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ARTICLE INFO ABSTRACT
Editor: Susanne Brander COy-driven acidification of freshwater ecosystems is an increasing problem that could impact aquatic life in the
- 5
future. Despite their physiological tolerance to naturally fluctuating pH, freshwater fishes exhibit behavioural
Keywords: and neurological changes in response to acidification. To determine the molecular responses associated with
RNA

these anticipated impairments for the near-future, we examined the behavioural and transcriptomic responses of
zebrafish (Danio rerio) to acidification, focusing on the brain and gills, which mediate behaviour and acid-base
Novelty regulation. Adult zebrafish were exposed to control (~ 500 patm) and elevated CO3 (~1000 patm) for five days
Stress and submitted to Open Field and Novel Object Approach tests, revealing a decrease in anxiety-like behaviour
Behavioural assay under elevated CO;. Acidification caused differential expression of genes involved in cytoskeletal organization,
cellular transport, immunity, and the visual system in the brain, indicative of brain cell rearrangements.
Conversely, there was no differential gene expression observed in the gills. However, the co-expression of genes
involved in immune response and oxidoreduction, which are negatively correlated with elevated pCO5, along
with a reduction in anxiety-like behaviour indicate a lower level of oxidative stress. Our findings indicate that
zebrafish can perform acid-base regulation despite acidity changes predicted for the end of the century, but
reveal that physiological tolerance to acidification does not confer resistance to neurological and behavioural
impairments caused by rapid climate change.
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J.M. Sourisse et al.
1. Introduction

Anthropogenic activity increases carbon dioxide (CO3) levels,
driving ocean but also freshwater acidification that affect aquatic eco-
systems on many levels (Dupont and Portner, 2013; Hasler et al., 2018;
Thomas et al., 2022). Sensory, neurological, and behavioural effects of
ocean acidification have been intensively reported for marine fish
(Hamilton et al., 2023; Porteus et al., 2021; Tsang et al., 2020) with
notable findings related to anxiety (Hamilton et al., 2014). However,
freshwater fishes also show behavioural alterations (Hasler et al., 2016;
Tix et al.,, 2017), and changes in anxiety-like behaviours such as
increased or reduced thigmotaxis (Hamilton et al., 2021; Ou et al., 2015)
with COs-induced acidification. Such behavioural impairments occur
despite freshwater fish being considered “tolerant” to acidification, as
fish can buffer their internal pH in acidic waters through acid-base
regulation in the gills (Freda and Mcdonald, 1988; Heisler, 1986). It is
freshwater fish that more regularly experience wider pH ranges and
higher partial pressures of CO» (pCO2) than marine fishes in the wild
(Cole et al., 1994; Raymond et al., 2013). Since freshwater fishes are
behaviourally susceptible to CO,-driven acidification (Munday et al.,
2019), it is critical to identify the underlying mechanisms altering the
brain and behaviour of freshwater fishes under predicted CO,
conditions.

Yet, we still lack understanding of the processes that impair behav-
iours of freshwater fishes when they experience elevated COy condi-
tions. Freshwater ecological studies focused on behavioural changes
caused by stronger acidification driven by acid rain or acid pollution
(Jones et al., 1985; Patrick et al., 1981; Schindler, 1988). Chemical
disruption of external cues coupled with damage to sensory organs was
pointed as likely mechanisms underlying observed behavioural changes
caused by such environmental conditions (Kitamuira and Ikuta, 2001;
Leduc et al., 2009). On the other hand, potential mechanisms underlying
behavioural impairments caused by milder, COy-driven acidification
have been investigated in marine fishes mostly (Hamilton et al., 2014).
One hypothesis to explain how behaviour can be altered by ocean
acidification is the GABA model, referring to the functional reversal of
inhibitory y-aminobutyric acid (GABA) neurotransmission in the brain
(Nilsson et al., 2012) that may self-amplify through changes in gene
expression (Schunter et al., 2019). On the one hand, the GABA model
may extend to freshwater systems, as reversal of acidification-caused
changes in anxiety was observed following treatment with the GABA
antagonist gabazine in the pink salmon during its freshwater stage (Ou
et al., 2015). On the contrary, it is argued that marine and freshwater
fish may be behaviourally sensitive to acidification through distinct
molecular mechanisms (Leduc et al., 2013) such as alterations in the
functioning of glycine receptors, in the modulation of potassium chan-
nels in brain cells, or changes of sensitivity in peripheral neurons
(Tresguerres and Hamilton, 2017). Finally, as increasing acidification
impairs the behaviour in a non-linear manner as found in zebrafish
(Hamilton et al., 2021), it is likely that a variety of molecular processes
are affected when fish experience elevated CO5 conditions (Heuer et al.,
2019), stressing the need to understand what molecular mechanisms
triggered by COy-driven acidification in freshwater systems modify fish
behaviour.

One suitable model to accurately depict the molecular state of
freshwater fish as they perform specific behaviours is the zebrafish. As a
popular neurological model species ever since the 1960s (Mrinalini
et al., 2023), standardized protocols to measure behaviour in zebrafish
are easy to use in the context of environmental research (Stegeman et al.,
2010), allowing the observation of behavioural responses under pre-
dicted COy conditions experimentally. Additionally, its annotated
genome allows the identification of genes expressed in neural circuits
and involved in behaviour (Norton and Bally-Cuif, 2010), which
expression may be sensitive to acidification.

In our study, we aimed to investigate the molecular mechanisms
underlying behaviours impacted by near-future predicted aquatic
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acidification in the zebrafish Danio rerio as they underwent standard
behavioural assays of anxiety-like behaviours, exploring an open field
arena and approaching a novel object. We examined the behavioural
responses and gene expression changes caused by acidification in two
key tissues of the organism: the gills, where acid-base regulation is
mainly performed, and the brain that controls behaviour. We hypothe-
sized that, as previously reported by Hamilton et al. (2021), acidification
alters anxiety-like behaviours in zebrafish. We also expected to see dif-
ferences in gene expression in the brain as the behaviour is altered, but
not in the gills which perform acid-base regulation at variable levels of
CO», already experienced by freshwater fishes naturally. By character-
izing tissue-specific transcriptomic profiles in addition to behavioural
changes in response to acidification, we aimed to determine how future
predicted levels of CO, will affect brain and gill molecular states of
zebrafish, which could ultimately lead to behavioural alterations.

2. Methods
2.1. Animals housing and exposure to elevated CO»

Wild-type zebrafish (Danio rerio; AB strain) were reared in the School
of Biological Sciences (The University of Hong Kong) aquarium facilities
until the age of four months. Fish (8 to 10 per tank) were kept in
recirculating aerated tanks (80 x 37 x 32 cm) under a 14/10 h light-
dark cycle. The water was maintained at 28 °C with temperature re-
cord and adjustment every 60 s with heaters (Schego) and a STC-1000
Thermostat (Elitech). Oxygen levels were measured every two days
using a WP91 dissolved oxygen-mV meter (TPS) and kept above 90 %
levels of saturation throughout the experiment. Fish were fed with
TetraMin food daily. Nitrate levels were measured every five days using
a HI97728 nitrate photometer (Hanna Instruments). At four months old,
control groups of zebrafish (n = 13 fish in total) were reared in tanks (80
x 37 x 32 cm, n = 3) bubbled with air while treatment groups (n = 14
fish in total) were reared in tanks (80 x 37 x 32 cm, n = 3) bubbled with
elevated CO, gas from two CO; cylinders, simulating projections for
atmospheric CO; levels by the end of the century at approximately 1000
patm (Portner et al., 2019). The fish were kept in experimental condi-
tions for five days, a necessary period to induce CO»-driven behavioural
changes (Chivers et al., 2014; Lai et al., 2017; Nilsson et al., 2012). The
pH (NBS) was measured daily with a Seven2Go pH meter (Meter
Toledo), and alkalinity was measured every two days using a G20S
Compact potentiometric titrator (Mettler Toledo). The realized partial
pressure of COy (pCOz) was calculated from the pH and alkalinity
measurements using CO2SYS v3.0 (Pierrot et al., 2011), using the
freshwater set of constants K1, K2 from Millero (1979) and the NBS pH
scale. The pCO> in control conditions was on average 502.87 + 33.92
patm, whereas in treatment conditions it was 1077.37 + 101 patm
(Table S1, Fig. S1). The pH in control conditions was on average 8.27 +
0.04 whereas in treatment conditions it was 7.95 + 0.01.

This study was carried out in approval of the Committee on the Use of
Live Animals in Teaching and Research (CULATR) of the University of
Hong Kong (#6084-22), all methods were performed in accordance
with the CULATR guidelines and regulations as well as the ARRIVE
guidelines.

2.2. Behavioural assays and analyses

To assess the effect of acidification on zebrafish behaviours, a total of
27 fish were behaviourally tested in white, opaque circular testing
arenas (¢ = 24.5 cm; h = 5 cm of water) illuminated from below,
following the methodology of a previous study (Hamilton et al., 2021).
The first behavioural test was the Open Field test: it is used to measure
anxiety levels, which are higher if more time is spent near the wall of the
new arena, and are known to be modulated by environmental factors
(Prut and Belzung, 2003). The test started immediately after the ani-
mal’s introduction into the arena: each fish was initially placed in the



J.M. Sourisse et al.

arena centre and left to explore the arena for 10 min, during which
locomotion was recorded with a tripod mounted Canon EOS M50
camera placed above the testing arena. Directly following the first test,
the second behavioural test called Novel Object Approach test started. It
is also used to assess animals’ response to novel situations notably in
fish, which is interpreted as higher curiosity or boldness with increasing
time spent near a never-seen-before object and higher anxiety with
decreasing time near the object. This response can also be influenced by
extrinsic factors (Dean et al., 2021; Hamilton et al., 2017). A multi-
coloured Lego figurine was placed in the arena centre and the
response was filmed for another 10 min (Fig. 1a). Every three assays,
water was changed in the arena to prevent cortisol build-up (Fontana
etal., 2021). Control water was used, as previous research demonstrated
that high pCO; acclimatized fish would not change behaviour following
short-term exposure to control pCO, (Munday et al., 2016). Details of
experimental conditions of behavioural experiments are summarized in
Table S2.

Zebrafish movement was tracked and quantified in each video using
the ToxTrac software (Rodriguez et al., 2018). Trajectories in which the
fish visibility rate dropped to <95 % for the Open Field test and 81 % for
the Novel Object Approach test of all frames were discarded. In each
behavioural test, average speed, exploration rate and total distance
travelled was measured (Tables S3 & S4). The arena was divided into
three zones: the inner zone ranging from the centre (0 mm) to 1/3rd of
the arena diameter (radius = 40.8 mm), the transition zone ranging from
1/3rd to 2/3rd (radius = 81.6 mm) of the diameter and the outer zone,
also called thigmotaxis zone, ranging from 2/3rd to the outer arena limit
(radius = 122.5 mm; Fig. 1b). For each tracked fish, the proportion of
the total time (%) spent in each zone was measured (Tables S3 & S4).
Regarding the Novel Object Approach test, each fish’s distance from the
object was measured throughout the video (ranging from 0 to 120 mm)
and proportions of the total time (%) spent in each 5 mm interval of the
distance to the object’s distribution were calculated as well.

Mean proportions of time spent in each of the three zones and mean
frequencies of time spent in distance intervals to the Novel Object were

==
""\L

Open Field test (10min)

Novel Object Approach test (10min)
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compared between control and treatment groups in R v 4.3.2 (R Core
Team, 2018) using the glmmTMB package (Brooks et al., 2017) to create
generalized linear mixed-effects models (Fig. S2). All models included
experimental date as a random effect to account for repeated experi-
ments and the total number of frames was used to weight models. The
significance of the CO, effect on the model was estimated with the
Anova function from the car package, that performs Type Il Wald y tests
(Fox et al., 2012). Whenever statistical differences were found between
control and treatment groups, effect sizes were estimated by calculating
Cohen’s d index.

2.3. RNA sequencing and gene expression analyses

Immediately following the behavioural assays, fish were euthanized
by quick severing of the spinal cord. Physical euthanasia was chosen to
ensure that RNA profiles in the brain and gill tissues would not be
altered by exposure to any chemical agent. Dissection was carried out
using sterile tools to extract brain and gills tissues. Those were imme-
diately snap-frozen in liquid nitrogen and stored at —80 °C until RNA
extraction. Total RNA from brain and gill tissues was extracted using the
RNeasy Micro Kit (Qiagen) and the highest quality RNA extracts were
sequenced (n = 7 per group for brain, n = 6 per group for gills) at 150 bp
paired end on an Illumina NovaSeq at the Centre for PanorOmic Sciences
(CPOS) of the University of Hong Kong.

After sequencing, raw sequence data (on average 32,113,222 +
1,996,990; Table S3) were trimmed for adapters and filtered based on
read quality using Trimmomatic (Bolger et al., 2014) with the following
parameters: “ILLUMINACLIP: all adapters.fa:2:30:10:8:TRUE ~ SLI-
DINGWINDOW:4:20 MINLEN:32”. High quality reads (on average
30,887,846 + 1,962,277; Table S3) were then mapped against the
reference genome (Genome Reference Consortium z11) from the RefSeq
database (Pruitt et al., 2007). To obtain gene expression levels we per-
formed mapping to the RefSeq annotation using the program HISAT2
with default settings (Kim et al., 2019) and counting sequence reads
mapped to genes with featureCounts (Liao et al., 2014).

RNASeq of brain & gill

Transition zone

O Thigmotaxis zone

:
:
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:
:
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:
:
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Fig. 1. (a) Experimental design for the study of zebrafish behavioural and molecular responses under elevated CO, conditions. Anxiety-related behaviours were
studied by submitting zebrafish to an Open Field test followed by a Novel Object Approach test. Movement was tracked using ToxTrac. After behavioural assays,
brain and gill tissues were collected to study the gene expression response to elevated CO,. (b) Zonation of the arena used for behavioural assays with the radius of

each zone corresponding to one third of the total arena.
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Differential expression analyses were conducted using DESeq2 v1.38
(Love et al.,, 2014) to investigate which genes are differentially
expressed (DE) in the brain and in the gills between control and elevated
CO4 groups. No variable among experimental date, arena number or
type of figurine was found to be an important factor influencing the
differential expression of genes (Likelihood Ratio Test, factors accounted
for <1 % of DE genes), resulting in the statistical model in the design
formula with only one factor (“~ CO5 treatment”).

Additionally, to identify which co-expressed sets of genes may
correlate with the behaviour and therefore play a role in the behavioural
change, a weighted gene co-expression network analysis (WGCNA) was
conducted using WGCNA v1.72.1 (Langfelder and Horvath, 2008). This
analysis is based on pairwise correlations between expression levels of
all genes and other biological variables across samples. It defines
consensus modules of genes which expression patterns are clustered
together and then tests the statistical significance of correlations be-
tween gene expression patterns within a module and other quantitative
traits. Here, the proportion of time spent in the thigmotaxis zone, the
transition zone and the proportion of time spent at 1000 mm of distance
to the novel object (the most frequented distance interval) were pro-
vided as trait data, as well as binary encoded information regarding their
pCO; treatment (“0” = control, “1” = elevated CO; Fig. 1a). Two net-
works were built, one for the brain and one for the gill. The following
parameters were used to build the brain network: power = 10 (with R?
> 0.80), TOMType = “signed”, minModuleSize = 30, reassignThreshold
= 0, mergeCutHeight = 0.25, verbose = 3. For the gill network, the
following parameters were used: power = 7 (with R% > 0.90), TOMType
= “signed”, minModuleSize = 500, reassignThreshold = 0, mergeCu-
tHeight = 0.25, verbose = 3.

Clusters of genes whose expression patterns were significantly
correlated with at least one of the traits of interest were identified. Then,
functional enrichment analyses were performed on each module list of
genes using OmicsBox v 1.4.11 (Fisher’s Exact Test). The GO annota-
tions used for the enrichment analysis were retrieved from BioMart in
OmicsBox, using the “Ensembl Genes 111" dataset, the whole genome
from the “Zebrafish genes (GRCz11)” database and “Gene Names” type
of gene identification. The Gene Ontology (GO) terms with an FDR
adjusted p-value below the 0.05 threshold were considered enriched,
and the list of GO terms was reduced to its most specific.

a. Thigmotaxis zone

b. Transition zone
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3. Results
3.1. Behavioural responses to acidification

We hypothesized that acidification would alter anxiety-related be-
haviours in zebrafish, as found in a previous study (Hamilton et al.,
2021). During the Open Field test, fish spent a majority of their time in
the thigmotaxis zone over the two other ones, consistent with anxiety
triggered by the test as they discover a new area (Prut and Belzung,
2003). There was a subtle effect of elevated CO, exposure on the time
spent in the thigmotaxis zone (32 test, p-value = 2.2 x 10~'%; Cohen’s d
= 1.04, Table S4; Fig. 2a): fish exposed to control conditions spent 93.96
+ 2.53 % of their time in the thigmotaxis zone (n = 12) whereas those
who experienced elevated CO2 spent 91.33 + 5.94 % of the time in it (n
= 13), suggesting slightly reduced anxiety under acidification compared
to control. Similarly, exposure to elevated CO; also influenced occupa-
tion of the transition zone (XZ test, p-value = 2.2 x 107 '%; Cohen’s d =
1.06; Table S4; Fig. 2b): individuals who experienced elevated CO; spent
a higher proportion of time (7.82 + 2.28 %) in the transition zone (n =
13) than control individuals (5.4 & 2.28 % of the total time; n = 12).
Finally, acidification influenced the proportion of time spent by fish in
the inner zone (X2 test, p-value = 2.2 x 107!, Cohen’s d = 0.89), but
also its variability (Bartlett’s test, p-value = 0.0384; Table S4; Fig. 2c).
Fish exposed to control conditions spent 0.64 + 0.36 % of their time in
the inner zone (n = 12) whereas those who experienced elevated CO»
spent a slightly longer and more variable time in it (0.96 + 0.7 %; n =
13).

In the Novel Object Approach test, there was no effect of acidification
on the distribution of time proportions spent in each distance interval to
the novel object (3 test, p-value = 0.961; Table S5). Both groups stayed
for most of the test duration between 95 and 100 mm away from the
object, 45.66 + 17.97 % of the time (Fig. 3). However, consistent with
the Open Field test, fish exposed to elevated CO, spent more time in
distance intervals corresponding to the inner zone (radius = 0-40.8 mm;
2 test, p-value = 2.2 x 1071 Table S5) and to the transition zone
(radius = 40.8-81.6 mm; XZ test, p-value = 2.2 x 10716; Table S5) than
control fish, whereas they spent less time in distance intervals corre-
sponding to the Outer zone (radius = 81.6-125 mm; y test, p-value =
1.029 x 10’16; Table S5) compared to control fish (Fig. 3).
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3.2. Transcriptomic responses to acidification

In the brain, ten genes were significantly differentially expressed,
with two being downregulated in the elevated CO; treatment (Table S6).
One gene, si:rp71-39b20.4, is predicted to be a voltage-dependent po-
tassium channel and the other, gucalc, is a guanylate cyclase activator
involved in cGMP signalling and is expressed in cranial nerves, a part of
the vision circuitry. Among the upregulated genes in elevated COo,
ictacalcin 2 is involved in vision as it participates in glial cell and retina
development. Three upregulated genes code for GTPases that have a role
in immunity: two of them (LOC100149234 and LOC101882166) are
predicted to code for interferon-induced very large GTPase 1-like pro-
teins and the last one LOC101885874 codes for a GTPase of the
immunity-associated protein (IMAP) family, member 8-like. Another
upregulated gene, si:ch211-51c14.1, is a paralogue to the mammalian
pacsin3 gene and therefore likely involved in cytoskeleton organization
and regulation of endocytosis (Fig. 4). Finally, the upregulated gene
abcb5 codes for a member of the ATP-binding cassette (ABC) transporter
family. Two upregulated genes (LOC103911639 and LOC110439059)
code for uncharacterized proteins.

Two co-expressed networks of genes in the brain were both positively
correlated with the proportion of time spent in the thigmotaxis zone and
negatively correlated with the proportion of time spent in the transition
zone (Fig. 5; Fig. S3). Among functions performed by those genes,
organelle organization, plasma membrane bounded cell projection or-
ganization and cytoskeletal protein binding were enriched (Fig. 5;
Table S7), meaning that anxiety-like behavioural responses are linked to
cellular reorganization in the brain. Changes occurring go beyond the
cellular level in the zebrafish brain as indicated by enrichment of
functions involved in anatomical development (Fig. 5; Table S7).
Finally, enrichment of “carboxylic acid metabolic process”, “thiolester
hydrolase activity” and “proteolysis” (Fig. 5; Table S7) may illustrate
regulation processes in the brain through lysis of certain proteins or fatty
acids during anxiety-like behaviours. The production of new proteins
also occurs in the brain during anxiety since regulation of transcription
and translation were also enriched (Fig. 5; Table S7). On the other hand,
one cluster of genes was negatively correlated with the proportion of
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time spent in the thigmotaxis zone (Fig. 5; Fig. S3), where cellular
response to stimulus, peptidyl-amino acid modification and negative
regulation of transcription were enriched functions (Fig. 5; Table S7):
the less zebrafish spent time in the thigmotaxis zone, the more cellular
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Fig. 3. Mean proportion of time (%) spent by zebrafish depending on their distance to the Novel Object (mm) and according to their acidification exposure (black =
control; grey = elevated CO,); full bars represent mean values while error bars correspond to 95 % confidence intervals.
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response to stimulus, transcription regulation and protein modifications
were occurring.

In the gills, no gene was significantly differentially expressed as fish
exposed to elevated CO, showed more variable transcriptional profiles
than fish reared in control conditions (Fig. S4). One cluster of co-
expressed genes was negatively correlated with pCO, exposure (Fig. 5;
Fig. S5) with functions enriched such as protein modification, cell cycle
regulation, DNA repair, oxidoreductase activity, immune response and
cell signalling functions (Fig. 5; Table S7), suggesting that gills show
reduced expression of stress responsive genes when faced with acidifi-
cation predicted for the end of the century. Another cluster of genes
showed its expression levels positively correlated with the proportion of
time spent in the thigmotaxis zone (Fig. S5). Among those genes, several
functions were enriched, involved in processes such as anatomical
structures development, macromolecules transport, cellular localization
and DNA damage response (Fig. 5; Table S7). This suggests a subtle
reorganization of the gills during anxiety-related responses.

4. Discussion

Acidification slightly reduced the time spent by fish in the thigmo-
taxis zone and increased time spent in the transition zone and the inner
zone, suggesting mildly reduced anxiety under acidification (Voikar and
Stanford, 2023). Despite the potential anaesthetic effect of CO5 on fish
(Fish, 1943; Wagner et al., 2002), it is unlikely that our observations are
a result of anaesthesia, since the minimum CO, concentrations required
to produce such an effect on freshwater fish would be 102 higher than
our treatment (Bernier and Randall, 1998; Gelwicks et al., 1998).
Alteration of an anxiety-like behaviour due to CO,-driven acidification
has also been seen in other fishes, such as rockfish and salmon (Hamilton
et al, 2014; Ou et al.,, 2015), yet with contrasting trends. Our

observation of slightly decreased anxiety between control and CO»-
treated individuals is consistent with a previous report on zebrafish,
suggesting that the acidification influence on anxiety during the Open
Field test is non-linear (Hamilton et al., 2021). In that study, control
individuals were exposed to pH levels which were similar to our CO»-
treated individuals — due to Hong Kong’s high freshwater alkalinity —
and spent similar proportions of time in the thigmotaxis zone (85-90 %).
On the other hand, our control individuals, which displayed higher
anxiety, experienced higher pH conditions than zebrafish in the Ham-
ilton and collaborators’ study. Taken together, COo-driven acidity levels
influence anxiety in a non-linear manner, whereby less anxiety behav-
iour is observed at intermediate levels of basicity (pH between 7.8 and
8) and high anxiety is observed at intermediate levels of acidity (pH ~
6.5) in zebrafish. Nonetheless, with overall contrasting reports of CO»-
driven acidification induced-anxiety in other freshwater fish species,
this suggests that CO; effects are also context-specific and may depend
on freshwater conditions. Therefore, our results further support that
behavioural responses to CO, exposure are complex even at the species
level due to interactions between dissolved CO5 and other elements in
the water acting on its acidity.

Elevated CO, did not affect the spatial distribution of zebrafish
around the object during the Novel Object Approach test, which suggests
that acidification does not affect boldness or curiosity when facing a
novel object, as previously reported in zebrafish (Hamilton et al., 2021)
but contrary to other marine and freshwater species that spent more
time near the novel object with elevated COy (Jutfelt et al., 2013; Ou
et al., 2015). Nevertheless, increased boldness while facing novelty in
other species is indicative of reduced anxiety levels (Maximino et al.,
2010) and consistent with our observations in the Open Field test.
Overall, our findings therefore support that zebrafish curiosity while
discovering a new object may not be affected by acidification, unlike
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anxiety-related behaviours.

Reduced anxiety due to acidification may be caused by a change in
the efficacy of neurotransmission, as zebrafish that experienced acidi-
fication exhibited downregulated expression of a voltage-dependent
potassium channel gene (si:rp271-39b20.4) in the brain. This could
decrease the overall activity performed by potassium channels in fish
brain cells, on top of the activity decrease caused by changes in intra-
cellular bicarbonate (HCO3) concentrations as previously suggested
(Tresguerres and Hamilton, 2017), with potentially less potassium
channels in the brain of zebrafish experiencing elevated COs. Acidifi-
cation may also reduce anxiety via changes in cytoskeleton organization
and intraneuronal transport across the zebrafish brain, as gene networks
linked to cellular reorganization were associated with strong anxiety-
like behavioural responses. Furthermore, upregulation of a paralogue
to the pacsin3 gene (si:ch211-51c14.1; Morgan et al., 2022) in the brain
while in elevated CO, suggests changes of cytoskeletal conformations,.
Such mechanisms have already been described in humans, where the
expression of anxiety-related behaviours is often correlated with neu-
romorphological plasticity through changes at the level of dendritic
branches (Leuner and Shors, 2013). Therefore, one way through which
exposure to acidification may have a reducing effect on anxiety could be
through intracellular rearrangements of brain cells, notably at the
cytoskeletal level.

Expression of genes involved with carboxylic acid metabolism in the
brain was positively correlated with time spent in the thigmotaxis zone,
suggesting increased expression in fish displaying high levels of anxiety.
This is consistent with previous studies linking fatty acid metabolism
with anxiety-like behaviour (Liskiewicz et al., 2020; Moon et al., 2014).
Therefore, changes in anxiety-related behaviour provoked by acidifica-
tion may alter protein and fatty acid metabolism. Furthermore, acidifi-
cation, which was found here to decrease anxiety levels, is also known to
cause changes in lipid metabolism in fish (Diaz-Gil et al., 2015; Frommel
et al., 2012), notably through differential gene expression of genes
involved in fatty acid synthesis (Frommel et al., 2020). Acidification
may therefore act on anxiety levels by disrupting fatty acid homeostasis.
Furthermore, in elevated CO, that caused reduced anxiety-like behav-
iour, proteolysis-related genes were expressed at lower levels. Reduced
anxiety was also paralleled with downregulation of genes or proteins
taking part in proteolysis in the brain of other species (Asano et al.,
2022; Szego et al., 2010). Overall, acidification may either directly act
on fatty acid and protein metabolism, ultimately causing changes in
anxiety levels, or the influence of acidification on those functions could
also be indirect, by causing anxiety levels changes that in turn alter lipid
and protein metabolism.

The brain molecular response of zebrafish suggests that acidification
notably affects the visual system, as indicated by the downregulation of
a guanylate cyclase activator involved in cGMP signalling in the optic
neural circuitry (Fries et al., 2013; Ratscho et al., 2010; Scholten and
Koch, 2011), and the upregulation of ictacalcin 2 that participates in
Miiller glial cells development in the retina (Tworig and Feller, 2022;
Vocking and Famulski, 2023). COz-driven ocean acidification was also
previously reported to affect the visual system of marine fishes, leading
to impairments (Chung et al., 2014; Ferrari et al., 2012) and related
changes in gene expression (Ramirez-Calero et al., 2023). Consistently,
changes in expression of genes involved in vision here further indicate
visual impairments may be expected under predicted CO5 conditions,
with potential consequences on visually mediated behaviours such as
exploration of new environments or predator avoidance.

Changes in anxiety-like behaviours and brain gene expression were
not paralleled with molecular changes in zebrafish gills, which suggests
that acidification can act on the brain and behaviour of fish without
impairing acid-base regulation performed by the gills (Heuer and Gro-
sell, 2014). Functions such as structure development, macromolecules
transport, cellular localization and DNA damage response co-expressed
with anxiety-like behaviour, suggesting a subtle reorganization of the
gills during anxiety-related responses, were not enriched with
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acidification. Moreover, elevated CO5 did not provoke gene differential
expression in the zebrafish gills, although their transcriptomic profiles
tended to be more variable in fish exposed to acidification. Here, the
absence of a large transcriptomic response to our levels of acidification
(~ 1000 patm, pH ~ 7.9) further indicates that the zebrafish is physi-
ologically well adapted to variable and sometimes acidified conditions
(pCO; ~ 4000 patm; pH ~ 6.6) encountered in its natural habitat
(Kwong et al., 2014; McClure et al., 2006; Sundin et al., 2019). It is
possible that zebrafish may effectively cope with smaller increases in
acidification via a more subtle molecular response not resulting in any
significant differential gene expression. By simultaneously observing
behavioural changes as well as transcriptomic changes in the brain, but
not in the gills under acidification, our findings support the hypothesis
that the compensatory response during successful acid-base regulation,
and not a physiological impairment of the gill, may be responsible for
brain and behavioural changes observed with elevated CO2 (Heuer and
Grosell, 2014).

Zebrafish gills were shown to strongly respond to higher levels of
acidification, with differential expression of genes involved in para-
cellular uptake regulation, oxidoreduction and cellular stress response
(pH ~ 4; Kumai et al., 2011; Tiedke et al., 2013). Consistently, we found
co-expression of genes involved in DNA repair, immune response, oxi-
doreduction and cell cycle regulation, but negatively correlated with
acidification. These pathways have also been implicated in studies on
other fish species which demonstrate reduced antioxidant capacity,
oxidative stress induced damage and differential expression of immune
response genes under acidified conditions in the gills (Copatti et al.,
2019; Enzor and Place, 2014; Machado et al., 2020). Here, reduced
expression of such genes with acidification instead could be due to our
acidity levels not being high enough to trigger cellular stress. This hy-
pothesis is supported by the fact that our pH levels in elevated pCO;
were still more alkaline than control conditions of other acidification
studies led on zebrafish (Kumai et al., 2011; Tiedke et al., 2013).
However, increased variability of the zebrafish gill transcriptomic pro-
file under acidification indicates that not all individuals had the same
response to elevated CO,. This could be interpreted as a plasticity at the
population level, with different molecular strategies employed from one
individual to another to cope with acidification. Such transcriptomic
heterogeneity was observed across eukaryotes (Raj and van Oude-
naarden, 2008) and proposed to confer advantages at the level of the
population, especially in naturally fluctuating environments (De Jong
et al., 2019). Nevertheless, the absence of a gill response indicative of
physiological impairment, in contrast to observed behavioural changes
in a relatively pH tolerant species, does not necessarily confer an overall
tolerance to the many effects of COy-driven acidification across the or-
ganism. In the case of the brain, trade-offs or downstream consequences
to acid-base regulation may still occur (Heuer and Grosell, 2014) and
result in the observed gene expression changes as well as behavioural
alterations. For example, in marine fishes the GABA hypothesis presents
one such consequence to acid-base regulation: changes in chloride (C1 ")
and HCO3 ion concentrations in blood plasma and neurons alter the
function of the ionotropic GABA, receptor and in turn provoke behav-
ioural impairments (Nilsson et al., 2012). Because of such alterations in
neurosensory systems, fishes may display behavioural impairments with
near-future predicted acidification despite their ability to successfully
maintain their internal pH levels, even in freshwater habitats where
species are adapted to more acidic waters.

In summary, we found zebrafish exposed to near-future predicted
levels of pCO, had slightly reduced anxiety likely through modified
neurotransmission, brain cells intracellular rearrangements notably at
the cytoskeletal level, fatty acid and protein metabolism, as well as
altered visual circuitry. This is further supporting that acidification can
impair teleost fish behaviour by acting on the brain at the molecular
level on different targets. Despite gills not showing a molecular stress
response to acidification, indicative of physiological tolerance to
reduced pH, molecular responses and subtle behavioural changes may
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reveal freshwater fishes to be more affected than anticipated by rapid
climate change.
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