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The rapid advancement of computer-generated holography has bridged deep learning with traditional optical
principles in recent years. However, a critical challenge in this evolution is the efficient and accurate conversion
from the amplitude to phase domain for high-quality phase-only hologram (POH) generation. Existing computa-
tional models often struggle to address the inherent complexities of optical phenomena, compromising the con-
version process. In this study, we present the cross-domain fusion network (CDEN), an architecture designed to
tackle the complexities involved in POH generation. The CDFN employs a multi-stage (MS) mechanism to pro-
gressively learn the translation from amplitude to phase domain, complemented by the deep supervision (DS)
strategy of middle features to enhance task-relevant feature learning from the initial stages. Additionally, we
propose an infinite phase mapper (IPM), a phase-mapping function that circumvents the limitations of conven-
tional activation functions and encapsulates the physical essence of holography. Through simulations, our pro-
posed method successfully reconstructs high-quality 2K color images from the DIV2K dataset, achieving an
average PSNR of 31.68 dB and SSIM of 0.944. Furthermore, we realize high-quality color image reconstruction
in optical experiments. The experimental results highlight the computational intelligence and optical fidelity
achieved by our proposed physics-aware cross-domain fusion. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.527405

1. INTRODUCTION

Holographic technology, with its unique ability to reconstruct
images, stands at the forefront of advancing optical displays,
offering realism and immersive qualities [1-10]. The quest
for dynamic, high-quality computer-generated holography
(CGH) has long been driven by the dual research in optical
engineering and computational science [11-15]. Despite re-
markable progress [16,17], the challenge of efficiently generat-
ing phase-only holograms (POHs) remains, primarily due to

hologram generation but fall short in terms of efficiency, hin-
dering real-time applications. In contrast, non-iterative meth-
ods such as double phase-amplitude coding (DPAC) and its
variants [22,25-28], enable quicker hologram generation in
fewer steps, but this comes from a significant quality decline.
Therefore, a compromise between fidelity and efficiency is
inevitable.

Recent advancements in computational techniques, particu-
larly deep learning, have provided promising solutions to long-

the intricate nature of modulating light with spatial light mod-
ulators (SLMs) to achieve desired visual effects without com-
promising on quality or computational demand [17].

To date, the typical methods for generating POHs can be
divided into iterative and non-iterative ones. Iterative methods,
including the Gerchberg—Saxton (GS) algorithm [18-20], non-
convex optimization algorithms [21,22], and the stochastic
gradient descent method (SGD) [23,24], facilitate accurate
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standing problems in CGH [29-35]. These approaches,
leveraging the vast computational power and flexibility of neu-
ral networks, have shown potential in transcending traditional
barriers, enabling more control over the hologram generation
process. By automating the intricate phase modulation required
for POHs, deep learning models have facilitated significant
strides towards achieving real-time, high-fidelity holographic
displays.


https://orcid.org/0000-0002-8932-1315
https://orcid.org/0000-0002-8932-1315
https://orcid.org/0000-0002-8932-1315
https://orcid.org/0000-0002-2782-4873
https://orcid.org/0000-0002-2782-4873
https://orcid.org/0000-0002-2782-4873
https://orcid.org/0000-0002-6697-0398
https://orcid.org/0000-0002-6697-0398
https://orcid.org/0000-0002-6697-0398
https://orcid.org/0000-0003-0667-2599
https://orcid.org/0000-0003-0667-2599
https://orcid.org/0000-0003-0667-2599
https://orcid.org/0000-0003-2690-3374
https://orcid.org/0000-0003-2690-3374
https://orcid.org/0000-0003-2690-3374
mailto:geng.zihan@sz.tsinghua.edu.cn
mailto:geng.zihan@sz.tsinghua.edu.cn
mailto:geng.zihan@sz.tsinghua.edu.cn
mailto:geng.zihan@sz.tsinghua.edu.cn
mailto:geng.zihan@sz.tsinghua.edu.cn
https://doi.org/10.1364/PRJ.527405
https://crossmark.crossref.org/dialog/?doi=10.1364/PRJ.527405&amp;domain=pdf&amp;date_stamp=2024-11-13

2748 Vol. 12, No. 12 / December 2024 / Photonics Research

During the exploration of the combination of neural net-
works with CGH, the UNet architecture [36] has emerged
as the processing backbone in most cases due to its effective
feature-extraction capabilities and encoder—decoder design
[29-31,34,35,37,38]. However, adapting UNet to the specific
requirements of CGH presents a significant challenge. The fun-
damental issue stems from the fact that the UNet’s architecture
may not be optimally designed for the intricate cross-domain
transformations inherent in CGH. These transformations in-
volve converting color images from the amplitude domain to
phase-only holograms in the phase domain, a critical process
that demands precise handling to ensure fidelity and accuracy
in hologram reconstruction [39]. Furthermore, the traditional
activation functions, borrowed from 2D image processing, map
output values to a fixed interval through nonlinear variations.
This oversimplification of phase values overlooks their intrinsic
periodic nature, leading to potential inaccuracies in the recon-
structed holograms.

In recognition of these challenges, our study introduces an
approach that combines the computational power of neural
networks with the rigorous requirements of optical physics.
The cross-domain fusion network (CDFN) is designed to facili-
tate the efficient and accurate conversion from the amplitude
domain to the phase domain. By dissecting the cross-domain
conversion process into multiple stages and incorporating the
physics-aware mapping function, CDFN significantly enhances
the quality and efficiency of hologram generation. This
innovation addresses the technical hurdles inherent in CGH
and aligns with the pursuit of optical excellence. Figure 1
presents a visual comparison between conventional approaches
and our approach. The results of various experiments demon-
strate the capability of our method to reconstruct high-quality
2K color images both in simulation and real-world
experiments.

(a)

Direct Conversion
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2. METHOD

A. Hologram Generation Workflow

Figure 2 delineates the workflow of our proposed method. The
algorithm begins by inputting the amplitude image into the
first sub-network. The next step involves combining the am-
plitude image with the initial phase image output from the first
sub-network to represent the complex hologram at the object
plane. After this integration, the algorithm utilizes the angular
spectrum method (ASM) to simulate the forward propagation
to compute the complex hologram at the SLM plane, which
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simulates the physical process of light propagation, bridging
the digital world with the real-world holograms. The complex
hologram at the SLM plane is then fed into the second sub-
network. This network is trained to translate the complex holo-
gram into the final POH, which can be loaded into the SLM.

B. Multi-stage Network Architecture
The two sub-networks in our algorithm share a similar struc-
ture, which is a derivative of the UNet used in HoloNet [30].
But considering the cross-domain conversion problem in
CGH, we break down the cross-domain conversion process
into multiple stages by constructing more intermediate feature
maps and thus designing a multi-stage network architecture.

The multi-stage architecture is motivated by the need for
mapping from the amplitude domain to a different phase
domain in POH generation. Traditional UNet architecture di-
rectly forwards high-resolution feature maps from the encoder
to the decoder. While this approach is efficient in many appli-
cations, it is less effective in the CGH context due to the differ-
ing nature of amplitude values in the encoder and phase values
in the decoder [39].

To tackle this issue, our network consists of more intermedi-
ate feature maps representing multiple stages, which serve as a
buffer and enable a more gradual conversion. These stages

hardTanh Function phase truncation beyond [, 7]
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Fig. 1. (a) Workflow of conventional methods based on the vanilla UNet architecture. (b) Our proposed cross-domain fusion network highlights
the role of our multi-stage conversion architecture and the infinity phase mapper (IPM) in accomplishing the cross-domain transformation task.
The multi-stage conversion architecture employs multiple feature maps to facilitate a gradual transformation between two domains. Concurrently,
the infinity phase mapper is designed to accommodate the periodic nature of phase values, ensuring the preservation of the physical

consistency.
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resolve the discrepancies between the encoder inputs (ampli-
tude values) and the final decoder outputs (phase values). As
depicted in Fig. 2, the feature maps representing the various
conversion stages are color-coded diversely. This design guar-
antees a smoother and more cohesive conversion from the am-
plitude domain to the phase domain, minimizing sudden
changes and improving the results.

To prove the effectiveness of the multi-stage design, we try
to exclude the impact from different numbers of network
parameters by keeping a similar number of parameters with
HoloNet [30]. Specifically, we downsize the top-down feature
maps’ channel numbers from [32, 64, 128, 256] to [16, 32, 64,
128]. As shown in Table 2 presented later, our algorithm’s net-
work has fewer parameters than HoloNet.

C. Infinity Phase Mapper

In CGH, it is necessary for the network to predict phase values
when generating POH. To get a phase value in the range of
[-7, 7], existing algorithms append a traditional activation
function, e.g., a hardTanh function in HoloNet [30], after
the final output layer of the network to restrict the value in
the required range. However, this approach will introduce in-
consistencies in the predicted phase values. Ideally, the phase
angle, represented by the network’s raw output value, could
span an infinity range [-00, o0]. A well-defined mapping func-
tion should consider the periodicity of the phase angle and map
the value in [-o0, 0] to a corresponding value in [z, 7z]. But
most activation functions simply do a truncating and map
values beyond [-7, 7] to the endpoints -z and 7, resulting
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in a misrepresented mapping of phase values that significantly
impacts the results.

To address this problem, we propose a physics-aware map-
ping function. The primary objective of this function is to en-
sure a more accurate mapping of output values, carefully
mapping each value within the desired [-7, 7] range. The spe-
cific formulation of this function is detailed below:

¢, = M(¢p;) = atan2(sin ¢;, cos ¢,),
arctan (f’—c) if x>0

arctan(f;) +x if y>0,x<0

atan2(y, x) = | arctan f’;)—ﬂ if y<0,x<0, (1)
+3 if y>0,x=0
-z if y<0,x=0
undefined if y=0,x=0

where the phase mapping function, denoted as M, is defined
by the input phase value ¢; and the output phase value ¢,. The
function atan2(-) is a modified version of the arctan function
that considers all four quadrants when computing the angle
from the positive x-axis to the point (x, ).

This specific phase mapping function, named the infinity
phase mapper, translates any phase value in the infinite range
into its corresponding value in [-7, 7). This approach avoids the
limitations of implementing hard truncation. The graphical
representation of the infinity phase mapper is shown in Fig. 3.

Architecture
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POH, > {07/ | Cross-Domain Fusion Network

IPM Infinity Phase Mapper
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Fig. 2. Hologram generation workflow of our proposed method and the corresponding network architecture. The feature maps representing the
various conversion stages are color-coded diversely. The first sub-network CDFN; is used to predict the initial phase and the second sub-network

CDEN; is used to predict POHs.
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Fig. 3. Schematic of infinity phase mapper (IPM) M, which maps
infinite phase values ¢; to their corresponding points ¢, within the
[-7, 7] interval.

D. Deep Supervision in the Learning Process

To improve our method’s performance, we have incorporated a
deep supervision strategy into the training process. When
training the network, we supervise the loss between the
reconstructed image from the POH and the target image.
Additionally, we supervise the losses between the reconstructed
images from top multi-stage feature maps and the target image.
By applying supervision to the intermediate feature maps in the
initial stages of the network, the network is encouraged to learn
more task-relevant features early in the model. This is critical
because features learned in the initial stage form the foundation
for subsequent stages. Deep supervision ensures that these
foundational features are sensitive to cross-domain tasks,
enhancing the overall performance of the network for cross-
domain transformations. The loss function employed under
this deep supervision paradigm can be formulated as follows:

D
Lo, T) = a1~ 12, 2
i=1

where the target amplitude image is denoted as 7, and the am-
plitude image reconstructed at the 7th level is represented as 7.
D is the same as the number of the network depth, which is 4 in
the implementation. The weighting coefficient a; is used to
balance the losses at different levels, with 7 indexing the inter-
mediate feature images, which is 0.25, 0.5, 0.75, and 1.0 in the
implementation.

Moreover, because of the importance of the final POH, spe-
cial attention is given during the training. An extra perceptual
loss £, [40] is computed between the reconstructed image from
the final POH and the target image. Therefore, the overall loss
function is formulated as follows:

'Covera_ll([’ ?z) = ‘cp([) ?D) + ’Cdeep(]’ jz) (3)

This overall loss, taking into account both the deep super-
vision loss from multi-stage feature maps and the perceptual
loss related to the final POH, guarantees the algorithm’s effec-
tiveness in producing high-quality POHs.
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3. EXPERIMENT

The experiments are performed using a 24 GB NVIDIA RTX
3090 GPU. The DIV2K dataset [41] is utilized for both train-
ing and testing. The training set consists of 800 images and the
testing set consists of 100. During the training process, data
augmentation techniques, such as image flipping and rotation,
are employed to facilitate the learning process, similar to
HoloNet [30]. The training is limited to a maximum of 20
epochs and the learning rate is set as 0.001. For the ASM model
used in our algorithm, specific parameters are defined as fol-
lows: the diffraction distance is set as 0.2 m, the SLM’s pixel
pitch is set as 6.4 pm, and the wavelengths for the red, green,
and blue lights are 638, 520, and 450 nm, respectively.

A. Numerical Simulation

As shown in Fig. 4, we first compare the numerical simulation
results of our proposed CDFN with other methods such as
non-iterative method DPAC [26], iterative method SGD
[16], and learning-based methods HoloNet [30] and CCNN
[38] in the DIV2K dataset. For consistency, we first resize
RGB images to 1600 x 880 pixels and then add zero padding
to 1920 x 1072 pixels. Figure 4 shows enlarged sections to
better highlight the differences between these methods. Our
results demonstrate CDFN’s ability to capture fine details
and ensure structural integrity, proving its effectiveness and
superiority.

Table 1 presents the quantitative comparison of various
methods. Among all methods, SGD achieves the best evalu-
ation results in PSNR, while CDFN excels in SSIM. Among
the learning-based methods, under the same training condi-
tions, our proposed CDFN achieves the highest performance,
surpassing the current state-of-the-art method CCNN. This
demonstrates that our method has a certain competitive advan-
tage over current CGH approaches.

Table 2 compares the computational efficiency of SGD,
HoloNet, and our CDFN method, including metrics like
computational time, parameter count, and floating-point oper-
ations (Flops). CDFN and HoloNet, as learning-based meth-
ods, show a significant speed advantage over the traditional
SGD algorithm. Despite CDFN’s use of a greater number
of intermediate feature maps—which increases its computa-
tional demand—it optimizes performance by reducing convo-
lution channel numbers. Consequently, CDFN boasts fewer
parameters (210,000) than HoloNet (287,000), underscoring
that its enhanced performance stems from an effective network
design rather than mere parameter count.

Our CDFEN method represents a significant advancement in
CGH technology, striking a balance between reconstruction ac-
curacy and computational efficiency. This is evidenced by its
performance in PSNR and SSIM evaluations. CDEN distin-
guishes itself by employing multi-stage feature maps. This stra-
tegic approach allows CDFN to outperform the state-of-the-art
methods. Consequently, CDFN has established itself as a
sophisticated and effective CGH method.

B. Ablation Study

In our ablation study, we test the diverse strategies integral to
our proposed method, beginning with an examination of the
pure multi-stage (MS) architecture, illustrated in Fig. 5. This



| Research Article RS @)

Vol. 12, No. 12 / December 2024 / Photonics Research 2751

DPAC SGD

HoloNet

Fig. 4. Comparison of numerically reconstructed color images. From left to right: results of double phase-amplitude coding (DPAC), stochastic
gradient descent method (SGD), HoloNet, CCNN, and our proposed CDEN, respectively (PSNR in dB).

Table 1. Quantitative Results of Different Methods Tested on the DIV2K Testing Dataset, which Consists of 100 Images

(Color Channels)?

DPAC SGD

HoloNet CCNN CDEN (Ours)

PSNR/SSIM 19.97/0.689 32.69/0.942

29.87/0.926 30.72/0.927 31.68/0.944

“Evaluation metrics include PSNR (dB) and SSIM.

Table 2. Efficiency Comparison for Three CGH Methods
Tested on the DIV2K Testing Dataset, which Consists of
100 Images with a Resolution of 1920 x 1072 Pixels®

SGD HoloNet CDEFN (Ours)
Time (s) 16.851 0.010 0.012
Parameter quantity - 2.87 x 10° 2.10 x 10°
FLOPs - 3.29 x 10! 3.39 x 10!

“Evaluation metrics include methods’ average inference time, number of
parameters, and the floating point of operations (FLOPs). The evaluation is

performed using a 24 GB NVIDIA RTX 3090 GPU.

foundational aspect of our approach, even in its most basic
form, showcases high reconstruction accuracy, outperforming
HoloNet.

Quantitative evidence, as detailed in Table 3, underscores
this performance advantage. The MS architecture attained a
PSNR of 30.88 dB and an SSIM of 0.932, surpassing the cor-
responding metrics of HoloNet which are 30.15 and 0.926,
respectively.

Our analysis extends to evaluating enhancements within
the multi-stage architecture through the incorporation of an
infinity phase mapper (MS w IPM) and deep supervision
MS w DS), individually and in combination (MS w
IPM&DS). The addition of the infinity phase mapper alone el-
evates the reconstruction accuracy, achieving a PSNR of
32.13 dB and an SSIM of 0.948. This improvement underscores

the crucial contribution of the phase mapping function to the
algorithm’s performance.

Further integration of deep supervision into the architecture
(MS w DS) marks another leap in reconstruction quality, with
PSNR increasing to 31.65 dB and SSIM to 0.940. This indi-
cates that deep supervision can improve the quality of
reconstruction.

The peak performance is realized when both the phase map-
ping function and deep supervision are applied together (MS w
IPM&DS), culminating in a PSNR of 32.26 dB and an SSIM
of 0.948. These outstanding results not only highlight the
individual strengths of each strategy but also the superior
reconstruction accuracy achieved through their combined im-
plementation, showcasing a significant synergistic effect.

To further explore the impact of the IPM on reconstruction
quality, we analyze the distribution of phase values in POHs
generated under different experimental conditions, as shown
in Fig. 6. Notably, the use of the hardTanh activation function,
as implemented in HoloNet and CDFN w/o IPM, introduces
a discontinuity around z. This discontinuity arises from
hardTanh’s insensitivity to phase periodicity. However, in
the CDEN w IPM, this discontinuity is mitigated, leading
to enhanced reconstruction quality. The improved metrics with
the implementation of IPM, as shown in Table 3, support this
finding and reinforce our hypothesis that the IPM enhances the
accuracy of POH generation by considering phase periodicity.
These results also illustrate the unique properties of holographic
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PSNR: 31.03
SSIM: 0.944

PSNR: 31.85
SSIM: 0.950

PSNR: 33.34
SSIM: 0.925

PSNR: 34.24
SSIM: 0.940

PSNR: 33.96
SSIM: 0.963

PSNR: 34.45
SSIM: 0.968

HoloNet MS

MS w IPM

S O e arice

PSNR: 32.87
SSIM: 0.966

PSNR: 32.61
SSIM: 0.958

PSNR: 33.11
SSIM: 0.964

PSNR: 38.35
SSIM: 0.975

PSNR: 37.07
SSIM: 0.970

PSNR: 38.75
SSIM: 0.979

PSNR: 36.23
SSIM: 0.980

PSNR: 36.02
SSIM: 0.975

PSNR: 36.46
SSIM: 0.982

MS w IPM&DS

Fig. 5. Comparison of simulated reconstruction images in our ablation study (green channel). From left to right: reconstruction results of
HoloNet, multi-stage architecture (MS), multi-stage architecture with infinity phase mapper (MS w IPM), multi-stage architecture with deep
supervision (MS w DS), multi-stage architecture with infinity phase mapper and deep supervision (MS w IPM&DS) (PSNR in dB).

Table 3. Ablation Study with Average PSNR (dB) and SSIM Metrics on the DIV2K Testing Dataset, which Consists of 100
Images (Green Channel)

HoloNet MS MS w IPM MS w DS MS w IPM&DS
PSNR/SSIM 30.15/0.926 30.88/0.932 32.13/0.948 31.65/0.940 32.26/0.948
0.015 0.015 0.015
0 /2 n 3m2 20 %9 2 W 3m2 20 o 2 r 32 2n
Phase Phase Phase
HoloNet CDFN w/o IPM CDFN w IPM

Fig. 6. Normalized phase value distribution of a randomly picked POH. From left to right: results of HoloNet, CDFN without infinity phase
mapper (CDFN w/o IPM), CDEN with infinity phase mapper (CDFN w IPM). Note that we shift the value in [-7, 7] to [0, 27] in this figure for the
easier observation of values around 7. The arrows highlight that the IPM can generate a continuous phase value distribution around the 7 value,

where the conventional active function generates a gap.

data compared to traditional 2D image data, emphasizing the
need for specialized consideration.

C. Optical Experiment

Our algorithm’s effectiveness is further validated through opti-
cal reconstruction experiments. In the experiments, we load the
computed 1920 x 1072 pixels POHs into a 1920 x 1080 SLM
and capture images using a Sony A7 Mark III camera. The op-
tical display system setup is illustrated in Fig. 7. The laser
source used in this setup is the FISBA READY Beam, which
emits light at wavelengths of 638, 520, and 450 nm for the
red, green, and blue channels, respectively. After passing
through a collimating lens, the beam is split into two paths
by a beam splitter. The incident beam is then modulated by
a HOLOEYE LETO-3-CFS-127 SLM, which has a resolution

of 1920 x 1080 pixels and a pixel pitch of 6.4 pm. The modu-
lated beam is reflected, and an aperture is used to filter out
undesired high diffraction orders. The target plane is situated
at a distance of 0.2 m from the SLM, and the image plane is
determined by the thin lens equation.

Figure 8 illustrates the optical reconstruction results ob-
tained with green light. To enhance clarity, magnified patches
of the reconstructed images are also presented. In this experi-
ment, we evaluate the performance of our CDFN in compari-
son to other methods like GS [18], DPAC [26], SGD [23], and
HoloNet [30]. These optical experiments consistently match
our simulation expectations. DPAC’s reconstructions struggle
with accurately depicting fine details, as seen in the parrots
feathers and the butterfly’s intricacy. The SGD method’s
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Fig. 7. Holographic display setup. (a) Schematic diagram of the optical display system setup. (b) Photograph of the optical display system setup.

HoloNet

Fig. 8. Optical reconstruction images in the green channel. From left to right: results of Gerchberg—Saxton algorithm (GS), double phase-am-

plitude coding (DPAC), HoloNet, CCNN, and CDEFN, respectively.

reconstructions are marred by significant speckle noise, obfus-
cating delicate features. In contrast, our CDEN method over-
comes these issues, presenting reconstructions with enhanced
clarity.

For full-color imaging, as shown in Fig. 9, we sequentially
loaded the SLM with POHs for each color channel, synchro-
nously activating the corresponding laser color. The detailed
results, showcased in Fig. 10, affirm our method’s capability
to reconstruct full-color images with high fidelity. The exper-
imental outcomes not only underscore the practical effective-
ness of our approach but also its potential for advancing optical
reconstruction technologies.

To evaluate our method’s generalization ability across differ-
ent data types, we test the model trained on the color DIV2K
dataset using binary USAF images. Figure 11 shows the results
from both simulation and optical experiments. The PSNR and
SSIM metric results for the three images are as follows:
18.37 dB and 0.604, 17.03 dB and 0.643, and 20.71 dB and
0.781, respectively. While these results confirm the applicabil-
ity of our method from color to binary images, they also high-
light certain challenges. Notably, some speckle noise can be
observed in the reconstructions. This occurs because binary im-
ages, with their high contrast between black and white regions,
introduce significant high-frequency components that are

Red Green

Blue Color

Fig. 9. Optical reconstruction images from 1920 x 1072 pixels POHs on a 1920 x 1080 SLM in red, green, blue, and color channels. The images
are directly captured by a camera. The color image is obtained by synchronizing the three-color laser source and sequentially loading different POHs.
From left to right: results in red, green, blue, and color channels, respectively.
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Fig. 10. Optical reconstruction images of our method in color channels directly captured by a camera and the corresponding phase-only holo-
grams. (a) Cropped-zoomed patch of the first color image in (b) for visualization. (b) Captured color images. (c) The corresponding phase-only

holograms of (b).

-1

a N O N

Fig. 11.

binary images are not in our training set.

2 1 0

I =l
g e
i TR

Results of our method applied to binary images. (a) Simulated images. (b) Zoom-in patches. (c) Experimental images. Note that target

difficult for a network trained on color images to accurately
reconstruct. Despite this, our method demonstrates robustness,
as identifiable areas are evident in the reconstruction results.
These findings have prompted us to explore further refine-
ments to our method to enhance its generalizability across dif-
ferent data types.

4. CONCLUSION

In conclusion, our study represents an advancement in the
field of computer-generated holography by introducing the

cross-domain fusion network (CDFN) as a solution for gener-
ating high-quality and efficient phase-only holograms. By
addressing the complexities of cross-domain conversion,
CDEN stands as a testament to the potential of integrating
computational methods with traditional optical principles.
The inclusion of the infinite phase mapper, which incorporates
an understanding of optical physics, ensures that the generated
holograms maintain a high level of fidelity to the original op-
tical phenomena. This work signifies not only technological
progress but also a deeper integration between the realms of
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computation and physical reality, promising a future where
holographic displays can achieve unprecedented levels of
realism.

The proposed physics-aware CDFN encounters scalability
limitations at higher resolutions and requires substantial com-
putational resources, specifically over 24 GB of GPU memory.
Additionally, the infinity phase mapper, while innovative, may
not completely model all elements of holographic displays.
Future efforts will focus on exploring computational models
for greater efficiency [42], supporting higher resolutions
[43], and refining physical assumptions to broaden the
CDEN’s applicability in CGH. This aims to not only improve
current metrics but also expand the network’s utility in broader
holographic imaging and display challenges. Finally, while this
work does not delve into the details of 3D CGH [44], we note
that the proposed method could potentially extend to these
domains but leave this question for future investigations.
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