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Optical imaging has traditionally relied on hardware to fulfill its imaging function, producing output measures that
mimic the original objects. Developed separately, digital algorithms enhance or analyze these visual representations,
rather than being integral to the imaging process. The emergence of computational optical imaging has blurred the
boundary between hardware and algorithm, incorporating computation in silico as an essential step in producing the
final image. It provides additional degrees of freedom in system design and enables unconventional capabilities and
greater efficiency. This mini-review surveys various perspectives of such interactions between physical and digital layers.
It discusses the representative works where dedicated algorithms join the specialized imaging modalities or pipelines
to achieve images of unprecedented quality. It also examines the converse scenarios where hardware, such as optical
elements and sensors, is engineered to perform image processing, partially or fully replacing computer-based coun-
terparts. Finally, the review highlights the emerging field of end-to-end optimization, where optics and algorithms
are co-designed using differentiable models and task-specific loss functions. Together, these advancements provide an
overview of the current landscape of computational optical imaging, delineating significant progress while uncovering
diverse directions and potential in this rapidly evolving field. © 2025 Optica Publishing Group under the terms of the Optica
Open Access Publishing Agreement
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1. INTRODUCTION

Optical imaging was traditionally seen as the science of lenses.

optical encoder—electronic decoder model implies that the wave-
front at the sensor does not necessarily need to form a traditional

However, the invention of the charge-coupled device (CCD) in image, as in conventional optical systems. Instead, it should convey

1969, which enabled image data to be stored in electronic format,
bridged it with digital processing. Advancements in information
theory and the development of more powerful computer proces-
sors have led to the creation of numerous algorithms designed to
enhance and analyze image data [1]. Post-detection processing
now allows for distortion correction through geometric transfor-
mations [2] and image sharpening via deconvolution [3]. These
enhancements can be achieved without the need for intricate lens
optimization, shifting the responsibility for high-quality image
formation from optics alone to computational algorithms as well.
This shift has given rise to the field of computational imaging,
which involves the joint optimization of both optical systems
(physical layer) and computational algorithms (digital layer),
rather than treating them independently. In computational opti-
cal imaging (Fig. 1), digital processing is an integral part of the
imaging system, rather than an afterthought. The optical system,
including lenses, modulators, and other optoelectronic devices,
encodes the object’s properties into the wavefront. The camera sen-
sor then captures this light, and digital algorithms act as decoders,
estimating the desired information from the pixel readouts. This
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specific information in a way that can be efficiently interpreted by
digital processes. By introducing a new degree of freedom through
computational processes, this framework has the potential to relax
the constraints of conventional optical imaging design, achieving
comparable performance with cost-effective, compact designs, or
enabling unprecedented imaging capabilities.

In this mini-review, we explore the advancements in the field
broadly defined as computational optical imaging (COI). The
progress in computational methods has inspired unconventional
optical designs, while emerging optoelectronic components are
fostering optical computing to address limitations in their digital
counterparts. This review aims to highlight the evolving roles
and functions of physical and digital layers in COI and discusses
methodologies that efficiently leverage this hybrid design for novel
applications. We begin by outlining the fundamental limitations
of conventional optical imaging in Section 2, emphasizing the
necessity for computational solutions. In Section 3, we discuss
scenarios where the physical and digital layers are co-designed to
address these limitations. The presented designs are often driven by
explicit mathematical models and are not optimized concurrently.
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Comparison of (a) conventional and (b) computational optical imaging architectures. In contrast to directly forming an image, computational

optical imaging first encodes the object’s information, which could be high dimensional. The captured image may look nothing like the desired final result.
The digital layer then decodes this encoded data to produce task-specific results. By relaxing the constraint that the captured data should resemble the object,
we can optimize the encoded data to enhance the synergy between these layers. Examples shown here are adapted from Ref. [4] Optica Publishing Group.

Section 4 then explores a data-driven approach of end-to-end opti-
mization, where both layers are aligned through the simulation of
hardware using a differentiable model, with the goal of optimizing
the design of optics and algorithms under a unified task-specific
loss function. Finally, Section 5 summarizes the key challenges and
proposes future directions for the field.

2. BARRIERS IN CONVENTIONAL OPTICAL
IMAGING

A. Physical Limitations

Despite advanced computer-aided design tools and fabrication
methodologies, conventional optical systems are subject to fun-
damental limitations. One such limitation is the diffraction limit,
which describes the smallest resolvable features by a lens. This
limit is imposed by the diffraction of light wavefronts as they
pass through the lens aperture, constraining the spatial resolu-
tion to approximately half the light wavelength, even with the
highest-quality lens elements [5].

Another fundamental physical limit is sensitivity, as captured
images are always corrupted by noise [6,7]. For example, photon
shot noise, which arises from the discrete nature of photons in a
light source, is an intrinsic fluctuation in the number of photons
detected over a given period, resulting from the random arrival
times of individual photons. This type of noise follows a Poisson
distribution, where the variance is equal to the mean number of
detected photons. It becomes particularly significant in low-light
imaging conditions, fundamentally limiting the image signal-to-
noise ratio by the number of photons received at each image pixel.
This issue is further exacerbated in dynamic imaging, as the limited
number of photons are spread out into temporal bins, reducing the
available signal at each temporal frame even further.

B. Dimensionality Gap

While conventional optical imaging primarily captures two-
dimensional (2D) trichromatic intensity images, light possesses
more properties than just the spatially variant irradiance in three

color channels [8]. Other light properties, such as propagation
angles, wavelength, and polarization, offer many potential chan-
nels for transmitting information. However, these properties
are often irreversibly lost by standard sensors that integrate over
plenoptic dimensions [9].

The primary challenge in acquiring multidimensional plenop-
tic light data is adapting standard image sensors in the relevant
spectral range to measure this information without significant
hardware modifications, thus leveraging existing camera sensor
technologies. A common approach to this challenge is to acquire
information sequentially. For instance, in hyperspectral imaging,
capturing a three-dimensional (3D) (x, y, A) light datacube with a
2D image sensor typically involves trading a spatial axis for spectral
information. The system disperses light using a prism or grating
and measures a spatio-spectral (x, A) slice per camera readout,
requiring scanning along the remaining spatial dimension (y) to
construct the full datacube. Similarly, in ultrafast imaging, a streak
camera captures temporal information by deflecting light with a
sweeping voltage, mapping photon time-of-arrival to a spatial axis
and producing a spatiotemporal (x, ) slice per readout. Repeating
this measurement across each y location yields an (x, y, #) event
datacube.

Although these methods can provide high resolution, the scan-
ning mechanism demands strict repeatability of the scene; the light
datacube must remain unchanged during scanning. However, this
condition is often compromised by object motion in hyperspectral
imaging or the stochastic nature of events in ultrafast imaging.

C. Inefficient Imaging Workflow

Despite diverse applications, imaging systems mostly mimic what
a single human eye perceives: capturing a sharp clear image within
a two-dimensional field-of-view. Subsequently, algorithms are
developed to perform high-level tasks such as object detection and
classification. While this application-agnostic design is versatile,
it is not necessarily the most efficient or optimal way to measure
the information needed for a specific task. The limited sensor
bandwidth, reflected by the number of pixels transmitted in unit
time, serves as the bottleneck of the optical system, particularly in
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real-time measurements [10]. Optimizing imaging hardware to
make the best use of this bandwidth according to the task at hand
represents an unmet need in optical imaging.

3. COMPUTATIONAL OPTICAL IMAGING:
REALIZATIONS AND APPROACHES

Despite a long history of continued efforts, very few conventional
optical systems can effectively tackle these bottlenecks. These
challenges have spurred the recent development of computa-
tional optical imaging, which integrates innovative optical system
designs with algorithms to collaboratively execute imaging tasks.
Concurrently, advancements in optoelectronic components have
enabled computation to occur alongside digital backends with
optimized efficiency. In this section, we illustrate the interplay
between physical and digital layers through several representative
methods.

A. Computational Solutions to Bypass Physical Layer
Limitations

1. Resolution

As discussed in Section 2, conventional optical imaging systems
are inherently constrained by the diffraction limit, imposing a
fundamental resolution barrier. While various hardware and
photochemical methods have been explored to transcend this
limitation [5,11-13], computational imaging emerges as a promis-
ing, cost-effective alternative, offering broader accessibility to the
research community.

A key principle in computational super-resolution imaging is
to encode the high-frequency components of an object’s power
spectrum into the measurement by employing angled or structured
illumination, effectively shifting them towards the low-frequency
range so they can be captured by the limited aperture of an imaging
system. Two prominent techniques that utilize this approach are
Fourier ptychography microscopy (FPM) [14-16] and structured
illumination microscopy (SIM) [17,18] (Fig. 2).

Fourier ptychography microscopy: FPM allows the capture
of high-resolution images using low-cost, small-aperture systems
by capturing multiple images with varying illumination angles
and computationally reconstructing high-resolution images
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across a large field-of-view (e.g., an effective NA of 1.6 using a
10 x /0.4 NA objectivelens [19]).

[luminating the object with an on-axis plane wave results in
an addressable spatial frequency range that forms a circular area
in the Fourier domain, with a diameter of (1/1)-NA, known as
the diffraction-limited frequency bandwidth. Here, A represents
the wavelength, and NA is the numerical aperture of the imaging
lens. The center of this circle aligns with the origin of the Fourier
space. When angled illumination is applied, the center of the
diffracted light cone shifts according to the angle of illumination,
causing a linear displacement of the addressable frequencies in the
Fourier domain. This allows the system to capture high-frequency
components of the object that would otherwise be blocked by
the aperture. By acquiring a series of images under different illu-
mination angles, we can synthetically build up a larger effective
aperture, corresponding to the sum of the illumination and objec-
tive apertures. Thus, with a small NA objective and large NA
programmable illumination (e.g., [20]), super-resolution factors
of 10x or greater can be achieved, albeit at the cost of requiring
many images and thus long acquisition times. To reconstruct the
high-resolution image, a straightforward inverse Fourier transform
of the combined frequencies is performed. However, this process
requires capturing the phase information as well. This is accom-
plished by ensuring sufficient overlap in the spatial frequency
coverage of adjacent shifts in Fourier space [21] and solving an
inverse optimization problem.

Because FPM recovers not only a high-resolution intensity
image buct also a phase map, it is frequently used for quantitative
phase imaging [22-24]. Notably, FPM does not involve direct
phase measurement; instead, phase information is recovered from
intensity images through an iterative process, without need for
reference beams or strictly coherent illumination. This capability
allows FPM to bypass challenges associated with interferometry-
based techniques, such as speckle noise and sensitivity to phase
errors.

Traditional FPM assumes the object is thinner than the objec-
tive’s depth-of-field; when dealing with thick 3D objects, tilting
the illumination alters the object’s power spectrum rather than
merely shifting it in the Fourier domain. This effect can be incor-
porated in a forward model, in order to solve the 3D inverse
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(a) The setup of Fourier ptychography microscopy. (b) The principle of Fourier ptychography. By illuminating the sample with a sequence of

angle-varied plane waves, the camera detects intensity images that retrieve different spectrum components in the Fourier domain through an iterative algo-
rithm. The red dotted circles represent the support constraint by a finite pupil aperture. (a) and (b) are reproduced with permission from Springer Nature
[14]. (c) The principle of structured illumination microscopy. Conventional microscopes are limited by diffraction, thus being a low-pass filter in Fourier
domain (the center circle). Sinusoidal illumination pattern has three Fourier components, represented by the black dots. They shift the sample spectrum so
that additional high-frequency components are detected by the microscope bandwidth. (d) Through structured illuminations of different orientations and
phases, high-frequency components can be demixed from measurement and recombined into an extended spectrum. (c) and (d) are reproduced with per-

mission from John Wiley & Sons [18].
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problem and reconstruct a thick object, if the data contains suf-
ficient diversity and redundancy [25-27]. In modeling thick
objects, a multi-slice approach to treating the object like a series of
thin slices, with free-space propagation between them, can further
account for multiple scattering of light in the sample and may
be able to recover 3D complex-field maps for highly scattering
samples. To provide more diversity in the measurements, recent
work further employed fixed illumination [28] and modulated
light waves in the detection path [29].

Additionally, developments in light scattering models have
paved the way for reflection-mode FPM [30,31], which, when
combined with modulation techniques, shows promise for deep
tissue imaging [32]. One limitation of FPM is its inapplicability to
fluorescent samples. This is because fluorescence emission is gener-
ally isotropic and independent of illumination angles, making the
angle-dependent techniques of FPM ineffective.

Structured illumination microscopy: like FPM, SIM achieves
super-resolution imaging by shifting the object’s power spectrum
in the frequency domain. However, unlike FPM, SIM accom-
plishes this through spatially patterned illumination, making it
applicable to fluorescent objects. In a typical SIM setup [Fig. 2(c)],
the sample is illuminated with a striped pattern of a specific spatial
frequency, #;. The resulting image is a product of the object func-
tion and the illumination pattern. Due to the frequency-shifting
property of the Fourier transform, the power spectrum of the
image is shifted by #; relative to the original spectrum, allowing
high frequencies beyond the imaging system’s aperture to be cap-
tured. Alternatively, the illumination can be an unknown speckle
pattern, which also shifts the spatial frequencies, but in a random
way; with enough patterns, the super-resolved image can still be
recovered computationally [33].

SIM is primarily implemented in epi-illumination (reflection)
mode, where the illumination and imaging paths share the same
objective lens. This constrains the illumination pattern frequency
to be within the bandwidth of the objective lens for linear imag-
ing, resulting in a maximum twofold improvement in resolution
[18,34].

Employing nonlinear excitation can further enhance reso-
lution. In this case, the nonlinear dependence of fluorescence
emission on illumination power causes the effective illumination
pattern to produce harmonics with spatial frequencies that are
multiples of £;. As a result, the object’s power spectrum is shifted
by nk;, where 7 represents the nonlinear power dependence, with
n > 1. This effectively expands the system’s frequency bandwidth
beyond what is achievable with linear excitation. In particular,
a nonlinearity that is nonpolynomial (i.e., has an infinite Taylor
series), such as in saturation excitation, can generate an infinite
number of harmonics. This, in theory, could lead to infinite
resolution [35]. However, practical limitations such as signal-to-
noise ratio and photostability ultimately constrain the achievable
resolution.

2. Photon Noise

In optical imaging, photon noise exacerbates measurement uncer-
tainty and constrains imaging speed and sensitivity. Although
hardware approaches encounter limitations in overcoming this
physical barrier, comprehensive computational strategies demon-
strate potential to enhance the system’s resilience to photon noise
through the development of data-driven denoising algorithms.

Image denoising has been a longstanding focus in computer
vision, with many algorithms, such as non-local means, block-
matching 3D (BM3D), and wavelet transform, developed and
proven effective in general imaging tasks [36]. However, remov-
ing photon noise presents a more complex challenge due to its
signal-dependent amplitude. Recent advances in deep learning,
particularly through supervised and self-supervised methods, have
shown great promise in outperforming conventional approaches in
denoising photon-scarce images.

Supervised methods require a set of noisy input images paired
with their clean counterparts. These approaches are highly effective
in practice and often yield the highest-quality results. However,
the necessity for paired training data can be problematic. To
achieve optimal results, the training data must match the type of
data being denoised. This means that ideally, new training data
should be acquired for each new experiment to avoid artifacts.
One way to gather such training data is by recording both low- and
high-power illumination images prior to starting an experiment
[37,38]. Nonetheless, in situations where obtaining ground truth
data by extending the exposure time or altering illumination is
infeasible, such as when the scene is dynamically changing and
non-repeatable, supervised learning becomes unsuitable.

In contrast, self-supervised methods allow for training using
only noisy images. Lehtinen ¢# 2/. demonstrated that a neural net
trained on pairs of measurements with independent, zero-mean
noise can approximate the model derived from using ground-truth
images [39]. However, in this Noise2Noise (N2N) approach, pairs
of measurements must be taken on the same target signal, which
are not always available. To address this limitation, methods like
Noise2Void [40] and Noise2Self [41] train the denoiser directly on
the noisy image itself. While the noise exhibits statistical independ-
ence, these approaches assume the true signal exhibits correlation
between pixels. Training pairs are synthesized between surround-
ing and center pixels, or between subsets of the image. A denoising
function can then be learned by feeding such data to the network.

In the following sections, we discuss several recent studies that
successfully apply these strategies to photon-starved imaging, with
a particular focus on fluorescence microscopy (Fig. 3).

Time-domain methods: Li ez a/. developed a self-supervised
learning method called DeepCAD for denoising dynamic optical
imaging data [42]. Their method leverages the temporal redun-
dancy in video-rate imaging by treating any two consecutive
frames as independent samples of the same underlying event.
Consequently, image pairs composed of consecutive frames can be
used for training denoising models. Furthermore, instead of train-
ing the model using a single pair of 2D frames, they decomposed
the raw video into two image sequences of interleaved temporal
frames. These sequences were used as the input and output data
for their model, allowing them to fully exploit spatiotemporal
information in the time-lapse image stack. Later, the same group
developed the DeepCAD-RT model, which retained the self-
supervised concept of splitting adjacent frames into inputs and
corresponding targets for training a DNN but with significantly
improved performance [44]. They demonstrated the capability
and versatility of DeepCAD-RT in a series of photon-limited bio-
imaging experiments, effectively operating beyond the shot-noise
limit.

Spatial-domain methods: Zhang er 4/ developed the
DeepSeMi self-supervised learning method for denoising single-
frame image data. Building on the same conceptual thread
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as Noise2Void model [40], DeepSeMi assumes that mutual
mappings from neighboring pixels to a centered pixel can be estab-
lished, excluding the centered pixel itself, due to local structure
continuity [45]. Although these mappings can be significantly
degraded under noisy conditions, the average of the degraded
mappings still points to the clear pixel information. This approach
ensures that the network does not simply memorize the noisy
values but learns to infer the underlying clean signal based on
the context provided by neighboring pixels. Due to its tolerance
for noisy data, DeepSeMi can image biological dynamics under
low-light conditions, significantly minimizing phototoxicity and
photobleaching. This capability allows for extended observation
periods, facilitating long-term studies of biological processes.

As DeepSeMi relies on the immediate neighborhood of each
pixel to predict its value, its receptive field is inherently limited.
This limitation restricts its ability to denoise structures that require
an understanding of more global context within the image. To
address this issue, Li er al proposed the Spatial Redundancy
Denoising Transformer (SRDTrans) [43]. This method uses
orthogonal masks to decompose a single-frame image into multi-
ple sub-images, designating one as the input and the others as
targets. Additionally, they designed a lightweight spatiotemporal
transformer architecture that captures long-range dependen-
cies and high-resolution features with low computational cost.
SRDTrans was demonstrated to effectively restore high-frequency
information without producing oversmoothed structures or
distorted light intensity traces over time in various fluorescence
microscopy applications.

Lastly, in cases where redundant data cannot be provided
through physical measurements, Qiao er 4/ demonstrated that
such data can be generated using a Recorrupted-to-Recorrupted
(R2R) scheme [46]. Their method, known as the Zero-Shot
Deconvolution Network (ZS-DeconvNet), generates two noise-
independent recorrupted images from the original image, which
are then used as inputs and targets in network training [47]. By
re-corrupting the noisy images, ZS-DeconvNet creates a more
challenging training scenario, encouraging the network to develop
stronger denoising capabilities as it learns to differentiate between
multiple layers of noise. In addition to denoising, ZS-DeconvNet
also incorporates a deconvolution layer to enhance the resolution.
This dual capability allows ZS-DeconvNet to overcome both reso-
lution and shot-noise limits within a single digital toolbox, making

it a powerful solution for high-quality image reconstruction in
scenarios with significant noise and resolution constraints.

3. Dimensionality Gap

The dimensionality gap arises from the need to capture high-
dimensional plenoptic information with the limited capacity of
low-dimensional photon detectors available in specific wavelength
ranges. Computational optical imaging addresses this challenge
by multiplexing the high-dimensional plenoptic information
onto low-dimensional detectors and solving the inverse prob-
lem digitally [48]. Two established strategies for manipulating
light dimensionality are computed tomography and dimension
encoding (Fig. 4).

Computed tomography: tomography was traditionally used
to reconstruct volumetric images by capturing 2D projections
from multiple view angles. Snapshot 3D optical imaging can
be achieved by multiplexing the projection information onto a
2D image sensor. For example, light field imaging shares strong
similarity with limited angle tomography [25,53-56]. Its 4D
ray parameterization (location + angle) can be interpreted as
simultaneous acquisition of 2D sub-aperture projections from
different viewpoints. With implementations such as a microlens
array [55,57-59], camera array [60], and diffuser [61-63], the
volumetric datacube (x, y, z) can be reconstructed from single 2D
measurement in post-processing by tomographic reconstruction
[54], deconvolution [56,64], and increasingly, learning-based
algorithms [65-69]. Additionally, tomographic acquisition tech-
niques have been integrated with light field detection, further
reducing measurement dimensionality to 1D, thereby enabling the
use of line image sensors [70-72].

Beyond volumetric imaging, the tomographic approach
has been expanded to capture light information along other
dimensions, such as spectrum and time. For instance, computed
tomography imaging spectrometry (CTIS) is a computational
spectral imaging technique capable of acquiring a 3D (x, y, A)
datacube in a single snapshot [49,73-78]. CTIS positions a
computer-generated hologram disperser at the conjugate plane
of the imaging system’s aperture stop. Unlike a conventional
diffractive grating that diffracts light along one dimension, the
one in CTIS is designed to diffract light along two dimensions.
The images associated with different diffraction orders undergo
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varying levels of spectral dispersion along different in-plane axes.
Each spectrally dispersed image can be considered a tomographic
projection of the spectral datacube along a specific view angle in (x,
¥, A) space, enabling the application of a standard back-projection
algorithm for image reconstruction.

CTIS has been demonstrated in various imaging applications,
including microscopy [79,80], astronomy [81], and ophthal-
moscopy [82]. However, CTIS is inherently a limited-view
instrument—each voxel of the (x, y, A) datacube is viewed through
a restricted set of angles, corresponding to the limited number
of projected images captured by the camera. Due to its limited
detector area and low diffraction efficiency at high diffraction
orders, CTIS suffers from two missing cones in the spatio-spectral
frequency domain. This limitation makes it challenging to image
objects with flat spatial features and sharp spectral transitions.

Similarly, the tomographic approach has been demonstrated in
ultrafast optical imaging to acquire an (x, y, #) datacube. Lai ez al.
developed a compressed ultrafast tomographic imaging (CUTI)
approach utilizing a streak camera to shear an input (x, y, #) dat-
acube along the time axis [50]. By varying the sweeping velocity of
the streak camera, they captured multiple 2D projections of an (x,
y, t) datacube and demonstrated tomographic reconstruction of
an ultrafast scene at 0.5 trillion frames per second. However, unlike
CTIS, which acquires all projections in parallel, CUTT performs
measurements sequentially, capturing only one 2D projection at a
time and thus requiring multiple shots to complete a measurement.

Additionally, since sweeping can only be performed along a fixed
spatial axis inside a streak camera, the sampling of an (x, y, #) dat-
acube in the spatiotemporal frequency domain is further restricted,
limiting the spatiotemporal features that can be recovered.
Dimension encoding: instead of capturing projections of a
plenoptic function from multiple “views”, the target dimension
can be encoded using known signatures detectable by existing opti-
cal sensors. For instance, point spread function (PSF) engineering
[83,84] can produce depth-variant PSFs and thus localize 3D fluo-
rescent signals with a 2D widefield image. Similarly, relative depth
can be inferred from changes in the polarization state of reflected
light using a polarization camera [85]. Notably, coded aperture
snapshot imaging represents a well-regarded approach in this
domain. It uses a patterned mask to encode an image in the spatial
domain. This is followed by shearing the high-dimensional light
information along one spatial axis and compressively mapping it
to a low-dimensional space in a superimposed manner. Similar to
tomographic approaches, it has been successfully applied in light
field [86-88], spectral [89-91], and ultrafast imaging [52,92-95].
Coded aperture snapshot spectral imaging (CASSI) is a rep-
resentative hyperspectral imaging technique. CASSI encodes the
input image with a random binary pattern using an absorption
mask, then disperses the encoded image with a prism [51,96-99].
The spatio-spectrally multiplexed image is captured by a 2D cam-
era. Image reconstruction involves solving the inverse problem
of the image formation process. By employing algorithms such as
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gradient projection for sparse reconstruction or a two-step iterative
shrinkage/thresholding algorithm, Wagadarikar ez 2/. [98] demon-
strated that the spectral datacube can be reconstructed from such
measurements. Operating on the principles of compressed sensing,
CASSI requires the input scene to be sparse in the spatial gradient
domain to function effectively.

Compressed ultrafast photography (CUP) [52] is the counter-
part of CASSI in ultrafast imaging. By utilizing spatial encoding,
CUP transforms a conventional 1D streak camera into a 2D snap-
shot ultrafast imaging device. The CUP system first captures an
image of the object through a camera lens and relays this inter-
mediate image to a spatial encoding device, typically a digital
micromirror device (DMD), displaying a pseudo-random pat-
tern. Light reflected from the “on” micromirrors is collected by
a microscope objective and reimaged onto the entrance slit of a
streak camera, which is fully opened to allow the formation ofa 2D
image on the photocathode. Inside the streak camera, this image
is temporally sheared along the vertical axis by a varying voltage,
with the amount of shearing determined by the time of arrival of
the incident photons at a given voltage ramp rate. The final image
is captured by a CCD in a single exposure. The image reconstruc-
tion process in CUP is similar to that of CASSI, allowing for a
reasonable estimation of a time-lapse scene if the object is sparse
in the spatial gradient domain. CUP has demonstrated versatility
across various scientific fields, including fluorescence lifetime
imaging microscopy [100], visualization of stochastic physical
events [101-104], and imaging through scattering media.

B. Reducing Digital Layer Burden with Physical
Components

1. In-Sensor Computation

In conventional optical imaging systems, there is a clear division
between the physical sensor and digital processing components,
necessitating substantial data transfer bandwidth and resulting
in significant latency. To address this challenge, researchers have
focused on integrating computational functionalities directly
within the pixels of image sensors. This innovative approach allows
for real-time processing and analysis of raw image data at the point
of capture, thereby reducing the burden on external computational
units (Fig. 5).

For example, Dudek ez 4l. [105] designed the SCAMP-5 vision
chip, which features a 256 x 256 processor array, with each pixel
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containing a programmable processing element. Unlike con-
ventional image sensors that output raw images, the SCAMP-5
outputs the results of on-sensor computations, such as feature maps
and optic flow maps. Building on this, So ¢z al. [111] developed
MantissaCam based on the SCAMP-5 vision chip. They imple-
mented a perceptually inspired “mantissa” encoding scheme in
each pixel, which compresses a high-dynamic-range (HDR) pixel
value into a low-dynamic-range (LDR) one, with the HDR image
subsequently recovered using a neural network. The SCAMP-5
sensor has also been programmed to achieve spatially varying
pixel exposures [112], in-pixel recurrent neural networks [113],
compressive light-field imaging [114], and hyperspectral imaging
[114].

Beyond conventional CMOS technology, research is explor-
ing new materials to enhance image sensor capabilities. Yang
et al. [106] introduced in-sensor dynamic computing using
multiple-terminal  mixed-dimensional ~ graphene-germanium
(graphene—Ge) heterostructure device arrays to perform dynamic
computing at the sensor level for intelligent machine vision. This
sensor accurately extracts edge features of dim targets in various
visual scenarios and robustly tracks these targets. Zhou ez al. [115]
developed a fully hardware-implemented sensor with versatile
image processing functions, including contrast enhancement,
background denoising, feature extraction, and high-level image
recognition. This sensor utilizes emerging multimodal modified
silk fibroin protein (MSFP)-based resistive memory arrays, simu-
lating retinal cells for image pre-processing and the visual cortex for
high-level image processing.

In addition to conventional electronic components, advanced
optical components can also be integrated directly onto sensors,
effectively reducing the volume of imaging systems and signifi-
cantly enhancing their imaging capabilities. For instance, Zheng
eral. [107] designed a multichannel meta-imager that collaborates
with a digital backend to offload computationally expensive con-
volution operations into high-speed, low-power optics. Chen ez al.
[108] proposed an all-analog imaging chip combining electronic
and light computing (ACCEL), which remarkably bypasses the
need for analog-to-digital converters, achieving a computing
latency of just 72 ns per frame.

Finally, in-pixel/sensor computing also revolutionizes image
representations. Event cameras, or dynamic vision sensors,
respond to local changes in brightness [116]. Recently, Huang
etal. [109,110] developed a spike camera that is 1000 times faster
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than conventional cameras using only consumer-level comple-
mentary metal-oxide—semiconductor (CMOS) sensors and
integrated circuits. This camera represents vision data using a bit
sequence array, where each bit indicates whether the accumulation
of photons has reached a threshold.

2. Diffractive Optical Computation

Conventional digital processing units, limited by electronic
bandwidth, often suffer from latency issues and consume sub-
stantial power to execute inference tasks. In contrast, diffractive
optical computation leverages physical components, specifically
diffractive optical elements (DOEs) or metasurfaces, to perform
complex computational tasks directly within the optical domain.
This approach significantly reduces the computational burden on
digital processing units.

DOEs and metasurfaces manipulate the phase and amplitude
of incoming light to perform specific computational tasks, such as
image recognition, edge detection, and feature extraction. These
components are designed to transform the light wavefronts so that
the output is not a conventional image but rather a high-level rep-
resentation of the object, such as a feature map or a processed data
array. One of the significant advantages of diffractive optical com-
putation is its ability to execute these tasks almost instantaneously
as light travels through the optical elements. This eliminates the
need for extensive data transfer and processing by digital units,
leading to substantial power savings and faster computation.

Although diffractive optical computation has long been
demonstrated to perform simple linear transformation tasks like
Fourier transformation, recent breakthroughs have highlighted its
potential in deep learning inference (Fig. 6).

A notable approach is the development of diffractive deep neu-
ral networks (D2NNs) [122], which can execute various machine
learning and computer vision tasks traditionally managed by
graphics processing units. D2NN handles analog optical waves
propagating through a series of engineered surfaces like DOEs
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or metasurfaces to perform statistical inference. The transmit-
tance coefficients of the diffractive units within the free-space
optical processor are optimized for the specific machine learning
task and the detector configuration at the output plane. After the
training phase, the designed diffractive surfaces are fabricated and
assembled to form a physical diffractive optical processor.

The early experimental demonstrations of D2NN were
performed using THz wavelengths for simple tasks like object
detection and target classification. Since these initial proof-of-
concept demonstrations, significant design advances have been
made, enhancing D2NN’s capabilities to perform more complex
functions, including imaging through unknown random diffusers
[117,123], selectively imaging specific targets while blocking
others [118], and hologram reconstruction [124]. The wavelength
range has also been extended to visible light through the use of
metasurfaces [119]. Furthermore, by tailoring the diffractive pat-
terns, multiple computational tasks can be encoded into a same
diffractive network, further improving the system’s efficiency
and capability [125,126]. For example, Li ez al. [125] reported a
polarization-multiplexed diffractive optical network that can per-
form a group of arbitrary linear transformations using a common
set of diffractive layers.

Despite gaining wide popularity, D2NN implemented in free
space typically employs linear materials for computing. Therefore,
it faces challenges in performing nonlinear activations like ReLU
(rectified linear unit). To address this problem, researchers have
been exploring various strategies, such as incorporating nonlin-
ear optical materials or hybrid approaches that combine optical
and electronic processing [127]. For instance, Wang ez al. [120]
reported a nonlinear, multilayer optical neural network (ONN)
encoder for image sensing, utilizing a commercial image intensifier
asan optical-to-optical nonlinear activation function. This innova-
tive approach allowed the nonlinear ONN to outperform similarly
sized linear optical encoders across several representative tasks.
In another example, Xia ez al. [121] leveraged multiple scattering
within a reverberating cavity to passively induce optical nonlinear
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random mapping, thereby eliminating the need for the high laser
power typically required for activating nonlinear optical materials.
By introducing nonlinearity to the optical domain, these methods
enhanced the computational capabilities of D2NN, enabling it to
perform a wider range of machine learning applications.

4. EXPLORING END-TO-END
OPTIMIZATION-SYNERGY OF PHYSICAL AND
DIGITAL DOMAINS

Instead of merely complementing each other’s functions as dis-
cussed in Section 3, physical and digital layers can be co-optimized
in an end-to-end manner. End-to-end joint optimization [128]
aims to design optics with a merit function directly derived from
the given visual task. This is achieved by creating a differentiable
model of the entire imaging system and computational algorithms.
The output of the algorithms is compared to the ground truth, and
the error is backpropagated to adjust the parameters of both the
hardware and the algorithm. The hardware design is then fabri-
cated to perform in the real world with optimized capability for the
targeted task.

The fusion of customized hardware and state-of-the-art
algorithms, underscored by end-to-end joint optimization and
principles of compressive sensing, stands to drastically reduce
hardware requirements, streamline computations, and elevate the
precision of imaging [129]. Conceptually, customized physical
optics allow for the modulation of optical waves to encode implicit
scene information into PSFs, which can then be decoded using
reconstruction algorithms (Fig. 7).

A. Overview of Differentiable Optics Modeling

Although extensively studied for centuries, typical camera optical
systems and image processing algorithms have been designed
separately and sequentially. Existing approaches often rely on
heuristic design or proxy metrics based on the PSE rather than
considering the final image quality after post-processing. Once the
optics is fixed, the parameters of the image processing algorithms
are tuned to achieve desirable image reproduction. Without a true
end-to-end flow of joint optimization, it remains elusive to find an
optimal computational camera for a given visual task. This joint
design concept has long been at the core of computational optical
imaging, and recent advancements in computational tools now
enable efficient interpretation of a true end-to-end imaging process
through machine learning techniques.

The resulting optics design paradigm, referred to as differen-
tiable (deep) optics [128], stands out in the research community.
Differentiable optics is an emerging field that combines principles
from both physical optics and digital image processing, focusing
on the development and application of differentiable models that
seamnlessly integrate physical optics, such as lenses, with compu-
tational algorithms, such as neural network models. By leveraging
the synergy between these domains, researchers aim to enhance the
capabilities of tailored optical systems, enable new imaging modal-
ities, and improve the performance of various visual tasks subject
to specific requirements. Fundamentally, it involves accurately
modeling PSFs.

1. Wave Optics Representation

Light propagation through optical systems is commonly modeled
using wave optics due to its effectiveness and simplicity [133,134].
In wave optics, light is described as an electromagnetic field in
complex function form: uo (&, n) = A(§, n)explj¢ (&, n)], where
A and ¢ denote the amplitude and phase, respectively, that vary
across space and j = /—1. For example, a plane wave propagating
along the axial direction exhibits a uniform amplitude and phase
across the (&, n) plane, whereas a spherical wave has an amplitude
given by A/r and a phase given by ¢ = kr, where r = /&2 + n?
and # = 277 /X is the wave number associated with the wavelength.
Spherical wavefronts are often employed to compute the PSF
of imaging systems, crucial for analyzing system behavior. Wave
optics also finds extensive applications in fields requiring high
resolution and sensitivity such as microscopy, lithography, and
holography [135-138]. Understanding the phase of light yields

valuable insights into system performance and capabilities.

2. Wavefront Propagation

While the Rayleigh—Sommerfeld (RS) solution is a direct formu-
lation of wavefront propagation, the more widely used formulation
in scalar diffraction theory is the angular spectrum method (ASM)
due to its simplicity in analyzing complex wavefronts in the Fourier
domain [133]. Specifically, let the source field be #¢ (&, 1); one can
relate it to a target field #,(x, y) at a distance z and parallel to the
source plane by a series of Fourier transforms, as follows:

u(x, y) =F ' [U(fx. fr) H(fx fv)]

where  U(fx, fy) =Fluo(€,n)] is the angular spectrum
of the source field, and the transfer function H,(fx, fy) =
exp[j/ez\/l - ()»fx)2 - (kfy)2] connects the source and target
in the Fourier domain ( fx, fy). Here, F is the Fourier transform
operator.

In certain scenarios, ASM can be reduced to simpler forms

using approximations. One of the most frequently employed is the
Fresnel approximation, which assumes near-field and near-axis
propagation, linking the source and target via a single Fourier
transform:

jkz
uy(x, y) = e.j—ejf’;(xzﬂ'z)]: [uo(s, n) ejTI;(‘EZJ"’Z)] }
JAz

The near-field assumption holds true in most contemporary
imaging systems, while the near-axis assumption applies when the
system exhibits approximate shift-invariance [134,139,140]. In
such cases, forward modeling of an imaging system simplifies to
a straightforward convolution of the PSF with the imaging target

[target:
Idetect(x’ J’) = |uz(x’ y)|2*1target(x’ J’),

where #,(x, y) is derived by taking a spherical wave uy=
A/rexpljkr] into the equation, and Iyeec(x, y) denotes the
raw input to the imaging sensor. This forward modeling allows
us to manipulate the complex source field #¢(&, 1) to encode
information about the scene into the sensor image tailored for
domain-specific tasks.
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B. Overview of Differentiable Optics Modeling

The visual systems of animals have evolved to adapt to their spe-
cific environments. Interestingly, despite being utilized for a
diverse range of applications, typical camera optics have primarily
been engineered to mimic the human eye [128]. This raises an
important, unanswered question: what is the optimal camera
(optics) design for a given visual task? Consequently, application-
domain-specific cameras that combine customized optics with
modern image recovery algorithms are of rapidly growing interest
in research. These camera designs hold immense potential and
find applications in various fields, including ultrathin cameras
for the internet-of-things (IoTs), robots, or drones, as well as
computational cameras for microscopy and scientific imaging.

By designing a differentiable wave optics simulator mapping
true source images to reconstructed ones, the encoder can be
parameterized by the PSFs of physical optics, while the decoder,
i.e., the image processing unit, can be a deep neural network. In this
context, the parameters of this network model are jointly updated
with the optics parameters.

Constructing the most proper loss functions and incorporating
practical constraints are essential for optimizing optics. However,
conventional design paradigms often restrict both optics and image
processing units to being optimized only according to the quality
of system modulation transfer functions (MTFs) or PSFs, failing to
address the complex constraints required in various applications.
The auto-differentiation-empowered wave propagation and opti-
mization allows for tailoring loss functions flexibly for different
applications, thereby practical fabrication and/or assembling
metrics can be applied, including feature size, aspect ratio, and
misalignment.

C. Representative Computational Imaging Tasks

The encoder—decoder deep optics imaging paradigm has received
considerable attention in recent years, particularly in the context of
snapshot computational imaging systems.

1. Extended Depth-of-Field Imaging

Extending depth of field has been a long-standing, representative
application of computational imaging, as all-in-focus images are
crucial in many scenarios, ranging from medical diagnostics to
security monitoring. Early methods focused on incorporating
hand-crafted phase masks to modify incoherent optical systems
[141]. Later on, combining diffractive and refractive optical ele-
ments was proposed as a compromise to minimize chromatic
aberrationsin EDOF [142,143].

In recent years, the end-to-end (E2E) optimization paradigm
has significantly enhanced the capabilities of EDOF techniques,
treating the sensor as a bottleneck that integrates the incident
wave quantities [144]. The concept of deep optics was first com-
prehensively explored in 2018 to realize achromatic EDOF and
super-resolution imaging, demonstrating state-of-the-art per-
formance using fabricated DOEs [128]. This breakthrough study
highlighted the effectiveness of co-designing camera optics and
reconstruction neural networks using a fully differentiable image
formation model. However, the final image quality did not match
the level achievable with off-the-shelf camera optics, mainly due to
limitations associated with involving only a single optical surface.
Subsequently, Akpinar et al. [145] investigated an optical model
consisting of a refractive lens and a phase-modulating element built
upon a DOE. Further, Sun et al. [146] developed a differentiable
complex model and accordingly an end-to-end framework that
could offer greater design flexibility over compactlens designs.

It is worth noting that there still exists a gap between theoretical
solutions and real-life physical implementations, arising from
various factors, including artifacts in manufacturing DOEs and
limitations in the accuracy of the digital camera model and cali-
bration process [130]. To bridge this gap, considerable efforts have
been made in the field of hardware encoding designs [147,148],
although the details of these efforts are beyond the scope of this
discussion.
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2. Compressive Hyperspectral Imaging

Lightweight DOE-empowered compressive hyperspectral imaging
approaches have been extensively explored [149-152]. In par-
ticular, Peng er al. [152] proposed integrating optimized DOEs
with post-capture processing algorithms, allowing for crafting
lightweight optics capable of capturing the full visible spectrum.
Although its design flow is not fully end-to-end, this approach
opens possibilities for co-designing optics and computational
algorithms in spectral imaging. Later on, given the insight that
compact hyperspectral imaging can be realized by facilitating a
spectrally rotating PSF from a customized DOE placed in front
of the sensor, the deep optics paradigm has been introduced for
designing a number of diffractive snapshot hyperspectral imaging
systems [140,149].

In a recent work by Arguello ez al. [153], a generalized deep
optics approach has been proposed, involving the joint optimiza-
tion of the DOE, color-coded apertures (CCAs), and decoder
neural networks. Both the DOE and CCAs are designed to
enhance freedom in spectral modulation. Notably, the exploration
of deep optics frameworks for snapshot hyperspectral imaging is
ongoing, with researchers investigating more generalized appli-
cations such as object detection in the short-wave infrared band

[154].

3. Alternative Photography and Scientific Imaging

The E2E optimization paradigm has also made significant con-
tributions to various areas of photography and scientific imaging,
including high-dynamic-range (HDR) imaging [112,155], micro-
scope imaging [156,157], large field-of-view (FoV) simple lens
imaging [158], depth estimation [159,160], compressed imaging
[131], and single-photon avalanche diode (SPAD) cameras [161].
These works aim to connect optics with downstream algorithms
to achieve improved or novel imaging capabilities. For instance,
Sun et al. [161] proposed an optically coded super-resolution
technique with deep optics for SPAD cameras, achieving several
orders higher resolution than practical single-photon imagers with
exposure times of less than 1 ns. Shi ez a/. [162] also proposed to
recover unobstructed scenes using a thin lens and a learnable DOE,
enabling imaging through occlusions without inpainting.

Itis worth noting that, in addition to conventional DOEs, vari-
ous hardware encoders including refractive optics [132], microlens
masks [159], and neural sensors [112] have been utilized for E2E
designing domain-specific imagers, providing more freedom and
feasibility in hardware parameters. For instance, unlike passive
imaging models, Mask-ToF [159] uses a differentiable ToF sim-
ulator to jointly learn an optimal mask pattern and a refinement
network for specialized depth map acquisition. In the field of video
compressive imaging, Wang ez a/. [163] investigate the learnable
structural mask, sensor response, and reconstruction algorithm. As
a result, the incompatibility between dynamic range and temporal
multiplexing can be greatly mitigated.

Narrowing the gap between hardware simulation design and
actual optics fabrication is a crucial yet challenging issue [164].
For instance, conventional etching-based methods [165] are
commonly leveraged for DOE prototyping, but they suffer from
surface roughness and alignment issues between layers, which
may cause various etching artifacts [166]. To address these chal-
lenges, several DOE design and manufacturing attempts have been
conducted [167-169], yet there remains a certain distance to be

traversed in the near term. It is expected that more remarkable out-
comes will be seen in a wider range of innovative 2D or 3D imaging
tasks as manufacturing procedures for customized optical/sensor
components continue to advance.

D. Off-Axis Diffraction Modeling Further Bridges the
Gap

Until now, discussions on computational optics design have pri-
marily assumed shift-invariance, despite this assumption not
always holding true in optical systems. In practice, higher-level
aberrations manifest at larger diffraction angles, and the accuracy
of the Fresnel propagation approximation in the previous equa-
tions decreases. As a result, shift-variant PSF modeling is necessary,
requiring the use of the ASM. However, simulating the ASM in
such cases demands significant computational resources. Recent
advances have accelerated the implementation of shift-variant
PSF modeling, from zero-padded fast Fourier transform (FFT) to
the band-extended method [133,170]. The latter rearranges the
sampling points to the effective band, a particularly noteworthy
approach since the reason for introducing zero-paddings in the
Fourier domain is often overlooked.

A recent advancement is the least-sampling angular spectrum
method (LS-ASM) [171], which offers efficient and differentiable
off-axis diffraction modeling with high accuracy. By utilizing the
Fourier transform’s shifting property, this method transforms
off-axis diffraction into a quasi-on-axis condition and establishes
minimum necessary sampling criteria for ASM at all angles.
Specifically, the LS-ASM introduces a compensation factor to the
source’s oblique field, aligning the angular spectrum around zero
frequency, expressed as

Uon-axis (€, M) = uo(§, n) — 21 (& + fim) .

where f} and f are the original center of the angular spectrum.
The final target field is obtained by propagating #n—ayis(€, 1)
along the axis. By removing the frequency offset, the minimum
sampling rate is determined primarily by the effective bandwidth
of the field, which establishes minimal sampling bounds for both
spatial and frequency domains.

This method, demonstrated with an exemplary coded aper-
ture imaging system [171], achieves a substantial speed boost,
around 36X over the state-of-the-art [170] at 20°, allowing for
high-frequency off-axis wavefront propagation to be computed
within seconds on a commercial computer. Overall, LS-ASM
presents a viable approach for integrating off-axis modeling into
comprehensive deep optics applications.

5. GRAND CHALLENGES AND PERSPECTIVES
A. Accountable Al for Scientific Imaging

When utilizing digital layers to complement physical measure-
ments, such as super-resolution or denoising, a common strategy is
to employ data-driven approaches. These methods involve training
a neural network to map the input measurement data directly to
the object space, eliminating the need for a forward image model.
However, these deep learning methods function as black boxes and
are often constrained by the quality and diversity of their train-
ing datasets. There are limited guarantees regarding when a deep
network will accurately resolve an imaging inverse problem versus
when it might hallucinate information. If the training dataset is
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too restrictive, the network may fail to generalize effectively to
other types of data, potentially compromising the reliability of
the results. Therefore, ensuring accountability in Al models for
scientific imaging remains an open challenge in the computational
imaging field.

One effective remedy is to incorporate physics-based knowl-
edge into the neural network architecture. By embedding physical
principles and constraints into the network, it alleviates the burden
on the neural network to learn these aspects from scratch. This
approach, often referred to as physics-informed neural networks
(PINNs) or hybrid models, allows the network to leverage estab-
lished scientific knowledge, improving its learning efficiency and
accuracy [172-175].

In PINN-based computational imaging [Fig. 8(a)], physical
principles are typically incorporated by embedding the forward
image model into a data fidelity term during image reconstruction.
This allows the network to concentrate on learning the complex,
nuanced aspects of the data that traditional data-driven models
struggle to capture. Consequently, the network’s predictions
turn to be more reliable and interpretable, as they are anchored
in well-understood physical principles. Moreover, this hybrid
approach enhances the network’s ability to generalize across vari-
ous types of data, reducing the risk of overfitting to the training
dataset. For example, unrolling classical iterative algorithms with
neural networks and imposing measurement constraints from a
known sensing matrix at each step promise interpretability and
generalizability in the reconstruction of snapshot compressive
imaging [184,185] and lensless imaging [186]. Wang ez al. also
demonstrated that incorporating a real-world diffraction model

into a deep neural network can reconstruct phase images without
labeled data for training [187].

Another strategy to enhance the accountability of Al in scien-
tific imaging is to provide an uncertainty estimate during inference
[188]. This approach involves quantifying the confidence in the
neural network’s output, offering a means to evaluate the reli-
ability of the results quantitatively. In computational imaging,
uncertainty quantification can provide confidence bounds for
machine-learning-based image reconstruction tasks, thereby
adding credibility to the predictions.

To this end, several techniques can be employed to estimate
uncertainty in neural network models, such as Bayesian neural
networks, Monte Carlo dropout, and ensemble methods [189].
Bayesian neural networks incorporate probability distributions
into the model parameters, allowing for the calculation of uncer-
tainty directly from the posterior distributions. Monte Carlo
dropout, on the other hand, involves performing multiple forward
passes with dropout enabled during inference, providing a measure
of the variability in the predictions. Ensemble methods combine
the predictions of multiple independently trained models to esti-
mate uncertainty, with the variance among the models’ outputs
serving as an indicator of uncertainty.

Moreover, incorporating uncertainty estimates can aid in iden-
tifying regions of the data where the model is less certain, guiding
further investigation or extra data collection. It can also highlight
potential areas where the model may be prone to errors, enabling
researchers to address these weaknesses proactively. For example,
in a recent study, Ye e al. [190] incorporated uncertainty quan-
tification into an optimized denoising model to guide adaptive
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multiphoton microscopy image acquisition. They demonstrated
that their method could maintain fine features in the denoised
image while outperforming other denoising methods. This was
achieved by adaptively selecting the most uncertain pixels for
reimaging in a human endometrium tissue sample.

B. Scalability and Adaptability of Physical Domain
Computing

When using physical components to partially or entirely replace
digital layers, scalability often presents a significant challenge. For
instance, implementing a DNN with an in-sensor computing
paradigm necessitates a large number of interconnecting nodes.
This requirement significantly increases the sensor complexity,
posing substantial challenges for interconnect routing and layout
design.

For free-space optical computing, such as D2NN, scalability
is primarily constrained by the space-bandwidth product (SBP)
of the diffractive layers. The size of the diffractive features deter-
mines the number of neurons that can be integrated into a neural
network layer. For example, the diffractive features used in free-
space optical processors must have dimensions of approximately
half the optical wavelength, which is greater than 100 nm even
for visible light. This size is significantly larger than the state-of-
the-art transistors in chips manufactured using the 3-nm process.
Consequently, integrating a large number of diffractive features of
this scale would inevitably result in a much larger optical processor.
Moreover, unlike CPUs and GPUs that can be assembled into
clusters to tackle advanced computational problems, a versatile
strategy for assembling diffractive networks into large-scale clusters
of free-space optical processors is still lacking. Such a strategy is
highly desired to fully leverage the parallelism advantages of optical
computing and build low-loss, large-scale neural networks.

One promising solution to achieve a high density of process-
ing units in optical computing is to utilize light reflection in a
continuous medium with a heterogeneous distribution of refrac-
tive indices. A representative approach within this category is
the nanophotonic neural medium (NNM) [Fig. 8(b)] [176].
Traditional layer-based D2NNs focus on forward light propa-
gation and typically neglect the back-reflected light from each
diffractive layer. In contrast, NNMs model light propagation in a
host medium, such as SiO, containing numerous inclusions like
air holes or other materials with different refractive indices. These
inclusions scatter light in both forward and backward directions,
causing the input light beams to undergo multiple scattering events
and mix with each other. This process resembles linear matrix
multiplication in a digital neural network, where the locations and
shapes of inclusions function as weight parameters. Additionally,
nonlinear activation can be achieved using inclusions made of dye
semiconductors or graphene saturable absorbers. The multiple
scattering events significantly increase the interaction between
light beams and individual scatterers (analogous to neurons in a
neural network), enabling the “deep” processing of input optical
information. This enhanced interaction allows the optical network
to handle more complex machine learning tasks.

Moreover, this approach can be extended to 3D space by uti-
lizing a diffractive volume, where each discrete voxel is spatially
engineered to collaboratively process the input optical informa-
tion. The 3D nature of the diffractive volume provides a more
scalable platform for integrating many processing units, further
enhancing the information processing capabilities of NNMs.

However, approaches like NNMs need to model complex light
propagation in a scattering medium, making the calculation of
light interactions with scatterers and the optimization of their
refractive indices during training computationally intensive and
challenging with current simulation methods. Even if an optimal
NNM can be computed, fabricating nanoscale structures in 3D
space remains a formidable task.

In addition to scalability, the ability to adapt physical-domain
computing systems for specific tasks poses a significant challenge.
Unlike conventional CPUs or GPUs, which can be easily repro-
grammed for various machine learning tasks, physical-domain
computing typically relies on fixed optical architectures. Once
the hardware is constructed, it is difficult to reconfigure it for a
different task.

For example, as discussed in Section 3.A.3, an effective strategy
to address the dimensionality mismatch problem is to utilize spatial
encoding. Approaches in this category often use fixed printed
absorption masks to encode images. Although the mask pattern
can be optimized for a specific type of object using end-to-end opti-
mization, it cannot be reused for other types of objects. Similarly,
in D2NN, the diffractive layers are typically fabricated using 3D
printing. These layers are tailored for a specific machine learning
task and cannot be easily readapted for another task.

This lack of flexibility in reprogramming and adapting to new
tasks limits the versatility of physical-domain computing systems.
To address this problem, the hardware must have a certain degree of
flexibility to allow parametric tuning. For instance, instead of using
fixed absorption masks, one can employ programmable spatial
light modulators, such as digital micro-mirror devices, to encode
an image [163]. Similarly, in D2NN, instead of using fixed diffrac-
tive layers, one can utilize electrically field-programmable gate
arrays (FPGAs), which have been recently demonstrated for GHz
wave applications [Fig. 8(c)] [177]. These GHz wave processors
can be reconfigured to perform a range of tasks, from matrix inver-
sion to image classification and information encoding/decoding.
This capability allows the optical processor to evolve and adapt
to different tasks, achieving optimal performance in a dynamic
environment. It is worth noting that while adding active light
modulators to a physical computing system enhances its versatility
to handle various tasks, it also leads to significantly higher power
consumption compared to purely passive systems. This increase
in power usage diminishes one of the major advantages of using
optical processors for computation, which is their typically lower
power consumption compared to electronic counterparts.

C. Unconventional-Optics Empowered Computational
Imaging

The advancement of computational optical imaging is ultimately
driven by the development of novel optical and photonics devices
and advanced Al algorithms. Particularly, the emergence of free-
form optics [191], meta-optics [192], and quantum imaging
[193] shows great promise in revolutionizing this field, as they
can overcome many limitations of conventional optical imaging
hardware and enable new capabilities through integration with Al
algorithms [Figs. 8(d)-8(1)].

Meta-optics utilizes metamaterials to control light in ways
that are not possible with conventional optics. These materials
can manipulate light at the subwavelength scale, enabling more
precise manipulation of optical fields. They provide greater degrees
of freedom in a more compact form compared to regular DOEs
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[194,195]. This propels advances in meta-based imaging [130],
holography [196], and relevant fields [197,198].

For instance, Hua ez a/. [178] demonstrate ultra-compact spec-
tral light-field imaging using a transversely dispersive metalens
array and a monochrome imaging sensor, achieving advanced
imaging with 4-nm spectral resolution and near-diffraction-limit
spatial resolution in a single snapshot. Zaidi ez al. [199] showcase
a compact Mueller matrix imaging system that acquires all 16
components of an object’s spatially varying Mueller matrix in
a single shot, utilizing metasurfaces for structured polarization
illumination and analysis. Additionally, Pahlebaninezhad ez 4l
[179] propose bijective illumination collection imaging, employ-
ing metasurfaces to decouple lateral resolution from the depth of
focus, achieving tissue imaging at a wavelength of 1.3 pm with
3.2-pm lateral resolution maintained nearly intactovera 1.25-mm
depth of focus. However, the substantial computational cost asso-
ciated with the large design space poses significant challenges to
simulations currently, limiting the applications of metasurfaces in
large-scale imaging tasks.

Moreover, integrating advanced meta-optics components onto
sensors can significantly reduce the volume of computational
imaging systems and enhance their capabilities. For example, Cai
et al. [200] demonstrate compact angle-resolved spectral imaging
by packaging the photodetector and tunable metasurface into a
miniaturized spectrometer with a footprint of 4 x 4 pum?, achiev-
ing a wavelength accuracy of 0.17 nm and spectral resolution of
0.4 nm. Yako ez al. [180] integrate an array of CMOS-compatible
Fabry—Pérot filters on a monochromatic image sensor to achieve
per-pixel spatial-spectral encoding. This sensor, coupled with an
Al-driven image reconstruction algorithm, achieves a remark-
able frame rate of 34.4 fps while maintaining full high-definition
resolution. Wu er a/. [181] introduced an integrated scanning
light-field imaging sensor (meta-imaging sensor) to achieve high-
speed aberration-corrected three-dimensional photography for
universal applications without additional hardware modifications.
The meta-imaging sensor can correct multisite aberration across
1,000 arcseconds on an 80-cm ground-based telescope without
reducing the acquisition speed. In another example, Yi ezal. [201]
present a 3D light-field sensor by integrating lithographically
patterned perovskite nanocrystal arrays on a color CCD sensor,
capable of directly measuring the specific angle of visible light or
X-rays without microlens arrays. Finally, combined with freeform
optics, meta-optics is poised to offer new compact functionalities
[202].

On the other hand, quantum imaging harnesses the quantum
properties of light and their interactions with the environment to
surpass the limits of classical imaging. The recent advancements
in quantum-inspired single-photon detection technologies, com-
bined with a new wave of Al algorithms, have led to significant
progress in low-light-flux imaging and sensing. One of the most
representative works in this field is first-photon imaging [203].
In this approach, only the very first detected photon at each scan
location is used for 3D imaging. By using the number of pulses
until a photon is detected as an indirect measurement of reflectiv-
ity, along with a piecewise-smooth assumption for both reflectivity
and depth, a 3D image of a scene can be faithfully produced with
the aid of computation. This approach showcases an impressive
synergy between computation and the quantum mechanism of
single-photon detection in imaging 3D scenes under extremely
low-flux illuminations.
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Since this initial demonstration, quantum-empowered com-
putational imaging techniques have been surging, opening new
avenues in a variety of applications previously thought to be
impossible. For example, Cameron ez /. [182] propose quantum-
assisted adaptive optical imaging with entangled photons (QAO),
demonstrating the ability to remove aberrations in biological
samples withouta guide star, making itindependent of the imaging
modality and specimen under study. Zhang ez a/. [204] introduce
quantum imaging by coincidence from entanglement (ICE),
utilizing spatially and polarization-entangled photon pairs to offer
higher signal-to-noise ratios, quantitative quantum birefringence
imaging capability, and 25 times greater suppression of stray light
compared to classical imaging. He ez al. [183] present quantum
microscopy by coincidence (QMC) with balanced pathlengths,
achieving super-resolution imaging at the Heisenberg limit, with a
two-fold resolution improvement and resistance to stray light up to
155 times stronger than classical signals.

In summary, the future trajectory of computational optical
imaging realizations and approaches is anticipated to be defined
by a persistent cycle of innovation, propelled by advancements in
computational algorithms, hardware technology, and their cross-
disciplinary partnerships. These developments hold the potential
to empower intelligent imaging systems to sense and understand
the world across various scales and dimensions—from facilitat-
ing the exploration of microscopic cellular processes to aiding in
unraveling the mysteries of distant galaxies.
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