved by PLGA nanoparticles loaded with methylene blue led to signif- encapsulated Alginate- colonization of
. o . 1. .. nano HA hydrogels. multidrug-resistant
icant killing effects against P. gingivalis [80]. Additionally, Fenton-type E. faecalis; excellent
catalytic reactions in chemo-dynamic treatment (CDT) can generate osteogenic and
highly toxic eOH radicals, indicating its potent antibacterial properties mineralization properties
as a new therapeutic strategy [244]. Those approaches developed and Chitosan Chitosan-coated Ti Synergistic antimicrobial  [240]
tested over time for the management of peri-implantitis are summarized implants under laser effect on itanium-
.es ed ove eto N a age. e olpe pla sare S.u .a K € light for 60 s adherent biofilms of
in Table 4. PTT under NIR irradiation, SDT under ultrasound irradiation, S. aureus, E. coli, and
and CDT under Fenton catalyst irradiation have all been shown to be P. aeruginosa via PDT
more reliable, better controllable, and less invasive than conventional
Table 4
Smart drug delivery platform for peri-implantitis management.
Function(s) Agent(s) Stimuli Carrier Outcomes Ref.
Antimicrobial Human p-defensin-3 Electrical Three chimeric peptides with Inhibit initial colonizer adhesion and biofilm [247]
charge high-affinity Ti-binding formation on Ti- dental implant surfaces
capability
Antimicrobial Zinc-phthalocyanine NIR Nanoparticles conjugated with Generate singlet-oxygen and prevent [240]
photosensitizers premature release of photosensitizer.
Antimicrobial Antibacterial peptide MMP-8 PEG hydrogels On-demand intraoral localized drug delivery [125]
Antimicrobial, biosealing Fluoride ions NIR Si/P/F doped TiO, matrix The combination of heat and fluoride ions [248]
and bone regeneration triggered by NIR irradiation exhibits
antibacterial effect
Antimicrobial Chlorhexidine pH Chitosan-Coated Titanium Silica Significant reduction in biofilm formation [249]
Composite
Antimicrobial Gatifloxacin with tannins NIR/pH Nanoparticles Effectively kill methicillin-resistant and [245]
Gemifloxacin-resistant S. aureus
Antimicrobial Hematoporphyrin monomethyl Sound Zeolitic imidazolate framework-8  Reduces bone loss in bacterial-induced peri- [246]
ether implantitis.
Osseointegration n-n heterojunction calcium titanate =~ NIR Titanium implant Accelerating bone-to-implant integration [250]

and defective titanium dioxide
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[246]. The lack of clinical trials to validate the therapeutic effects of
these coatings, particularly for peri-implantitis treatment, can hinder
their clinical translation and the future advancement of these
technologies.

4.6. Smart therapeutic platforms for oral cancer therapy

The quality of life and overall health conditions can be significantly
impacted by malignant tumors that affect the oral and maxillofacial
region, which include epithelial tissue-derived cancers such as oral
carcinoma, mesenchymal tissue-derived sarcomas, and hematopoietic
system-derived malignant lymphomas [258,259]. Chemotherapy is not
only an adjuvant therapy for cancer but also the primary treatment for
malignant tumors such as lymphomas and sarcomas. Unfortunately,
conventional chemotherapy drugs (e.g., cisplatin, carboplatin, doce-
taxel, and indomethacin) have potent side effects on normal cells [260].
Meanwhile, monoclonal antibodies such as Cetuximab, pembrolizumab,
tremelimumab, and nivolumab can also exhibit unwanted effects on
other cells regulated by the same pathway [261]. For example, PD-1
inhibitors used in oral cancer can block the interaction between T
lymphocytes and body cells by binding to PD-1, resulting in severe
pneumonia [262]. The adverse effects caused by these therapies can
increase patient suffering, compromise the treatment outcome, and even
lead to treatment-related leukemia [263].

To overcome those issues mentioned above, PDT was introduced to
cancer therapy due to its better selective effect on cancer cells (Table 6).
PDT for oral cancer involves the administration of photosensitizers
directly into the tumor tissue, followed by the application of targeted
light wavelengths to induce ROS production [264]. Some photosensi-
tizers, such as Verteprofin [265], can selectively attack abnormal blood
vessels with laser irradiation, causing endothelial cell damage and
vascular dysfunction [266]. The application of photosensitizers in PDT
for the treatment of oral cancer has been comprehensively reviewed by
Liang et al. [267]. Similarly, a mucoadhesive liquid crystal precursor
platform for a long-lasting targeted tumor-killing effect was reported by
Balian et al. [268]. Moreover, a thermosensitive and mucoadhesive
polymer based on PEG and PDLLA-PEG-PDLLA (PLEL) was reported for
the buccal delivery of gambogic acid in the treatment of oral squamous
cell carcinoma [269]. The development of smart delivery systems has
enabled improved targeted tumor killing and reduced side effects caused
by systemic administration of drugs [270].

To address the compromised effectiveness of anti-tumor therapy due
to the limited penetration of drugs into the tumor microenvironment
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and the complicated metabolic milieu of tumors, some multi-modal
delivery systems similar to a “motor” have been developed to improve
the efficacy of chemotherapy drugs. For instance, Li et al. developed a
multi-responsive smart platform called NPF@DOX for the targeted de-
livery of doxorubicin (DOX) [271]. Another platform utilized fibroblast
activation protein (FAP) targeting tumor-associated fibroblasts to in-
crease its specificity to tumor tissue where GO was adopted to achieve
photochemotherapy [272]. The synergistic chemo-photothermal treat-
ment of NPF@DOX resulted in a stronger response and concomitant
release of DOX from the NPF carriers in a pH-responsive manner,
thereby enhancing anti-tumor effects. Through these synergistic effects,
the targeted DOX release was achieved [273]. Moreover, a personalized
3D-printed plasmonic laser-responsive GO@cisplatin coated implant has
been developed to prevent post-surgical relapse of oral cancer. The
implant can be activated by laser to release the drug for 28 days and
achieve local hyperthermia, leading to the destruction of cisplatin-
resistant cancer cells [274]. In summary, smart drug delivery systems
exhibit superior therapeutic effects on oral cancer. Moreover, through
precise targeting, such as radio-sensitive nanoparticles, these systems
can promote higher precision and reduce systemic adverse reactions
associated with high drug doses, thereby improving treatment efficiency
and patient comfort [275]. Furthermore, biomimetic nanocarriers for
precision cancer therapy have also attracted great attention in recent
years, as they can evade recognition by immune cells and prevent
themselves from being eliminated as foreign substances by the immune
system. A more comprehensive review of these kinds of systems can be
found elsewhere [276-278].

5. Future horizons in the development of next-generation drug
delivery platforms for dentistry

The maintenance of dental tissue homeostasis in the dynamic oral
environment is challenging, particularly in the context of microbial
infection and tissue injury. In Table 7, we have listed ongoing/
completed clinical trials on combating oro-dental infections by using
different classes of smart biomaterial platforms. Since the development
of smart materials-based drug delivery platforms is crucial for address-
ing this issue. In addition to on-site and on-demand delivery of thera-
peutic agents to combat microbial infection, more efforts should be put
into leveraging the internal defense mechanisms of our body through
immunomodulation. Next-generation biomaterials could be engineered
to activate immune cell infiltration or stimulate various defensive
pathways simultaneously. For instance, some therapeutic strategies

Table 6
Advancement of different drug delivery platforms for oral cancer applications.
Agent(s) Carrier Stimuli Outcome Mechanism Ref.
Methylene blue (MB) Mucoadhesive liquid crystal Light (PDT) Increased the antitumoral activity of MB after =~ ROS-related toxic effects on cancer cells [268]
precursor 20 min of irradiation at 660 nm
Gambogic acid (GA) PDLLA-PEG-PDLLA (PLEL) Temperature Facilitated sustained local delivery and GA-MIC-GEL down-regulated the [269]
micelle reduce the toxicity GA release expression of PD-1, therefore increasing
cytotoxic T cell frequency
Paclitaxel p-cyclodextrin (p-CD), PF127, Temperature Improves the in vitro release and cytotoxic Undergo sol-gel transition and impart [279]
PEO segments effect of paclitaxel mucoadhesive property
Cetuximab, Cisplatin =~ PEG-PLA-PEG-PEG Water Control-released in both systemic and local Strong hydrogen bonding resulted in [280]
and 5 Fluorouracil administration controlled release
Tocilizumab Cationic chitosan/ Water Excellent muco-penetrating sustained release ~ Penetration through the mucosa was [281]
hydrophobic PLGA improved effectively by neutral
particles
Doxorubicin (DOX) Fibroblast activation protein pH/ Combined treatment with chemical and NPF@DOX thermogenic effect promotes [272,273]
(FAP); PEGylated nano- Photothermal  photothermal therapy improve antitumor local release of DOX and apoptosis
graphene oxide outcomes against OSCC
Ultrasmall nitrogen- Carbon spheres NIR Heat-generating nanospheres showed a Carbon spheres absorb longer [282]
doped quantum thermal ablation effect in oral cancer cells wavelength radiation, transfer the
dots under 980 nm laser absorbed optical energy into heat
Cisplatin Laser-responsive graphene NIR/ Photothermolysis of cisplatin-resistant cancer ~ Laser-induced hyperthermia events [274]
pH cells under the combined influence of from graphene in 3D-printed implant

sustained cisplatin release
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Table 7
A list of ongoing/completed clinical trials on combating oro-dental infections (Retrieved from www.clinicaltrials.gov and https://trialsearch.who.int/).
Clinical Trial ID Intervention Application Location Phase
NCT05475444 PLGA NPs encapsuated Ciprofloxacin E. feacalis Infections in Endodontics Mona Gamal Mohamed Afifi Not
Arafa, British University, Egypt applicable
NCT01950546 Nanosilver Fluoride For controlling the growth of S. mutans present  Priscila Lima de Luna Freire, 1
in dental plaque of children University of Pernambuco
NCT05255913 Nano-silver Fluoride and Silver Diamine For arresting early childhood caries (a Maryam Quritum, Alexandria Not
Fluoride Randomized Clinical Trial) University applicable
NCT05816512 Biogenic gold nanoparticles from pelargonium Antibacterial efficacy of mouthwash against Ahmed Yousif Mahdi, University Not
graveolens leaves extract Streptococcus mutans and Candida Albicans of Baghdad applicable
CTRI1/2023/07/055249 Combination of Silver nanoparticles and proton  Eradication of bacteria from root canals using Department of conservative Not
pump inhibitors to traditional photodynamic nanoparticle-based photo-disinfection dentistry and endodontics, St applicable
therapy joseph dental college, Duggirala,
Eluru 534,003
ChiCTR2100045706 Synergistic antibacterial efficiency of ZnO NPs  Elimination of endodontic microflora Shanghai Sixth People’s Hospital, =~ Not
and Polymorphonuclear Neutrophils 600 Yishan Road, Xuhui District, applicable
Shanghai
NCT00659204 Compare the antimicrobial efficacy of silver On bacterial counts isolated from the hands of =~ Madigan Army Medical Center Completed
nanoparticle gel to a commercialized alcohol- 40 volunteers seeded with Serratia marcescens
based hand gel
NCT06016894 Comparative Study between Hydroxyapetite Treatment of Gingival Recession Enas Elgendy, October 6 Completed
Nanoparticles and Tricalcium Phosphate University
Nanoparticles Loaded on Platelet Rich Fibrin
Membranes
NCT06070571 Yarrow Moringa herbal combinations in buccal =~ Treatment for gingivitis Deraya University Completed
adhesive films
NCT06089720 ZnO NPs coated stainless steel orthodontic Antimicrobial effect Ahmed Kamil Jawad, University Not
molar tube with of Baghdad applicable
NCT00299598 Alkylated PEI NPs with hybrid composite resin ~ To evaluate antibacterial potency for contact Hadassah Medical Organization 2
disks embedded in a palatal removable mucositis
appliance
NCT06110494 Commercially available iron oxide Root canal biofilms disinfection Bekir Karabucak, University of 4
nanoparticle formulation Ferumoxytol/H20, Pennsylvania
treatments
NCT04431440 AgNPs Bactericidal effect against Methicillin Resistant ~ Rasha Hamed, Assiut University Completed
Staph. aureus (MRSA) and Vancomycin
resistant Staph aureus (VRSA) isolated from
critically ill patients
NCT04930458 Nanosilver Fluoride with Casein Remineralization of dentine caries Duaa Jawad, University of Completed
Phosphopeptides-amorphous Calcium Baghdad
Phosphate
ChiCTR2000041192 Silver nanoparticles: 0.5-2 pg/ml Antimicrobial activity of the innate immune Shanghai Jiaotong University Not
system by inhibiting neutrophil phagocytosis Affiliated Sixth People’s Hospital,  applicable
and ROS production 600 Yishan Road, Xuhui District,
Shanghai
CTRI/2022/02/040656 Iron oxide magnetic nanoparticles Pulpotomy medicament in primary teeth King George medical college, 4
Paediatric and preventive
dentistry, Lucknow, India
IRCT20210305050580N1  Coating thermoplastic retainers with TiO, On the counting of Strepococcus mutans: a split ~ Hamadan University of Medical Not
nanoparticles mouth randomized clinical trial Sciences, Shahid Fahmideh, applicable

Hamedan, Iran

based on smart materials responding to exogenous or endogenous
stimuli have been developed to control periodontal infections and
mitigate tissue damage by eradicating causative microorganisms and
alleviating inflammation [283,284]. Additionally, future antimicrobial
therapy should also target multiple processes of infection, including
biofilm formation, EPS production and quorum sensing. The develop-
ment of smart, responsive material-based therapy will also contribute to
the growing concern of antibiotic resistance. Another interesting
application of these smart drug delivery systems would be the selective
eradication of specific groups of microbial species without disrupting
the host oral microbiota [285]. Furthermore, the development of smart
material platforms that mimic native extracellular environments would
greatly facilitate the functional regeneration of heterogeneous, struc-
tured dental tissues [286,287].

To date, most of the multifunctional strategies for dental diseases
have been developed by combining multiple components, each with
different functionalities. However, this approach leads to complex
fabrication techniques that are not scalable and have limited clinical
translation potential. Therefore, future strategies should focus on a
single component with multifunctional characteristics [288]. For
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instance, there is great potential to develop an ‘all-in-one’ solution that
possesses potent antimicrobial, ROS scavenging, and pro-regenerative
properties [289,290]. Additionally, theranostic-based stimuli-respon-
sive materials hold significant promise for the dental field in the coming
decades. The integration of precise therapeutic agents with diagnostic
tools facilitates accurate disease diagnosis, early treatment, and
improved prognosis [88,291].

Similarly, lab-on-chip-based microfluidics devices have been
employed to mimic various physiological and pathological processes
[292]. These devices also offer rapid screenings and real-life therapeutic
outcomes for the biomaterials. Prior work has been reportedly devel-
oped to recapitulate various dental tissues such as dental pulp, gingival,
and periodontal tissues [292,293]. They can be used to evaluate the
therapeutic efficacy of different stimuli-responsive materials in specific
disease conditions, such as periodontitis or pulpitis. Thus, the develop-
ment of smart drug delivery material for various clinical scenarios can
be significantly accelerated. Moreover, by using this in vitro method for
screening of new smart materials, the need for in vivo experiments can
be significantly reduced. Recently, artificial intelligence (AI) and ma-
chine learning (ML) have been employed for the development of new
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metamaterials such as auxetics (i.e., materials with negative Poisson’s
ratio) as well as high-throughput screenings (HTS) for specific ligands or
chemical motifs to target specific cells, intracellular protein/m-RNA
delivery, or even cell-internalize pathogen killing [294-297]. There-
fore, the application of AI-ML tools in the design of new smart materials
has the potential to revolutionize dental materials. Taken together, the
advancement of novel technologies has opened many potential avenues
for the design, development, and application of next-generation smart
materials for dentistry.

6. Conclusion

The development of stimuli-responsive materials for dental appli-
cations has sparked substantial interest in recent years. Given unique
anatomical structures and the physiological characteristics of oro-dental
tissues, as well as the highly dynamic microenvironment of the oral
cavity, smart materials tailored based on the features of dental diseases
are in demand. In this review, we introduced the special consideration
for the design of smart materials for application in dentistry and criti-
cally summarized those external and internal stimulus-responsive ma-
terials developed for dental applications. We also discussed how those
smart drug delivery platforms enhance therapeutic outcomes in
different dental diseases and address the challenging dental conditions
to provide a more clinically driven, forward-looking perspective
regarding the design of smart drug delivery systems. Overall, we
anticipate that this review will offer valuable insights into the design of
next-generation stimuli-responsive materials tailored for diverse clinical
scenarios, thereby inspiring the evolution of future dental treatment.
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