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Abstract

We study the generalization properties of stochastic optimization methods under adaptive
data sampling schemes, focusing on the setting of pairwise learning, which is central to tasks
like ranking, metric learning, and AUC maximization. Unlike pointwise learning, pairwise
methods must address statistical dependencies between input pairs—a challenge that exist-
ing analyses do not adequately handle when sampling is adaptive. In this work, we extend
a general framework that integrates two algorithm-dependent approaches—algorithmic
stability and PAC–Bayes analysis for this purpose. Specifically, we examine (1) Pairwise
Stochastic Gradient Descent (Pairwise SGD), widely used across machine learning applica-
tions, and (2) Pairwise Stochastic Gradient Descent Ascent (Pairwise SGDA), common in
adversarial training. Our analysis avoids artificial randomization and leverages the inher-
ent stochasticity of gradient updates instead. Our results yield generalization guarantees of
order n−1/2 under non-uniform adaptive sampling strategies, covering both smooth and
non-smooth convex settings. We believe these findings address a significant gap in the
theory of pairwise learning with adaptive sampling.

Keywords: pairwise learning; randomized algorithms; PAC–Bayes; algorithmic stability

1. Introduction
The increasing availability of data makes it feasible to use increasingly large models

in principle. However, this comes at the expense of an increasing computational cost of
training these models in large pairwise learning applications. Some notable examples of
pairwise learning problems include ranking and preference prediction, AUC maximization,
and metric learning [1–5]. For instance, in metric learning we aim to learn an appropriate
distance or similarity to compare pairs of examples, which has numerous applications
such as face verification, person re-identification (Re-ID) [6–10], and bioactivity predic-
tion [11]. Pairwise learning has also been applied to positive-unlabeled (PU) learning
problems [12], where only positive and unlabeled examples are available. Such problems
arise in one-class classification settings, with practical applications in areas such as fault
detection and diagnosis in advanced engineering systems [13]. Given the broad relevance
of pairwise learning, there is a pressing need to deepen our theoretical understanding of its
generalization properties. This in turn can inform the design of algorithms that generalize
reliably to unseen pairs and offer interpretability and trustworthiness to end users.

In both pointwise and pairwise learning settings, Stochastic Gradient Descent (SGD)
and Stochastic Gradient Descent Ascent (SGDA) are widely used for large-scale mini-
mization and min-max optimization problems in machine learning due to their favorable
computational efficiency. These methods rely on stochastic sampling strategies to ap-
proximate the true gradients, and several works have explored data-dependent sampling
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techniques to accelerate convergence to the optimum [14–19]. SGDA, in particular, is a
standard approach in solving min-max problems, finding notable applications in generative
adversarial networks (GANs) [20] and adversarial training [21,22].

Adversarial perturbations are subtle, often imperceptible modifications to input data
designed to deceive models and cause incorrect predictions [23]. Recent studies in pairwise
learning have explored strategies to enhance adversarial robustness, applying adversarial
pairwise learning methods to min-max problems across various domains, such as metric
learning [24,25], ranking [25,26], and kinship verification [27]. These developments illus-
trate the need for robust, theoretically grounded pairwise methods that can withstand
adversarial attacks while maintaining generalization performance.

Under the assumption of i.i.d. data points in classic pointwise learning, the empirical
risk of a fixed hypothesis is an average of i.i.d. random variables. However, in pairwise
learning the pairs derived from i.i.d. points are no longer i.i.d. Instead, when the loss is
symmetric and computed over all unordered pairs, the empirical risk takes the form of
a second-order U-statistic. Therefore, results on U-processes may be used to investigate
the generalization analysis of pairwise learning [3,28]. While there is much research on
the generalization analysis of pairwise learning, the effect of non-uniform, data-dependent
sampling schemes has not been rigorously studied.

Non-uniform sampling can be beneficial in noisy data situations where the training
examples may not be equally reliable or equally informative. Some examples may be
less important than others, or even misleading—e.g., mislabeled examples or examples
situated in an ambiguous class-overlap region. In rare cases when the usefulness or
importance of individual training examples is known, then the sampling distribution can
be designed and fixed before training, and this may improve the representativeness of the
sample. For instance, in the case of infrequent observations [29], inverse frequency sampling
prioritizes rare examples that may be underrepresented in the training set, ensuring their
proper influence. However, in most cases the relative importance of training examples is
not known a priori; hence, it is desirable to learn the sampling distribution together with
training the model.

The idea of adaptive sampling refers to a sampling distribution that depends on the
training sample. Such non-uniform and data-dependent sampling shows great potential in
the literature of randomized algorithms for both SGD- [14] and SGDA-based [30] optimizers,
in both pointwise and pairwise settings. Importance sampling [14] is one of the widely used
of such strategies, and a few others will be reviewed shortly in Section 2. Therefore, recent
work [31,32] has begun to develop a better understanding of the generalization behavior
of such algorithms, which we continue here in the setting of pairwise learning. The main
bottlenecks in the analysis of adaptive sampling-based stochastic optimizers are that (i) a
correction factor is often used to ensure the unbiasedness of the gradient [14], which also
depends on training data points complicating the analysis, and (ii) in the pairwise setting
we also need to cater to statistical dependencies between data pairs, which are due to the
fact that each point participates in multiple pairs.

To tackle these problems, we develop a PAC–Bayesian analysis of the generalization of
pairwise stochastic optimization methods, which removes the need for a correction factor,
and we use U-statistics to capture the statistical structure of pairwise loss functions. The
PAC–Bayes framework allows us to obtain generalization bounds that hold uniformly
for all posterior sampling schemes, under a mild condition required on a pre-specified
prior sampling scheme (chosen as the uniform sampling). For randomized methods,
such as Pairwise SGD and Pairwise SGDA, the sampling index pairs will be treated as
hyperparameters that follow a sampling distribution.
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Our main contributions are listed in Table 1, summarizing the generalization bounds
of the order Õ(1/

√
n) for these randomized algorithms under different assumptions, where

n is the sample size.
Our technical contributions are summarized as follows:

• We bound the generalization gap of randomized pairwise learning algorithms that
operate with an arbitrary data-dependent sampling, in a PAC–Bayesian framework,
under a sub-exponential stability condition.

• We apply the above general result to Pairwise SGD and Pairwise SGDA with arbitrary
sampling. For both of these algorithms, we verify the sub-exponential stability in both
smooth and non-smooth problems.

• We exemplify how our bounds can inform algorithm design, and we demonstrate how
to extract meaningful information from the resulting algorithms.

Our work builds on well-established tools, including a specific flavor of PAC–Bayesian
analysis [31], U-statistic decomposition, and a moment bound for uniformly stable pairwise
learning algorithms [33], aimed at bringing theoretical insight into an important, yet
relatively underexplored, setting: pairwise learning with adaptive sampling. To the best
of our knowledge, our analysis is the first to derive explicit generalization bounds for
this setting.

The remainder of the paper is organized as follows. We survey the related work on the
generalization analysis and non-uniform sampling in Section 2. We give a brief background
on U-statistics and algorithmic stability analysis in Section 3. Our general result and its
applications to Pairwise SGD and Pairwise SGDA are presented in Section 4.

Table 1. Summary of generalization rates obtained for two pairwise stochastic optimization algo-
rithms (Pairwise SGD, Pairwise SGDA) under two sets of assumptions (Lipschitz (L), smooth (S),
convex (C)) on the pairwise loss function, together with the chosen number of iterations T and step
size η. The sample size is n. According to this summary, we notice that smaller step sizes and more
iterations are needed if the smoothness assumption is removed (more details in Section 4).

Algo. Asm. Time T and Step Size η Rates

Pairwise SGD
L, C T = Θ(n2) η = Θ(T−

3
4 )

Õ(1/
√

n)
Theorem 1 (1)

L, S, C T = Θ(n) η = Θ(T−
1
2 )

Õ(1/
√

n)
Theorem 1 (2)

Pairwise SGDA
L, C T = O

(
n2) η = O(T−

3
4 )

Õ(1/
√

n)
Theorem 2 (1)

L, S, C T = O(n) η = O(T−
1
2 )

Õ(1/
√

n)
Theorem 2 (2)

2. Related Work
Adaptive Sampling in Stochastic Optimization. Importance Sampling for Stochastic

Gradient Descent was proposed in [14]. To compute the stochastic gradient, a training
example zi (i ∈ [n]) is sampled with probability proportional to the gradient norm pi ∝
∥∇wℓ(w; zi)∥, where w are the model parameters and ℓ is the loss function. This prioritizes
high-impact updates from the perspective of optimization—the authors proved that this
can significantly reduce the variance of the stochastic gradient and accelerate convergence
to the optimum. A related idea, loss-based sampling, proposed in [16], assigns sampling
probabilities proportional to the loss evaluated on training points, that is, pi ∝ ℓ(w; zi),
thereby focusing on hard-to-fit examples. The authors show faster convergence to the
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optimum. While these works do not consider pairwise learning, they represent landmarks
on adaptive sampling in stochastic optimization.

Furthermore, there are variants of these ideas aimed at lightening the computational
demand. These include upper bounds to the gradient norm, shown to exhibit better
performance in comparison with the loss-based sampling [34]. The work in [18] proposes
to sample the training points based on their relative distance to each other. Another more
recent data-dependent sampling approach called group sampling appears in [19] and has
been applied to a person re-identification (Re-ID) application.

Adaptive sampling is an umbrella term referring to sampling distributions that depend
on the training sample. Here, we mentioned a few of the most prominent existing examples.
However, the appropriate sampling distribution is task-dependent. The works discussed,
and most of the previous work on adaptive sampling in stochastic optimization, aim at
accelerating convergence to the optimum. Therefore, they have no explicit cost for data-
dependent sampling; instead, they have a multiplicative correction factor to ensure an
unbiased gradient. However, the goal of learning is generalization, which is different
from achieving the global optimum on training data. There must be a cost for data-
dependent sampling to avoid over-reliance on a biased subset of points. Our forthcoming
generalization bounds will quantify this rigorously and provide guidance for algorithm
design.

With the exception of [32] and our previous conference paper [31], results on the
generalization analysis of the resulting randomized algorithms are very scarce, which is
our goal to advance in this paper specifically for the pairwise learning setting.

Generalization through Algorithmic Stability. Stability was popularized in the
seminal work of [35], to formalize the intuition that algorithms whose output is resilient to
changing an example in its input data will generalize. The stability framework subsequently
motivated a chain of analysis of randomized iterative algorithms, such as SGD [36] and
SGDA [37,38]. While the stability framework in the previous work is well suited for SGD-
type algorithms that operate a uniform sampling scheme [36], this framework alone is
unable to tackle arbitrary data-dependent sampling schemes.

Generalization through PAC–Bayes. The PAC–Bayes theory of generalization is
another algorithm-dependent framework in statistical learning, the gist of which is to
leverage a pre-specified prior distribution on the parameters of interest to obtain gener-
alization bounds that hold uniformly for all posterior distributions [39,40]. Its comple-
mentarity with the algorithmic stability framework sparked ideas for combining them
[41–44], some of which are also applicable to randomized learning algorithms such as SGD
and SGLD [32,45–47]. While insightful, these works assume i.i.d. examples and cannot be
applied to non-i.i.d. settings that arise in pairwise learning.

In non-i.i.d. settings, ref. [48] gave PAC–Bayes bounds using fractional covers, which
allows for handling the dependencies within the inputs. This gives rise to generalization
bounds for pairwise learning, with predictors following a distribution induced by a prior
distribution on the model’s parameters. However, with SGD-type methods in mind, which
have a randomization already built into the algorithm, the classic PAC–Bayes approach of
placing a prior on a model’s parameters would be somewhat artificial. Indeed, considerable
research effort has been spent to reverse such randomization [49]. Another issue concerns
the prior specification—recent research [50] reveals that placing sufficient prior mass on
good predictors is a condition for meaningful PAC–Bayes guarantees. These are difficult to
set without a strong prior knowledge. Instead, the construction proposed in [31,32] (albeit
restricted to the i.i.d. setting) is to exploit this built-in stochasticity of modern gradient-
based optimization algorithms directly, by interpreting it as a PAC–Bayes prior placed on a
hyperparameter. We will build on this idea further in this work.
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3. Preliminaries
3.1. Pairwise Learning and U-Statistics

Let D be an unknown distribution on sample space Z . We denote byW ⊆ Rd the pa-
rameter space, and Φ will be a hyperparameter space. Given a training set S = {z1, . . . , zn}
drawn i.i.d. from D and a hyperparameter ϕ ∈ Φ, a learning algorithm A returns a model
parameterized by A(S; ϕ) ∈ W .

We are interested in pairwise learning problems and will use a pairwise loss function
ℓ :W × (Z ×Z) 7→ R+ to measure the mismatch between the prediction of the model that
acts on example pairs. The generalization error, or true risk, is defined as the expected loss
of the learned predictor applied on an unseen pair of inputs drawn from D2, that is,

R(A(S; ϕ)) := Ez,z̃∼D [ℓ(A(S; ϕ), z, z̃)]. (1)

Since D is unknown, we consider the empirical risk,

RS(A(S; ϕ)) :=
1

n(n− 1) ∑
i,j∈[n]:i ̸=j

ℓ(A(S; ϕ), zi, zj), (2)

where [n] := {1, . . . , n}. The generalization error is a random quantity as a function of
the sample S, which does not consider the randomization used when selecting the data or
feature index for the update rule of A at each iteration.

To take advantage of the built-in stochasticity of the type of algorithms we consider,
we further define two distributions on the hyperparameter space Φ: a sample-independent
distribution P and a sample-dependent distribution Q. In this stochastic or randomized
learning algorithm setting, the expected risk and the expected empirical risk (both with
respect to Q) are defined as

R(Q) = E
ϕ∼Q

[R(A(S; ϕ))], RS(Q) = E
ϕ∼Q

[RS(A(S; ϕ))].

We denote the difference between the risk and the empirical risk (i.e., the generalization
gap) by G(S, ϕ) := R(A(S; ϕ))− RS(A(S; ϕ)).

The difficulty with the pairwise empirical loss (2) is that, even with S consisting of i.i.d.
instances, the pairs from S are dependent of each other. Instead, RS(A(S; ϕ)) is a second-
order U-statistic. A powerful technique to handle the U-statistic is the representation as an
average of “sums-of-i.i.d.” blocks [28]. That is, for a symmetric kernel q : Z ×Z 7→ R, we
can represent the U-statistic Un := 1

n(n−1) ∑i,j∈[n]:i ̸=j q(zi, zj) as

Un =
1
n! ∑

σ

1
⌊n/2⌋

⌊n/2⌋

∑
i=1

q(zσ(i), zσ(⌊ n
2 ⌋+i)), (3)

where σ ranges over all permutations of {1, . . . , n}.

3.2. Connection with the PAC–Bayesian Framework

As described above, we consider two probability distributions on the hyperparameter
space Φ, to account for the stochasticity in stochastic optimization algorithms, such as
Pairwise SGD and Pairwise SGDA, where the hyperparameter ϕ ∈ Φ is a sequence of pairs
of indices that follow a discrete distribution. For instance, in Pairwise SGD, in every itera-
tion t ∈ [T], we have ϕt = (it, jt), that is, a pair of independently sampled sample indices,
drawn from {(it, jt) : it, jt ∈ [n], it ̸= jt} with replacement (more details in Section 4.1).
We define two distributions over Φ, namely the PAC–Bayes prior P, which needs to be
specified before seeing the training data, and the PAC–Bayes posterior Q, which is allowed
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to depend on the training sample. This setting is different from the classic use of PAC–
Bayes, which defines the two distributions directly on the trainable parameter spaceW .
Our distributions defined on Φ indirectly induce distributions on the parameter estimates,
without the need to know their parametric form. This setting of PAC–Bayes was formerly
introduced in London [32] in combination with algorithmic stability and further improved
in our previous work [31], both restricted to the i.i.d. pointwise setting.

3.3. Connection with the Algorithmic Stability Framework

A more recent framework for the generalization problem considers algorithmic sta-
bility [35], which measures the sensitivity of a learning algorithm to small changes in the
training data. The concept considered in our work among several notions of algorithmic
stability is uniform stability.

Definition 1 (Uniform Stability). For ∀ϕ, we say an algorithm A : S 7→ A(S; ϕ) is βϕ-uniformly
stable if

|ℓ(A(S; ϕ), z, z̃)− ℓ(A(S′, ϕ), z, z̃)| ≤ βϕ, ∀z, z̃ ∈ Z , (4)

where S, S′ ∈ Zn differs by at most a single example.

The algorithmic stability framework is suitable for analyzing certain deterministic
learning algorithms, or randomized algorithms with a pre-defined randomization. In
turn, here we are concerned with inherently stochastic algorithms where we wish to allow
any data-dependent stochasticity, such as the variants of importance sampling and other
recent practical methods mentioned in the related works, e.g., [14,15,18,19,34]. Moreover,
in principle our framework and results are applicable even if the sampling distribution is
learned from the training data itself.

Sub-exponential Stability. A useful definition of stability that captures the stochastic
nature of the algorithms we are interested in is the sub-exponential stability introduced
in Zhou et al. [31]. Recall that ϕ is a random variable following a distribution defined on Φ.
Therefore, the stability parameter βϕ is also a random variable as a function of ϕ. We want
to control the tail behavior of βϕ around a value that decays with the sample size n, and we
define the sub-exponential stability as the following.

Definition 2 (Sub-exponential stability). Fix any prior distribution P on Φ = ∏T
t=1 Φt. We

say that a stochastic algorithm is sub-exponentially βϕ-stable (with respect to P) if, given any
fixed instance of ϕ ∼ P, it is βϕ-uniformly stable and there exist c1, c2 ∈ R such that for any
δ ∈ (0, 1/n], the following holds with probability of at least 1− δ:

βϕ ≤ c1 + c2 log(1/δ). (5)

4. Main Results
In this section, we will give generalization bounds for Pairwise SGD and Pairwise

SGDA in pairwise learning. To this aim, we first give a general result (Lemma 1) to show
the connection between the sub-exponential stability condition (Assumption 2) and the
generalization gap in the case of pairwise learning. We then derive stability bounds to
show that this assumption holds for Pairwise SGD and Pairwise SGDA, in both smooth
convex and non-smooth convex cases. Based on these, we apply the stability bounds to
Lemma 1 to derive the corresponding generalization bounds. We use K ≲ K′ if there exists
a universal constant a > 0 such that K ≤ aK′. The proof is given in Appendix A.
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Lemma 1 (Generalization of randomized pairwise learning). Given distribution P, c1, c2 > 0,
and M-bounded loss for a sub-exponentially stable algorithm A, ∀δ ∈ (0, 1/n), with probability of
at least 1− δ, the following holds uniformly for all Q absolutely continuous with respect to P:

Eϕ∼Q[G(S, ϕ)] ≲
(

KL(Q∥P) + log
1
δ

)
max

{
c1 log n + c2 log2 n,

M√
n

}
,

where KL(Q∥P) is the KL divergence between Q and P, KL(Q∥P) =
∫

ϕ∈Φ log dQ
dP dQ.

A strength of Lemma 1 is that we only need to check the sub-exponential stabil-
ity condition under a prior distribution P, and Lemma 1 automatically translates it to
generalization bounds for any posterior distribution Q.

In the forthcoming applications both Q and P are discrete distributions, so we have
KL(Q∥P) = ∑ϕ∈Φ Q(ϕ) log Q(ϕ)

P(ϕ) . In particular, the prior P will be most naturally chosen
as the discrete uniform distribution in the context of applications to stochastic optimiza-
tion in Section 4.2. Let P = U with U denoting the uniform distribution on ([n]× [n])T .
Hence, the absolute continuity condition is satisfied, ensuring that KL(Q∥P) < ∞ for
all distributions Q over the set ([n] × [n])T . Furthermore, in this setting, we have
KL(Q∥P) = −H(Q) + 2T log n, where H denotes the Shannon entropy.

We introduce some classic assumptions that are frequently employed in the analysis of
randomized algorithms. Let ∥ · ∥2 denote the Euclidean norm. Let S and S′ be neighboring
datasets (i.e., they differ in only one example, which we denote as the k-th example, k ∈ [n]).
For brevity, we write ℓ(w) for ℓ(w; z, z̃), where we mean a property that holds for all
z, z̃ ∈ Z .

Assumption 1. Let L > 0. We say ℓ is L-Lipschitz if for any w1, w2 ∈ W , we have |ℓ(w1)−
ℓ(w2)| ≤ L∥w1 −w2∥2.

Assumption 2 (Convexity). We say ℓ is convex if the following holds ∀w1, w2 ∈ W :

ℓ(w1) ≥ ℓ(w2) +
〈
∇ℓ(w2), w1 −w2

〉
,

where ⟨·, ·⟩ represents the inner product.

Assumption 3. Let α ≥ 0. We say a differentiable function ℓ is α-smooth, if for any w1, w2 ∈ W ,
∥∇ℓ(w1)−∇ℓ(w2)∥2 ≤ α∥w1 −w2∥2, where ∇ℓ represents the gradient of ℓ.

4.1. Stability and Generalization of Pairwise SGD

We now consider Pairwise SGD, which, as we will show, also satisfies the sub-
exponential stability condition in both smooth and non-smooth cases.

We denote w1 an initial point and a uniform distribution over ([n]× [n])T . At the t-th
iteration for Pairwise SGD, a pair of sample indices ϕt = (it, jt) is uniformly randomly
selected from the set {(it, jt) : it, jt ∈ [n], it ̸= jt}. This forms a sequence of index pairs
ϕ = (ϕ1, ..., ϕT). For step size ηt, the model is updated by wt+1 = wt − ηt∇ℓ(wt; zit , zjt).

The following lemma shows that Pairwise SGD with uniform sampling applied to
both smooth and non-smooth problems enjoys sub-exponential stability. The proof is given
in Appendix B.1.

Lemma 2 (Sub-exponential stability of Pairwise SGD). Let {wt}, {w′t} be two parameter
sequences produced by Pairwise SGD with fixed step sizes and uniform sampling P, while being
trained on neighboring training samples S and S′. Suppose there is a loss in Lipschitzness and
convexity (i.e., Assumptions 1 and 2 hold). Then, we have the following:
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(1) At the t-th iteration, we have sub-exponential stability (Definition 2) with

c1=2
√

eL2η(
√

t + 2t/n) and c2=4
√

eL2η
(

1 + 2(t/n)
1
2

)
.

(2) If in addition the loss is also smooth (Assumption 3 holds), then with step size η ≤ 2/α, at the
t-th iteration, we have sub-exponential stability (Definition 2) with

c1 = 4L2ηt/n and c2 = 4L2η
(

1 + 2(t/n)
1
2

)
.

Using Lemmas 1 and 2, we obtain the following generalization bound for Pairwise
SGD with general sampling.

Theorem 1 (Generalization bounds for Pairwise SGD). Assume ℓ is M-bounded, Lipschitz, and
convex (cf. Assumptions 1 and 2). For any δ ∈ (0, 1), Pairwise SGD with fixed step sizes satisfies
the following generalization guarantees with probability of at least 1− δ over S, S ∼ Dn, for all
posterior sampling distributions Q on ([n]× [n])T :

(1) After T iterations, we have

EQ[G(S, ϕ)]≲
(

T log n−H(Q)+log
1
δ

)
max

{
Lη

(
√

T+
T
n
+

√
T
n

)
log2 n,

M√
n

}
.

(2) If in addition the loss is also smooth (Assumption 3 holds), then with step size η ≤ 2/α,
we have

EQ[G(S, ϕ)] ≲
(

T log n−H(Q)+log
1
δ

)
max

{
Lη

(
T
n
+1+

√
T
n

)
log2 n,

M√
n

}
.

Remark 1. Suppose KL(Q∥U ) ∈ Õ(1), as it has been tacitly assumed also in previous work [32]
when quantifying the generalization convergence rate. Taking the choice of parameters suggested
by [51], if η = Θ(T−

3
4 ) and T = Θ(n2) in the non-smooth case (part 1), then the above theorem

implies bounds of the order Õ(1/
√

n). In the smooth case (part 2), an analysis of the trade-
off between optimization and generalization, Lei et al. [33] suggested setting T = Θ(n) and
η = Θ(1/

√
T) to get a Pairwise SGD to iterate with a good generalization performance. With these

choices, our bounds in Theorem 1 are of order Õ(1/
√

n), which are not improvable in general.

Remark 2 (Implication of the KL(Q∥U ) = Õ(1) assumption). Let supp(Q) ⊆ Φ denote the
support of Q, where Φ = ([n]× [n])T in pairwise learning.

Since U (ϕ) = 1/n2T for all ϕ, the KL divergence is

KL(Q∥U ) = ∑
ϕ∈Φ

Q(ϕ) log
(

Q(ϕ)

1/n2T

)
= −H(Q) + 2T log n.

To ensure this is of order Õ(1), we need −H(Q) + 2T log n ≤ Õ(1); hence,

H(Q) ≥ 2T log n− Õ(1) = H(U )− Õ(1). (6)

To give more intuition, consider Q on a restricted support. This is very much a worst-
case scenario, as it would imply completely discarding (rather than down-weighting) some of the
training points. For such Q, the maximum entropy occurs when Q is uniform over its support,
so Q(ϕ) = 1

|supp(Q)| , and KL(Q∥U ) = log
(

n2T

|supp(Q)|

)
. In this case, having KL(Q∥U ) = Õ(1)

requires
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|supp(Q)| = Ω
(

n2T

poly(T, n)

)
. (7)

To sum up, Q must satisfy the entropy lower bound (6), and to achieve that entropy on a
restricted support, it must have a large enough support, i.e., at least a Ω(1/poly(T, n)) fraction of
the entire Φ.

In Pairwise SGD with non-uniform data-dependent sampling, this result tells us that in order
to keep generalization rates that compare against the uniform baseline, Q cannot discard a large
subset of the index sequences. This limits how aggressively one can compress or “distill” a dataset
(as in core-set selection or dataset distillation) without paying a KL penalty that slows down the
rate—at least as long as the prior is uniform.

Non-uniform sampling alone is insufficient for robust learning. While it may mitigate
the effect of a small fraction of bad examples (e.g., out-of-distribution or mislabeled train-
ing examples), achieving robustness also requires modeling choices such as robust loss
functions. In the next section we approach this via Pairwise SGDA, the type of optimization
required in adversarially robust training.

4.2. Stability and Generalization of Pairwise SGDA

In this subsection, we discuss Pairwise SGDA for solving minimax problems in the
convex-concave case. We will abuse the notations to apply them to the minimax case.
We receive a model A(S; ϕ) := (Aw(S; ϕ), Av(S; ϕ)) ∈ W × V by applying a learning
algorithm A on training set S and measure the performance with respect to a loss function
ℓ : (w, v) 7→ ℓ(w, v; z, z̃). For any ϕ ∈ Φ, we consider the risk defined as

min
w∈W

max
v∈V

R(Aw(S; ϕ), Av(S; ϕ)) := Ez,z̃∼D[ℓ(Aw(S; ϕ), Av(S; ϕ); z, z̃)].

We consider the following empirical risk as the approximation:

RS(Aw(S; ϕ), Av(S; ϕ)) :=
1

n(n− 1) ∑
i,j∈[n]:i ̸=j

ℓ
(

Aw(S; ϕ), Av(S; ϕ); zi, zj
)
.

We consider Pairwise SGDA with a general sampling scheme, where the random
index pairs follow from a general distribution.

We denote w1 and v1 the initial points. Let∇wℓ and∇vℓ be the gradients with respect
to w and v, respectively. Let P be a uniform distribution over ([n]× [n])T and S be a
training dataset with n samples. Let (it, jt) from set {(it, jt) : it, jt ∈ [n], it ̸= jt} be drawn
uniformly at random. At the t-th iteration, with step size sequence {ηt}, Pairwise SGDA
updates the model as follows:wt+1 = wt − ηt∇wℓ(wt, vt; zit , zjt),

vt+1 = vt + ηt∇vℓ(wt, vt; zit , zjt).

Before giving the results for Pairwise SGDA, we restate the assumptions we need,
adapted to the new setting with two distinct parameter vectors w and v [38,52].

Assumption 4. Let L ≥ 0. We say a differentiable function ℓ is L-Lipschitz with respect to w and
v if the following holds: For any z, z̃ ∈ Z , w ∈ W , v ∈ V , we have

∥∇wℓ(w, v; z, z̃)∥2 ≤ L and ∥∇vℓ(w, v; z, z̃)∥2 ≤ L.
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Assumption 5. Let α > 0. We say a differentiable function ℓ is α-smooth if the following inequality
holds for any w1, w2 ∈ W , v1, v2 ∈ V and z, z̃ ∈ Z :∥∥∥∥(∇w f (w1, v1; z, z̃)−∇w f (w2, v2; z, z̃)

∇v f (w1, v1; z, z̃)−∇v f (w2, v2; z, z̃)

)∥∥∥∥
2
≤ α

∥∥∥(w1 −w2
v1 − v2

)∥∥∥
2
.

Assumption 6 (Convexity-Concavity). We say ℓ is concave if −ℓ is convex. We say ℓ is
convex-concave if ℓ(·, v) is convex for every v ∈ V and ℓ(w, ·) is concave for every w ∈ W .

Now, we apply Lemma 1 to develop bounds for Pairwise SGDA in both smooth and
non-smooth cases. In the following lemma, proved in Appendix B.2, we establish the
sub-exponential stability of Pairwise SGDA.

Lemma 3 (Sub-exponential stability of Pairwise SGDA). Let {wt, vt}, {w′t, v′t} be two pa-
rameter sequences produced by Pairwise SGDA with fixed step sizes and uniform sampling P
while being trained on neighboring samples S and S′. Suppose the loss is Lipschitz and convex (cf.
Assumptions 4–6). Then, we have the following:

(1) At the t-th iteration, we have sub-exponential stability (Definition 2) with

c1 = 2
√

2eL2η(
√

t + 2t/n) and c2 = 4
√

2eL2η(1 +
√

2t/n).

(2) If in addition the loss is also smooth (cf. Assumption 5), then at the t-th iteration, sub-
exponential stability (Definition 2) holds with

c1 = 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n) and c2 = 8
√

eL2η exp(
1
2

α2tη2)(1 +
√

2t/n).

We combine the above lemma with Lemma 1 to obtain bounds for Pairwise SGDA
with a general sampling distribution.

Theorem 2 (Generalization bounds for Pairwise SGDA). Assume ℓ is M-bounded, Lipschitz,
and convex (cf. Assumptions 4 and 6). For any δ∈ (0, 1), Pairwise SGDA with fixed step sizes
satisfies the following generalization guarantees with probability of at least 1− δ over draws of
S ∼ Dn, for all posterior sampling distributions Q on ([n]× [n])T :

(1) After T iterations, we have

Eϕ∼Q[G(S, ϕ)] ≲
(

T log n−H(Q)+log
1
δ

)
max

{
L2η(
√

T + T/n) log2 n,
M√

n

}
.

(2) If in addition the loss is also smooth (cf. Assumption 5), we have

Eϕ∼Q[G(S, ϕ)] ≲
(

T log n−H(Q)+log
1
δ

)
max

{
L2η exp(α2tη2)

(
T
n
+ 1 +

√
T
n

)
log2 n,

M√
n

}
.

Let us assume again that KL(Q∥U ) ∈ Õ(1). As Theorem 2 deals with min-max opti-
mization applicable to minimizing an adversarially robust loss function, this assumption
still allows some extra flexibility to account for a few outliers while having the following
rates. For part 1, if we choose T = O(n2) and η = O

(
T−3/4

)
, this gives a rate of the order

Õ(1/
√

n). For part 2, if we choose T = O(n) and η = O(1/
√

n), this gives the bounds of
the order Õ(1/

√
n).
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5. Algorithmic Implications and Illustrative Experiments
Our theoretical guarantees in the previous section are given up to constant factors.

This is common in theoretical analyses, as such results still give useful information about
the behavior of bounds with quantities of interest, such as the sample size n. To further
verify that our bounds are informative, in this section we show how one can convert them
into learning algorithms by minimizing the terms on the r.h.s. of our bounds. We will then
illustrate the working of the resulting algorithms in numerical experiments and demonstrate
examples of extracting meaningful information from these new algorithms. The goal of
this section is to empirically corroborate our theoretical guarantees and demonstrate their
potential use for algorithm design.

In line with our theory, we use uniform sampling as the PAC–Bayes prior, and we learn
the posterior sampling along with the model’s parameters, by alternating minimization of
our bounds. We choose Q = qT of a factorized form, which corresponds to sampling from
training indices [n] with replacement T times during the training trajectory. Minimizing the
terms on the r.h.s. of the bounds in Theorem 1 yields an adaptive Pairwise SGD algorithm
that we refer to as Pairwise SGD-Q, and likewise minimizing the r.h.s. of the bounds in
Theorem 2 yields an adaptive Pairwise SGDA algorithm SGDA-Q. The pseudo-codes of
both of these resulting algorithms are given in Algorithm 1 (with the options of Pairwise
SGD-Q or Pairwise SGDA-Q).

Algorithm 1 Pairwise SGD-Q/Pairwise SGDA-Q

1: Inputs: {(it, jt) : it, jt ∈ [n], it ̸= jt}, ℓ, ν, Titer, Epochs
2: Initialize: q← uniform, w0 = 0, v0 = 0, t← 1
3: for epoch = 1 to Epochs do
4: for t = 1 to Titer do
5: Sample (it, jt) ∼ q
6: Pairwise SGD-Q:
7: wt+1 = wt − η∇wℓ(wt; zit , zjt);
8: Pairwise SGDA-Q:
9: vt+1 = vt + η∇vℓ((wt, vt); zit , zjt);

10: wt+1 = wt − η∇wℓ((wt, vt); zit , zjt);
11: Let t← t + 1
12: end for
13: Update all q as q(i, j) ∝ exp

(
− 1

ν ℓ(w; zi, zj)
)

for each pair
14: end for
15: Return w, v, q

Before moving on to exemplify our algorithms at work, we should note that there
are two in-built guardrails that prevent sampling bias by design, as follows. The r.h.s.
of all bounds that we minimize contain two key terms, each acting as a guardrail:
(i) Minimizing the DKL(Q∥P) term is equivalent to maximizing the entropy of Q, i.e., the
sampling distribution that we learn (since P is the uniform sampling)—hence, Q will only
deviate from uniformity for a good reason (e.g., when encountering misleading or misla-
beled training pairs). (ii) Minimizing the expected empirical risk (rather than the empirical
risk itself) has the consequence that the correction term that usually appears in existing
non-uniform sampling-based SGD-type algorithms simply cancels out, automatically en-
suring unbiased gradients by construction and without an external correction. Overall, this
illustrates the advantage of learning algorithms obtained by minimizing generalization
bounds, as the two terms together minimize an upper bound on the quantity we care about,
i.e., the true risk.

The forthcoming numerical experiments are meant to showcase the way in which our
adaptive sampling methods enhance robustness by learning to down-weight misleading or
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mislabeled training examples, thereby avoiding being misled on them. As a byproduct,
these weights provide explanatory information about the data pairs.

Numerical Results in Pairwise Preference Learning

We illustrate the working of our bound-based pairwise learning algorithms on a toy
problem involving pairwise ranking on synthetic 2D data. Pairwise ranking is the task
of inferring relative preferences by comparing items in pairs. It has broad applicabil-
ity, including information retrieval, recommendation systems, preference modeling [53],
and positive-unlabeled learning [12]. In this section, we present experiments using a simple
linear preference model to demonstrate how our theoretical findings manifest in practice.
The aim of this section is not to compete with state-of-the-art empirical methods, but rather
to provide insight into the behavior of the algorithms and the use of our bounds under
controlled conditions.

We generate n = 50 i.i.d. points from a 2D standard Gaussian and assign “pref-
erence scores” to each using a hidden linear function strue(xi) = wT

truexi, i ∈ [n], where
wtrue = (1.5,−1)T is fixed. We then sample 1000 pairs from this data and assign binary
labels 1(wtruexi ≤ wtruexj) indicating which of two items is preferred in each sampled pair.

We use the resulting labeled pairs in the form of difference vectors xi − xj (where
i, j ∈ [n], i ̸= j) as inputs to our Pairwise SGD-Q algorithm to train a linear model with
cross-entropy loss for 15 epochs of Titer iterations, each set equal to the number of pairs
(so T = Titer · Epochs), with step size η = 0.1. We aim to learn a scoring function so that
for any two items xi and xj the model can say which one ranks higher. The model learns
a weight vector w so that the score of item x is s(x) = wTx, and we want wTxi > wTxj if
item i is preferred to j. That is, the model projects all points onto the direction w and ranks
them by how far they fall along that line.

The results are plotted in Figure 1. The top-left figure shows the 2D data colored by
their preference scores. A red arrow shows the ranking direction learned by our Pairwise
SGD-Q, i.e., the direction the trained model uses to order points. Its associated “decision
boundary” is shown by the dashed line. In this context, the decision boundary represents
the level set wTx = 0 that is the dividing line (more generally, hyperplane) orthogonal
to the learned ranking direction. It shows how w splits the space into higher- and lower-
scoring regions.

The top-right figure is a scatter plot showing the relationship between the learned
pairwise margins wT(xi − xj) and the learned sampling probabilities q(i, j) (q-scores for
each pair). Ambiguous pairs with small margins, i.e., those the model is less confident about,
tend to have higher losses and thus get down-weighted by a lower sampling probability
q(i, j). Hence, more confident (larger-margin) pairs are sampled more often.

The bottom-left plot overlays an edge for the 20 lowest q-scored pairs. These are the
pairs that have the same preference score but differing feature coordinates—indeed the least
helpful pairs for learning the preference change direction. The 20 highest q-scored pairs are
shown on the bottom-right plot; these are most informative of the direction of change.

We repeated the experiment using a noisy preference model, where the observed
scores are given by strue(xi) = w⊤truexi + υi, with υi ∼i.i.d. N (0, 1) for i ∈ [n]. Figure 2
shows the results of training a model of the same form as previously, using our Pairwise
SGD-Q. The top-left plot depicts the noisy data overlaid with the learned direction w.
The top-right plot shows the pairwise margins w⊤(xi − xj) against the corresponding
sampling probabilities q(i, j). While q still decreases near the pairwise margin, the noise
now causes mislabeled or ambiguous pairs to receive even lower q values. This becomes
evident in the bottom-left plot: the lowest q-scored pairs have similar preference scores but
differing features and are no longer orthogonal to w due to noise. The bottom-right plot
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shows the highest q-scored pairs, which continue to reflect the most informative preference
differences aligned on average with the learned direction.

Next, we plot learning curves to see how the generalization performance of the
pairwise ranking model trained with our Pairwise SGD-Q and Pairwise SGDA-Q algorithms
varies with the number of i.i.d. items, under both clean and noisy settings, while we
keep the number of pairs used for training constant. The Pairwise SGDA-Q experiments
represent an instance of adversarial training. This can model, for instance, malicious users,
bots, or strategic agents in applications like recommendation systems, crowd-sourced
ranking, sports, or election ranking.

We vary n ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and repeat all experiments on both
clean and noisy preference score generation models. This totals 44 different experiment
settings, and we perform 50 independent trials for each. The data generation process is the
same as before. While the sample size n varies, the number of pairs sampled from these n
points for training is set to 1000 throughout, and these pairs are labeled in the same way
as before.

Training with Pairwise SGD-Q is performed in the same way as previously described,
but this time we set Titer = 300 to run for 30 epochs. When training with Pairwise SGDA-Q,
at each training epoch the algorithm first computes the pairwise losses after adversarial
maximization over weight vector v constrained to an ℓ2-ball of radius ϵ = 0.05 around
the current model w, using 6 gradient ascent steps with step size η = 0.1. The resulting
adversarially induced losses are used to compute the sampling distribution q(i, j) ∝ exp(−ℓij),
from which Titer = 300 pairs are drawn to iteratively update w, for 30 epochs.

Figure 1. Visualization of Pairwise SGD-Q on a synthetic pairwise ranking task with 2D Gaussian
data. (Top-Left) Data points colored by true preference scores; the red arrow indicates the learned
ranking direction, and the dashed line shows the decision boundary w⊤x = 0. (Top-Right) Pairwise
margins w⊤(xi − xj) vs. sampling probabilities q(i, j); high-confidence pairs (larger margins) are
sampled more frequently. (Bottom-Left) The 20 least informative (lowest q) pairs—these are distant
pairs having similar preference scores. (Bottom-Right) The 20 most informative (highest q) pairs.
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Figure 2. Same setup as Figure 1, but with additive Gaussian noise in the generating preference
model. The top-right plot shows that q(i, j) now reflect both the size of pairwise margin and the noise
sensitivity, assigning lower weights to mislabeled or ambiguous pairs. The bottom-left plot shows that,
as before, Pairwise SGD-Q still down-weights distant pairs that have too similar preference scores,
although now these are no longer perpendicular to the ranking direction due to noise. The bottom-
right plot shows that Pairwise SGD-Q prioritizes the pairs most aligned with the ranking direction.

For both algorithms, evaluation is performed using an independent test set of 500
unseen items, drawn from the clean preference scoring model. For Pairwise SGD-Q,
the out-of-sample errors are computed. For Pairwise SGDA-Q, three different out-of-
sample error metrics are computed: (1) standard pairwise error, (2) error under adversarial
perturbation of the model’s weights w, and (3) error under adversarial perturbation of
the test pairwise inputs xi − xj, all within the same ℓ2 radius and using the same Pairwise
SGDA-Q ascent procedure.

Figure 3 reports the obtained learning curves for both algorithms: the error bars show
the average and standard error across 50 independent runs. From these figures we can see,
as expected, that both natural noise and adversarial perturbations make the problem harder.
However, all out-of-sample errors display a decreasing trajectory as the sample size grows.
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Figure 3. Out-of-sample errors for Pairwise SGD-Q and Pairwise SGDA-Q as a function of the
number of i.i.d. items n, while the number of pairs trained on remains constant at 1000. The curves
represent averages, and the error bars are standard errors from 50 independent trials.
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6. Conclusions
We obtained stability-based PAC–Bayes bounds for randomized pairwise learning,

applicable to general sampling. These bounds are applicable to analyzing the generalization
of stochastic optimization algorithms, and we demonstrated this in the case of Pairwise
SGD and Pairwise SGDA. Our generalization analysis of these methods is suggestive of new
stochastic optimizers that allow non-uniform and data-dependent sampling distributions
to be updated during the training process. We believe this is a theoretically grounded
step that connects two important ideas and may support future work on more complex
or application-specific methods. The practical use of this idea is explored in a companion
paper [22].

Limitations: Our analysis of Pairwise SGD and Pairwise SGDA is built on a set of
classic assumptions regarding the loss function, with convexity being perhaps the most
restrictive among them. Nonetheless, insights gained from the convex setting remain a
valuable stepping stone to tackling more general, non-convex problems in future work.
Indeed, a worthwhile avenue will be to obtain bounds and associated algorithms under
relaxed assumptions. Furthermore, here we demonstrated numerical results with our
bound-based algorithm under its intended conditions. It will also be interesting to explore
experimentally to what extent such algorithms remain functional and potentially useful
outside the theoretical conditions in which they were obtained.
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Appendix A. Proof of Lemma 1
We follow the ideas in [31,54] to prove Lemma 1. We first introduce some useful

lemmas. The following lemma shows some results on characterizing sub-Gaussian and sub-
exponential random variables. For λ > 0, let E[exp(λZ)] denote the moment-generating
function (MGF) of Z. We denote I[·] the indicator function.

Lemma A1 (Vershynin [55]). Let X be a random variable with E[X] = 0. We have the following
equivalences for X:

• ∥X∥p = (E|X|p)1/p ≤ √p, for all p ≥ 1.
• There exists K1 ≥ 0 such that, for all λ ∈ R, E[exp(λX)] ≤ exp(K1λ2).

We have the following equivalences for X:

• ∥X∥p = (E|X|p)1/p ≤ p, for all p ≥ 1.
• For all λ such that |λ| ≤ 1

2e , E[exp(λX)] ≤ exp(2e2λ2).

The following lemma gives a change in measure of the KL divergence.
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Lemma A2 (Lemma 4.10 in Van Handel [56]). For any measurable function g : Φ 7→ R,
we have

logEϕ∼P[exp(g(ϕ))] = sup
Q

[
Eϕ∼Q[g(ϕ)]−KL(Q∥P)

]
.

We denote the Lp-norm of a random variable Z as ∥Z∥p := (E[|Z|p])
1
p , p ≥ 1, denote

S\{zi} the set {z1, . . . , zi−1, zi+1, . . . , zn}, and abbreviate ∑i,j∈[n]:i ̸=j as ∑i ̸=j. For z′k ∈ Z ,
S(k) is the set derived by replacing the k-th element of S with z′k.

The following lemma gives moment bounds for a summation of weakly dependent
and mean-zero random functions with bounded increments under a small change.

Lemma A3 (Theorem 1 in Lei et al. [33]). Let S = {z1, . . . , zn} be a set of independent random
variables that each takes values in Z and M > 0. Let gi,j, ∀i, j ∈ [n], i ̸= j be some functions

that can be decomposed as gi,j = g(i)j + g̃(j)
i . Suppose for g(i)j : Zn 7→ R and g̃(j)

i : Zn 7→ R,
the following hold for any i, j ∈ [n], i ̸= j:

•
∣∣ES\{zj}[g

(i)
j (S)]

∣∣ ≤ 2M, and
∣∣ES\{zi}[g̃

(j)
i (S)]

∣∣ ≤ 2M almost surely (a.s.).

• Ezj

[
g(i)j (S)

]
= 0, and Ezi

[
g̃(j)

i (S)
]
= 0 a.s.

• For any j ∈ [n] with i ̸= j, k ̸= j we have
∣∣g(i)j (S)− g(i)j (S(k))

∣∣ ≤ 2β a.s., and for any

i ∈ [n] with j ̸= i and k ̸= i, we have
∣∣g̃(j)

i (S)− g̃(j)
i (S(k))

∣∣ ≤ 2β a.s.

Then, we can decompose ∑i ̸=j g(i)j (S) and ∑i ̸=j g̃(j)
i (S) as follows:

∑
i ̸=j

g(i)j (S) = X1 + X2, and ∑
i ̸=j

g̃(j)
i (S) = X̃1 + X̃2

where X1, X2, X̃1, X̃2 are four random variables satisfying E[X1] = E[X2] = E[X̃1] = E[X̃2] = 0.
Furthermore, for any p ≥ 1

∥X1∥p ≤ 8M
√

p(n− 1)n and ∥X̃1∥p ≤ 8M
√

p(n− 1)n

and for any p ≥ 2

∥X2∥p ≤ 24
√

2p(n− 1)nβ⌈log2(n− 1)⌉ and ∥X̃2∥p ≤ 24
√

2p(n− 1)nβ⌈log2(n− 1)⌉.

Proof of Lemma 1. Based on Lemma A2, if we set g(ϕ) = λh(ϕ), then

EQ[h(ϕ)] ≤
1
λ
(logEP[exp(λh(ϕ))] + KL(Q∥P)). (A1)

To control the deviations of logEP[exp(λh(ϕ))], we use Markov’s inequality. With a
probability of 1− ϵ, we have

EP

[
eλh(ϕ)

]
≤

ESEP

[
eλh(ϕ)

]
ϵ

.

Applying the above results to Equation (A1), with a probability of 1− ϵ, we get

EQ[h(ϕ)] ≤
1
λ

(
logEP

[
eλh(ϕ)

]
+ KL(Q∥P)

)
≤ 1

λ

log
ESEP

[
eλh(ϕ)

]
ϵ

+ KL(Q∥P)

. (A2)

We can exchange EP and ES using Fubini’s theorem. Next, we will bound the gener-
alization gap with respect to P. Let δ be some decaying function of n. We denote by Ωδ a
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subset with Pr(Ωδ) ≥ 1− δ on which sub-exponential stability (Definition 2) holds and Ωc
δ

is the complement of Ωδ. We first give results for any fixed ϕ ∈ Ωδ. Given ϕ ∈ Ωδ, it was
shown in Lei et al. [33], ∀i, j ∈ [n], that

G(S, ϕ) ≤ 4βϕ +
1

n(n− 1) ∑
i ̸=j

gi,j(S),

gi,j(S) = Ez′i ,z
′
j

[
EZ,Z̃

[
ℓ
(

A
(
Si,j
)
; Z, Z̃

)]
− ℓ
(

A
(
Si,j
)
; zi, zj

)]
.

As shown in Lei et al. [33], gi,j satisfies all the conditions in Lemma A3, and therefore
one can apply Lemma A3 to show the existence of four random variables X1, X2, X̃1, X̃2

such that E[X1] = E[X2] = E[X̃1] = E[X̃2] = 0:

1
n(n− 1) ∑

i ̸=j
gi,j(S) = X1 + X2 + X̃1 + X̃2

and ∥X1∥p ≤ 8
√

pM(n− 1)−
1
2 , ∀p ≥ 1, ∥X̃1∥p ≤ 8

√
pM(n− 1)−

1
2 , ∀p ≥ 1,

∥X2∥p ≤ 24
√

2pβϕ⌈log2(n− 1)⌉, ∀p ≥ 2, ∥X̃2∥p ≤ 24
√

2pβϕ⌈log2(n− 1)⌉, ∀p ≥ 2.

Using the first part of Lemma A1 with X = X1/8M(n− 1)−
1
2 to get

max{ES[exp(λX1)],ES[exp(λX̃1)]} ≤ exp(64M2(n− 1)−1K1λ2) (A3)

and using the second part of Lemma A1 with X = X2/24
√

2βϕ⌈log2(n− 1)⌉,

max{ES[exp(λX2)],ES[exp(λX̃2)]} ≤ exp[2304e2β2
ϕ⌈log2(n− 1)⌉2λ2],

∀|λ| ≤ 1
48e
√

2βϕ⌈log2(n− 1)⌉
. (A4)

According to Jensen’s inequality, we have

exp(λX1 + λX2 + λX̃1 + λX̃2) = exp(λX1) exp(λX2) exp(λX̃1) exp(λX̃2)

≤ 1
4
(exp(4λX1) + exp(4λX2) + exp(4λX̃1) + exp(4λX̃2)).

This implies

ES exp[λG(S, ϕ)] ≤ ES exp[λ(4βϕ + X1 + X2 + X̃1 + X̃2)]

≤ exp(4λβϕ)
1
4
(
ES[exp(4λX1) + exp(4λX2) + exp(4λX̃1) + exp(4λX̃2)]

)
.

As sub-exponential stability (Definition 2) holds with βϕ ≤ c1 + c2 log(1/δ) when
ϕ ∈ Ωδ, the above inequality together with Equations (A3) and (A4) implies that, for all

0 < λ ≤ 1
192e
√

2(c1 + c log(1/δ))⌈log2(n− 1)⌉
,

we have

ES[exp(λG(S, ϕ))] ≤ exp(4λ(c1 + c log(1/δ)))(exp(256M2(n− 1)−1K1λ2)

+ exp(9216× (2e)2(c1 + c log(1/δ))2⌈log2(n− 1)⌉2λ2)). (A5)
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Next, we give results for any fixed ϕ. We define H : Zn × Φ 7→ R as H(S, ϕ) =

G(S, ϕ)I[ϕ ∈ Ωδ], where I[·] is the indicator function. We have

EQ[G(S, ϕ)] = EQ[H(S, ϕ)] +EQ[G(S, ϕ)|ϕ ∈ Ωc
δ]Q(Ωc

δ). (A6)

Based on Equation (A.8) and Equation (A.9) in Zhou et al. [31], for α > 1, we have

EQ[G(S, ϕ)] ≤ EQ[H(S, ϕ)] + M inf
α>1

δ
α−1

α

(
EP

[(
Q(ϕ)

P(ϕ)

)α]) 1
α

, (A7)

where ℓ(A(S; ϕ)) ∈ [0, M] and

ESEP[exp(λH(S, ϕ))] ≤ ESEP[exp(λ(G(S, ϕ))|ϕ ∈ Ωδ)] + δ. (A8)

Combining the above Equation (A8) with Equation (A5), we obtain

EPES[exp(λH(S, ϕ))] ≤ exp(2λ(c1 + c log(1/δ)))×
(

exp(256M2(n− 1)−1K1λ2)+

exp(9216× (2e)2(c1 + c2 log(1/δ))2⌈log2(n− 1)⌉2λ2)
)
+ δ. (A9)

For any u, v, w > 0 and δ ∈ (0, 1), we have

exp(u)(exp(v) + exp(w)) + δ ≤ exp(u + 1/2)(exp(v) + exp(w)).

Applying the above inequality into Equation (A9), if u = 2λ(c1 + c2 log(1/δ)),
v = 256M2n−1K1λ2, w = 9216× (2e)2(c1 + c2 log(1/δ))2⌈log2 n⌉2λ2, it gives

EPES[exp(λH(S, ϕ))] ≤ exp(2λ(c1 + b log(1/δ)) + 1/2)×
(

exp(256M2 K1λ2

n− 1
)+

exp(9216× (2e)2
(

c1 + c2 log(
1
δ
)

)2
⌈log2(n− 1)⌉2λ2)

)
. (A10)

We choose

λ = min

{
1

192e
√

2(c1 + c2 log(1/δ))⌈log2(n− 1)⌉
,

√
(n− 1)

16
√

K1M

}
, (A11)

so that we have

2λ(c1 + c2 log(1/δ)) + 1/2 ≤ 1,

256M2(n− 1)−1K1λ2 ≤ 1,

9216× (2e)2(c1 + c2 log(1/δ))2⌈log2(n− 1)⌉2λ2 ≤ 1.

Plugging this back into Equation (A10) yields the MGF of our truncated generalization
gap, H(S; ϕ), which is a key quantity in PAC–Bayes analysis:

EPES[exp(λH(S, ϕ))] ≤ e(e + e) ≤ e3.

Applying the above results into Equation (A2), we have, with a probability of 1− δ′,

EQ[H(S, ϕ)] ≤ 1
λ

(
log(e3/δ′) + KL(Q∥P)

)
=

1
λ

(
3 + log(1/δ′) + KL(Q∥P)

)
.
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Based on the above inequality and Equations (A7) and (A8), the following inequality
holds uniformly for all Q with probability of at least 1− δ′:

Eϕ∼Q[G(S, ϕ)] ≤ Eϕ∼Q[H(S, ϕ)] + M inf
α>1

δ
α−1

α

(
EP

[(
Q(ϕ)

P(ϕ)

)α]) 1
α

≤ KL(Q∥P) + log(1/δ′) + 3
λ

+ M inf
α>1

δ
α−1

α

(
EP

[(
Q(ϕ)

P(ϕ)

)α]) 1
α

.

In the above, comparing the first and the second term on the r.h.s, the second term can
be made negligible by choosing δ small enough, δ≪ n−T .

Therefore, our analysis shows

Eϕ∼Q[G(S, ϕ)] ≲ (KL(Q∥P) + log(1/δ1))max
{
(c1 + c2 log(n))⌈log2 n⌉, M√

n

}
.

The proof is completed.

Here, we discuss the existence of Eϕ∼P

[(
Q(ϕ)
P(ϕ)

)α]
. In practice, we consider Q and P to

be sampling distributions. In these cases, Q and P are discrete distributions on the same
dataset. In particular, we are interested in the case with P being the uniform distribution.
Under these circumstances, this expectation exists.

Appendix B. Proofs for Pairwise SGD and Pairwise SGDA with
Adaptive Sampling
Appendix B.1. Pairwise Stochastic Gradient Descent

We will prove that stability bounds of Pairwise SGD satisfy sub-exponential stability
(Definition 2). Based on this, we can derive the generalization bounds for Pairwise SGD
with smooth and non-smooth convex loss functions. To this aim, we introduce the following
lemma to bound the summation of i.i.d events [57].

Lemma A4 (Chernoff’s Bound). Let Z1, . . . , Zt be independent random variables taking values
in {0, 1}. Let Z = ∑t

k=1 Zk and µ = E[Z]. Then, for any δ ∈ (0, 1) with probability of at least
1− δ, we have

Z ≤ µ + log(1/δ) +
√

2µ log(1/δ).

We first present the stability bounds for non-smooth and convex cases.

Proof of Lemma 2, (1). Without loss of generality, we assume S and S′ differ by the last
example. Based on the Equation (F.2) in Lei et al. [51], we have

∥wt+1 −w′t+1∥2
2 ≤ 4L2η2(1 + p)∑t

k=1 I[ik=n or jk=n]

(
t + p−1

t

∑
k=1

I[ik = n or jk = n]

)
.

We set p = 1/ ∑t
k=1 I[ik = n or jk = n] and use the inequality (1 + 1/x)x ≤ e to get

∥wt+1 −w′t+1∥2
2 ≤ 4eL2η2

t +

(
t

∑
k=1

I[ik = n or jk = n]

)2
.

It then follows that

∥wt+1 −w′t+1∥2 ≤ 2
√

eLη

(
√

t +
t

∑
k=1

I[ik = n or jk = n]

)
.
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According to the Lipschitz continuity, we know that Pairwise SGD is βϕ-uniformly
stable with

βϕ = 2
√

eL2η

(
√

t + max
k∈[n]

t

∑
m=1

I[im = k or jm = k]

)
. (A12)

To bound βϕ w.h.p., we set βϕ,k = 2
√

eL2η
(√

t + ∑t
m=1 I[im = k or jm = k]

)
and note

that E[I[im = k or jm = k]] ≤ Pr{im = k}+ Pr{jm = k} = 2/n. Applying Lemma A4 to
the sum in Equation (A12), with probability of at least 1− δ/n, we get

βϕ,k ≤ 2
√

eL2η(
√

t + 2t/n + log(n/δ) + 2
√

t/n log(n/δ)).

Therefore, with probability of at least 1− δ, the following holds simultaneously for all
k ∈ [n] by the union bound on probability

βϕ,k ≤ 2
√

eL2η(
√

t + 2t/n + log(n/δ) + 2
√

t/n log(n/δ)).

For δ ∈ (0, 1/n), this implies the following inequality with probability of at least 1− δ:

βϕ ≤ 2
√

eL2η(
√

t + 2t/n + 2 log(1/δ) + 2
√

2t/n log(1/δ)). (A13)

Finally, from Equation (A13) we know that Pairwise SGD with the uniformly dis-
tributed hyperparameter ϕ satisfies sub-exponential stability (Definition 2) with

c1 = 2
√

eL2η(
√

t + 2t/n), c2 = 4
√

eL2η(1 +
√

2t/n).

The proof is completed.

Proof of Lemma 2, (2). By an intermediate result in the proof in Lemma C.3 of Lei et al.
[33], for all z, z̃ ∈ Z and ik, jk ∈ [n], ik ̸= jk, with L-Lipschitz, we have

|ℓ(wt+1; z, z̃)− ℓ(wt+1; z, z̃)| ≤ L∥wt+1 −w′t+1∥2 ≤ 2L2
t

∑
k=1

ηkI[ik = n or jk = n].

From this inequality it follows that Pairwise SGD is βϕ-uniformly stable with

βϕ = 2L2 max
k∈[n]

t

∑
m=1

ηmI[im = k or jm = k]. (A14)

Let βϕ,k = 2L2 ∑t
m=1 ηjI[im = k or jm = k] for any k ∈ [n]. It remains to show that the

stability parameter of Pairwise SGD satisfies sub-exponential stability (Definition 2). Using
Lemma A4 with Zm = I[im = k or jm = k] and noting that E[I[im = k or jm = k]] ≤ 2/n,
we get the following inequality with probability of at least 1− δ/n (taking ηj = η):

βϕ,k ≤ 2L2η(2t/n + log(n/δ) + 2
√

t/n log(n/δ)). (A15)

By the union bound, with probability of at least 1− δ, Equation (A15) holds for all
k ∈ [n]. Therefore, with probability of at least 1− δ, it gives

βϕ ≤ 2L2η(2t/n + log(n/δ) + 2
√

t/n log(n/δ)) ≤ 2L2η(2t/n + 2 log(1/δ)+

2
√

2t/n log(1/δ)) ≤ 4L2ηt/n + 4L2η(1 +
√

2t/n) log(1/δ),
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where we have used δ ∈ (0, 1/n) in the second inequality. Hence, sub-exponential stability
(Definition 2) holds with

c1 = 4L2ηt/n, c2 = 4L2η(1 +
√

2t/n).

This completes the proof.

Proof of Theorem 1 . With A(S; ϕ) = wT , it follows from Lemma 2, (1) and (2), that Pair-
wise SGD with both convex non-smooth and convex smooth loss functions satisfies sub-
exponential stability (Definition 2). Applying the upper bound on βϕ to Lemma 1, the
result follows.

Appendix B.2. Pairwise Stochastic Gradient Descent Ascent

Next, we prove the generalization bounds for Pairwise SGDA with smooth and non-
smooth convex-concave loss functions.

Lemma A5 (Lemma C.1., [37] ). Let ℓ be convex-concave.

(1) If Assumption 4 holds, then

∥∥∥∥(w− η∇wℓ(w, v)
v + η∇vℓ(w, v)

)
−
(

w′ − η∇wℓ(w′, v′)
v′ + η∇vℓ(w′, v′)

)∥∥∥∥2

2
≤
∥∥∥∥(w−w′

v− v′

)∥∥∥∥2

2
+ 8L2η2.

(2) If Assumption 5 holds, then

∥∥∥∥(w− η∇wℓ(w, v)
v + η∇vℓ(w, v)

)
−
(

w′ − η∇wℓ(w′, v′)
v′ + η∇vℓ(w′, v′)

)∥∥∥∥2

2
≤
(
1+α2η2

)∥∥∥∥(w−w′

v− v′

)∥∥∥∥2

2
.

Proof of Lemma 3, (1). We assume S and S′ differ by the last example for simplicity. Based
on Lemma A5 (1), for it ̸= n, jt ̸= n, and it ̸= jt, we have∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2
≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8L2η2

t . (A16)

When it = n or jt = n, it ̸= jt, we have

∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥2

2
≤
∥∥∥(wt − ηt∇wℓwt, vt; zit , zjt)−w′t + ηt∇wℓw′t, v′t; z′it , z′jt)

vt + ηt∇vℓ(wt, vt; zit , zjt)− v′t − ηt∇vℓ(w′t, v′t; z′it , z′jt)

)∥∥∥2

2

≤ (1 + p)
∥∥∥(wt −w′t

vt − v′t

)∥∥∥2

2
+ (1 +

1
p
)η2

t

∥∥∥(∇wℓ(wt, vt; zit , zjt)−∇wℓ(w′t, v′t; z′it , z′jt)
∇vℓ(wt, vt; zit , zjt)−∇vℓ(w′t, v′t; z′it , z′jt)

)∥∥∥2

2

≤ (1 + p)
∥∥∥(wt −w′t

vt − v′t

)∥∥∥2

2
+ 8(1 + 1/p)η2

t L2, (A17)

where in the second inequality, we use that, for any p > 0, we have (c + d)2 ≤ (1 + p)c2 +

(1 + 1/p)d2. Combining Equations (A16) and (A17), this gives

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤
(∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8L2η2

t

)
I[it ̸= n and jt ̸= n]+(

(1 + p)
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8(1 + 1/p)η2

t L2

)
I[it = n or jt = n]

≤ (1 + pI[it = n or jt = n])
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2
+ 8L2η2

t (1 + I[it = n or jt = n]/p).
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We apply the above inequality recursively and follow the analysis of Equation (C.4)
in Lei et al. [37]:∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

≤8L2η2
t

∑
k=1

(1 + I[ik = n or jk = n]/p)
t

∏
r=k+1

(1 + pI[ir = n or jr = n])

=8L2η2
t

∑
k=1

(1 + I[ik = n or jk = n]/p)
t

∏
r=k+1

(1 + p)I[ir=n or jr=n]

≤8L2η2(1 + p)∑t
k=1 I[ik=n or jk=n]

(
t +

t

∑
k=1

I[ik = n or jk = n]/p

)
,

where we assume fixed step sizes. We set p = 1/ ∑t
k=1 I[ik = n or jk = n] and use the

inequality (1 + 1/x)x ≤ e to derive

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8eL2η2

t +

(
t

∑
k=1

I[ik = n or jk = n]

)2
.

It then follows that∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥
2
≤
√

8eLη

(
√

t +
t

∑
k=1

I[ik = n or jk = n]

)
.

By L-Lipschitzness, we have

|ℓ(Aw(S; ϕ), Av(S; ϕ), z, z̃)− ℓ
(

Aw
(
S′; ϕ

)
, Av

(
S′; ϕ

)
, z, z̃

)
|

≤ 2
√

2eL2η

(
√

t + max
k∈[n]

t

∑
r=1

I[ir = k or jr = k]

)
.

Therefore, we know that Pairwise SGDA is βϕ-uniformly stable with

βϕ = 2
√

2eL2η

(
√

t + max
k∈[n]

t

∑
r=1

I[ir = k or jr = k]

)
. (A18)

For simplicity, let βϕ,k = 2
√

2eL2η
(√

t + ∑t
r=1 I[ir = n or jr = n]

)
. Applying Lemma A4

to Equation (A18), with probability of at least 1− δ/n, we have

βϕ,k ≤ 2
√

2eL2η(
√

t + 2t/n + log(n/δ) + 2
√

t/n log(n/δ)).

With probability of at least 1− δ, the following holds for all k ∈ [n]:

βϕ,k ≤ 2
√

2eL2η(
√

t + 2t/n + log(n/δ) + 2
√

t/n log(n/δ)).

This suggests the following inequality with probability of at least 1− δ:

βϕ ≤ 2
√

2eL2η(
√

t + 2t/n + 2 log(1/δ) + 2
√

2t/n log(1/δ)).
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This suggests that Pairwise SGDA with uniform sampling distribution and the hyper-
parameter ϕ satisfies sub-exponential stability (Definition 2) with

c1 = 2
√

eL2η(
√

t + 2t/n), c2 = 4
√

2eL2η(1 +
√

2t/n).

The proof is completed.

Proof of Lemma 3, (2). Without loss of generality, we first assume S and S′ differ by the
last example. Based on Lemma A5 (2), if it ̸= n and jt ̸= n, we have

∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥2

2
=
∥∥∥(wt − ηt∇wℓ(wt, vt; zit , zjt)

vt + ηt∇vℓ(wt, vt; zit , zjt)

)
−(

w′t − ηt∇wℓ
(
w′t, v′t; zit , zjt

)
v′t + ηt∇vℓ

(
w′t, v′t; zit , zjt

) )∥∥∥2

2
≤ (1 + α2η2

t )
∥∥∥(wt −w′t

vt − v′t

)∥∥∥2

2
.

When it = n or jt = n, we consider Equation (A17). Combining these two cases, we
get

∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥2

2
≤
(

1 + α2η2
t

)∥∥∥(wt −w′t
vt − v′t

)∥∥∥2

2
I[it ̸= n and jt ̸= n]+(

(1 + p)
∥∥∥(wt −w′t

vt − v′t

)∥∥∥2

2
+ 8(1 +

1
p
)η2

t L2
)
I[it = n or jt = n]

≤
(

1 + α2η2
t pI[it = n or jt = n]

)∥∥∥(wt −w′t
vt − v′t

)∥∥∥2

2
+ 8(1 +

1
p
)η2

t L2I[it = n or jt = n]. (A19)

We apply the above Equation (A19) recursively, following the proof of Theorem 2(d)
in Lei et al. [37],∥∥∥∥∥

(
wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥∥
2

2

≤8(1 + 1/p)L2
t

∑
k=1

η2
k I[ik = n or jk = n]

t

∏
r=k+1

(
1 + α2η2

r + pI[ir = n or jr = n]
)

≤8(1 +
1
p
)L2η2

t

∑
k=1

I[ik = n or jk = n]
t

∏
r=k+1

(1 + α2η2
r )

t

∏
r=k+1

(1 + pI[ir = n or jr = n])

=8(1 + 1/p)L2η2
t

∑
k=1

I[ik = n or jk = n]
t

∏
r=k+1

(
1 + α2η2

r

) t

∏
r=k+1

(1 + p)I[ir=n or jr=n]

≤8(1 + 1/p)L2η2
t

∏
k=1

(
1 + α2η2

k

) t

∏
k=1

(1 + p)I[ik=n or jk=n]
t

∑
k=1

I[ik = n or jk = n]

≤8(1 + 1/p)L2η2 exp

(
α2

t

∑
k=1

η2
k

)
(1 + p)∑t

k=1 I[ik=n or jk=n]
t

∑
k=1

I[ik = n or jk = n],

where we assume fixed step sizes and use 1 + x ≤ ex in the last inequality. We set
p = 1/ ∑t

k=1 I[ik = n or jk = n] and use the inequality (1 + 1/x)x ≤ e to derive

∥∥∥∥(wt+1 −w′t+1
vt+1 − v′t+1

)∥∥∥∥2

2
≤ 8e

(
1 +

t

∑
k=1

I[ik = n or jk = n]

)2

L2η2 exp

(
α2

t

∑
k=1

η2
k

)
.
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Based on L-Lipschitzness and the above inequality, for any two neighboring datasets
S, S′ ∈ Zn, ∀z, z̃ ∈ Z , we have

|ℓ(Aw(S; ϕ), Av(S; ϕ), z, z̃)− ℓ
(

Aw
(
S′; ϕ

)
, Av

(
S′; ϕ

)
, z, z̃

)
|

≤ 4
√

eL2η exp(
1
2

α2tη2)max
k∈[n]

(
1 +

t

∑
r=1

I[ir = k or jr = k]

)
.

Therefore, we know that Pairwise SGDA is βϕ-uniformly stable with

βϕ = 4
√

eL2η exp(
1
2

α2tη2)max
k∈[n]

(
1 +

t

∑
r=1

I[ir = k or jr = k]

)
.

For simplicity, let βϕ,k = 4
√

eL2η exp( 1
2 α2tη2)

(
1 + ∑t

r=1 I[ir = k or jr = k]
)

for any
k ∈ [n]. Taking the expectation over both sides of the above inequality, we derive

c1 = 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n), (A20)

where E[I[ir = k or jr = k]] ≤ 2/n. Applying Zr = I[ir = k or jr = k] in Lemma A4, we get
the following inequality with probability of at least 1− δ/n:

βϕ,k ≤ 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n + log(n/δ) + 2
√

t/n log(n/δ)). (A21)

By the union bound in probability, with probability of at least 1− δ, Equation (A21)
holds for all k ∈ [n]. Therefore, with probability of at least 1− δ,

βϕ ≤ 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n + log(n/δ) + 2
√

t/n log(n/δ))

≤ 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n + 2 log(1/δ) + 2
√

2t/n log(1/δ))

≤ 4
√

eL2η exp(
1
2

α2tη2)(1 + 2t/n) + 8
√

eL2η exp(
1
2

α2tη2)(1 +
√

2t/n) log(1/δ)

≤ c1 + 8
√

eL2η exp(
1
2

α2tη2)(1 +
√

2t/n) log(1/δ),

where we have used δ ∈ (0, 1/n) in the second inequality and Equation (A20) in
the last inequality. Therefore, sub-exponential stability (Definition 2) holds with
c1 = 4

√
eL2η exp( 1

2 α2tη2)(1+ 2t/n) and c2 = 8
√

eL2η exp( 1
2 α2tη2)(1+

√
2t/n). The proof

is completed.

Based on the above lemma, we are ready to develop generalization bounds in
Theorem 2 for Pairwise SGDA with smooth and non-smooth loss functions.

Proof of Theorem 2. With A(S; ϕ) = (Aw(S; ϕ), Av(S; ϕ)), based on Lemma 3, (1) and (2),
Pairwise SGDA with both convex-concave non-smooth as well as convex-concave smooth
loss functions satisfies sub-exponential stability (Definition 2). Applying the upper bounds
on βϕ to Lemma 1, we obtain the result.

References
1. Lei, G.; Shi, L. Pairwise ranking with Gaussian kernel. Adv. Comput. Math. 2024, 50, 70. [CrossRef]
2. Agarwal, S.; Niyogi, P. Generalization bounds for ranking algorithms via algorithmic stability. J. Mach. Learn. Res. 2009,

10, 441–474.
3. Clémençon, S.; Lugosi, G.; Vayatis, N. Ranking and empirical minimization of U-statistics. In The Annals of Statistics; Institute of

Mathematical Statistics: Beachwood, OH, USA, 2008; pp. 844–874.

http://doi.org/10.1007/s10444-024-10165-0


Entropy 2025, 27, 845 25 of 26

4. Cortes, C.; Mohri, M. AUC optimization vs. error rate minimization. Adv. Neural Inf. Process. Syst. 2004, 16, 313–320.
5. Cao, Q.; Guo, Z.C.; Ying, Y. Generalization bounds for metric and similarity learning. Mach. Learn. 2016, 102, 115–132. [CrossRef]
6. Koestinger, M.; Hirzer, M.; Wohlhart, P.; Roth, P.M.; Bischof, H. Large scale metric learning from equivalence constraints. In

Proceedings of the IEEE Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2288–2295.
7. Xiong, F.; Gou, M.; Camps, O.; Sznaier, M. Person re-identification using kernel-based metric learning methods. In Proceedings of

the European Conference Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–16.
8. Guillaumin, M.; Verbeek, J.; Schmid, C. Is that you? Metric learning approaches for face identification. In Proceedings of the 2009

IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 498–505.
9. Zheng, Z.; Zheng, L.; Yang, Y. A discriminatively learned cnn embedding for person reidentification. ACM Trans. Multimed.

Comput. Commun. Appl. (TOMM) 2017, 14, 1–20. [CrossRef]
10. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Deep metric learning for person re-identification. In Proceedings of the 2014 IEEE 22nd

International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 34–39.
11. Feng, B.; Liu, Z.; Huang, N.; Xiao, Z.; Zhang, H.; Mirzoyan, S.; Xu, H.; Hao, J.; Xu, Y.; Zhang, M.; et al. A bioactivity foundation

model using pairwise meta-learning. Nat. Mach. Intell. 2024, 6, 962–974. [CrossRef]
12. Sellamanickam, S.; Garg, P.; Selvaraj, S.K. A pairwise ranking based approach to learning with positive and unlabeled examples.

In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, New York, NY, USA,
24–28 October 2011; CIKM ’11; pp. 663–672.

13. Wang, Z.; Liang, P.; Bai, R.; Liu, Y.; Zhao, J.; Yao, L.; Zhang, J.; Chu, F. Few-shot fault diagnosis for machinery using multi-scale
perception multi-level feature fusion image quadrant entropy. Adv. Eng. Inform. 2025, 63, 102972. [CrossRef]

14. Zhao, P.; Zhang, T. Stochastic Optimization with Importance Sampling for Regularized Loss Minimization. In Proceedings of the
International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1–9.

15. Allen-Zhu, Z.; Qu, Z.; Richtárik, P.; Yuan, Y. Even faster accelerated coordinate descent using non-uniform sampling. In
Proceedings of the International Conference on Machine Learning. PMLR, New York, NY, USA, 19–24 June 2016; pp. 1110–1119.

16. Katharopoulos, A.; Fleuret, F. Biased importance sampling for deep neural network training. arXiv 2017, arXiv:1706.00043.
[CrossRef]

17. Johnson, T.B.; Guestrin, C. Training deep models faster with robust, approximate importance sampling. Adv. Neural Inf. Process.
Syst. 2018, 31, 1–11.

18. Wu, C.Y.; Manmatha, R.; Smola, A.J.; Krahenbuhl, P. Sampling matters in deep embedding learning. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2840–2848.

19. Han, X.; Yu, X.; Li, G.; Zhao, J.; Pan, G.; Ye, Q.; Jiao, J.; Han, Z. Rethinking sampling strategies for unsupervised person
re-identification. IEEE Trans. Image Process. 2022, 32, 29–42. [CrossRef]

20. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9.

21. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017, arXiv:1706.06083.

22. Zhou, S.; Lei, Y.; Kabán, A. Learning to Sample in Stochastic Optimization. In Proceedings of the 41st Confenence on Uncertainty
in Artificial Intelligence, Rio de Janeiro, Brazil, 21–25 July 2025.

23. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
24. Zhou, M.; Patel, V.M. Enhancing adversarial robustness for deep metric learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 15325–15334.
25. Wen, W.; Li, H.; Wu, R.; Wu, L.; Chen, H. Generalization analysis of adversarial pairwise learning. Neural Netw. 2025, 183, 106955.

[CrossRef] [PubMed]
26. Liu, W.; Wang, Z.J.; Yao, B.; Yin, J. Geo-ALM: POI Recommendation by Fusing Geographical Information and Adversarial

Learning Mechanism. Int. Jt. Conf. Artif. Intell. 2019, 7, 1807–1813.
27. Zhang, L.; Duan, Q.; Zhang, D.; Jia, W.; Wang, X. AdvKin: Adversarial convolutional network for kinship verification. IEEE

Trans. Cybern. 2020, 51, 5883–5896. [CrossRef]
28. De la Pena, V.; Giné, E. Decoupling: From Dependence to Independence; Springer Science & Business Media: New York, NY, USA,

2012.
29. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of

the 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013; Workshop Track
Proceedings, 2013.

30. Beznosikov, A.; Gorbunov, E.; Berard, H.; Loizou, N. Stochastic gradient descent-ascent: Unified theory and new efficient methods.
In Proceedings of the International Conference on Artificial Intelligence and Statistics. PMLR, Valencia, Spain, 25–27 April 2023;
pp. 172–235.

http://dx.doi.org/10.1007/s10994-015-5499-7
http://dx.doi.org/10.1145/3159171
http://dx.doi.org/10.1038/s42256-024-00876-w
http://dx.doi.org/10.1016/j.aei.2024.102972
http://dx.doi.org/10.48550/arXiv.1706.00043
http://dx.doi.org/10.1109/TIP.2022.3224325
http://dx.doi.org/10.1016/j.neunet.2024.106955
http://www.ncbi.nlm.nih.gov/pubmed/39662199
http://dx.doi.org/10.1109/TCYB.2019.2959403


Entropy 2025, 27, 845 26 of 26

31. Zhou, S.; Lei, Y.; Kabán, A. Toward Better PAC-Bayes Bounds for Uniformly Stable Algorithms. In Proceedings of the Advances
in Neural Information Processing Systems, New Orleans, LA, USA, 10–16 December 2023; Volume 36.

32. London, B. A PAC-bayesian analysis of randomized learning with application to stochastic gradient descent. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2931–2940.

33. Lei, Y.; Ledent, A.; Kloft, M. Sharper Generalization Bounds for Pairwise Learning. In Proceedings of the Advances in Neural
Information Processing Systems, Virtual, 6–10 December 2020; Volume 33, pp. 21236–21246.

34. Katharopoulos, A.; Fleuret, F. Not all samples are created equal: Deep learning with importance sampling. In Proceedings of the
International Conference on Machine Learning. PMLR, Stockholm Sweden, 10–15 July 2018; pp. 2525–2534.

35. Bousquet, O.; Elisseeff, A. Stability and generalization. J. Mach. Learn. Res. 2002, 2, 499–526.
36. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. In Proceedings of the

International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1225–1234.
37. Lei, Y.; Yang, Z.; Yang, T.; Ying, Y. Stability and Generalization of Stochastic Gradient Methods for Minimax Problems. In

Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 6175–6186.
38. Farnia, F.; Ozdaglar, A. Train simultaneously, generalize better: Stability of gradient-based minimax learners. In Proceedings of

the International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 3174–3185.
39. Shawe-Taylor, J.; Williamson, R.C. A PAC analysis of a Bayesian estimator. In Proceedings of the Tenth Annual Conference on

Computational Learning Theory, Nashville, TN, USA, 6–9 July 1997; pp. 2–9.
40. McAllester, D.A. Some pac-bayesian theorems. Mach. Learn. 1999, 37, 355–363. [CrossRef]
41. London, B.; Huang, B.; Getoor, L. Stability and generalization in structured prediction. J. Mach. Learn. Res. 2016, 17, 7808–7859.
42. Rivasplata, O.; Parrado-Hernández, E.; Shawe-Taylor, J.S.; Sun, S.; Szepesvári, C. PAC-Bayes bounds for stable algorithms with

instance-dependent priors. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
3–8 December 2018; pp. 9214–9224.

43. Sun, S.; Yu, M.; Shawe-Taylor, J.; Mao, L. Stability-based PAC-Bayes analysis for multi-view learning algorithms. Inf. Fusion 2022,
86, 76–92. [CrossRef]

44. Oneto, L.; Donini, M.; Pontil, M.; Shawe-Taylor, J. Randomized learning and generalization of fair and private classifiers: From
PAC-Bayes to stability and differential privacy. Neurocomputing 2020, 416, 231–243. [CrossRef]

45. Mou, W.; Wang, L.; Zhai, X.; Zheng, K. Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints.
In Proceedings of the Conference on Learning Theory, Stockholm, Sweden, 6–9 July 2018; pp. 605–638.

46. Negrea, J.; Haghifam, M.; Dziugaite, G.K.; Khisti, A.; Roy, D.M. Information-theoretic generalization bounds for SGLD via
data-dependent estimates. Adv. Neural Inf. Process. Syst. 2019, 32, 1–11.

47. Li, J.; Luo, X.; Qiao, M. On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning. In Proceedings of
the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

48. Ralaivola, L.; Szafranski, M.; Stempfel, G. Chromatic PAC-Bayes bounds for non-iid data: Applications to ranking and stationary
β-mixing processes. J. Mach. Learn. Res. 2010, 11, 1927–1956.

49. Viallard, P.; Germain, P.; Habrard, A.; Morvant, E. A General Framework for the Derandomization of PAC-Bayesian Bounds.
ArXiv 2021, arXiv:2102.08649.

50. Picard-Weibel, A.; Clerico, E.; Moscoviz, R.; Guedj, B. How good is PAC-Bayes at explaining generalisation? arXiv 2025,
arXiv:2503.08231. http://arxiv.org/abs/2503.08231.

51. Lei, Y.; Liu, M.; Ying, Y. Generalization Guarantee of SGD for Pairwise Learning. Adv. Neural Inf. Process. Syst. 2021,
34, 21216–21228.

52. Zhang, J.; Hong, M.; Wang, M.; Zhang, S. Generalization bounds for stochastic saddle point problems. In Proceedings of the
International Conference on Artificial Intelligence and Statistics. PMLR, Virtual, 13–15 April 2021; pp. 568–576.

53. Liu, T.Y. Learning to Rank for Information Retrieval.; Springer: Berlin/Heidelberg, Germany, 2011.
54. Guedj, B.; Pujol, L. Still no free lunches: The price to pay for tighter PAC-Bayes bounds. Entropy 2021, 23, 1529. [CrossRef]
55. Vershynin, R. High-Dimensional Probability: An Introduction with Applications in Data Science; Cambridge University Press:

Cambridge, UK, 2018; Volume 47.
56. Van Handel, R. Probability in high dimension. In Lecture Notes; Princeton University: Princeton, NJ, USA, 2014.
57. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1007618624809
http://dx.doi.org/10.1016/j.inffus.2022.06.006
http://dx.doi.org/10.1016/j.neucom.2019.12.137
http://arxiv.org/abs/2503.08231
http://dx.doi.org/10.3390/e23111529

	Introduction 
	Related Work  
	Preliminaries 
	Pairwise Learning and U-Statistics
	Connection with the PAC–Bayesian Framework
	Connection with the Algorithmic Stability Framework

	Main Results 
	Stability and Generalization of Pairwise SGD 
	Stability and Generalization of Pairwise SGDA 

	Algorithmic Implications and Illustrative Experiments
	Conclusions 
	Appendix A. Proof
	Appendix B. Proofs for Pairwise SGD and Pairwise SGDA with Adaptive Sampling
	Appendix B.1. Pairwise Stochastic Gradient Descent
	Appendix B.2. Pairwise Stochastic Gradient Descent Ascent

	References

