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Abstract
With the advancement in computing power and data science techniques, reinforcement learning (RL) has emerged as a powerful
tool for decision-making problems in complex systems. In recent years, the research onRL for healthcare operations has grown
rapidly. Especially during the COVID-19 pandemic, RL has played a critical role in optimizing decisions with greater degrees
of uncertainty. RL for healthcare applications has been an exciting topic across multiple disciplines, including operations
research, operations management, healthcare systems engineering, and data science. This review paper first provides a tutorial
on the overall framework of RL, including its key components, training models, and approximators. Then, we present the
recent advances of RL in the domain of healthcare operations management (HOM) and analyze the current trends. Our paper
concludes by presenting existing challenges and future directions for RL in HOM.

Keywords Reinforcement learning · Healthcare operations · Healthcare services delivery · Markov decision process ·
Approximate dynamic programming · Neural networks

1 Introduction

Healthcare operations management (HOM) plays a cru-
cial role in the effective functioning of healthcare systems,
impacting public health, patient experience, and health-
care organizational goals. It encompasses various practices
that aim to ensure high-quality care, optimize healthcare
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delivery, and improve overall healthcare outcomes. These
practices span a wide range of applications, including patient
flow scheduling, medical resources distribution, healthcare
process improvement, and pharmaceutical supply chainman-
agement [1].

In the field of operations research, traditional approaches
to tackling these healthcare operations challenges involve
mathematical programming techniques such as mixed-integer
programming (MIP) and dynamic programming (DP). These
methods formulate the problems as mathematical mod-
els and seek optimal solutions by optimizing the specific
objective(s). However, as the complexity and scale of these
problems increase, conventional mathematical programming
approaches may struggle to find optimal solutions due to the
curse of dimensionality [2].

With the emergence of computing and data science (DS)
advancements, an abundance of accessible data and tech-
niques has inundated healthcare operations. Although this
presents opportunities for HOM practices, it also poses
unprecedented challenges [3]. Mastery of machine learning
(ML) and DS techniques is imperative to make good use of
such data for better decisions. As a branch of ML, reinforce-
ment learning (RL) optimizes sequential decision-making
problems by employing an intelligent agent to determine
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actions in a dynamic environment. Based on prior experi-
ence, the RL agent can learn how to make decisions given
the current information, effectively mitigating the curse of
dimensionality. RL approaches are developed based on the
framework of a Markov decision process (MDP), which is
a typical modeling framework in the HOM context. For
instance, hospital operations managers determine inpatient
admission and discharge on a daily basis given the avail-
able information (e.g., patients of different classes in the
queues and inpatient beds available) while optimizing multi-
objective factors such as health outcomes, operating costs,
and benefits. Therefore, RL has gained significant popular-
ity and widespread adoption in HOM.

The application of RL in the healthcare domain presents
an attractive opportunity for improving healthcare opera-
tions. From a broader perspective, existing surveys on RL in
healthcare have discussed various instances across different
domains, with a focus on dynamic treatment regimes, inter-
ventions, and automated medical diagnosis [4] and clinical
decision support [5]. However, a reviewofRL inHOM is cur-
rently not available. Furthermore, the COVID-19 pandemic
has severely impacted the global health systems in recent
years [6], resulting in various HOM problems due to limited
resources such as insufficient COVID-19 test kits for distri-
bution in communities and access block at hospitals [7]. In
response, a plethora of RL applications have been employed
in correspondingHOMpractices.Our paper aims to provide a
comprehensive analysis of RL applications in HOM, review-
ing the existing methodologies and state-of-the-art solutions.
To the best of our knowledge, this review is the first of its kind
to analyze RL applications in HOM. Through this review,
specific research questions can be answered:

1. Which types of HOM problems hold great potential for
deploying RL methods, and how can RL contribute to
solving these problems effectively?

2. Which RL methods are most appropriate and effective in
addressing specific HOM challenges?

3. What are the main challenges associated with deploying
RL in HOM, and how can these challenges be addressed?
Furthermore, what are the future directions for RL in
HOM,andhowcan researchers andpractitioners leverage
RL to enhance healthcare operations?

Our review is structured as follows. In Sect. 2, we offer a
tutorial on the RL methodologies that are utilized in health-
care operations, providing a necessary understanding of the
required methodologies. Section3 outlines the scope of our
review and describes the methodology employed for the
literature search. In Sect. 4, we delve into the specific RL
applications within the realm of HOM, classifying them
according to their respective scopes and providing detailed
analyses of each application. Section5 summarizes the key

insights gained from the reviewed applications and discusses
future directions for the utilization of RL in HOM. We high-
light potential areas of growth and identify challenges that
need to be addressed in order to fully leverage the poten-
tial of RL in HOM. Finally, Sect. 6 presents the conclusion
that brings together the key findings and contributions of our
review.

2 Methodologies

This section serves as a tutorial that presents the fundamen-
tals of RL relevant to the applications in HOM. Our tutorial
is structured in a manner consistent with other tutorials in
different application domains, such as RL for transportation
and logistics operations [8, 9].

We start with the essential mathematical framework for
modeling sequential decision-making, MDPs [10], which
can typically be solved by DP methods using Bellman’s
equation [11]. However, classical DP methods may easily
fail due to the curse of dimensionality (e.g., in those large-
scale or intractable problems). In this case, RL approaches,
which are closely related to DP [12], present an alternative
class of methods for MDPs and sequential decision-making.
Fundamentally,RLalgorithmsdiffer fromclassicalDPmeth-
ods in that they do not always require a complete system
model [13]. Hence, they are designed to handle larger-scale
problems where traditional exact methods may face compu-
tational infeasibility [14]. Nevertheless, RL can also greatly
benefit from system models, if applicable, with model-based
methods [15].

The RL paradigm is rooted in the vast domain of MDP
and sequential decision-making, which often intersects with
different subjects and research communities such as opera-
tions research (OR), optimal control, computer science (CS),
and artificial intelligence (AI). RL is known by various syn-
onyms in different disciplines, such as approximate dynamic
programming (ADP) [16], adaptive dynamic programming
[17], neuro-dynamic programming [18], heuristic dynamic
programming [19], and etc. From the perspective of the OR,
researchers usually refer to such approaches as ADP. Pow-
ell [16] claimed that ADP is practiced under the umbrella of
RL, and also classified classic RL methods (e.g., Q-learning
[20]) in ADP. From the perspective of the CS andAI commu-
nity, RL is a popular terminology, especially with the recent
advances in deep learning [21]. The use of MDP in RL (i.e.,
MDP serves as the environment of RL) has been broadly
adopted [12].

In this section, we will walk through certain RL methods
for HOM adopted by both the OR and CS communities. Key
terminologies in both communities, such as ADP and deep
reinforcement learning (DRL), are discussed. Section2.1first
introducesMDP, which is considered the basic mathematical
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foundation of RL [12, 21, 22], and briefly discusses classical
DP methods (e.g., value iteration [11]). Section2.2 reviews
typical RL methods in HOM, by which the formalized MDP
can be optimally solved. Our discussion on RL methodolo-
gies begins with standard ADP approaches [16] to classic
RL methods (e.g., temporal difference learning [23]), fol-
lowed by DRL with neural networks. Then, other popular
RL techniques, such as policy gradient and bandit problems,
are presented [21]. We also intend to present the evolution
of RL from classical DP to the recent RL framework that
conglomerates multiple aspects. Our paper focuses on RL in
HOM, and this section only serves as a high-level tutorial
on the RL methods. The reader is recommended to refer to
classic references in ADP [16] and RL [21] for more com-
prehensive discussions.

2.1 Markov decision process

The principle of RL is built upon MDP, which models
sequential decision-making problems. The decision stages
(or stages, for simplicity) of the problem are discretized into
T periods, where t = 0, 1, 2, . . . , T and T is also known as
the horizon (i.e., the time of termination of the MDP). MDP
is typically represented by a tuple < S,A,P,R, γ > [21,
24, 25]. Specifically,

• S is a set of states, and the state at stage t is denoted as
St ∈ S. The state reflects the system’s or environment’s
behaviors at every stage via state variables. In a finite-
horizon MDP, the state sequence is S0, S1, . . . , ST . For
the sake of illustrative purposes, this section focuses on
finite-horizon MDPs; for MDPs with an infinite horizon,
most terminologies and definitions presented here could
possibly be generalized for T → ∞.

• A is a set of actions, and the action at the t th stage is At ∈
A. Based on the observed state St at stage t , an action At

is chosen from a set of possible actions A. Similarly, in
a finite-horizon MDP, the sequence of actions is denoted
as A0, A1, . . . , AT .

• P is a transition probability matrix. Its element, Pa
ss′ =

P
(
St+1 = s′ | St = s, At = a

)
,measures the probability

of transitioning from the current state s with action a (at
stage t) to the next state s′ (at stage t + 1).

• R is a reward function, R(s, a) = E[Rt+1 | St = s, At =
a]. Here, Rt+1 is the immediate reward generated from
the environment given the state-action pair at stage t +
1. The state-action-reward sequence can be written as
S0, A0, R1, S1, A1, R2, . . ..

• γ is a discount factor, where γ ∈ [0, 1]. It defines the
discounted fraction of a future reward. Specifically, for
a reward r obtained after t + 1 stages in the future, its
present value would be discounted as γ t r .

An essential characteristic of MDP is that the next state
St+1 of the system is only dependent on the current state St

of the system, and is independent of the history [26], such
that P[St+1 | St ] = P[St+1 | S1, . . . , St ].

In MDP, a policy π defines the rules to choose an action
given a state. A deterministic policy maps states to specific
actions directly, i.e., adopting exactly the same action in each
state. On the other hand, a stochastic policy can be regarded
as a mapping from states to probabilities of choosing actions,
i.e., π(a | s) = P[At = a | St = s] [27]. Given policy π ,
the value (state-value) function vπ(s), which evaluates the
value of being in state s, can be written as Eq.1.

vπ(s) := Eπ

[
Rt+1 + γ vπ (St+1) | St = s

]
(1)

The action-value function, denoted qπ (s, a), can be written
as Eq.2. The derivations are based on the widely used Bell-
man’s equation [11].

qπ (s, a) := Eπ [Rt+1 + γ qπ (St+1, At+1)

| St = s, At = a] (2)

Eq.3 presents the objective function of MDP, which aims
to maximize the cumulative expected rewards collected over
the entire horizon, i.e., 0, 1, 2,..., T .

max
π

Eπ

[
T −1∑

t=0

γ t Rt+1 S0

]

(3)

To solve this problem, the optimal state-value function
v∗(s) and the optimal action-value function q∗(s, a) need to
be identified, and these optimal value functions are associated
with an optimal policy π∗ [21, 28], which can be determined
with Eq.4.

π∗(a | s) =
⎧
⎨

⎩

1 if a = argmax
a′∈A

q∗(s, a′);
0 otherwise

(4)

where q∗(s, a) = maxπ qπ (s, a) is the optimal action-value
function. Similarly, v∗(s) = maxπ vπ (s) is the optimal state-
value function.

There is a wide range of real-world problems that can
be modeled as MDPs. For example, there were reports of
significantly long patient boarding times from emergency
departments to inpatient wards [29], especially during the
pandemic [7]. In Dai and Shi [30], an MDP framework con-
sidering inpatient overflowwas proposed for patient boarding
decisions. If the primary wards for the patient (i.e., the wards
that offer the most effective medical services to the patient)
are fully occupied, an overflow policy would allow trans-
fers of patients to other non-primary wards. In this case, the
inpatient operations decisions can be determined by anMDP
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representing amulti-class, multi-pool queuing system. Every
state encapsulates information such as patients in each queue
at the moment and possible discharges of patients. Given the
state, the action of assigning patients to different wards needs
to be determined at each decision stage in the planning hori-
zon. This action aims to balance the costs associated with
patient overflow and prolonged patient boarding times. After
an action is determined, the state transits to the next according
to the transition probability matrix.

2.1.1 Dynamic programming

When the problem scale ismanageable, classicalDPmethods
could be deployed to solve theMDP. Value iteration is one of
the most widely used approaches [31]. The principle of value
iteration is to estimate the value function of each state via an
iteration procedure. An initialization procedure (at iteration
n = 0) sets an estimated value of the function, denoted as
v0(s), to zero. By using the Bellman’s optimality equation
[11],

vn+1(s) = max
a∈A

E
[
Rt+1 + γ vn (St+1) | St = s, At = a

]

At iteration n, the estimated value of the value function,
vn(s), is updated for each s ∈ S accordingly [16]:

vn(s) = max
a∈A

(

R(s, a) + γ
∑

s′∈S
P

(
s′ | s, a

)
vn−1 (

s′)
)

(5)

Value iteration [21] claims the principle of optimality,
vπ (s) = v∗(s), if and only if vπ (s′) = v∗(s′) for any state
s’ reachable from s [28]. Another DP approach, policy iter-
ation [21], iteratively alternates between policy evaluation
and policy improvement until the policy converges to the
optimum.

Such recursive iterations could encounter computational
challenges arising from the curse of dimensionality, given
that the iterationsmayneed to traverse all the combinations of
available states, actions, and transitions [16, 26]. Therefore,
methodologies with approximations would be essential to
providing practical solutions.

2.2 Reinforcement learning

Based on MDPs, RL approaches could be developed to
address these dynamic sequential decision-making chal-
lenges. For comprehensive reviews of different classes of
RL methods and their applications in various domains, we
refer the reader to [8, 9, 32–39]. In this section, we present
the fundamentals of RL methods that have been applied in
HOM.

2.2.1 Approximate dynamic programming

Approximate dynamic programming (ADP) is designed for
solving large-scale problems and overcoming the “curse of
dimensionality" by constructing approximations of value
functions (known as value function approximation). This
subsection introduces how the value function v(s) of state
s can be approximated with Monte Carlo sampling. In RL,
an episode refers to the sequence of agent-environment inter-
actions starting from an initial state and ending in a terminal
state, which can be used for learning or evaluating a pol-
icy [21]. The principle of Monte Carlo methods is learning
from the episodic experience and updating the value esti-
mates based on the average returns observed from episodes
[21].

Typically, ADP involves a rollout process. In the first
phase of ADP, states and possible actions are given to an
approximator to derive an approximate solution. The states
and actions, as in the context of ADP, are usually simpler and
of lower dimension than those in the original problem. Once
an approximate solution is derived, in the second phase, this
approximation is iteratively updated and guides the decision-
making process in the original problem [40].

A standard ADP algorithm starts with an initial approxi-

mated value function V
0
t (St ) for all states St and iteratively

updates it in a forward direction based on value iteration
(i.e., Eq. 5). At iteration n, a sample path ωn , which refers
to a sequence of exogenous information of the system that
defines the realizations in all time periods [16], is generated
(e.g., by Monte Carlo simulation). Given ωn , at any stage t,
we would be at a realized state Sn

t and need to take an action
an

t . A sampled value v̂n
t at stage t is computed by solving the

maximization problem defined in Eq.6.

v̂n
t =

max
at ∈A

(

Rt+1
(
Sn

t , at
) + γ

∑

s′∈S
P

(
s′ | Sn

t , at
)

V
n−1
t+1

(
s′)

)

(6)

where V
n
t (s) is the estimated value of the value function at

state s after n sample observations.
From Eq.6, an

t ∈ A is set to the optimal action for the
maximization problem Eq.6. Also, V

n
t (s) can be updated

via Eq.7:

V
n
t (St ) =

{
v̂n

t , St = Sn
t

V
n−1
t (St ) , otherwise

(7)

After V
n
t (St ) is updated for all t = 0, 1, 2, ..., T , n is

advanced to n + 1. The iteration repeats until it reaches the
preset number of iterations N .
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Finding v̂n
t and an

t via solving the maximization problem
Eqs. 6, 7 can be problematic. It could be because the state
space is huge and the problem is computationally challeng-
ing. Another practical challenge is that the transition function
or reward function may not even be known or not mathemat-
ically computable [31]. Thus, there are two classes of RL
methods that aim to solve the maximization problem Eq.6:
model-based and model-free approaches. Model-based RL
learns or has access to a model of the environment such that
the transition dynamics and reward function can be modeled
[41].On the contrary,without an explicitmathematicalmodel
of the environment, model-free RL directly learns from expe-
riences or interactions with the environment through trial and
error [9].

Researchers from the OR and CS communities may
use different names (e.g., “approximate dynamic program-
ming" and “reinforcement learning") to refer to similar RL
paradigms [12, 21]. OR researchers typically develop various
ADP techniques usingmathematically tractable formulations
to solveMDPs [42]. On the other hand, CS researchers focus
on improving the algorithmic performance of RL methods
and approximations in policy space, which will be discussed
in subsequent subsections. We consider that the terminology
“ADP" emphasizesmore on the relationships with the system
model, while “RL" emphasizes the approximations by learn-
ing [41]. In general, all these RL methods aim to address
the challenge of handling high-dimensional problems by
using approximations. As healthcare problems have become
increasingly large-scale, complex, and dynamic, ADP offers
an efficient approach to address various HOM applications
[43].

2.2.2 Temporal difference learning

Temporal difference (TD) learning refers to a popular class
of model-free RL algorithms that update the approximations
of true value functions (i.e., vπ(s) or qπ (s, a)) based in part
on other approximations (i.e., observed samples, for exam-
ple, v̂n

t ) [23]. This general idea is bootstrapping [21], and
the temporal difference (also known as the Bellman error)
is the error in our approximations [16]. TD learning neither
requires the episodic outcome nor the complete model of the
environment [21].

When approximating the state-value function, the simplest
TDmethod isone-step TD thatmakes the update immediately
based on observed v̂n

t , as shown in Eq.8, where α is the step-
size parameter [21].

V
n
t (Sn

t ) = (1 − α)V
n−1
t (Sn

t ) + αv̂n
t

= V
n−1
t (Sn

t )+
α

[
R(Sn

t , an
t ) + γ V

n−1
t+1 (Sn

t+1) − V
n−1
t (Sn

t )
]

(8)

The need for α (i.e., smoothing) arises from the stochastic
nature of v̂n

t , which is a consequence of the way employed
to estimate the expectation (i.e., model of the environment)
[16]. According to sampled exogenous information between

t and t +1 [16], v̂n
t = R(Sn

t , an
t )+γ V

n−1
t+1 (Sn

t+1) is generated
on the basis of the transition from Sn

t to Sn
t+1 using a policy

(i.e., an
t ) and receiving the reward R(Sn

t , an
t ). In Eq.8, the

term R(Sn
t , an

t ) + γ V
n−1
t+1 (Sn

t+1) − V
n−1
t (Sn

t ) refers to the
temporal difference [16].

Approximating the action-value function essentially fol-
lows similar approaches for approximating the state-value
function previously presented [21]. TD control first learns
the action-value function rather than the state-value function.
TD control can be implemented via on-policy or off-policy
methods. In RL, the policy guiding action selection and
subsequent state transition is known as the behavior pol-
icy, realizing the outcome given the exogenous information.
HOM applications usually utilize simulation techniques to
generate sufficient sample paths [30, 44, 45]. In the context
of simulation, behavior policy could be adopted to control the
process of sampling states, which is referred to as sampling
policy [16]. The policy, which chooses the action that appears
to be the best, is referred to as the target policy (or also known
as the learning policy) [16]. On-policy methods, such as
State-Action-Reward-State-Action (SARSA) [46], improve
the target policy that is the same as the sampling policy,
whereas off-policy methods improve the target policy that is
different from the sampling policy [16, 21].

A typical off-policy method, Q-learning (QL) [20] starts
with the initialization of action-value function approximation

Q
0
t (St , at ) for all states St ∈ S and actions at ∈ A and

iteratively updates the values. At iteration n, an
t is determined

by the sampling policy via Eq.9:

an
t = argmax

at ∈A
Q

n−1
t

(
Sn

t , at
)

(9)

Then, Q
n
t (Sn

t , an
t ) is updated via Eqs. 10 and 11:

q̂n
t = R

(
Sn

t , an
t

) + γ max
a′∈A

Q
n−1
t+1

(
Sn

t+1, a′) (10)

Q
n
t

(
Sn

t , an
t

) = (1 − α)Q
n−1
t

(
Sn

t , an
t

) + αq̂n
t

= Q
n−1
t

(
Sn

t , an
t

) + α[R
(
Sn

t , an
t

)

+ γ max
a′∈A

Q
n−1
t+1

(
Sn

t+1, a′) − Q
n−1
t

(
Sn

t , an
t

)]
(11)

Then, the transition to Sn
t+1 and the reward R(Sn

t , an
t )

are obtained based on the exogenous system informa-
tion (e.g., from a sample path) observed at stage t. In
Eq.10, QL (off-policy) includes a maximization problem
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maxa′∈A Q
n−1
t+1

(
Sn

t+1, a′) to select an action for the update.
Instead, SARSA (on-policy) replaces this problem with

Q
n−1
t+1 (Sn

t+1, an
t+1), where an

t+1 is generated following the
same policy that determines an

t (i.e., in Eq.9) [16].
Given a set of approximated Q (action-value) functions

Q
n
(s, a), the approximated state-value function can be com-

puted using Eq.12 [16].

V
n
(s) = max

a∈A
Q

n
(s, a) (12)

In this way, Eq.10 can be reformulated as Eq.13.

q̂n
t = R

(
Sn

t , an
t

) + γ V
n−1
t+1

(
Sn

t+1

)
(13)

When comparing q̂n
t in Eq.13with v̂n

t in Eq.6, the embed-
ded expectation over the downstream states that arise from
action at have to be calculated to identify v̂n

t in Eq.6; how-
ever, this step is always not computational efficiency. On
the contrary, QL takes an action following the sampling
policy and observes the downstream state given the exoge-
nous information. In HOM studies that feature finite and
discrete actions, QL addresses problems that traditional DP
can hardly resolve, such as routing problems in rescuing and
emergency services [47–50].

TD methods leverage the advantages of the use of boot-
strapping in DP and the sampling capabilities of Monte
Carlo simulation [21]. TD learning methods can be uni-
fied as TD(λ) according to the use of eligibility traces
[23], λ ∈ [0, 1], which represent the algorithmic discount
to control the weights for expected rewards from different
decision stages [21]. For example, the a higher value of λ

leads to greater weights of rewards that are from distant
states and actions. TD(0) (i.e., one-step TD [21]) uses one
future reward R

(
Sn

t , an
t

)
to update the value function approx-

imation (Eq.8), while TD(1) implements a Monte Carlo
algorithm [28] that updates the value function approxima-
tion using episodic outcomes [21].

2.2.3 Value function approximation

This subsection discusses several popular approximate solu-
tion methods in HOM. In basic settings of ADP and TD
methods (as discussed in Sects. 2.2.1 and 2.2.2), the lookup
table plays the role of approximator for value function
approximations [16, 21]. For example, the Q table of QL
records the values for each visited state-action pair in a
tabular form during the iterations based on samples [12].
Therefore, algorithmperformancemay still be constrainedby
the sizes of states and actions [16, 21]. Fortunately, there are
various kinds of function approximations rather than tables
to address the curse of dimensionality in state space better.

In the context of ADP, a basis function φ f (St ) maps state
information from St to a value of feature f by approximation
[16, 31], where f ∈ F is a feature in the feature setF . In this
way, the approximators of ADP could be constructed using
a set of operators and transformation techniques, including
lookup tables, aggregation, linear regression, kernel regres-
sion, and polynomial regression. For example, linear value
function approximation V θ (St ) (which is a parametricmodel
[16]) with approximators’ parameter vector θ can be written
in Eq.14:

V θ (St ) =
∑

f ∈F
θ f φ f (St ) (14)

Recently, RL using nonparametric models [16], such
as neural networks, as approximators for value function
approximation has drawn growing attention. As an instance
of supervised learning, function approximation generalizes
from samples of a desired function (e.g., value function) to
formulate an approximate representation of the entire func-
tion [21]. Those typical algorithms in HOM are studied in
the following subsections.

2.2.4 Deep Q-network

Generally speaking, deep Q-network is similar toQLbut uses
neural networks to approximate the value function, rather
than the QL’s tabular method. RL methods with function
approximation by deep artificial neural networks are consid-
ered deep reinforcement learning (DRL) [21]. These deep
neural networks (DNN) include multi-layer perception [51],
convolutional neural networks (CNN) [52], and recurrent
neural networks (RNN) [53]. We refer the reader to [54] for
an inspiring discussion on neural networks and deep learn-
ing [54]. Our study suggests that several renowned models,
such as long short-term memory (LSTM) [55], graph neural
network (GNN) [56], transformer, and attention mechanisms
[57], have been successfully employed as approximators of
reinforcement learning in HOM practices.

Deep Q-network (DQN) is a widely applied DRL method
that has been successfully applied in various industries. It
has even achieved human-level control in Atari video games
[58, 59]. The primary principle of DQN is to replace the Q
table approximator in Q-learning with neural networks. In
each decision stage, the state variables are fed into the DQN
neural networks (referred to as Q-networks), which compute
the approximated action-value function. The optimal action
is then chosen by solving a maximization problem similar to
Eq.9.

A key component of the DQN method is the use of
experience replay [59]. This technique involves storing
the agent’s experiences, represented as transitions et =
(st , at , rt+1, st+1), to a dataset Dt = {e1, . . . , et } at each
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stage t . During the learning process, DQN performs Q-
learning updates on batches of experience samples e =
(s, a, r , s′) ∼ U (D), whereU (D)denotes a uniform random
sampling from the stored transitions [59]. After an action is
chosen, the DQN agent stores the newly generated transi-
tions to the dataset. Another important aspect of DQN is the
concept of fixed Q-targets [59]. This mechanism controls the
frequency at which the parameters θ of the Q-networks are
updated. At predefined intervals, the target Q-network (also
known as the fixed Q-network, which approximates the target
Q-function Qθ , is synchronized with the latest parameters θ ′
of the current Q-network. The current Q-network is used for
choosing the optimal action by approximating the current
Q-function Qθ ′ during sampling or making the decision (as
shown in Eq.9).

DQN is a model-free off-policy method [58]. The loss
function utilized in the i-th update is as follows.

Li (θi ) = E
e∼U (D)

[
(r + γ max

a′∈A
Qθi (s

′, a′) − Qθ ′
i
(s, a))2

]

(15)

In Eq.15, the DQN agent computes the target Q-value,
r +γ maxa′∈A Qθi (s

′, a′), of the batched samples e ∼ U (D)

based on the target Q-network. Subsequently, stochastic gra-
dient descent is implemented to minimize this loss function
with respect to the parameter θ ′

i . The experience replay and
fixed Q-targets are designed to avoid autocorrelation and
ensure the learning quality [59].

Several variants of DQN have been developed to address
issues such as overestimation and difficulties in convergence.
One such variant is Double DQN (DDQN) [60]. DDQN uses
two function approximators: one to select the optimal actions
and another to compute the target Q-value. The target Q-

value is computed as r + γ Qθi

(
s′, argmax

a′∈A
Qθ ′

i
(s′, a′)

)
.

Using two separate function approximators, DDQN reduces
the overestimation of action values and improves learning
performance [60].

Dueling DQN takes a different approach to constructing
the target Q-value by summing the state-value function and
the actions’ advantage function [61]. The advantage function
has a size equal to the action space. The idea is to decompose
the estimations of state and action, so as to improve learn-
ing convergence and performance. Dueling DDQN (D3QN)
integrates the techniques ofDQN,DoubleDQN, andDueling
DQN. This combination of methods has been shown to offer
an effective decision-making approach in various domains,
including transport and healthcare [62–64].

Compared with QL, the DQN family is capable of han-
dling HOM problems with larger state spaces because of
using neural networks for generalization in function approxi-

mation.Hence,more complex routing problems in healthcare
logistics [65] and supply chain [66] could be optimized.

2.2.5 Policy gradient

Unlike value-based methods (e.g., ADP, QL, and DQN) that
update optimal policies according to approximated value
functions, policy gradient [67] directly optimizes the policy
objective functionJ (ϑ)with respect to its policy’s parameter
ϑ , and determines actions based on the approximated proba-
bility distributions. Such an approach enables policy gradient
to implement both discrete and continuous actions. In order
tomaximize the performance of the policy, the gradient of the
value functionwith respect to the policy parameters,∇J (ϑ),
is utilized, as shown in Eq.16 [21]:

∇J (ϑ) = Eπ

[
∑

a∈A
qπ (St , a) ∇π (a | St ,ϑ)

]

(16)

As a Monte Carlo method, the direct use of the typi-
cal REINFORCE (policy gradient) algorithm [68] updates
policies with the entire episode of transitions and return,
while suffering from the large variance and slow learning
[21]. Actor-critic (AC) algorithms, a class of model-free
policy gradient RL methods that leverage the strengths of
both policy-based and value-based approaches [69, 70], can
substantially reduce variance in learning. AC consists of
two approximators: the actor (which determines the policy
πϑ (s, a) = π(a | s,ϑ)) and the critic (which estimates the
value function Qθ (s, a)). Here, ϑ and θ are the respective
parameters in actor and critic neural networks. AC’s approx-
imate policy gradient can be formulated as Eq.17 [28]:

∇ϑJ (ϑ) ≈ Eπϑ

[∇ϑ logπϑ (s, a)Qθ (s, a)
]

(17)

InEq.17, Qθ (s, a) approximated by the critic neural network
can also be replaced by the advantage function, which mea-
sures the relative advantage of taking action a in state s over
the average. The advantage function efficiently reduces the
variance of policy updates. TheACalgorithmwith the advan-
tage function is known as advantage actor-critic (A2C) [71],
which can be extended to asynchronous advantage actor-
critic (A3C) [71, 72] with parallel computations for multiple
agents’ interactions. These algorithms have also been widely
adopted in HOM, such as hospital expansions [73, 74] and
inventory control [75], in which the curse of dimensionality
in both state and action spaces (e.g., determining the produc-
tion and transportation capacities of regenerative medicine
[75]) could be effectively addressed.

Proximal policy optimization (PPO) [76] is a widely used
on-policy algorithm that builds on AC. PPO aims to address
the instability and sensitivity issues associated with vanilla
policy gradient methods [77]. PPO enforces a constraint on
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the policy update to ensure that the new policy does not
deviate too much from the old policy. This is achieved by
introducing a clipped surrogate objective function that lever-
ages the advantage function [78] and Kullback–Leibler (KL)
divergence [79].

Deep deterministic policy gradient (DDPG) is a model-
free, off-policy RL algorithm that combines the strengths
of DQN [58] with deterministic policy gradients [80, 81].
DDPG adopts the AC architecture, where the actor (neural
network) learns a deterministic policy πϑ (s) that maps states
to actions, and the critic (neural network) learns the function
Qθ (s, a) that maps state-action pairs to values. Here, ϑ and
θ are the parameters of the actor and critic neural networks,
respectively. The objective is to maximize the expectation
as shown in Eq.18; the utilization of experience replay, e ∼
U (D), is the same as in Eq.15 for DQN.

max
ϑ

E
e∼U (D)

[
Qθ (s, πϑ (s))

]
(18)

DDPG incorporates two key techniques, experience replay,
and fixed Q-targets, similar to those used in DQN [80, 81].
These techniques are employed to enhance sample efficiency
and stabilize the training process.

The policy gradient algorithms mentioned above have
been successfully applied in HOM, with many falling under
theAC algorithm family. These algorithmswere selected due
to their robustness, ability to handle continuous action spaces,
and high sample efficiency, which are crucial in healthcare
settings [5].

2.2.6 Exploration and exploitation

In RL, algorithms are required to overcome the exploration-
exploitation trade-off dilemma [21] when optimizing their
decision policies. This trade-off arises from the need to
balance between exploring uncertain actions to gain new
knowledge about the system, such as the probability dis-
tributions of rewards, and exploiting the best actions given
current already-known knowledge, in order to maximize the
long-term rewards.

The exploration-exploitation trade-off is exemplified by
the multi-armed bandit (MAB) problem [82, 83], in which
the agent is likened to a gamblerwhomust choose “one armof
the bandit" frommultiple options, eachwith unknown reward
probabilities. The MAB problem is typically considered in
a special case of RL, which has a single-state environment
and immediate rewards. This settingmakes the required solu-
tion procedures more computationally efficient. Its goal is to
maximize the cumulative rewards obtained [21]. According
to [84], there exist several bandit strategies that can be used to
determine optimal actions.While the epsilon-greedy strategy
[21] is widely used, other approaches such as upper confi-

dence bounds [85], Thompson sampling [86], and Gittins
index [87] have also been applied in the literature of HOM.
With anupper confidence bound approach, the actionwith the
highest reward is chosen, while Thompson sampling (rooted
in Bayesian methods) selects actions based on their poste-
rior probabilities of being the best [21]. These algorithms are
widely applied in resource allocations in HOM, such as vac-
cine allocation [88–90] and outpatient management [91, 92],
given their strong interpretability, sound theoretical support,
and adaptivity in dynamic environments.

Further, Bayesian RL [93] is designed to address the
exploration-exploitation trade-off. By leveraging the prior
probability distribution that represents uncertainty over
value function approximations, Bayesian RL incorporates
Bayesian inference to update the prior and obtain a poste-
rior distribution based on observed transitions [94]. This
approach allows the learning agent to explicitly incorporate
uncertainty by treating the states of the MDP as hyper-states
[95] when making decisions. This integration of uncertainty
with the states enables more effective exploration strategies.
The exploration-exploitation trade-off is naturally consid-
ered in Bayesian RL as the transitions occur among different
hyper-states that involve uncertainty [9]. In this framework,
Bayesian inference can serve as an approximator, and the
knowledge about the prior distribution becomes more impor-
tant [96].

2.2.7 Learning complex systems

Multi-agent reinforcement learning (MARL) [97] extends
RL to handle HOM problems in more complex systems by
involving multiple decision-making agents. In MARL, each
agent learns its own local policy, and these individual poli-
cies are utilized to form a joint policy that maximizes the
overall expected reward [98]. The interactions among mul-
tiple agents can vary from cooperative settings to dynamic
competitive games. For the details, we refer the reader to
surveys on multi-agent systems [99] and the Markov games
framework [100] of MARL. In this way, the curse of dimen-
sionality in complex HOM problems, such as coordinating
multiple emergency departments [101] or emergency vehi-
cles [102], could be addressed.

Hierarchical RL [103] is a solution method that aims to
solve complex problems efficiently by breaking them down
into simpler structured subproblems. This approach involves
organizing the problem into multiple levels of abstraction,
each with its own set of policies. At the high level, there
are policies (also known as options) [104], which make
decisions less frequently and focus on broader objectives,
similar to the functions of managers. On the other hand, low-
level policies are responsible for implementing immediate
and finer-grained actions in the environment, similar to the
functions of workers. This hierarchical approach is particu-
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larly effective in handling tasks with large state and action
spaces, such as human–machine collaboration in ventilator
production [105], aswell as environments that provide sparse
rewards [106].

Imitation learning [107], a methodology tailored for com-
plex systems, involves recovering the reward function from
expert demonstrations through the theory of inverse RL
[108]. Rather than relying solely on trial and error, an imi-
tation learning agent can swiftly adopt decision-making
policies from established human experts’ policies [107].
HOM utilizes behavioural cloning [109], an imitation learn-
ing technique that trains the RL agent to replicate the policies
of experts based on the observed states, a process that paral-
lels supervised learning [110].

Furthermore, RL has been employed as an optimizer
within complex algorithms, such as those used for predicting
healthcare-related metrics during epidemics, including num-
bers of infections and inpatient admissions [74, 111–113]. In
these scenarios, RL not only enhances prediction accuracy by
optimizing the hyperparameters of the student-teacher cur-
riculum learning [111], but it also identifies the key features
that influence the system [114]. While heuristic methods
[115] can accomplish similar optimization tasks, a more
promising approach lies in combining RL with heuristics
to leverage their complementary strengths in combinatorial
optimization [116, 117].

2.3 Summary of key RL settings

Based on our previous discussion, we summarize the key RL
settings in the context of HOM applications.

Model-based versus model-free Model-based RL makes
use of the system model. Thus, the transitions and reward
function could be explicitly incorporated into the solution
framework [41]. For example, in inpatient management [30],
model-based RL could leverage the queuing network to infer
value functions from waiting and overflow costs, by which
the optimized policies could be built on analytical properties.
However, model-free RL does not utilize the system model;
rather, it learns directly from empirical interactions within
the environments’ simulations using an iterative trial-and-
error approach. It heavily relies on training samples and may
suffer from poor sample complexity and convergence issues.
Generally, leveraging domain knowledge and problem struc-
ture can accelerate convergence and reduce computational
time for model-free methods [105, 118].

Tabular versus non-tabular Referring to Sect. 2.2.3, value
function approximation can be classified into tabular and
non-tabular approaches. In problems consisting of only small
numbers of states and actions, approximation could be com-
pleted with tabular methods. In the forms of arrays or tables,

each row/column is associated with a state or state-action
pair. Standard ADP and TD learning utilize tabular approxi-
mations that are derivative-free [31].However, inmanyHOM
practices, the huge number of states may impose computa-
tional challenges in utilizing tabular approaches. In these
cases, RL methods using more compact and non-tabular
forms of function representation are needed [21].

Value-based versus policy-based As we have systemati-
cally introduced in Sect. 2.2.2, given state s (or state-action
pair (s, a)), value-based approximation estimates vπ(s) (or
qπ (s, a)) through value function approximation. The opti-
mal policy (Eq.4) is approximated by iteratively updating
the approximated Q-value (Q̄(s, a)) in Eq.9. Value-based
methods typically require explicit computations for each
action. Therefore, some studies on pandemic control [119–
121] considered discretized thresholds to represent lockdown
policies based on state variables. Referring to Sect. 2.2.5,
policy-based approximation parameterizes and determines
the policy without using value functions. It requires differen-
tiability of the policy π(a | s,ϑ) to determine the parameter
ϑ , so as to avoid solving the potentially intractable maxi-
mization problem in Eq.4. In this way, policy-basedmethods
can handle continuous action spaces. Stochastic policies are
favored in policy-basedmethods due to their differentiability.
In many situations, policy-based methods can be combined
with value-based methods, such as the AC algorithms, to
reduce variance in updates [21].

On-policy versus off-policy In Sect. 2.2.2,we discuss that on-
policy methods focus on assessing or enhancing the policy
that dictates decision-making, while off-policy methods aim
to evaluate or refine a policy distinct from the one utilized to
generate the data [21]. Thus, on-policymethods are relatively
simple and stable in their learning. Off-policy methods are
flexible in learning a broader range of data, such as human
experiences in HOM, but suffer from greater variance and
slow convergence [21]. Given that simulations can mitigate
the lack of samples in HOM, we have observed extensive
applications of both on-policy and off-policy methods in the
following Sect. 4.

Online learning versus offline learning Online learning con-
tinuously updates approximations’ parameters as new data
(e.g., states, actions, and rewards) arrive without re-training
from scratch. It is particularly suitable for dynamic environ-
ments where adaptability is essential, such as HOM appli-
cations [88, 92, 122]. Bandit problem [16] (in Sect. 2.2.6),
focusing on single-step decisions with partial feedback, is
a specific subclass of online learning. On the other hand,
offline learning updates approximations’ parameters accord-
ing to the fixed entire dataset that is available at the time
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of training. This process may iterate several rounds until
approximations’ performance stably achieves defined crite-
ria. Some offline methods with experience replay [59] are
discussed in Sects. 2.2.4 and 2.2.5. One limitation of offline
learning is that storing the entire training setmay causemem-
ory issues (from the computational resource point of view),
especially when setting a large batch size or the state space
has to be huge to describe HOM problems (e.g., in pandemic
control application [121]).

3 Review scope and search

Our work adopts a scoping review approach [123] to review
and analyze relevant research studies. We focus on HOM
applications rather than clinical diagnostics; thus, publica-
tions in precision medicine development, medical imaging,
and medical robotics are excluded. Following the health-
care ecosystem map [124], we are able to identify keywords
that are closely associated with our HOM scope. These
keywords include “healthcare", “operations management",
“hospital", “patient", “medical", “public health", “epidemic",
“pandemic", “emergency", and “humanitarian". We imple-
mented a search strategy that contained a certain word
“reinforcement learning" followed by these keywords on
Scopus, and limited the subject area to “Decision Science".
The Scopus query syntax is TITLE-ABS-KEY ( “reinforce-
ment learning" ) AND TITLE-ABS-KEY ( “healthcare"
OR “operations management" OR “hospital" OR “patient"
OR “medical" OR “public health" OR “epidemic" OR
“pandemic" OR “emergency" OR “humanitarian" ) AND (
LIMIT-TO ( SUBJAREA, "DECI" ) ). This initial search
of articles (conducted on January 4, 2023, and updated on
January 22, 2024) resulted in 321 documents. Based on our
knowledge, we included additional relevant articles (e.g.,
those in arXiv and conference proceedings) since RL is also a
widely researched area within the computer science commu-
nity. After an initial checking of the abstracts, we considered
a total of 144 articles for further analysis. In the subsequent
round of detailed content analysis, we identified 117 relevant
studies on RL in HOM for our review.

4 Applications

Following [124], we categorize the studies into macrolevel,
mesolevel, and microlevel research thrusts. We also adopt
the terminologies, classification, and empirical results from
previous studies such as [125] and [126]. We consider the
healthcare ecosystem map presented in [124] to structure
our three thrusts of healthcare operations applications. The
macrolevel research thrusts entail the overarching strategy

and policy implemented by governments or authorities to
harness the healthcare marketplace. The mesolevel research
thrusts serve as a connector between the macrolevel and
microlevel research thrusts. For example, it encompasses
the distribution and allocation of resources across multi-
ple healthcare facilities. Finally, the microlevel research
thrusts pertain to the detailed operations involved in provid-
ing patient care services within a healthcare facility.

4.1 Macrolevel research thrusts

Following the discussion in the literature [124, 127, 128],
the applications in the macrolevel research thrusts revolve
around the supply of and demand for healthcare services
through various healthcare entities (e.g., hospitals, phar-
macies, and governments) and on marketplaces. Exam-
ples include market mechanisms, organizational structures,
healthcare network flows, and accessibility to health ser-
vices. We analyze the relevant RL applications and identify
that the majority of such applications focused on healthcare
policies and strategies. A portion of these RL applications
was studied by Weltz et al. [129] with a specific focus on
respondent-driven sampling in public health, leaving a com-
prehensive review yet to be conducted. The global outbreak
of COVID-19 has led to a surge in recent research focused
on utilizing RL to determine optimal pandemic intervention
policies. Interestingly, we find that the RL studies in the
macrolevel research thrust focus on infection modeling and
control. We classify the studies into general measures and
strategies, COVID-19 control policies, and mobility restric-
tion policies.

4.1.1 General measures and strategies

Prior to the outbreak of COVID-19, there were already
research studies on sequential decision-making in public
health, ranging from model-based simulation to ADP and
DQN. Back in 2008, Das et al. [130] published a research
study that developed a simulation model for analyzing large-
scale pandemic outbreaks to minimize the aggregated costs
resulting from healthcare expenses and lost wages. Their
study considered community, demographic, physiological,
behavioral, and epidemiological features, such as indicators
of infection, the stockpile of vaccines and drugs, as well as
the hospital capacity. The decisions for the considered mit-
igation strategies encompass a range of actions and plans,
including prophylaxis, quarantine plans, and hospital admis-
sions. RLwas also proposed as a solution to the problem. In a
more recent study, Shi et al. [132] conducted simulations on
voluntary vaccination in social network settings and found
that heterogeneous social connections demonstrate greater
sensitivity to information regarding vaccination. These sim-
ulations were specifically designed for an RL environment.
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Regarding school closure and vaccinated cohorts for con-
trolling the H1N1 epidemic [151], Yaesoubi et al. [131]
adopted a partially observable Markov decision process
(POMDP) [152] in modeling hospitalizations and vaccina-
tions. The study concluded that an ADP approach guided
by the latest information outperformed static policies. Their
results highlighted the significance of incorporating real-
time data into decision-making processes. Probert et al.
[133] applied DQN to contain outbreaks of foot-and-mouth
disease in farms using a Susceptible-Exposed-Infectious-
Recovered (SEIR) model [153]. Their approach modeled
the RL state (e.g., infected and susceptible farms) on a dis-
cretized landscape, with a CNN serving as the approximator.
The state-dependent actions involve selecting which farms
to cull.

In a recent study, Liu et al. [134] developed an approach
for adaptive control of the Ebola virus disease spreading
across multiple locations. They utilized a combination of
deep spatial fitted Q iteration [154] with graph embed-
dings (a GNN approach), a semi-parametric variant [155] of
Thompson sampling, and a tractable quadratic program [156]
to handle the search in a large action space. Comparisons
with ad-hoc strategies and a susceptible-infected-susceptible
(SIS) [157] model-based policy search showed that their
proposed method achieved better control (resulting in more
disease-free individuals) and higher robustness tomodelmis-
specification. They also provided insightful discussions on
the topics of causal inference [158] and interpretability [159]
of the RL solutions.

4.1.2 COVID-19 control policies

In late 2019, the COVID-19 pandemic broke out, quickly
spreading worldwide and impacting billions of individu-
als. To address the unprecedented challenges posed by the
COVID-19 pandemic, researchers have explored the appli-
cation of RL in developing intervention policies and devising
healthcare strategies. These strategies include testing, saniti-
zation, and lockdown measures [135].

By using SEIR models and DQN, Arango et al. [136] and
Miralles et al. [137] determined optimal lockdown policies
to optimize the number of available beds in intensive care
units (ICUs) and the economic costs. Only infections were
considered the state variable, while other variables depended
on it. This approach aimed to approximate the disease trans-
mission rate based on the number of infections. Their studies
also suggested short lockdown cycles as solutions. In a later
study, Padmanabhan et al. [140] developed QL approaches to
implement closed-loop control by sequentially determining
intervention actions in Qatar.

From a perspective of Bayesian inference, Rathore et
al. [141] proposed both Bayesian RL and control theory
to reduce the impacts of respiratory infectious pandemics

(such as COVID-19). They utilized a susceptible-infectious-
recovered (SIR) model and POMDP to study the infectious
disease outbreak. In the pandemic process, three states – pre-
trigger, increasing, and decreasing – were considered. The
authors introduced a control knob represented by the repro-
duction number to indicate the on-off signals of actions. This
approach enabled the RL agent to leverage pre-trigger poli-
cies in an offline manner initially. The policies were then
transferred to an online exploration approach based on the
information state and its associated likelihood. Wan et al.
[120] developed an adaptive MARL approach to identify
Pareto-optimal policies. They established a Bayesian epi-
demiological model with online learning. They employed a
delayedMDP framework to generate a proxy state to capture
the time-lag relationships between the number of infected
and confirmed cases. In addition toDQN, they utilizedMonte
Carlo rollouts that considered real-life constraints, such as the
severity of the spread, enhancing the interpretability of the
results. Their experiments suggested that these robust meth-
ods could effectively control epidemics in various cities with
reduced costs.

Another line of research studies the impacts of pan-
demic control policies at an individual level. Several studies
have incorporated weighted rewards to account for economic
impacts and infections at an individual level. Ohi et al. [119]
utilized LSTM and DDQN to determine optimal epidemic
control policies for three levels of restriction policies. Based
on population density and reproduction rates, they proposed
placing a long lockdown during the first surge, followed by
cyclic and short lockdowns to prevent resurgence. Khadilkar
et al. [138] factored in individual costs and developed a
propagation model using network data. Using DQN, their
proposed policy resulted in a higher peak of infections but a
shorter epidemic lockdown duration than a static threshold
policy. Kompella et al. [139, 160] extended the SEIR model
by incorporating more detailed components related to loca-
tions, testing and tracing, and government regulations in their
proposed AC approach. Their proposed method considered
partially observed states capturing aggregated testing results
and the number of hospitalizations. Their results suggested
stratified actions consisting of combinations of government
regulations. Their experiments were scaled up to a popula-
tion of 10,000 individuals while ensuring that actions were
stable. However, the computational expense of the proposed
approach may pose a challenge when scaling up to a national
epidemic control scenario at the macrolevel.

To date, the COVID-19 pandemic has presented an impe-
tus for scholars and researchers to delve into the utilization
of RL in the formulation and implementation of macrolevel
healthcare policies. The existing studies have demonstrated
that policies derived from RL approaches provide more cost-
effective solutions [143, 144] than relying on heuristics or
expert opinions when balancing saving lives and reducing
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economic impacts.Guo et al. [121] built upon previousworks
such as DQN [137] and agent-based FluTE simulation [161].
They expanded the established state variables, including vac-
cinations, the netmonetary impacts of pandemic severity, and
lockdownpolicy (strictness of the policy). AProbSparse self-
attentionmechanism [162]was integrated into the perceptron
model to extract crucial information from complex epidemi-
ological observations. This fusion facilitates the effective
processing of high-dimensional data in the context of epi-
demiology. Bushaj et al. [142] emphasized the importance of
increasing the number of healthy individuals in a population,
early random vaccination of potential super spreaders, and
quarantining high-risk individuals. They extended the Cov-
asim simulation model [163] by implementing random and
age-based vaccination strategies. They integrated compart-
mental information, such as the population with the two-shot
vaccine, into the state space of their DQN. Additionally, the
model included three additional vaccination-related interven-
tions that can be activated based on vaccine availability. Yao
et al. [144] utilized DDQN to identify adaptive nonpharma-
ceutical interventions for controlling COVID-19 outbreaks
and other respiratory infectious diseases. Using the required
hospital beds to construct the state, they determined the
threshold of available beds that would trigger stricter inter-
ventions.

4.1.3 Mobility restriction policies

There has been a growing interest in studying mobility
and travel policies during the pandemic. Libin et al. [146]
investigated optimal policies for minimizing the number of
susceptible individuals in different regions by integrating age
groups within each region and mobility patterns between
regions. They developed a country-wide MARL framework.
A PPO algorithm was employed, with the available budget
as a crucial control factor for both open and closed actions
and for constructing the state variables. Their results sug-
gested that the joint MARL approach consistently yielded
lower costs. Kwak et al. [147] treated different countries
as homogeneous entities and formulated the problem as
a susceptible-infectious-recovered-dead (SIRD) model. By
adopting diminishing rates of new infections, their algo-
rithm recommended an earlier implementation of intensity
strategies compared to the degrees of travel restrictions
implemented by the government in each country.

In the context of urban mobility, Zong et al. [149] devel-
oped a sophisticated algorithm called the multi-agent recur-
rent attention actor-critic algorithm. Their case study focused
on optimizing lockdown policies for different states in the
US. Their algorithm interacted with a susceptible-exposed-
asymptomatic-infected-recovered-death (SEAIRD) simula-
tion model, incorporating heterogeneous locations such as
schools, offices, and stores. The algorithm utilized a gated

recurrent unit, setting it apart from and outperforming exist-
ing RL benchmarks such as [164]. Song et al. [145] aimed
to identify mobility-control policies in Beijing that could
simultaneously minimize the costs of infections and retain
mobility. They achieved the objectives by developing a
susceptible-infected-hospitalized-recovered (SIHR) model
using real-world origin–destination (OD) data. The state,
consisting of epidemic information and mobility demands,
was fed into a GNN approximator within a DDPG frame-
work. Their approach outperformed real-world expert poli-
cies in both early and late intervention scenarios by effec-
tively addressing the life-or-economy dilemma, suppressing
epidemics, and maintaining 76% of the mobility levels.
Roy et al. [148] modulated zone mobility based on the
healthcare system’s budget, estimated using local GDP. They
employed queueing theory to analyze the hospitals in differ-
ent boroughs of New York City, utilizing inter-zone mobility
matrices. They proposed a QL algorithm to maximize mobil-
ity while considering the impact of high hospital occupancy.
Through hierarchical RL [103], Du et al. [150] developed
a multi-mode intervention strategy that integrates mobility
constraints with medical resources and supplies as hierar-
chical actions to control the economic damage and contain
the pandemic outbreaks. They also expanded a multilateral-
impact-driven SEIRmodel to capture the impacts of different
interventions.Theoptimal policieswere assessedon twoChi-
nese cities.

Table 1 summarizes the research studies under the
macrolevel research thrusts. The applications of RL under
the macrolevel research trust typically determine optimal
healthcare policies, control critical epidemic conditions, and
minimize overall costs within the constraints of available
medical resources. The applications aim to strike a bal-
ance between hospital occupancy, infections, and economic
impacts. RL functions by utilizing states from epidemic
models and determining actions that encompass a range of
epidemic interventions, such as social and travel restrictions
or different levels of lockdown intensity. In these applica-
tions, the action space is usually discrete, leading to a more
popular choice of DQN as the method. For infectious disease
models, SEIRmodels [119, 120, 136–140, 146, 148, 160] are
the most popular class that simulates the dynamic behaviors
of epidemics.

One of the primary challenges in applying RL to health-
care policy is determining an effective reward function
that accurately reflects real-world conditions. The impacts
and rewards of interventions may be influenced by other
factors, and validation can be expensive, with misspeci-
fication leading to incoherent learning. Real-time model
updating with real-world data calibration or robustness opti-
mization with uncertainties are potential solutions to this
challenge. Furthermore, as more complex problems arise,
more sophisticated RL algorithms can be deployed, such as
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Table 1 Summary of applications under the macrolevel research thrusts

Study Year Method1 Epidemic model(s)2 and data

General measures

and strategies3

Das et al. [130] 2008 Simulation N/A

Yaesoubi et al. [131] 2016 ADP SIRD

Shi et al. [132] 2019 Simulation N/A

Probert et al. [133] 2019 DQN (CNN) SEIR

Liu et al. [134] 2023 QL (GNN) SIS

COVID-19 control policies

Uddin et al. [135] 2020 DQN N/A

Arango et al. [136] 2020 DQN SEIR

Miralles et al. [137] 2020 DQN SEIR

Ohi et al. [119] 2020 DDQN (LSTM) SEIR

Khadilkar et al. [138] 2020 DQN SEIR

Kompella et al. [139] 2020 AC SEIR

Padmanabhan et al. [140] 2021 QL SEIR

Rathore et al. [141] 2021 Bayesian SIR

Wan et al. [120] 2021 DQN, Monte Carlo, MARL SEIR, SIR

Guo et al. [121] 2022 DQN (Transformer) SEIAR, FluTE

Bushaj et al. [142] 2022 DQN Covasim

Nguyen et al. [143] 2022 PPO Agent-based simulation

Yao et al. [144] 2023 DDQN SEIR, SIR

Mobility restriction policies

Song et al. [145] 2020 DDPG (GNN) SIHR, OD Matrix

Libin et al. [146] 2021 PPO, MARL SEIR, Mobility Flux

Kwak et al. [147] 2021 D3QN SIRD

Roy et al. [148] 2021 QL SEIRD, Zone Mobility

Zong et al. [149] 2022 AC (RNN, Attention), MARL SEAIRDL

Du et al. [150] 2023 Hierarchical PPO Multilateral-impact-driven SEIR

Note:
1. “Method" refers to the learning algorithm (with approximator). The approximator in the bracket will be omitted if it is a standard setting of the
RL algorithm (e.g., the standard approximator of DQN is DNN)
2. Under macrolevel research thrusts, RL agents generally interact with the epidemic model and use the model outputs as the state
3. COVID-19 studies are excluded from “general measures and strategies"

those addressing large-scale multiple-wave epidemics, par-
tially observable problems [131, 139, 141, 160], fine-grained
policies, detecting super-spreaders, and immunity. However,
practical implementations of DRL solutions in macrolevel
applications remain rare in the real world. The rarity of
real implementations is largely due to the high demands
for transparency, trustworthiness, and regulatory compli-
ance in these applications, prioritizing the interpretability
of decision-making. Current studies only conduct sensitivity
and statistical analyses of their policies. Designing inter-
pretable RLs [165, 166] in low-dimensional representations
that can address the dilemma of managing complex systems
with strong interpretability remains a future direction.

4.2 Mesolevel research thrusts

The mesolevel research thrusts cover operations such as dis-
tribution, resource allocation, organization design, logistics,
and supply chain management within the healthcare services
domain. This level of analysis serves as a bridge between the
macrolevel andmicrolevel research thrusts. It operateswithin
the framework of overall healthcare strategy but extends
beyond the scope of a single healthcare institution [124]. The
studies in this area can be classified into various domains,
including humanitarian logistics, resource allocation during
epidemics, and supply chain management in the healthcare
industry.
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4.2.1 Humanitarian logistics

Timely and effective decision-making is always crucial in
providing relief after a disaster or mass casualty incident
(MCI). Those situations are often challenged by partial
observability and a high degree of uncertainty. RL-based
approaches have been developed to aid humanitarian logis-
tics, encompassing tasks such as distribution, rescue path
searching, and transportation. These techniques facilitate
humanitarian operations, enable rapid response, and enhance
recovery efforts.

Yu et al. [36] utilized QL for humanitarian distribution
planning. Their objective was to minimize the delivery cost,
the deprivation cost, and the terminal penalty cost. The local
response center (modeled as an agent in their RL framework)
decided how to allocate supplies to areas affected by disas-
ters. Fan et al. [169] developed a DQN approach that takes
into account the scarcity of emergency supplies. Through
numerical experiments, they demonstrated the effectiveness
of RL in terms of computational time and objective val-
ues, particularly in tackling problems with high-dimensional
spaces. In another study, Van Steenbergen et al. [170] intro-
duced Unmanned Aerial Vehicles (UAVs) to humanitarian
complement trucks and optimized multi-vehicle, multi-trip,
split-delivery routes under travel time uncertainty. By evalu-
ating both value function approximation and policy function
approximation, they validated that dynamic methods and
UAV deployment significantly enhance operational per-
formance and robustness, particularly in reaching remote
locations.

In a problem of rescue path selection, Su et al. [47] uti-
lized a rectangular grid to represent the affected area. They
implemented an RL framework where the rescue team was
represented as an RL agent. The team aimed to find the
most efficient path connecting two points, and a mechanism
for escaping cyclic paths was incorporated into the design.
Nadi et al. [48] improved a MARL framework by incorpo-
rating relief assessment and emergency response teams in an
online setting. The relief assessment teams utilized a pre-
diction model to estimate the demands in affected areas.
The response team then solved a vehicle routing problem
(VRP), considering the requests’ priorities and both teams’
capacity and time window constraints. Shen et al. [50] mod-
eled an aviation emergency rescue problem with a stochastic
game process and employedMARL to determine task accep-
tance/rejection decisions at different locations. Yang et al.
[49] proposed a MARL approach, coined ResQ, for disas-
ter response. This framework utilized Twitter data related
to the specific disaster to map the geo-locations of volun-
teers and victims. The states in the framework included the
volunteers’ spatial and temporal information, which served
as inputs for the heuristic allocation strategy. The reward

function, controlled by the total distances from agents to vic-
tims, was optimized using QL in a POMDP setting.

Another aspect of humanitarian logistics is the transporta-
tion of patients to healthcare facilities after MCI. Effective
triage and prioritization are crucial to saving lives, but it
is a computationally demanding task. Li et al. [167] stud-
ied Whittle’s restless bandits approach to learning triage
and other relevant decisions over a finite but uncertain time
horizon. The number of bandits would, therefore, change
over time. Because of the stochastic nature of this problem,
the authors proposed novel lagrangian relaxation methods
to decompose the original problem, which have gained sig-
nificantly higher performance. Lee et al. [101] developed a
MARL framework powered by imitation learning to address
the problem. Their goal was to maximize the number of sur-
vivors in MCIs by optimizing the decisions related to patient
admissions to emergency departments (EDs) and diversion
of patients. Unlike previous studies focusing on individual
patient assignment in outpatient care, this problem involved
coordinatingmultiple homogeneous cooperative EDs (repre-
sented as agents in the MARL framework). Each agent only
had partial information, such as the current patient arrivals,
patient conditions, and its individual available beds (in the
ED). Positive rewards were accumulated based on the sur-
vival probability of admitted patients, which was determined
by their health conditions. An AC approach was used for
a multi-agent setting, and the historical actions and real-
izations were inputted into an RNN to determine current
actions. A policy gradient algorithm was implemented based
on a generalized advantage estimator (GAE) [78]. Behavioral
cloning was employed as a conceptual optimization method
using integer programming to pre-train the neural networks.
This imitation learning techniquehelps reduce computational
time and yields a high-quality policy. Additionally, a meta-
algorithm, subspace partitioning, was utilized as another
optimizing approach, as discussed by Shin and Lee [168].
Another study by Al-Abbasi et al. [65] also considered a
patient transportation problem across heterogeneous medi-
cal facilities, where they used DQN to train their model.

As presented in Table 2, the earlier applications in human-
itarian logistics utilized QL for solving classes of VRP.
Subsequent studies incorporated DNN to construct DRL
frameworks. Neural networks’ strong predictive capabilities
enable the development of more sophisticated models with
increased performance, for example, by integrating multiple
agents and behavioral models to guide action selection. The
combination of MARL under the framework of POMDP has
shown significant potential in disaster relief [48–50, 101].
Once these complex models are well-trained, RL can pro-
vide rapid responses in a short time. Moreover, leveraging
imitation learning from an expert policy is anticipated to
improve training efficiency. Learning from experts can also
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Table 2 Summary of
applications under humanitarian
logistics

Study Year Method Problem class

Su et al. [47] 2011 QL VRP

Nadi et al. [48] 2017 QL VRP

Li et al. [167] 2020 Whittle’s restless bandit Scheduling

Yang et al. [49] 2020 QL VRP

Shin et al. [168] 2020 TD Scheduling

Lee et al. [101] 2021 AC (RNN), imitation learning Scheduling

Al-Abbasi et al. [65] 2021 DQN Scheduling

Yu et al. [36] 2021 QL Resource allocation

Fan et al. [169] 2022 DQN Resource allocation

Van Steenbergen et al. [170] 2023 Value-based, policy-based RL Resource allocation

Shen et al. [50] 2023 QL VRP

aid in extracting domain knowledge, leading to improved
interpretability. As such, DRL offers an efficient solution for
tackling complex humanitarian logistics challenges.

4.2.2 Resource allocation in epidemics

While we primarily discussed research on epidemics within
themacrolevel research thrusts in Sect. 4.1, we also acknowl-
edge a fewRL applications for epidemics, specifically focus-
ing on disaster response [114], as studies falling within the
mesolevel research thrusts. In contrast to the epidemic con-
trol and healthcare strategies under the macrolevel research
thrusts, the topics discussed in this subsection primarily focus
on addressing logistics and resource allocation challenges
during pandemics.

During apandemic, twocrucially scarcemedical resources
are test kits and vaccines. Focusing on test kit alloca-
tions, Bastani et al. [88] introduced “Eva" as a solution
to allocate limited test kits to different groups of arrivals
at Greek borders. The problem was initially formulated
using MAB, where the prevalence of COVID-19 was esti-
mated through an empirical Bayes approach. Subsequently,
certainty-equivalent updates and an optimistic Gittins index
were utilized to guide allocation decisions. In the approxi-
mation phase, Lasso feature selection [180] was employed
to handle the high dimensionality. The “Eva" RL system
was evaluated using counterfactual analysis based on inverse
propensity weight scoring [181]. Additionally, the authors
compared the predictive power of epidemiological metrics in
gradient boosting [182] by incorporating different combina-
tions of features and conducting comprehensive estimations
and validations. Gonsalves et al. [89] introduced an intrinsic
conditional autoregressive prior distribution and a hierar-
chical Bayesian strategy. They utilized mobility data from
UberMedia to identify potential testing locations.

In the context of vaccine allocations during pandemics,RL
agents consider information about various population groups

categorized by geographical locations and ages. They utilize
such information to determine the allocationof vaccines, con-
sidering resource scarcity. The objectives of these RL agents
are mainly to minimize the number of infectious cases, max-
imize the number of critical patients treated, and optimize
the economic impacts [171]. Hao et al. [172] introduced a
hierarchical RL model that addresses the simultaneous allo-
cation of vaccines and beds. Tomitigate computational costs,
they implemented various ranking strategies to filter regions
based on specific pandemic thresholds. Other studies have
also explored different approaches to vaccine allocation. Tan
et al. [173] employed a random forest algorithm [183] with
real-world data to predict future infections before making
vaccine allocation decisions. Hao et al. [175] went beyond
using a simple approach for simulation and relying solely
on a black box approach. They instead incorporated expert
solutions to enhance the performance of their RL model.
Additionally, they conducted a sensitivity analysis to improve
the model’s explainability. More recent studies have focused
on developing MARL methods for vaccine allocation. Rey
et al. [90] employed a budget-sharing mechanism to improve
performance with Thompson Sampling [184].

By integrating a SIR model and a stochastic block model
network, Xia et al. [176] proposed a degree-based testing
and vaccination model. They employed both Pontryagin’s
maximum principle [185] and DQN to optimize the control
strategies. Zeng et al. [178] enhanced the medical supplies
dispatching process by incorporating additional states such
as “asymptomatic", “hospitalized", and “deceased" into their
SEIR model. They utilized a DQN structure to optimize the
dispatch decisions. Thul et al. [177] introduced a stochastic
optimization approach for vaccine allocation. They consid-
ered a collaborative environment where a vaccination agent
and a learning agent interactively determine the allocation
of stockpiles of vaccines and tests to a set of zones. The
learning agent makes decisions regarding the allocation of
test kits and utilizes the belief state to inform the vaccination
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agent. The authors proposed an optimal policy using a param-
eterized direct lookahead approximation based on Bayesian
optimization. Their approach demonstrated superior per-
formance compared to value function approximations, and
greater scalability and robustness in both COVID-19 and
nursing home contexts.

Regarding the allocation of other medical resources dur-
ing pandemics, Bednarski et al. [174] and Zhang et al. [179]
explored the use of value-based RL for the redistribution
of ventilators to alleviate shortages and reduce costs. They
utilized LSTMmodels with logistics downtime to infer real-
time demands across different states. Shuvo et al. [73, 186]
optimized the decision-making process for hospital expan-
sions by considering socioeconomic indicators and current
capacities, applicable to both pandemic and non-pandemic
scenarios. Their studies aimed to minimize costs associated
with capacity expansion while simultaneously reducing the
occurrence of denial of service (DoS) situations. To fore-
cast hospital occupancy, various regression models were
employed, and the most suitable model was selected for
downstream planning.

Table 3 summarizes the applications that address decision-
making problems related to resource allocation in epidemics,
which mainly involve allocating medical resources based on
spatial and temporal states. In addition to the popular value-
based and policy-based RL methods, we also highlight the
widespread use of MAB algorithms in allocating test kits
and vaccines during epidemics due to their scalability. Fur-
thermore, the interpretability ofMABalgorithms is enhanced
through the use of cooperated linear models [88, 89]. In some
cases [176, 177], robust optimization methods have demon-
strated superior performance compared to basic RLmethods.

This has inspired the exploration of combining robust opti-
mization and RL, with the former pre-training and restricting
the action space [187] for RL to achieve higher solving effi-
ciency and rewards, especially in large-scale problems.

4.2.3 Healthcare supply chain management

While RL for healthcare supply chain management is a rel-
atively nascent area, recent studies have begun to delve into
various applications to aid decision-making in healthcare
supply chain operations.

One such paper is Wu et al. [188], which addressed a
production scheduling problem for medical products. Their
proposed algorithm utilizes LSTM as an approximator and
policy gradient to schedule the production of medical masks.
A study conducted by Zhang et al. [105] introduced a sys-
tem of flexible production scheduling specifically designed
for ventilators. Their proposed framework employed a hier-
archical RL approach, utilizing heterogeneous digital twin
agents to enhance collaboration efficiency between humans
andmachines. It isworth noting that this line of research often
relies on simulation results, which can involve more realis-
tic scenarios. Asadi et al. [190] studied the supply of critical
medical needs, focusing on optimizing routing and delivery.
They utilized RL to tackle a medical drone delivery problem,
where the RL agent considered battery levels and demands to
optimize recharging actions. The objective was to maximize
the expected satisfied demand. Seranilla and Löhndorf [192]
considered the possibility of facility failures due to natu-
ral disasters. They utilized shadow price approximation for a
multistage stochastic vaccine facility location problem. Their
proposed ADP approach successfully reduced operational

Table 3 Summary of applications under resource allocation in epidemics

Study Year Method Application

Wei et al. [171] 2021 QL, AC Vaccine allocation

Hao et al. [172] 2021 QL (CNN), DQN Vaccine allocation

Tan et al. [173] 2021 QL, DQN Vaccine allocation

Bednarski et al. [174] 2021 QL, Value-based RL Ventilator redistribution

Bastani et al. [88] 2021 MAB (Bayes), lasso, gradient boost Test kits allocation

Gonsalves et al. [89] 2021 MAB (ICAR) Testing priority

Hao et al. [175] 2022 PPO (GNN) Vaccine allocation

Shuvo et al. [74] 2022 A2C, Pareto optimality Hospital expansions

Xia et al. [176] 2022 DQN Vaccine and test kits allocation

Rey et al. [90] 2023 MAB Vaccine allocation

Thul et al. [177] 2023 Stochastic optimization Vaccine and test kits allocation

Zeng et al. [178] 2023 DQN Medical supplies allocation

Zhang et al. [179] 2023 DQN Vaccine allocation
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Table 4 Summary of applications under healthcare supply chain management

Study Year Method Application

Wu et al. [188] 2020 Policy gradient (LSTM) Mask production scheduling

Abu Zwaida et al. [189] 2021 DQN (CNN) Replenishment of medicine

Asadi et al. [190] 2022 Value iteration Routing for delivery by drones

Ahmadi et al. [191] 2022 DQN Inventory control of perishable medicine

Abouee-Mehrizi et al. [45] 2023 ADP Inventory control of platelet

Zhang et al. [105] 2023 Hierarchical AC Ventilator production scheduling

Seranilla and Löhndorf [192] 2023 ADP Facility location for vaccine distribution

Wang et al. [66] 2023 DQN Medical facility location routing

Tseng et al. [75] 2023 AC Inventory control of regenerative medicine

Vanvuchelen et al. [193] 2023 PPO Inventory control of malaria medicine

and transportation costs by 30%. Wang et al. [66] addressed
location routing problems for emergency facilities with a
two-stage DRL approach.

Inventory management of medical products is another
area of interest. Using DQN, Ahmadi et al. [191] examined
inventory decisions for perishable pharmaceutical products.
Similarly, Abu et al. [189] investigated a standard replenish-
ment problem in a medical supply chain, where a DQN agent
determines whether to refill or not tominimize refilling costs,
storage costs, and shortage costs. Tseng et al. [75] utilized
AC to facilitate dynamic capacity planning of decentralized
regenerative medicine. Van Vuchelen et al. [193] optimized
health facility stockmanagement throughPPO.Their derived
transshipment policies enhanced service level equity, partic-
ularly in resource-constrained environments, andwere robust
given demand seasonality. Recently, Abouee-Mehrizi et al.
[45] studied a stochastic perishable inventory control prob-
lem for blood platelets, where the shelf-life of delivered units
is uncertain and potentially depends on the order size. Their
ADP-based blood platelets ordering policy, which approx-
imates a non-convex value function using basis functions
and simulation-based policy iteration, significantly outper-
forms historical hospital performance and other benchmarks
in a case study using real data from Canadian hospitals.

With comprehensive numerical experiments, their study has
made valuable contributions to platelet inventory manage-
ment under uncertainty.

The applications of RL for healthcare supply chain man-
agement are summarized in Table 4. The table indicates that
this field is an emerging area and presents diverse appli-
cations. These applications span various areas, including
production, routing, and inventory management. Moreover,
they are solved through a variety of RL approaches. From our
review, studies in healthcare supply chain management have
utilized conventional value-based andpolicy-basedRLmeth-
ods to optimize medicine replenishment and transportation
decisions. Recent research has also explored adopting a hier-
archical framework [105] and leveraged QL as an adaptive
heuristic approach to accelerate the convergence of medical
supplies scheduling [118]. However, there is still significant
potential for further exploration and applying more efficient
methods. Such advancements are expected to yield substan-
tial benefits for the healthcare service industry.

4.3 Microlevel research thrusts

The most prominent level of HOM research is the microlevel
research thrusts, as suggested by a number of studies [124,

Table 5 Summary of
applications in EMSs

Study Year Method Application

Maxwell et al. [194] 2010 ADP Ambulance redeployment

Schmid [195] 2012 ADP Ambulance dispatch and relocation

Maxwell et al. [196] 2013 ADP Ambulance redeployment

Nasrollahzadeh et al. [197] 2018 ADP Ambulance dispatch and relocation

Allen et al. [198] 2021 Simulation Ambulance location problem

Benedetti et al. [199] 2021 DQN Traffic light timing

Yu et al. [200] 2021 ADP Ambulance dispatch

Gao et al. [201] 2023 ADP (DNN) Ambulance dispatch and relocation

Su et al. [102] 2023 A2C (LSTM) Traffic signal control
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127, 128].At this level,HOMresearch problems are analyzed
at the individual patient level within a single healthcare insti-
tution. Most of the approaches to tackling the problems take
into account the specific needs of each patient and provide
more detailed plans for healthcare service delivery. The stud-
ies under the microlevel research thrusts typically investigate
four main categories of healthcare services, including emer-
gency medical services (EMSs), outpatient care, inpatient
care, and residential care.

4.3.1 Emergency medical services

Managing a fleet of emergency ambulances efficiently can be
difficult due to their limited availability and the unpredictable
distribution of emergency calls regarding location and time.
In the past, researchers mainly focused on static policies for
ambulance dispatch.With technological advancements, there
is a growing interest in studying dynamic vehicle operations.
One popular method in the field is the development of ADP
approaches using basis functions for approximation (as sum-
marized inTable 5). Several formulations havebeenproposed
to address problems in different scenarios.

In a pioneering study by Maxwell et al. [194], an ADP-
based model and a greedy heuristic for dispatch assignments
were proposed for ambulance redeployment. The paper also
considered call center management, where a request is lost if
all line pickers are busy. The objective was to simultaneously
minimize the total number of missed calls, total response
time, and relocation costs. The authors utilized direct search
[196] to fine-tune their ADP policies. Subsequent works
aimed to incorporate ADP into both relocation and dispatch
decisions. Schmid et al. [195] proposed an ADP algorithm
that dynamically relocates and dispatches vehicles, aiming
to minimize the total response time of all requests under
stochastic travel time and changing request volumes. Nasrol-
lahzadeh et al. [197] studied a similar problem and applied
real data. Another study utilized a first-order stochastic dom-
inance method to enhance the robustness of solutions [200].
One of the challenges in this research area is the develop-
ment of a comprehensive environment to simulate arrivals,
relocation outcomes, and dispatch processes, which can be
time-consuming. To address the challenges, Allen et al. [198]
developed a complete gym-compatible environment for this
problem. This environment involves multiple vehicles, dis-
patch centers, and patients, enabling the simulation of the
entire ambulance dispatch process. In recent work by Gao
et al. [201], ambulances were effectively coordinated with
UAVs using DNN-based policy iteration. The objective was
tominimizeEMS response times for better patient health out-
comes. The action space was event-based, depending on the
state constructed from queueing, temporal, and geographic
properties. The authors particularly emphasized their optimal
policies when facing surge demands.

Instead of focusing on the operations of ambulance fleets,
Benedetti et al. [199] studied the application of DQN to a
traffic management problem with emergency vehicles. Here,
the DQN agent learns the status of the lane and controls traf-
fic lights to reduce the waiting time for emergency vehicles.
Su et al. [102] designed a MARL framework that combines
emergency vehicle routing with traffic signal control and
minimizes travel times of both emergency vehicles and other
vehicles by measuring their introduced lane pressure.

Henderson et al. [202] highlighted the challenges faced
by the EMS systems, including issues like traffic congestion,
heterogeneous vehicles, and the growing volume of emer-
gency calls. Their review provided an overview of widely
utilized methods to address these challenges, including real-
time optimization, offline optimization, stochastic DP, and
ADP.

4.3.2 Outpatient care

Outpatient care, also known as ambulatory care [128, 203],
refers to a range of medical services provided without requir-
ing hospital admission. In an RL framework, one notable
characteristic of outpatient care is that an episode represent-
ing patient care generally involves one or multiple visits to
healthcare facilities within the same day. Typical examples
of RL applications for outpatient care include patients visit-
ing EDs, laboratories, surgical centers, or diagnostic centers.
In these settings, healthcare organizations aim to satisfy the
demands for services. Given the capacity limitations and
resource constraints in outpatient departments, optimization
is needed. In recent years, researchers have developed RL
and ADP approaches to address the challenges in outpa-
tient care. These approaches have been applied in a range
of applications to optimize resource allocation and improve
the efficiency of outpatient services. The main challenge
revolves around patient scheduling for outpatient resources
or facilities, with the underlying objective of selecting or pri-
oritizing patients effectively.

Patrick et al. [204] were among the first to employ ADP
for cost-effectively achieving wait-time targets in patient
scheduling for computerized tomography (CT) scanners.
Their approach involved making decisions on available
appointment slots to assign to waiting demand units, consid-
ering stochastic patient arrivals. Huang et al. [205] extended
the research by applying QL to a business process manage-
ment model for resource allocation, using radiology CT-scan
examination procedures as a case study. Lee et al. [210]
focused on detecting hepatocellular carcinoma within the
constraints of screening capacity. They employed greedy,
interval estimation, and Boltzmann exploration techniques
to maximize the number of detected cancers and gener-
ate risky ranks for patients. They further improved their
methodology by incorporating an MAB framework [91].
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Each bandit represented a POMDP, and one patient was
selected for screening in each decision epoch based on
health state estimations. Transition matrices for screened
and unscreened patients were constructed separately within
the clinical system. The proposed optimal policy resulted
in detecting 22% more early-stage cancer cases and sug-
gested outpatient decision-making with a truncated planning
horizon. Lee et al. [211] applied DQN to make assign-
ments of patients to different medical resources, including
X-ray or CT scanners and consultants. The state information
included patients’ demands and acuity levels. By adapting
DQN, their approach prioritized risky patients and mini-
mizedwaiting times, outperforming conventional scheduling
rules. Recently, Zhalechian et al. [92] made contributions
to research in the application of online learning and for
healthcare resource allocation. They introduced a novel
and generic framework that synergizes contextual learning
with online allocation mechanisms to enable personalized
decision-making under uncertainty. Besides the exploration-
exploitation trade-off, their proposed algorithms address
critical challenges, such as adversarial customer arrivals,
stochastic rewards and resource consumption, and delayed
feedback, with performance guarantees. An online advance
scheduling algorithm, which incorporates multiday book-
ing and no-show behavior, demonstrates strong performance
theoretically and empirically using real data from their col-
laborating health organization.

Astaraky et al. [209] presented a surgical scheduling prob-
lem, taking into account the availability of operating rooms
and recovery beds. Their objective was to minimize the com-
plexity and cost of bookings by determining the number of
advanced days for patients to book. They used a least-square
iteration method to fine-tune the approximation parameters
for state vectors, which include the master schedule, booking
slate, hospital census, and waiting demand. This approach
was compared to a FIFO scheduling policy, and their pro-
posedADPpolicy consistently outperformed theFIFOpolicy
in both high and low system capacity scenarios. Zhang et
al. [213] designed a recursive least-squares TD algorithm
to balance waiting times and the over-utilization of surgical
resources. Decisions were made on a weekly basis to select
which patients would be treated. The MDP state was defined
by patients’ groups, required specialties, maximum recom-
mendedwaiting times, and the number of associated patients.
The objectivewas tominimize surgery costs and delays. They
also incorporated structural analysis into theADP framework
to improve efficiency by generating a feasible action sub-
space. In more recent studies, Xu et al. [44] addressed the
backlog of elective surgeries caused by disruptions during
the pandemic. They applied a model-based piecewise decay-
ing ε-greedy RL approach with an auxiliary system [216]
to minimize the time required to clear the surgical back-
log and restore surgical activity. A queueing network system

consisting of a backlog queue and a newly arrived queue
was formulated as a countable-state MDP. Dynamic patient
scheduling for these two queues was implemented based on
patients’ clinical urgency. In the context of the pandemic,
D’Aeth et al. [215, 217] developed an optimal nationwide
prioritization scheme. They modeled each individual as a
DP considering each patient’s health status and aggregated
all individuals as a grouped weakly coupled DP with global
constraints (e.g., hospital beds, doctors, and nurses). Treat-
ment options, such as prioritizing specific disease patients,
were determined for each individual to maximize the overall
years of life gained nationwide.

In appointment scheduling, Lin et al. [206] utilized
aggregation and Monte Carlo simulation to determine slot
assignments for call-in patients with different no-show rates.
Feldman et al. [208] investigated preference-based health-
care plans and customized appointments. They moved from
a static model to a dynamic model that considers patients’
no-show behavior and proposed a heuristic solution. Dia-
mant et al. [212] formulated a multistage patient scheduling
problem as a rolling-horizonMDP. Their approach described
different types of patients undergoing specific care plans con-
sisting of a series of assessments or treatments. The state
provided patient-centered care plans, including no-shows
and patients who rescheduled, to maximize the number of
patients who could successfully complete all stages of treat-
ments. Patients’ arrivals, referrals, and ineligibility rateswere
modeled using statistical distributions, and dual variable
aggregation helped efficiently solve the large-scale linear
programming model. This work is built upon earlier research
on variable aggregation [218]. Schuetz et al. [207] considered
the costs of rejecting a request, no-shows, and overtime in
appointment scheduling. They used ADP to decide whether
to accept or reject a new request from a class-type combina-
tion (patient and examination classes). Agrawal et al. [214]
proposed an ADP approach that takes patients’ requests of
“dedicated," “flexible," and “urgent" (which must be met
on the same day) to determine appointment decisions. Their
objective was to maximize revenue and minimize physician
overtime and idle time while satisfying as much demand as
possible.

Table 6 provides a summary of research studies in outpa-
tient care discussed in this section.Among these applications,
ADP is one of the most popular methods for optimizing out-
patient service delivery. Thismodel-based approach has been
simulated and validated in clinics and hospitals of different
scales [204, 209] and has consistently outperformed heuristic
algorithms regarding total costs, while consuming less com-
puting time than DP. Different RL methods have also been
compared in the existing studies. For example, in Diamant
et al. [212], ADP outperformed A2C and greedy algorithms
regarding rewards for the featured patient group. These find-
ings suggest thatRLapproaches requiremore research efforts
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Table 6 Summary of applications in outpatient care

Study Year Method Application

Patrick et al. [204] 2008 ADP Diagnostic resource management

Huang et al. [205] 2011 QL Diagnostic resource management

Lin et al. [206] 2011 ADP Outpatient appointment scheduling

Schuetz et al. [207] 2012 ADP Capacity allocation

Feldman et al. [208] 2014 ADP Outpatient appointment scheduling

Astaraky et al. [209] 2015 ADP Surgery scheduling

Lee et al. [210] 2015 Boltzmann exploration Diagnostic resource management

Lee et al. [91] 2019 MAB Diagnostic resource management

Lee et al. [211] 2020 DQN Diagnostic resource management

Diamant et al. [212] 2021 ADP Outpatient appointment scheduling

Zhang et al. [213] 2021 TD Surgery scheduling

Zhalechian et al. [92] 2022 MAB Diagnostic resource management

Agrawal et al. [214] 2023 ADP Surgery scheduling

Xu et al. [44] 2023 Model-based RL Surgery scheduling

D’Aeth et al. [215] 2023 DP (fluid approximation) Care prioritization

to adapt to domain-specific settings in outpatient care [219].
Integrating model-based [44] and dimensionality reduction
methods [220] is expected to solve more specific and com-
plex problems. An interesting and important future direction
is accommodating dynamic changes in factors such as hos-
pital capacities, patient preferences, and doctor preferences
to enable real-time operations.

4.3.3 Inpatient care

Inpatient care primarily encompasses the management of
patient flow and related HOM that take place in inpatient
wards. This includes admitting and discharging patients,
transferring patients between specialtywards, and estimating
patient LOS. In recent years, researchers [221, 222] have con-
ducted extensive reviews of the latestmodeling and analytical
techniques for inpatient management. Our current review
also finds that solutions utilizing ADP and RL have demon-
strated substantial potential in enhancing inpatient care.

Samiedaluie et al. [223] developed a queue theory-based
ADP approach to manage stroke patients in the neurology
ward effectively. The state information involved the number
of patients with different severity levels and occupied beds.
The objectivewas tominimizewaiting and transferring costs,
taking into account the quality of life determined by dis-
charge destinations. The authors also incorporated a priority
cutoff policy during the experimental phase to facilitate the
implementation of the ADP solution. In a similar problem,
Dai et al. [30] modeled inpatient operations as a multi-pool
queueing system and combined fluid control with single-
pool approximation in their ADP approach. Their aim was

to minimize the costs associated with the inpatient overflow
policy. To tackle the computational challenge, they utilized
the basis function for the midnight time epoch to guide the
basis functions for other time epochs, when approximating
value functions using admission and discharge information.
Heydar et al. [227] formulated the patient-to-bed problem
to determine the next-best decision when the most appro-
priate ward was unavailable, considering random arrivals
and inpatient LOS. They employed linear approximations
supported by features related to patients and wards in their
ADPapproach,while usingphase-type distributions tomodel
the LOS. In general, ADP policies demonstrated a signif-
icant reduction in boarding time from ED and effectively
controlled total costs compared to popular existing strate-
gies. Braverman et al. [225] created an ADP solution based
on Stein’s method [230] and implemented it in an inpa-
tient overflow experiment (presented in Dai et al. [30]). The
suboptimality of the solution was established conceptually
using the Taylor equation. In another study, Liu et al. [228]
assessed their constrained linear bandits approach formanag-
ing inpatient overflow considering fairness. Following their
prior work on the application of MAB for outpatient [92],
Zhalechian et al. [122] proposed a data-driven algorithm for
a hospitals’ admission control problem where the patients’
lengths of stay are uncertain, given limited reusable inpa-
tient beds. Their data-driven admission control algorithm is
designed to adaptively learn the readmission risk of differ-
ent patients through batch learning with delayed feedback
and choose the best care unit placement for a patient based
on the observed information and the occupancy level of the
care units. The performancemeasure of this online algorithm
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is Bayesian regret, and the Bayesian regret bound is also
proved. With experiments on data from a healthcare sys-
tem, their results show an improved performance compared
to traditional admission control methods. Their paper high-
lights the potential benefits of using data-driven approaches
in healthcare and suggests that this insightful approach can
be further improved with enhanced data quality and volume
and algorithms.

In ICU management, Prasad et al. [224] proposed a QL
approach to optimize theweaning process ofmechanical ven-
tilation. They considered a 32-dimensional representation
of the patient state incorporating as many useful and easily
accessible features as possible. Actions to determinewhether
to have the patient off or on the ventilator and the level of
sedation to be administered over the next 10-minute interval
are determined at each stage. This innovative approach was
tested on real patient data and has shown promising results
inminimizing reintubation rates and regulating physiological
stability.

Shuvo et al. [186] conducted a study on determining the
optimal timing for increasing the number of beds in hospi-
tals for upgrade. They considered the current capacity and
the growth of the patient population, aiming to minimize
costs associated with untreated patients and the maintenance
of additional beds. With a comparison with myopic poli-
cies, their proposed A2C approach yielded the lowest costs.
Subsequently, they extended their research by incorporat-
ing multiple hospitals in different geographic regions and
including age information in the state space [73]. By utilizing
real-world data, they were able to improve the effectiveness
of their proposed approach using decision tree regression and
predict population growth using models [226].

RL has also been applied for staff scheduling prob-
lems for inpatient operations. Lazebnik [229] enhanced staff
schedules by employing agent-based simulation and policy
gradient approaches with the rmsprop algorithm [231]. This

approach demonstrated improved resilience to anomalies.
The study also revealed a second-order polynomial relation-
ship between successful treatment and budget.

Table 7 provides an overview of the applications of RL
in inpatient care. The most popular approaches include ADP
and A2C, which are well-suited for capturing the dynamic
nature of inpatient operations, such as modeling inpatient
flow. RL models often utilize queueing models to estimate
queue lengths andwaiting times,which are essential formak-
ing informed decisions regarding inpatient admission and
discharge. As we have reviewed in this subsection, the appli-
cations of RL for inpatient care have shown promise in recent
studies. The main objectives of these studies were to mini-
mize patient boarding, reduce the time patients spend in the
hospital, and avoid associated penalties while maintaining
the quality of care and improving inpatient outcomes. Accu-
rate estimation of patient arrivals and demands is crucial,
and various effective forecasting regressions and statistical
inferences can be utilized. Downstream optimization meth-
ods would also need to be designed so that estimation errors
are considered.However, selecting themost appropriate basis
function for ADP (or the approximator for RL) remains a
challenge, as it depends on the characteristics of the inpa-
tient operations. Therefore, conducting experimental trials
and comparisons is necessary to enhance the RL approaches’
effectiveness. Future research could combine inpatient, out-
patient, and other hospital processes into a more complex
interactive system to guide better decision-making. Addi-
tionally, incorporating human behaviors and preferences into
modeling inpatient operations, as done in outpatient care
studies, could be valuable.

4.3.4 Residential care

Residential care involves providing personalized healthcare
services to patients within the comfort of their own homes

Table 7 Summary of applications in inpatient care

Study Year Method Application

Samiedaluie et al. [223] 2017 ADP (queue theory) Inpatient flow management

Prasad et al. [224] 2017 QL Weaning of mechanical ventilation in ICU

Dai et al. [30] 2019 ADP (fluid control, single-pool approximation) Inpatient flow management

Braverman et al. [225] 2020 ADP (Taylor expansion) Inpatient flow management

Shuvo et al. [186] 2020 A2C Hospital capacity expansion

Shuvo et al. [73] 2021 A2C, decision tree Hospital capacity expansion

Kabir et al. [226] 2021 A2C (LSTM) Hospital capacity expansion

Heydar et al. [227] 2021 ADP Inpatient flow management

Liu et al. [228] 2021 MAB Inpatient flow management

Lazebnik [229] 2023 Policy-based RL Hospital staff scheduling

Zhalechian et al. [122] 2023 MAB Inpatient flow management
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[232]. This approach enables individuals to maintain their
independence and enhance their quality of life [233].

Cire and Diamant [232] developed an ADP approach to
optimize the assignment of health practitioners (HPs) to
patients. They compared four policies and found that the
models based on fluid approximations [234] outperformed
those that utilized heuristics. Their methodology demon-
strated superior performance compared to commonly used
constrained versions of VRP when accounting for future
uncertainty. Their framework involved deciding whether to
accept or reject a patient referral and assigning an HP to
the patient if the decision is accepted while accounting for
resources, care continuity, and time windows. The policy for
arranging HPs working in a small set of adjacent regions
aimed tomaximize the expected long-termcost savingswhile
minimizing the number of rejected referrals. In another study,
Salehi et al. [235] combined RL with a functional resonance
analysis method (FRAM) to explore complex operations.
They deployed an RL agent to examine 38 functions (such
as “access the patient," “go home without services," “invite
a caregiver," etc.) and incentivized it to select the optimal
functional routes based on the patient’s health improvement.

In recent years, the Internet of Medical Things (IoMT)
has been increasingly utilized in residential care [236, 237].
IoMT refers to a network that integratesmedical devices, sen-
sors, learning algorithms, and mobile health technologies.
Through IoMT, healthcare institutes can collect real-time
health information, provide remote services, and provide
personalized interfaces [238, 239]. To improve the quality
of service (QoS) of IoMT facilities, a number of RL-based
technologies, including blockchain [240], cloud systems
[241], and fog computing [242], have been developed in
the research community of telecommunications. RL-based
wearable devices can also provide customized support for
patients’ rehabilitation [233, 243]. By reminding or alerting
patients in their daily lives, RL assistance is expected to guar-
antee high-quality residential care for impaired patients and
reduce the burden on their caregivers [244]. In the OR com-
munity, queueing theory has been utilized to optimize the
matching process between patients and medical resources,
such as specialists, in cloud healthcare systems. The objec-
tive was to minimize the total medical costs [245]. Tiwari
et al. [246] utilized a combination of MARL and Federated
Learning [247] to minimize the latency of an IoMT system.
Seid et al. [248] used a similar learning method to minimize
the energy consumption of a drone-enabled healthcare sys-
tem. Chen et al. [249] optimized task offloading in wireless
body area networks using aDDPG-based strategy andmobile
edge computing servers for IoMT.

Based on our review, we observe the number of stud-
ies with the deployment of model-based ADP and MARP

techniques in residential care [232, 245, 246, 248]. These
studies are also of interest to other disciplines, such as
telecommunications and electronics. The rapidly growing
and multi-disciplinary field of IoMT is expected to rev-
olutionize residential care by facilitating remote patient
monitoring, personalized medical recommendations, and the
applications of OR for HOM.

4.4 Medical treatments

It is important to distinguish HOM from some other sim-
ilar areas where RL has also been widely used in recent
years. As stated in Sect. 3, our review analyzes existingHOM
research as described in the healthcare ecosystemmap,where
non-HOM research studies focusing onmedical imaging and
medical robotics for medical treatments are excluded. These
excluded studies often involve advanced computer vision and
robotics techniques that may differ significantly from the use
of ADP and RL in HOM. For more comprehensive reviews
focusing on medical treatments, we refer the reader to [4,
250–252].

Another area that is related to, yet different from HOM, is
dynamic treatment regimes, which pertain to detailed treat-
ment strategies for patients in hospitals, healthcare facilities,
and patient homes [253]. RL-based clinical decision-making
has proven beneficial in assisting medical staff with tasks
such as determining dosing regimes for chemotherapy in
clinical trials [254], split liver transplantation [255], treat-
ing Parkinson’s disease [243, 256], diagnosing skin cancer
[257], and managing glycemic control in Type 2 diabetes
[258]. Fatemi et al. [259] usedDQN to identifymedical dead-
ends of patients’ sequential treatments and avoid risky states
for treatment security. Bennett et al. [260] demonstrated the
benefits of their proximal RL approach in a POMDP setting
for sepsis management [261].

Under the umbrella of medical decision-making, dynamic
treatment regimes are havingmore andmoreRLapplications.
This section is only intended to exemplify a few insightful
studies, as there are still numerous explorations and posi-
tive outcomes coming in this field. For more comprehensive
reviews on this topic, we refer the reader to [5, 39, 262].

5 Trends and directions

Through our scoping review, we have collected statistics to
visualize the overall trend of RL applications in HOM. In
this section, a critical discussion of the current development
that covers the performance of various RL methods for cor-
responding HOM problems is presented. Additionally, we
address the challenges faced in this field and discuss insight-
ful future directions for RL applications in HOM.
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Fig. 1 Number of publications
related to RL for HOM by year

5.1 Statistics

Fig. 1 presents the trend of the number of publications related
to RL applications in HOM. The earliest related studies date
back to 2008. These early studies initially utilized meth-
ods from optimal control and DP, which align with the RL
paradigm. The number of publications remained steady at
around one to two studies per year until 2016 when RL algo-
rithms demonstrated mastery in the game of Go [263]. In
2017, there was a peak in the use of RL in mesolevel and
microlevel research thrusts. Since then, there has been expo-
nential growth in publications, which has continued until
the time of this review. This suggests that RL is becom-
ing increasingly established and effective in solving HOM
problems.

In terms of the number of publications at each division
level, we reviewed 24, 38, and 55 papers under macrolevel,
mesolevel, and microlevel research thrusts, respectively. The
rapid growth of publications under the marcolevel research
thrusts started in 2019, which could be attributed to the
COVID-19 pandemic. Researchers actively explored the
potential of RL in optimizing macrolevel policies associated
with healthcare to manage this pandemic better. Similarly,
mesolevel applications, which are mostly related to resource
allocation and supply chain management, experienced a sig-
nificant increase after 2019. It has been proven that RL can
powerfully assist decision-making during pandemics in prac-
tice [88].

Our review also reveals that the applications of RL under
the microlevel research thrusts have a longer inception

period. In addition to the rapid growth observed after 2019,
RL applications under the microlevel research thrusts have
been consistently developed every year. The majority of
these applications utilize ADP to solve the associated MDP,
as illustrated in Fig. 2. This is because applications under
the microlevel research thrusts, such as surgical schedul-
ing, typically have explicit MDP formulations that allow for
the derivation of analytical structures. These characteristics
also make ADP a suitable approach. With the advancements
in neural networks and deep learning, both ADP and DRL
have become viable options for problems under microlevel
research thrusts in HOM.

Figures 2 and 3 offer further insights into the popularity
of RL methods in different HOM applications.

Figure2 presents the mapping from HOM applications
to RL learning methods. Among the 62 studies reviewed,
value-based TD, QL, and DQN are the most popular choices.
These methods are particularly prevalent in applications
such as COVID-19 control policies, humanitarian logistics,
and resource allocation in epidemics. Additionally, more
than half of the reviewed applications for residential care
implemented QL or DQN. On the other hand, policy-based
methods are widely dispersed across all three levels of HOM
applications.

Figure3 presents the mapping from applications to learn-
ing approximation methods, which aligns with the results
illustrated in Fig. 2. Q table and DNN approximators account
for the largest proportion of applications, totaling 73 studies.
These approximators correspond to QL and DQN learn-
ing methods, respectively. Regression approximators are
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Fig. 2 Mapping from
applications to learning methods

extensively utilized in EMSs, outpatient care, and inpatient
care under the microlevel research thrusts. This is because
regression approximators provide an efficient approximation
of the value functions of ADP, as shown in Fig. 2. Bayesian
inference is employed to estimate the values of actions in
MAB frameworks and guide decision-making.

Given that the research on RL for HOM falls within the
fields of OR and CS, it is interesting to investigate the evo-
lution of methodologies, as discussed in Sect. 2. Figure4
illustrates this evolution. OR researchers typically develop
ADP methods, while classic RL methods such as TD and
MAB focus on learning mechanisms rather than neural net-
works. On the other hand, CS researchers often use DRL
methods like DQN and AC with neural networks.

Our analysis reveals that ADP and classic RL methods
have been applied for over a decade, with a steady but small
number ofADPstudies eachyear.ClassicRLmethods gained
popularity during the COVID-19 pandemic. This trend is
consistent with DRL applications, which were first intro-
duced as early as 2017 [219]. Prior to 2017, the amount of
research on ADP and classic RL in HOM remained steady,
where the two approaches were often used together. How-
ever, since then, classic RL and DRL methods have become
more dominant, surpassing ADP, especially after 2019.

5.2 Current development

Based on the discussions in Sects. 4 and 5.1, we summarize
the current development of effective RL methods in HOM,
referring to the key RL settings presented in Sect. 2.3.

One of the most critical discussions is the effectiveness of
model-based and model-free RL in HOM.We have observed
that model-free RL has been widely applied to macrolevel
research thrust, whilemodel-basedmethods aremore applied
to microlevel applications. At the macrolevel, the system
models usually utilize complicated compartmental models
in epidemiology governed by ordinary differential equations
[153]. Most reviewed studies tend to rely on the power of
“black box" neural networks to learn the system model and
find suboptimal policies. This idea is like using complex
methods to solve complex problems. Although satisfying
results can be produced after sufficient iterations of RL’s
experiments and simulations, robustness and interpretabil-
ity would also be essential for real-world deployments. At
the microlevel, the system models usually refer to queue-
ing models [30, 44] or bandit problems [92, 122] under
outpatient or inpatient scenarios, where strong theoretical
supports are established. In this way, model-based RL can
leverage the structures of these models to derive properties
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Fig. 3 Mapping from
applications to approximators

of convergence, transitions, or optimal solutions. The robust-
ness, reliability, and interpretability can thus be strong. At
the mesolevel, which is in between the macrolevel and
microlevel in terms of problem scales and complexity, we

have identified some studies that are pursuing model-based
robust solutions [177] and realizing interpretable real-world
deployments [88]. It emphasizes the importance of inter-
pretable model-based methods when we are transferring

Fig. 4 Evolution of RL
methodologies used in HOM
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research to practice. Therefore, model-free algorithms can
be suitable for complex macrolevel HOM problems, where
explicit models are not fully available. The success of model-
basedmethods in microlevel applications inspires us to make
good use of system models in optimizing decision-making
policies. If the systemmodel of the HOM problem is reason-
ably accurate and theoretically well-defined, model-based
RL could be a suitable choice.

The choice of tabular or non-tabular, value-based or
policy-based methods for HOM depends on the state and
action spaces of specific problems. Given the limitation on
problem scales, tabular methods in HOM have only been
effectively applied to some routing problems in humanitar-
ian logistics [47, 49]. They provide theoretical foundations
for more advanced non-tabular methods and always serve as
the benchmark for other RL algorithms’ evaluation in HOM.
Non-tabular methods would be required for addressing prob-
lems with high-dimensional state space and tractable action
space, such as determining macrolevel discrete epidemic
controls [144, 147]. Figure2 also indicates that value-based
non-tabular ADP and DQN have been widely applied to
HOM applications. If the action space is huge or continuous,
such as mesolevel inventory decisions [75, 193], pure value-
based methods may fail and policy-based methods (e.g., the
AC family) are more appropriate.

Given the fact thatmost of HOM’s systemmodels are built
with simulation techniques, both on-policy and off-policy
methods were consistently applied in every research thrust
of HOM. As discussed in Sect. 2.3, off-policy methods can
be used with existing expert experiences via imitation learn-
ing [101], by which the convergence issue is expected to be
solved effectively. Further, online algorithms under the realm
of MAB are particularly suitable for HOM with dynamic
environments, where uncertainty is a main concern. Suc-
cessful applications include mesolevel resource allocation
in epidemics [88, 90] and microlevel resource matching in
outpatient [91, 92] and inpatient units [122, 228]. Online
learning’s adaptability and interpretability are strengths for
solving practical applications [88]. If sample paths for learn-
ing are lacking in someHOMapplications, offline algorithms
with experience replay can sufficiently learn from the limited
samples and work out a stable policy. Typical RL methods,
like DQN and DDPG, usually combine online and offline
methods to achieve adaptability and stability simultaneously.
These methods have been utilized in finding macrolevel
mobility restriction policy under pandemics, along with the
SIHR model [145].

Although the purpose of developing RL approaches is
to solve large-scale applications, practical deployment of
RL in real-world HOM problems remains a challenge.
Most reviewed studies tended to utilize real-world data and
simulation-based experiments to benchmarkother approaches
or real-world experts’ policies. However, only a small num-

ber of the studies solved large-scale problems in practice.
Under the macrolevel research thrusts, the studies focus on
the development of RL for optimal healthcare policies and
strategies. In the studies, RL has a superior performance to
human experts’ decisions. These studies have built large-
scale simulations (e.g., modeling populations of millions of
people [121, 130, 139]) and considered high-dimensional
state space [121, 133, 134, 146] and action space [134,
146] (e.g., as large as 2.16 × 1059 state-action pairs as in
[133]). Our review has not identified any practical implemen-
tations of healthcare strategies (e.g., lockdown or mobility
restriction policies) that solely rely on RL approaches. These
macrolevel healthcare strategies are vital to massive stake-
holders, and RL solutions are expected to provide references
and assistance for the government and decision-makers.
Under the mesolevel research thrusts, Bastani et al. [88]
have deployed their MAB framework to test kit allocations
across 40 Greek borders during pandemics in the summer
of 2020. It is an astoundingly impressive large-scale, nation-
wide, real-world RL in HOM application. The proposed RL
approach utilized at most 54,614 passenger locator forms
a day, utilizing as many as 185,280 features (i.e., the state
space in their problem). Under microlevel research thrusts,
D’Aeth et al. [215, 217] optimized a large-scale care prior-
itization scheme that involves 10 million patients in a case
study of England. Their proposed weakly coupled DP had
around1510,000,000 states and610,000,000 actions.Notably, the
authors highlighted the future improvements for real-world
implementations.

5.3 Challenges and directions

Based on our scoping review of RL methods in HOM appli-
cations, summarized statistics, and current developments, we
have identified key insights into the use of RL inHOM.These
insights are built upon the advantages of RL in efficiently
solving complicated HOM optimization problems.

Complexity HOM applications can be complex. For instance,
interactions at the macrolevel and mesolevel, and the inte-
gration of emergency care, outpatient care, and inpatient
care at the microlevel. Advanced RL algorithms with high-
dimensional representations make it possible to solve these
complex systems. MARL is a promising framework incor-
porating multiple homogeneous or heterogeneous RL agents
to achieve more precise and complex simulations. MARL
has been successfully applied in a number of disaster and
emergency response applications in HOM [49, 50, 101, 102,
105, 120, 146, 149, 170, 201]. Another effective model-
ing approach for complex systems in HOM is the POMDP.
In HOM applications, states are often partially observable,
and observations can be influenced by unobserved factors
such as confounding variables and biased estimations [48,
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49, 131]. Therefore, sophisticated algorithms, such as RL
with causal inference, are anticipated to address the com-
plexities inherent in the POMDP setting effectively [260].
Under macrolevel and mesolevel research thrusts, hierarchi-
cal RL has demonstrated its advantage in efficiently learning
and solving large-scale problems [89, 105, 150, 172]. The
reviewed three levels are interdependent and need to be con-
sidered in concert for integrated care to provide a coordinated
and comprehensive healthcare delivery system. Advanced
RL algorithms, which efficiently capture the patterns of the
complex system with HOM data, will be a strong thrust in
this campaign.

Adaptability Given that the HOM applications are always
dynamic, the need for flexible and adaptable RL algorithms
that can capture the dynamic characteristics of problems
and respond to emergency events promptly should be high-
lighted. Under macrolevel and mesolevel research thrusts,
researchers have trained DRL algorithms on various infec-
tious diseases at different stages to ensure their generality
[74, 120]. MAB algorithms, known for their scalability, have
demonstrated success in real-world epidemic resource allo-
cation [88] andhospital resourcematching [92, 122].Another
potential direction is the integration of transfer learning [264]
in the RL framework. This approach allows for the utilization
of previously learnedHOMknowledge fromneural networks
to handle future similar tasks more effectively. These find-
ings indicate that RLmethodswithmore flexible adaptability
will be promising in HOM.

Robustness In the context of HOM, where we need to quan-
tify somemetrics related to human lives, robustness is always
an essential topic. The estimated HOM-related metrics are
typically used as inputs into downstream optimization and
decision-making [265]. Due to the uncertainties associated
with these estimations, robust optimization [177, 266] can
be used to ensure the worst-case performance. However,
most RL approaches do not provide theoretical guaran-
tees of the quality of the solutions. To address this, more
advanced robust RL methods [74, 120, 141, 187, 267, 268]
propelled by control theory show great promise. Safe RL
[268] incorporates constraints in the objective function or
exploration process and is considered capable of achiev-
ing robustness under uncertainty. Another approach is to
develop distributionally robust optimization [269] for MDP
and benchmark it with RLmethods. Optimization paradigms
may also involve constraints (e.g., chance-constrained pro-
gramming and threshold policies [270, 271]) to enhance the
robustness of the solutions. Furthermore, there are combina-
tions of optimization and learning [272–274] that accelerate
exact combinatorial optimization via RL. In HOM, the need

for robustness is consistent with the need for adaptability. It
means we need to seek optimal solutions under dynamic and
uncertain HOM environments.

Interpretability Communicating effective decisions to human
decision-makers is vital in HOM. However, there is a
dilemma between using “black box" neural networks [275] to
solve complex systems and achieving good interpretability.
As a result, some choices, such as MAB algorithms without
neural networks, are of greater popularity. These methods
approximate value functions using Bayesian or frequentist
approaches, providing a level of interpretability. The preva-
lence of ADP in microlevel applications also highlights the
importance of model-based RL, which allows for a deeper
understanding of the underlying environments. Multiple
selectedpolicy explanation approaches in otherfields (mostly
visual tasks), such as contrasting rollouts [276], determin-
ing critical states [277], utilizing attention mechanisms
[278], programmatically interpretable RL [279], explaining
through intended outcomes [280], and distal explanations
with causal lens [281], can be extended to HOM. These
approaches can be integrated into distillation and mimick-
ing paradigms, as discussed in a comprehensive explainable
DRL review [165].Additionally, post hoc techniques can par-
tially explain and inspect “black box"models inDRL, such as
the Shapley Additive Explanations [165, 282–284]. Explor-
ing interpretable analysis in DRL will be an interesting and
impactful direction for enhancing the practical implementa-
tion of decisions in HOM.

Validation Validating the optimal results obtained from RL
before deployment in HOM can be a challenging task.
Designing an effective measurement of rewards and bench-
marking them is not straightforward. One approach is to
compare the RL results with exact optimization methods
and expert policies. Expert policies, which can serve as
“supervisors" in imitation learning [101, 107], can guide
and accelerate RL training while also aiding in construct-
ing rewards [285]. In addition, RL performance relies on
off-policy evaluation methods [286] as a means of valida-
tion, particularly in critical healthcare applications. Causal
inference techniques can be used to validate RL decisions
[88, 260]. The combination of RL and causal inference in
off-policy evaluation has shown great potential [260, 287].
Validation is also closely related to the interpretability of
RL [165]. Explicit and interpretable models, as well as
model-based methods, have advantages in validating their
results. This is because the optimality gap can be theoreti-
cally derived, providing a solid foundation for validating the
performance of these methods.
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RL from human feedback Recently, trendy large language
models (LLMs) have highlighted the importance of RLswith
human advice [288, 289]. Under the umbrella of human-in-
the-loop RL [290], these methods can perform tasks more
aligned with human goals by preference-based RL [291]
and achieve effective imitation learning [107] or curriculum
learning [111]. If the data from human advice are of high
quality, the training can be efficient even without the need for
massive samples [292]. The interaction between humans and
RL can be at different levels depending on who dominates
the control of the learning process [293]. RL from human
feedback (RLHF) can influence and be applied to every
aspect of HOM. The critical states, policies, and rewards
of HOM applications can be shaped according to human
advice. Critical constraints in HOM summarized by human
experts can be integrated into safe RL [268]. The robust-
ness and explorations of RL in HOM can be improved by
handling uncertainty and trust regions [294]. RLHF can also
substantially help promote the interpretability and validation
of RL in HOM [165, 293]. The concept of human-in-the-
loop and interoperability are tightly coupled with each other.
With RLHF, humans are able to have greater understanding
and control over the generated RL policies. Therefore, it is
a promising direction for better practical deployment of RL
policy in HOM.

Real-world implementations As we have investigated in
Sect. 5.2, RL’s limited successful real-world applications in
HOM can be attributed to the challenges abovementioned.
Modern RL methods have advantages in advancing complex
and large-scale HOM applications. While, strong adapt-
ability and robustness are pillars of effective modern RL
methods, especially, when tackling emergent practical issues
and ensuring the worst-scenario health outcomes. In terms
of real-world implementations, interpretability is necessary
to explain the optimal policies generated for human stake-
holders’ understanding. Rigorous theory and validation of
the methodologies and policies are also essential. Therefore,
model-based methods with strong interpretability and theo-
retical performance guarantees are promising. Furthermore,
the use of RL in HOM is subject to strict regulatory, ethi-
cal, and safety requirements due to the importance of patient
health outcomes. RL solutions withmore human interactions
are expected to make a difference. Only if the challenges of
adaptability, robustness, interpretability, and validation are
adequately addressed can modern RL methods be imple-
mented in the real world.

6 Conclusion

RL is an approach that builds upon MDP for sequential
decision-making and aims to address the challenges posed by

the curse of dimensionality. Our paper begins with a tutorial
on RL methodologies, ranging fromMDP to ADP and DRL,
followed by a comprehensive scoping review. Our review
provides a detailed analysis of RL methodologies and their
applications in different domains of HOM, which are clas-
sified into macrolevel, mesolevel, and microlevel research
thrusts. We analyze the performance of these RLmethodolo-
gies in HOM. Given the significant impact of the COVID-19
pandemic on the world in recent years, our paper also pro-
vides a better understanding of the applications of RL in
HOM and how these approaches can improve preparedness
for future emergencies. For example, RL has already been
implemented in large-scale COVID-19 test kit allocation on
Greek borders [88]. Finally, the paper presents statistics on
trends, recent developments, and challenges, providing valu-
able insights into the current state of the field and potential
avenues for future research.

Based on our review,we provide the answer to the research
questions in Sect. 1:

1. RL methods show great potential in solving complex
HOM problems that involve MDP formulations and high
dimensionality. Traditional optimization methods often
struggle to find exact solutions for such problems in an
acceptable time frame,while simple heuristic approaches
may result in suboptimal solutions. In this review, RL
algorithms have been compared to various benchmarks,
includingMILP, heuristicmethods, and real-world expert
policies. The results demonstrate that RL can achieve
good performance in terms of both solution effectiveness
and computational efficiency. Although RL training time
can be long as problem scales grow, RL has the ability to
learn problem-specific features during training and can
be transferred to similar situations through transfer learn-
ing. Additionally, imitation learning can provide a “warm
start" for RL training. These characteristics and tech-
niquesmakeRL a suitable approach for tackling complex
HOM problems.

2. Our comprehensive investigation of RL methods applied
in HOM reveals that ADP and DRL approaches are
among the most popular methods. However, the choice
of the most suitable and effective RL methods depends
on the specific HOM problems at hand. For highly com-
plex HOM models, neural network approximators are
expected to be effective in achieving desired outcomes.
Conversely,when amodel has an explicit planning frame-
work, model-based methods can enhance robustness,
interpretability, and validation in the face of uncer-
tainty. According to our review, it is challenging to
simultaneously achieve highly complex RL with “black
box" approximators and model-based RL with strong
interpretability and theoretical performance guarantee.
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Interpretable RL in HOM is, therefore, one of the most
promising future directions.

3. In Sect. 5, we have discussed the recent developments,
challenges, and potential future directions for RL in
HOM. Since the RL’s high-dimensional representation
can partly address the complexity in HOM applications,
it is believed that developing RL for HOM purposes
with a focus on developing adaptability, robustness, inter-
pretability, validation, and RLHF holds promise. These
five directions will enable better preparation and real-
world large-scale solutions for future HOM problems.

In conclusion, RL for HOM is an emerging field with
significant potential. The effective integration of RLmethod-
ologies and application modeling techniques is crucial for
achieving optimal results. The synergy between these two
phases holds great promise for advancing the field of HOM.
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