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A B S T R A C T  

Pr ior distr ibutions, which r epr ese n t one’s belief in the distributions of unknown parameters before o bs erving the data, impact Bayesian inference 
in a critical and fund amental w ay. W ith the ability to incorporate external information from expert opinions or historical d atas e ts, the priors, if 
spec i fied appr opria tely, can impr ove the sta t ist ical efficiency of Bayesian inference. In survival analysis, based on the concept of unit informa- 
tion (UI) under parametric models, we propose the unit information Dirichlet proce ss ( UIDP) as a new cl as s of nonpa ra metr ic pr iors for the 
unde rlying dis tribut ion of t ime-to-eve n t data. By de riving the Fishe r information in te rms of the diffe re n tial of the cum ulativ e h azard function, 
the UIDP prior is formulat ed t o mat ch its prior UI with the wei gh ted ave rage of UI in historical d atas e ts and thus can utilize both parametric 
a nd nonpa ra metric informa tion pr ovided by historical d atas e ts. W ith a Markov chain Monte Carlo algorithm, simul ation s and real data analysis 
de mons tra te tha t the UIDP prior ca n ada ptively borrow his torical information a nd improve s tatis tical efficie nc y in surv ival an alysis . 

KEY W OR DS : Bayesian nonparametric; Fisher information; hazard function; Markov chain Monte Carlo; time-to-event data. 
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1 I N T R O D U C T I O N 

r ior distr ibution s p l ay a cruci al ro le in the pa radi gm of Bayesia n
nfe re nc e. By inc or porating ex ter nal infor ma tion fr om expert
pinions or historical datasets, an elaborated informative prior
an improve efficiency for stat ist ical inference. In clinical tri-
ls, the effect of the same tr ea tme n t may be inves ti gated on
atie n ts of diffe re n t ethnicity groups or diffe re n t dis eas e sub-
ypes (Borghaei et al., 2015 ; Brahmer et al., 2015 ; Rittmeyer
t al., 2017 ; Wu et al., 2019 ). Under simila r expe rime n tal set-
ings, a suitable prior that bor rows infor mation from historical
 atas e ts can alleviate the s amp le size require me n t for a chievin g
de quate pow e r in the curre n t trial. How ev e r, practitione rs ofte n
ac e ch allenges in eliciting such an elaborated prior due to a lack
f unified rules for determining the a moun t of information to be
orrow e d from multiple historical d atas e ts. T ypically , more in-

ormation should be borrow e d from historical d atas e ts whos e
 amp le sizes are larger and data patterns are more similar to or
 ommens urate with the curre n t one. Anothe r i ssue i s how to
ontrol the total amount of information borrow e d from histor-
cal d atas e ts, which, in princip le, should not be too large to over-

helm the curre n t s tudy, eve n whe n the total s amp le size of his-
orical d atas e ts is exc e e din gly large. In a dd ition, as ind ividual ob-
 erv ation s in historical d atas e ts may not be ac c es sib le due to pri-
acy protection or confide n ti ality, s ome historical information
xists only in the form of s umm a ry s tatis tics (eg, poin t es timates
 nd confide nce in te rvals of pa ra mete r s) or c urv e estim ates (e g,
he Kap l an–Meier e stimator for a survival curve or a cumulative
ncidenc e curv e). It is thus desirable that the dev elope d prior
e c eiv e d: Ja n ua ry 12, 2024; Revise d: July 5, 2024; Ac c epte d: August 21, 2024 
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an incorporate both parametric and nonparametr ic histor ical
nformation. 

S e veral methods have been developed to use historical in-
ormation for elaborating a prior. Pocock ( 1976 ) proposed
 wei gh ted es timator for the pa ra mete r of in te res t using the
urre n t a nd his torical d atas e ts, whe re wei gh ts a re c ompute d
y modeling the diffe re nces of the pa ra mete r es tima tes acr oss
he curre n t a nd his torical d atas e ts as a ze ro-mea n ra ndom va ri -
 ble. T he power prior proposed by Ibrahim and Chen ( 2000 )
 iscounts the l ikel ihood functions of historical datasets with a
owe r pa ra mete r in [0, 1]. The modifie d pow e r prior is furthe r
ev elope d to inc orporate inform a tion fr om m ultiple his torical
 atas e ts (Banbe ta e t al., 2019 ; Graves tock a nd Held, 2019 ).
o ac c ount for the c onsis te ncy betw e e n his torical d atas e ts and

he curre n t s tudy, the met a -analytic -predictive prior (Neuen-
 chw a nde r et al., 2010 ; Schmidli et al., 2014 ) weighs l ikel ihood
unctions of historical datasets ac c ording to the pre dictiv e dis-
ribution. The unit information (UI) prior ( Jin and Yin, 2021 )
ire ctly w ei ghs the UI of his torical d atas e ts with respect to the
urre n t tri al d ata. How ev e r, all the afore me n tioned methods
 equir e tha t the curre n t d atas e t and historical d atas e ts are in-
e rred unde r the sa me pa ra metric mode l. As a re sult, historical
nforma tion pr ovided b y pa ra mete r es t imat ion unde r diffe re n t
a ra metric models or nonpa ra metric models cannot be incorpo-
ated, a nd the infe re nc e m ay s uffer from model misspe c i fication.

Following the definition of the UI for a pa ra mete r a nd the
I pr ior distr ibution (Kass and Was s erman, 1995 ; Jin and
in, 2021 ) c onstructe d from a historical d atas e t, we propos e
 rn ation al Biometric Society. All ri gh ts rese rv e d. For permis sion s, p leas e e-mail: 
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as the diffe re n tial a nd the left limit of F (·) a t x , r espe ctiv ely. 
When F (x ) is continuous, dF (x ) measures the probability in 

the infinit esimal int erval (x − dx, x ) ; when F (x ) is dis cre te, 
dF (x ) measures the point mass probability at x . Let �(x ) = ∫ x 
−∞ 

{ 1 − F (u −) } −1 dF (u ) be the CHF corresponding to F (·) . 
To mak e Bay esia n nonpa ra metric infe re nce on F (·) , 1 popula r 
way is to impose a Dirichlet process (DP; Ferguson, 1973 , 1974 ) 
prior, 

F ∼ DP (α, G ) , (2) 

where α > 0 is the c onc entr ation par ameter me asuring ho w 

close F (·) is to the base distribution G (·) . The DP prior in Equa- 
tion 2 re nde rs that for any −∞ < x 1 < x 2 < · · · < x m −1 < 

D
ow

nlo
the unit information Dirichlet process (UIDP) as a new cl as s
of priors for Bayesian nonparametric inference of time-to-eve n t
d ata. Bas ed on the definition of the Dirichlet process (Fergu-
son, 1973 ; 1974 ), w e deriv e the Fisher information under the
Dirichle t proces s prior a nd his torical d atas e ts in term s of the cu-
mulativ e h azard function (CHF), for which the indepe nde n t in-
cre me n t prope rty circumve n ts the major d iffic ulty of construct-
ing the nonpa ra metr ic UI. The UIDP pr ior is form ulated b y
matching its unit prior information with the wei gh ted ave rage of
UI in historical d atas e ts. Using the UIDP prior, both pa ra met-
ric and nonparametric information of historical d atas e ts can be
utilized to carry out Bayesia n infe re nce for the curre n t time-to-
eve n t data. Unlike the work of Reimherr et al. ( 2021 ), where the

effe ctiv e s amp le size (ESS) of a prior is ev aluated vi a frequen- 
tist as s es sme n t of a Bayesian estimator of the target parameter 
(Efron, 2015 ), ESS of the UIDP prior is sele cte d via a cross- 
v alid a tion pr oc e dure to m aximize the c onc ordanc e betw e en the 
prior and the current d atas e t. W ith a Markov chain Monte Carlo 

(MCMC) al gorithm, exte nsive sim ulations a nd r eal da ta analy- 
sis show that the proposed UIDP prior can improve s tatis tical 
efficie ncy in Bayesia n nonpa ra metric es t imat ion of the cumula- 
t ive distribut ion funct ion (CDF) a nd ada ptively borrow his tori - 
cal inform ation ac c ording to the consis te ncy or comme nsurabil - 
ity betw e e n the curre n t d atas e t a nd his torical d atas e ts. 

The re mainde r of this a rticle is orga nize d as follows . In Se c- 
tion 2 , we propose the UIDP prior by deriving the information 

under the Dirichle t proces s prior of time-to-eve n t data. We fur- 
ther develop an MCMC algorithm for making Bayesian nonpara- 
metric infe re nce b y borrowing his torical informa tion thr ough 

the UIDP prior. The gain in s tatis tical efficie ncy a nd ada ptivity 
of information borrowing using the UIDP prior is inves ti gated 

vi a exten sive simul ation s in Section 3 and real d ata analysis in 

Section 4 . Section 5 concludes with some d isc ussion. 

2 M ET H O D  O L O G Y  

2.1 Prio r info rmatio n unde r Dirichlet process 
Consider a CDF, F (x ) = P (X ≤ x ) , and let dF (x ) denote the 
diffe re n tial of F (x ) . In survival analysis, Càdlàg functions are 
c ommonly use d, which a re ri gh t-con tin uous with left limits. Let 
F (x ) be a Càdlàg function, and thus we define 

dF (x ) = F (x ) − F (x −) and 

F (x −) = P (X < x ) = lim 

u ↗ x 
F (u ) (1) 

x m 

< ∞ , it holds that (
F (x 1 ) , F (x 2 ) − F (x 1 ) , . . . , F (x m 

) 

−F (x m −1 ) , 1 − F (x m 

) 
)

∼ Dir 
(
αG (x 1 ) , α{ G (x 2 ) − G (x 1 ) } , . . . , α{ G (x m 

) 

−G (x m −1 ) } , α{ 1 − G (x m 

) } 
)
, (3) 

which is the Dirichlet distribution with parameters 
αG (x 1 ) , α{ G (x 2 ) − G (x 1 ) } , . . . , α{ G (x m 

) − G (x m −1 ) } , 
α{ 1 − G (x m 

) } . 
Rem ark 1 Under the prio r DP (α, G ) , F is a discret e dis tribu- 
t io n a lmo s t s u rel y (Ferguson, 1973 ). I f the b ase dis tribu t io n G has 
pro b abil ity p o i nt masses on x 1 , . . . , x m 

, Eq u ation 3 is well de- 
fine d; if G has no pro b abil ity p o i nt mass but n on-zero den sities on 

x 1 , . . . , x m 

, dF (x 1 ) , . . . , dF (x m 

) are non-zero with i nfinitesi m a l 
pro b ability. 

Analogously to Equation 1 , we define 

dG (x ) = G (x ) − G (x −) , with G (x −) = lim 

u ↗ x 
G (u ) , 

d�(x ) = �(x ) − �(x −) = { 1 − F (x −) } −1 dF (x ) , 

a nd prese n t the prope rties of the C DF F (x ) as follo ws. 

T heore m 1 If F ∼ DP (α, G ) , then for all −∞ < x 1 < 

x 2 < ∞ , (i) the mean and covariance matr i x of the ve ct o r 
{ F (x 1 −) , F (x 2 −) , dF (x 1 ) , dF (x 2 ) } � ar e, r espe ct i vely, gi ven 

by 

E { F (x 1 −) , F (x 2 −) , dF (x 1 ) , dF (x 2 ) } � = { G (x 1 −) , G (x 2 −) , dG (x 1 ) , dG (x 2 ) } � , 

Var { F (x 1 −) , F (x 2 −) , dF (x 1 ) , dF (x 2 ) } � = 

1 

α + 1 

×

⎛ ⎜ ⎝ 

G (x 1 −) { 1 − G (x 1 −) } G (x 1 −) { 1 − G (x 2 −) } −G ( x 1 −) dG ( x 1 ) −G ( x 1 −) dG ( x 2 ) 
G (x 1 −) { 1 − G (x 2 −) } G (x 2 −) { 1 − G (x 2 −) } { 1 − G ( x 2 −) } dG ( x 1 ) −G ( x 2 −) dG ( x 2 ) 

−G ( x 1 −) dG ( x 1 ) { 1 − G ( x 2 −) } dG ( x 1 ) dG (x 1 ) { 1 − dG (x 1 ) } −d G (x 1 ) d G (x 2 ) 
−G ( x 1 −) dG ( x 2 ) −G ( x 2 −) dG ( x 2 ) −d G (x 1 ) d G (x 2 ) dG (x 2 ) { 1 − dG (x 2 ) } 

⎞ ⎟ ⎠ 

. 

aded from
 https://academ

ic.oup.com
/biom

etrics/article/80/3/ujae091/7753407 by guest on 16 Septem
ber 2025



Biometrics , 2024, Vol. 80, No. 3 � 3 

(

T  

t  

a  

A  

1  

I
fi
G
z
i
f
b
w
f

w
a
t

S
c
r
�

d
U

w
t
d

or nonpa ra metric es tim ators . For pa ra metric his torical informa- 
tion, if we take the expone n tial dis tribution as an example, we 
h av e d ̂

 �k (x ) = ̂

 θk dx as sho wn belo w, a nd th us all n k o bs er- 
v ation s in D k contribute to the est imat ion of θk and Y k (x ) = 

n k . For nonpa ra metric his torical informa tion, as the calcula tion 

d ̂

 �k (x ) only r equir es the information of all o bs erv ation s in D k 
with Z ik ≥ x , we have Y k (x ) = 

∑ n k 
i =1 I(Z ik ≥ x ) . 

For i l lustration, w e c onsider historical d atas e ts D k = 

{ (Z ik , �ik ) ; i = 1 , . . . , n k } ( k = 1 , . . . , K), where Z ik = 

min (X ik , C ik ) and �ik = I(X ik ≤ C ik ) ar e, r espe ctiv ely, the 
o bs erv e d time and the cen s oring indicator obtained by the 
failure time X ik and the cen s oring time C ik of s ubje ct i in study 
k. Unde r the indepe nde n t ce n s oring as sumption that X ik and 

C ik a re m utually indepe nde n t in each study k, we ca n de rive 

w
1
l
o
p
Î
t

D
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nloade
ii) For the cumula t ive hazard funct io n, we have 

E { d�(x 1 ) } = { 1 − G (x 1 −) } −1 dG (x 1 ) , (4) 

Var { d�( x 1 ) } = 

dG ( x 1 ) { 1 − G (x 1 ) } 
{ 1 − G ( x 1 −) } 2 ( α + 1) 

, (5) 

Cov { d �(x 1 ) , d �(x 2 ) } = 0 . (6) 

heor em 1 pr ovides the join t dis tribut ion of probabilit ies in in-
e rvals (−∞ , x 1 ) a nd (−∞ , x 2 ) a nd poin t mas s pro babilities
t x 1 and x 2 , for which the proof is provided in Section A1 of the
ppendix. By the stick-breaking construction of DP (Ferguson,
973 ), the distribution F ∼ DP (α, G ) is dis cre te almost surely.

f the base distribution G is con tin uous at poin t x , dF (x ) is in- 
nitesimal almost surely and so is d�(x ) . If the base distribution 

 has non-zero point mass pr obability a t point x , dF (x ) is a non- 
e ro poin t mas s pro bability almos t surely a nd so is d�(x ) . More 
mporta n tly, b y Equation 6 , the incre me n ts of CHF �(x ) at dif- 
e re n t poin ts x 1 a nd x 2 a re indepe nde n t, no ma t te r whethe r the 
ase distribution G is con tin uous or not at x 1 and x 2 . To ge ther 
ith the prior v ari ance in Equation 5 , we can derive the prior in- 

ormation of d�(x ) under the DP prior in Equation 2 as follows: 

I{ d�(x ) } = [ Var { d�(x ) } ] −1 

= 

{ 1 − G ( x −) } 2 ( α + 1) 
dG (x ) { 1 − G (x ) } , (7) 

hich ca n se rv e as the me dium for inform a tion borr o wing. Ex - 
mples of E { d�(x ) } and I{ d�(x ) } under different base func- 
ions G (x ) are given in Section A2 of the Appendix. 

2.2 Unit info rmatio n Dirichlet p rocess 
uppose tha t ther e ar e K historical da tasets D 1 , . . . , D K with 

orresponding s amp le sizes of n 1 , . . . , n K , which a re pote n tially 
 ela t ed t o the d atas e t of the curre n t s tudy D. Let ̂ F k (x ) a nd ̂ k (x ) denote the estimators of CDF F k (x ) and CHF �k (x ) un- 
e r his torical d atas e t D k , respe ctiv ely. We define the estim ate d 

I for �k (x ) under D k as ̂ I U 

{ d�k (x ) } = I(d ̂

 �k (x ) > 0) · [ Y k (x ) ̂  Var { d ̂

 �k (x ) } ] −1 , 

here Y k (x ) is the number of o bs erv ation s in D k that contribute 
o d ̂

 �k (x ) , and I(·) is the indicator function. In pa rticula r, we 
o not discriminate whether ̂ F k (x ) and 

̂ �k (x ) are parametric 

d ̂

 �k (x ) and 

̂ I U 

{ d�k (x ) } under a parametric model and a 
nonpa ra metric model, respe ctiv ely. 

� Pa ra me tric model: If a n expone n tial dis tribution 

F k (x ) = 1 − exp (−θk x ) ( 0 < x < ∞ ) is fitt ed t o the 
historical d atas e t D k , the maximum l ikel ihood estimator 
and the estim ate d inform ation of θk are, respe ctiv ely, giv en 

by 

̂ θk = 

∑ n k 
i =1 �ik ∑ n k 
i =1 Z ik 

and 

̂ I ( ̂  θk ) = 

n k ∑ 

i =1 

( 

�ik ̂ θk 
− Z ik 

) 2 

. 

Con s eque n tly, we ca n obtain d ̂

 �k (x ) a nd ̂

 I U 

{ d ̂

 �k (x ) } as 
follows: 

d ̂

 �k (x ) = ̂

 θk dx and 

̂ I U 

{ d ̂

 �k (x ) } = 

1 

Y k (x ) dx 

n k ∑ 

i =1 

( 

�ik ̂ θk 
− Z ik 

) 2 

, 

where Y k (x ) = n k for all 0 < x < ∞ . 
� Nonpa ra me tric model: Without loss of ge ne rality, we as- 

s ume th a t Z (1) k < · · · < Z (M k ) k ar e the M k distinct values 
of eve n t times in D k . Let ̂  F k (x ) be the Kap l an–Meier e sti- 
mator for D k , 

̂ F k (x ) = 1 −
∏ 

m : Z (m ) k ≤x 

{ 

1 −
∑ n k 

i =1 I(Z ik = Z (m ) k , �ik = 1) ∑ n k 
i =1 I( Z ik ≥ Z (m ) k ) 

} 

. 

Thus, we have d ̂

 �k (x ) = 

{∑ n k 
i =1 I(Z ik = x, �ik = 1) 

}
/ Y k (x ) , where Y k (x ) = 

∑ n k 
i =1 I(Z ik ≥ x ) , and 

̂ I U 

{ d ̂

 �k (x ) } = 

⎧ ⎨ ⎩ 

1 

Y k (x ) d ̂

 �k (x ) { 1 − d ̂

 �k (x ) } , if x ∈ { Z (1) k , . . . , Z (M k ) k } , 
0 , otherwise . 
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To borrow information from historical d atas e ts D 1 , . . . , D K ,
e design wei gh ts w 1 , . . . , w K ∈ (0 , 1) satisfying 

∑ K 
k=1 w k =

 , t o charact erize the contributions from D 1 , . . . , D K . We
et the prior of �(x ) c onc e n tra te a t the wei gh ted ave rage
f its empirical counterparts ̂ �1 ( x ) , . . . , ̂  �K ( x ) with the
rior informa tion appr oxima ted by the wei gh ted ave rage of
 

 U 

{ d ̂

 �1 ( x ) } , . . . , ̂  I U 

{ d ̂

 �K ( x ) } . The UIDP prior of F (x ) is
he n form ul ated as fo llows: 
F | M, w 1 , . . . , w K , D 1 , . . . , D K ∼ DP (α, G ) , 

with E { d�(x ) } = 

K ∑ 

k=1 

w k d ̂

 �k (x ) , 

I{ d�(x ) } = M 

K ∑ 

k=1 

w k ̂  I U 

{ d ̂

 �k (x ) } , (8)

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
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{ 1 − G ( x −) } 2 ( α + 1) 
dG (x ) { 1 − G (x ) } = M 

∑ K 
k=1 w k ̂  I U 

{ d ̂

 �k (x ) } . 
(10) 

Although we can directly obtain G (x ) from Equation 9 that 
where M is the ESS corresponding to the total n umbe r of units
borrow e d from historical d atas e ts. From Equation s 4 , 7 , and 8 ,
we can obtain the matching rel ation s, 

dG (x ) 
1 − G (x −) 

= 

∑ K 
k=1 w k d ̂

 �k (x ) , (9)
G (x ) = 

⎧ ⎨ ⎩ 

1 − exp [ − ∫ x 
−∞ 

∑ K 
k=1 w k d ̂

 �k (u )] , if ̂  �1 (x ) , . . . , ̂  �K (x ) are continuous, 

1 − exp 

{ ∫ x 
−∞ 

log [1 − ∑ K 
k=1 w k d ̂

 �k (u )] 
} 

, if ̂  �1 (x ) , . . . , ̂  �K (x ) are dis cre te. 
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The c onc e n tration pa ra mete r α is ove r-ide n ti fied i f doing so
a nd the re exis ts no s o lution s a tisfying Equa tion 10 . In addition, it
is d iffic ult to make infe re nce whe n some of ̂  �1 ( x ) , . . . , ̂  �K ( x )
a re con tin uous a nd othe rs a r e discr ete. 

To tackle such d iffic ulties, w e s uggest imposing a continuous
pa ra metric model G θ(x ) as the base distribution in the DP prior
( 2 ) to perform appr oxima te ma tching. Her e, G θ(x ) r epr ese n ts
one’s prior belief on the family of pa ra metric models that F (x )
belongs to. For example, w e m ay use Wei bull distri bution for
con tin uous CDFs on (0 , ∞ ) or ne gativ e-binomial distribution
for dis cre te CDFs. Subst itut in g G θ(x ) in the matchin g r ela tions
( 9 ) and ( 10 ), we have 

θ = arg min 

θ∗

m ∑ 

l=1 

[ ∫ x l 

x l−1 

{ 1 − G θ∗ (u −) } −1 dG θ∗ (u ) 

−
K ∑ 

k=1 

w k 

∫ x l 

x l−1 

d ̂

 �k (u ) 

] 2 

(11)

and 

α = M ·
∑ m 

l=1 
∫ x l 

x l−1 
{ 1 − G θ (u ) }{ 1 − G θ ( u −) } −2 dG θ ( u ) ∑ m 

l=1 [ 
∑ K 

k=1 w k ̂  I U { 
∫ x l 

x l−1 
d ̂  �k (u ) } ] −1 

− 1 , (12)

where −∞ ≤ x 0 < x 1 < · · · < x m 

< ∞ , a nd the in te rval
points { x 0 , x 1 , x 2 , . . . , x m −1 , x m 

} control both the quality and
ro bustnes s of matching in Equations 11 and 12 . The value of x 0
should be as small as pos sib le to incorporate the most historical
information, while an extremely large x m 

may result in too large
{ 1 − G θ(u −) } −1 in Equation 11 and cause bre akdo wn of com-
putat ion. In pract ic e, w e re c ommend using a s e t of in te rval poin ts
{ x 0 , x 1 , . . . , x m 

} such that 

(i) x 0 = inf (∪ 

K 
k=1 { x : ̂ F k (x ) > 0 } ) ; 

(ii) m = 

√ 

min k Y k (x 0 ) ; 
(i i i) x m 

= min k ( sup { x : ̂ F k (x ) ≤ 0 . 9 } ) ; and 

(iv) the total n umbe r of his torical o bs erv ation s th at c on-
tribut e t o d ̂

 �1 ( x 0 ) , . . . , d ̂

 �K ( x 0 ) is the same for all in-
tervals (x 0 , x 1 ] , . . . , (x m −1 , x m 

] . 

2.3 B ayesi a n infe re nce 
Let X i denote the failure time and C i the cen s oring time of
s ubje ct i in the curre n t s tudy. T he time-to-e ve n t data D =
{ (Z i , �i ) ; i = 1 , . . . , n } include Z i = min (X i , C i ) and �i =
I(X i ≤ C i ) . For the K historical d atas e ts, we pre-de termine
the ESS M using a cros s-v alid ation proc e dure, a nd the n s e t
the hyper-prior (w 1 , . . . , w K ) ∼ Dir (γ1 , . . . , γK ) with γk = 

min (1 , n k /n ) ( k = 1 , . . . , K) and pre-spec i fy −∞ ≤ x 0 <
x 1 < x 2 < · · · < x m −1 < x m 

< ∞ . We propose a MCMC al- 
gorithm to draw pos te rior sa mples of the CDF F (x ) as detailed 

in Algorithm A1 in the Appendix. 
It remains a task for selecting an appr opria te ESS M whose im- 

pact on the pos te rior infe re nce is e normous. Ideally, whe n his tor- 
ical d atas e ts D 1 , . . . , D K are inform ativ e to the curre n t d atas e t
D, we should choose a la rge r M to improve the s tatis tical effi- 
ciency, while M should be smalle r whe n D deviates much from 

D 1 , . . . , D K . To select an appr opria te value for M, we propose a 
cros s-v alid ation proc e dure as follows: 

� Set the candidate values 1 ≤ M 1 < · · · < M H 

≤
min { n, 

∑ K 
k=1 n k } for M. 

� Part it ion the current data D into V folds. 
� For v = 1 , . . . , V : 

– Obtain ̂

 F (v ) (x ) as the nonpa ra metric maxim um like- 
lihood estimator (NPMLE) of F (x ) under the v th fold 

D (v ) . 
– For h = 1 , . . . , H, a pply Al gorithm A1 with M h to 

D (−v ) , the curre n t d atas e t excluding the v th fo ld, and 

obtain B pos te rior sa mples F (1) 
h (−v ) (x ) , . . . , F (B ) 

h (−v ) (x ) . 
– Compute the Wilcoxon-type s tatis tics as 

W h (v ) = 

1 

B 

B ∑ 

b=1 

W 

(b) 
h (v ) , 

where W 

(b) 
h (v ) = Pr (U 1 < U 2 ) − Pr (U 1 > U 2 ) with 

U 1 ∼ ̂ F (v ) , U 2 ∼ F (b) 
h (−v ) . The detailed computation 

proc e dure is prese n ted in Section A4 of the Appendix. 

� Select M = M h ∗ where 

h 

∗ = arg min 

h 

1 

V 

V ∑ 

v =1 

| W h (v ) | . 

This cros s-v alid ation proc e dure allows us to select the optimal 
M that minimizes the deviation, 

| Pr (U 1 < U 2 ) − Pr (U 1 > U 2 ) | , with U 1 ∼ F , U 2 ∼ G, 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
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etw e en F (x ) and the prior me an G (x ) . S pec i fically,
hroughout the expe rime n ts in Sections 3 and 4 , we
se the candidate values M 1 = 1 and (M 2 , . . . , M 11 ) =

(0 . 1 , 0 . 2 , . . . , 1) × min { n, 
∑ K 

k=1 n k } . We pr efer cr os s v alid a-
ion over a fully Bayesia n a pproaches in selecting M because
 fully Bayesian approach pre sume s the n umbe r of dis tinct
alues in the target dataset follows Chinese re st aurant t able
istribution (which depicts the distribution of the number of
 able s under the Chinese res taura n t process) with the pa ra mete r

under the DP prior ( 2 ). How ev er, in practic e, time-to-ev e n t
 bs erv ation s Z 1 , . . . , Z n are usually distinct , of ten lea din g to

oo m uch his torical information being borrow e d . To mit igate
he situa tion wher e the historical informa t ion is not helpful ,
e propose using the cros s-v alid ation me thod to choos e M

h at m aximizes the c onsis te ncy betw e e n the ta rge t d ata and the
os te rior sa mples of F (x ) . With the sele cte d M, w e the n a pply
lgorithm A1 to the comp le te curre n t data D to draw pos te rior
 amp les F (1) ( x ) , . . . , F (B ) ( x ) . 

Among all pos sib le w ays t o comput e the Baye sian e stimator of
 (x ) , the most straightforward estimator is the posterior mean
 

−1 ∑ B 
b=1 F 

(b) (x ) , which, how ev er, is not the most efficient. In-
tead , we ut ilize the Ra o–B la ckw ell the ore m a nd compute the
aye sian e stim ator base d on ( α(1) , θ(1) ) , . . . , ( α(B ) , θ(B ) ) as

ollows: 

̂ F Bayes (x ) = B 

−1 
B ∑ 

b=1 

E { F (b) (x ) |D, α(b) , θ(b) } . (13) 

t can be shown that the 2 estimators give the same mean, 

E 

{ 

B 

−1 
B ∑ 

b=1 

F (b) (x ) 

∣∣∣∣∣D 

} 

= B 

−1 
B ∑ 

b=1 

E { F (b) (x ) |D} 

= B 

−1 
B ∑ 

b=1 

E [ E { F (b) (x ) |D, α(b) , θ(b) }|D] 

= E { ̂  F Bayes (x ) |D} , 
ut the Ra o–B la ckwell B ayesia n es timator yields a smaller
 ari ance, 

Var 

{ 

B 

−1 
B ∑ 

b=1 

F (b) (x ) 

∣∣∣∣∣D 

} 

= E 

[ 

Var 

{ 

B 

−1 
B ∑ 

b=1 

F (b) (x ) 

∣∣∣∣∣D, α(b) , θ(b) 

} 

∣∣∣∣∣D 

] 

+ Var 

[ 

E 

{ 

B 

−1 
B ∑ 

b=1 

F (b) (x ) 

∣∣∣∣∣D, α(b) , θ(b) 

} 

∣∣∣∣∣D 

] 

≥ Var 

[ 

E 

{ 

B 

−1 
B ∑ 

b=1 

F (b) (x ) 

∣∣∣∣∣D, α(b) , θ(b) 

} 

∣∣∣∣∣D 

] 

= Var { ̂  F Bayes (x ) |D} . 
hus, the Ra o–B la ckwell B aye sian e stim ator ̂ F Bayes (x ) is use d

hroughout the n ume rical s tudies . Base d on B pos te rior sa mples
 

(1) ( x ) , . . . , F (B ) ( x ) obtained by Algorithm A1, the 100(1 −
 )% pointwise credible in te rval of the CDF F (x ) can be ob-
ained as [ ̂  L q ( x ) , ̂  U q ( x )] , where 

̂ L q (x ) = max 

{ 

y : 
1 
B 

B ∑ 

b=1 

I( F (b) ( x ) ≤ y ) < q/ 2 

} 

, 

̂ U q (x ) = min 

{ 

y : 
1 
B 

B ∑ 

b=1 

I( F (b) ( x ) ≤ y ) ≥ 1 − q/ 2 

} 

. (14)

3 S I M U L AT I O N S  

o i l lus trate the pe rforma nce of the proposed UIDP prior and
he MCMC algorithm, we conduct expe rime n ts to compa re the
aye sian e stimator of the CDF F (x ) with the cl as sic NPMLE. 

3.1 Expo ne n tial dis tr i butions 
e simulate 1000 target datasets with the study period [0 , 2]

 nd sa mple size n = 200 , each denoted as D = { (Z i , �i ) ; i =
 , . . . , n } , where 

Z i = min (X i , C i , 2) , �i = I(X i ≤ C i , X i ≤ 2) , 

X 1 , . . . , X n 
i .i .d . ∼ F (x ) = 1 − exp (−θx ) , 

C 1 , . . . , C n 
i .i .d . ∼ Exp (0 . 5) , 

or each value of the pa ra mete r θ ∈ { 0 . 7 , 0 . 75 , . . . , 1 . 3 } . Cor-
espondin g to ea ch targe t d atas e t, we ge ne rate K = 2 histor-
cal d atas e ts D 1 , D 2 , where D k = { (Z ik , �ik ) ; i = 1 , . . . , n k }
or k = 1 , 2 , and 

Z ik = min (X ik , C ik , 2) , �ik = I(X ik ≤ C ik , X ik ≤ 2) , 

X 1 k , . . . , X n k k 
i .i .d . ∼ F k (x ) = 1 − exp (−θk x ) , 

C 1 k , . . . , C n k k 
i .i .d . ∼ Exp (0 . 5) , 

ith pa ra mete rs (θ1 , θ2 ) = (0 . 9 , 1 . 1) and s amp le sizes n 1 =
 2 = 100 . 
Althou gh historical dat asets may be acces sib le in the pub-

ic d atabas es or through extensive co ll aboration s, the re re main
ract ical situat ions where only s umm a ry s tatis tics a re av ail ab le
ue to data privacy or confide n tiality. To mimic the la t ter sce-
 arios, w e c ompute the Ne lson–Aalen (NA) e stimators (Ne l-
on, 1969 , 1972 ; Aalen, 1978 ) ̂  �1 (x ) and ̂

 �2 (x ) based on the
 historical d atas e ts, respe ctiv ely, for historical inform ation bor-
owing. To perform the matching in Equations 11 and 12 , we
s e d at a -de pe nde n t in te rval poin ts x 0 , . . . , x 5 with x 0 = 0 and
 5 = min k ( sup { x ∈ [0 , 2] : ̂ F k (x ) ≤ 0 . 9 } ) and keep the num-
ers of o bs erv e d ev ents in the 2 historical d atas e ts the same for all

n te rvals (x 0 , x 1 ] , . . . , (x 4 , x 5 ] . We adopt the cros s-v alid ation
roc e dure in Se ction 2.3 to sele ct the ES S M, a nd the n a pply
lgorithm A1 to draw posterior s amp les, from which we com-
ute the Bayesian estimator in comparison with the KM e stima -

or. The 2 estimators a re compa red using the mean squared error
MSE) for est imat ion of the CDF F (x ) = 1 − exp (−θx ) . 
Figur e 1 A pr esents the ratio of MS Es betw e en the Bayesian es-

imator in Equation 13 and the KM estimator over the study pe-
iod [0, 2] under different values of θ for the target dataset D.
he UIDP prior improves the est imat ion efficiency when his-

orical d atas e ts are simil a r to the ta rge t d atas e t. The Bayesi an
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FIGUR E 1 Per form anc e of the Bayesian estimator of F (x ) = 1 − exp (−θx ) over [0, 2] using the unit information Dirichlet process (UIDP) 
prior under the exponential distribution d atas e ts. (A) The mean squar ed err or (MSE) ra tio betw e e n the Bayesia n es timator in Equation 13 and 

the KM estimator under different values of θ . (B) Bias of the Bayesian estimator under different values of θ . (C) Pointwise c ov er age r ates of 
95% credible in te rvals b y Equation 14 unde r diffe re n t values of θ . (D) Ave rage v alues of the s ele cte d M a nd pos te rior mea ns of ( w 1, w 2 ) unde r 
diffe re n t values of θ . 
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es timator outpe rforms the KM es timator a nd the forme r’s ad -
va n tage a mplifies as x decreases (or increases) when x ∈ [0 , 1]
(or x ∈ [1 , 2] ). Such a trend of the MSE ratio mainly originates
from the la rge r es t imat ion unce rtain ty of F (x ) whe n F (x ) is
close to 0.5. The Bayesian estimator performs better for θ ∈
[0 . 9 , 1 . 1] than θ < 0 . 9 . Howeve r, whe n θ > 1 . 1 , MS E re duc-
tion of the Bayesian estimator over the KM estimator becomes
smaller as θ increases. The main reason is that as θ increases,
historical d atas e ts be c ome more dis simil a r to the ta rge t d atas e t
a nd th us borrowing his torical inform ation be c omes more detri-
me n tal. Simila r tre nds ca n als o be o bs erv e d from the bias of the
Baye sian e stimator and the c ov er age r ate of the 95% credible in-
terval [ ̂  L 0 . 05 ( x ) , ̂  U 0 . 05 ( x )] in Fig ure 1 B a nd C. Whe n the pa ra m-
eter θ of the target dataset is betw e e n θ1 a nd θ2 , the Bayesia n es-
timator yields smaller bias, and the c ov er age r ate of credible in-
terval s i s close to the nomin al lev el 95% . When θ is not betw e en
θ1 and θ2 , the bi as of the Bayesi a n es tim ator be c omes la rge r com-
pared with the KM estimator (see Section A5.1 of the Appendix)
and the c ov er age r ate is no longer close to the nominal level 95% .
How ev er, the c ov er age r a te r em ains abov e 85% in most of the
case s, su gge sting that our method can re duc e the ne gativ e im-
pact of poor historical information on credible in te rvals. From
Figure 1 D, it is o bs erv e d th at as θ grows, the average value of the
sele cte d M increases until θ exc e e ds θ1 and then decreases after 
θ exc e e ds θ2 , while the pos te rior mea n of w 2 keeps increasing. 
This implies that the proposed UIDP prior can adaptively adjust 
the a moun t of infor mation bor row e d from historical d atas e ts ac- 
cording to the similarity betw e e n the ta rget dataset and historical 
d atas e ts. 

We furthe r inves ti g ate ho w our me thod perform s as s amp le 
size gro ws. S pec i fically, in Section A5.2 of the Appendix, we 
pe rform expe rime n ts whe re sa mple sizes of the target dataset 
a nd his torical d atas e ts are (n, n 1 , n 2 ) = (400 , 200 , 200) and
(n, n 1 , n 2 ) = (800 , 400 , 400) . Compa red with Fi gure 1 , it is
clear tha t incr easing s amp le size would decrease both the bias 
of the Bayesian estimator and its advantage in MS E re duction 

ove r the KM es timator whe n θ / ∈ [ θ1 , θ2 ] . The main reason is 
that when the s amp le size is larger, the r ela tive amount of bor- 
row e d historical inform ation is low er if θ / ∈ [ θ1 , θ2 ] , as shown 

in Figure A4 of the Appendix. 

3.2 Wei bull distr i bution 

We simulate 1000 target datasets with the study period [0 , 2] 
a nd sa mple size n = 200 , each denoted as D = { (Z i , �i ) ; i =

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujae091#supplementary-data
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TAB LE 1 Av erage v alues of the s ele cte d M a nd pos te rior mea ns of w 1 , . . . , w 5 unde r diffe re n t c ombin ations of Weibull 
dis tribution pa ra mete rs (ν, η) . 

Scenario ν η M w 1 (%) w 2 (%) w 3 (%) w 4 (%) w 5 (%) 

1 0.90 0.90 110.32 24.48 30.62 17.98 12.71 14.21 
2 0.95 0.95 134.76 22.11 28.69 18.63 14.20 16.38 
3 1.00 1.00 144.80 19.53 26.57 19.35 15.38 19.18 
4 1.05 1.05 143.03 17.51 24.74 19.53 16.21 22.01 
5 1.10 1.10 128.23 15.58 23.11 19.29 16.97 25.05 
6 0.90 1.10 126.75 24.58 25.16 19.20 15.47 15.58 
7 0.95 1.05 137.30 21.96 25.54 19.34 15.64 17.52 
8 1.05 0.95 146.63 17.77 27.49 19.26 14.57 20.91 
9 1.10 0.90 144.54 15.81 28.65 19.15 14.00 22.39 

H ist orical d atas e ts νk 0.90 1.00 1.00 1.00 1.10 
ηk 1.00 0.90 1.00 1.10 1.00 
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 , . . . , n } , where 

Z i = min (X i , C i , 2) , �i = I(X i ≤ C i , X i ≤ 2) , 

X 1 , . . . , X n 
i .i .d . ∼ F (x ) = 1 − exp {−(x/η) ν} , 

C 1 , . . . , C n 
i .i .d . ∼ Exp (0 . 5) , 

or each c ombin ation of pa ra mete rs (ν, η) listed in Table 1 . 
For each targe t d atas e t, we ge ne rate K = 5 his torical d atas e ts
 1 , . . . , D 5 and each D k = { (Z ik , �ik ) ; i = 1 , . . . , n k } , where

Z ik = min (X ik , C ik , 2) , �ik = I(X ik ≤ C ik , X ik ≤ 2) , 

X 1 k , . . . , X n k k 
i .i .d . ∼ F k (x ) = 1 − exp {−(x/ηk ) νk } , 

C 1 k , . . . , C n k k 
i .i .d . ∼ Exp (0 . 5) , 

ith Weibull distribution pa ra mete rs (νk , ηk ) listed in Table 1
 nd sa mple size n k = 300 for k = 1 , . . . , 5 . 
From Table 1 , it is observ e d th at Sc en arios 1, 5, 6, and 9

orrespond to the case that D deviates from D 1 , . . . , D K . We
lso compute the NA estimators ̂ �1 ( x ) , . . . , ̂  �5 ( x ) for his -
orical infor mation bor rowing and us e d at a -de pe nde n t in te rval
oints x 0 , . . . , x 10 for the matching in Equations 11 and 12 ,
ith x 0 = 0 , x 10 = min k ( sup { x ∈ [0 , 2] : ̂ F k (x ) ≤ 0 . 9 } ) and

eep the n umbe rs of o bs e rved eve n ts in 5 historical d atas e ts
he same for all intervals (x 0 , x 1 ] , . . . , (x 9 , x 10 ] . We evaluate
he Bayesian estimator in comparison with the KM e stima -
or in terms of MSE for est imat ion of the CDF F (x ) = 1 −
xp {−(x/η) ν} . 
Figur e 2 A pr esents the ra tio of MS Es betw e e n the Bayesia n

s timator a nd the KM es timator in es t imat in g F (x ) o ver the
 tudy pe riod [0,2] unde r diffe re n t values of pa ra mete rs ν a nd

of the target datasets. Similar to Figure 1 A, the UIDP prior
rama tically impr oves the efficiency in est imat ing F (x ) with
bout 50% reduction in the MSE when D does not deviate from
 1 , . . . , D K (Sc en arios 2, 3, 4, 7, and 8). Even when D devi-

 tes fr om D 1 , . . . , D K (Sc en arios 1, 5, 6, and 9), the MSE of the
aye sian e st imator is st i l l smal ler th an th at of the KM estim a-

or. I n Figure 2 B , it is o bs erv e d th at for all sc en arios, the bias of
he Baye sian e stim ator is ne gligible. As shown in Figure 2 C, the
 ov er age r a tes of 95% cr edible in te rvals [ ̂  L 0 . 05 ( x ) , ̂  U 0 . 05 ( x )] by
qua tion 14 ar e close to the nominal level 95% when D does not
evia te fr om D 1 , . . . , D K (Sc en arios 2, 3, 4, 7, and 8). We also
rese n t the average value of the sele cte d M and posterior means
f w 1 , . . . , w K under all sc en arios in Table 1 . The sele cte d M is
a rge r whe n D is more similar to D 1 , . . . , D K and the average
alue of the pos te rior mea ns of w k ’s reflects the similarities be-
w e en D and D k ’s. 

3.3 Mo del missp eci fication 

o evaluate whether the UIDP prior is vulnerable to model
isspec i fication, we perfor m Bayesi an s en sitivity analysis on
ei bull distri buted data using the UIDP prior with the exponen-

i al bas e distribution G θ . We simulate 1000 targe t d atas e ts with
he study period [0 , 2] and s amp le size n = 200 , each d atas e t
enoted as D = { (Z i , �i ) ; i = 1 , . . . , n } , where 

Z i = min (X i , C i , 2) , �i = I(X i ≤ C i , X i ≤ 2) , 

X 1 , . . . , X n 
i .i .d . ∼ F (x ) = 1 − exp {−(x/η) ν} , 

C 1 , . . . , C n 
i .i .d . ∼ Exp (0 . 5) . 

or each c ombin ation of η = 0 . 7 , 0 . 75 , . . . , 1 . 3 and ν =
 . 8 , 1 . 2 . Under the Weibull distribution, the value of ν deter-
ines the shape of the hazard function: ν = 1 leads to a cons ta n t
 azard (c orresponding to an exponential model), ν < 1 yields
 decreasing hazard over time, and ν > 1 results in an increas-
n g hazard o ver time. For e ach targ e t d atas e t, we generate K =
 historical d atas e ts D 1 and D 2 with D k = { (Z ik , �ik ) ; i =
 , . . . , n k } for k = 1 , 2 , where 

Z ik = min (X ik , C ik , 2) , �ik = I(X ik ≤ C ik , X ik ≤ 2) , 

X 1 k , . . . , X n k k 
i .i .d . ∼ F k (x ) = 1 − exp {−(x/ηk ) νk } , 

C 1 k , . . . , C n k k 
i .i .d . ∼ Exp (0 . 5) , 

nd we s e t parame ters (η1 , η2 ) = (0 . 9 , 1 . 1) and ν1 = ν2 equal
o the ν used in ge ne rating the targe t d atas e t. Using an exponen-
ial CDF as the base distribution G θ , we evaluate the Bayesian
stim ator in c omparison with the KM estimator in terms of the

SE for est imat ing the CDF F (x ) = 1 − exp {−(x/η) ν} . 
As shown in Figure 3 , the Bayesian estimator using the UIDP

rior with an exponential base distribution has comparable ac-
urac y w ith the KM estim ator. Spe c i fically, when ν = 0 . 8 and
a re la rge or whe n ν = 1 . 2 a nd η a re s mall, our Baye sian e s ti -
ator outperforms the KM estimator throughout the e n tire in-

erv al [0, 2]. The Bayesi an estimator under the UIDP prior can
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FIGUR E 2 Per form anc e of the Bayesian estimator of F (x ) = 1 − exp {−(x/η) ν} over [0, 2] using the unit information Dirichlet process 
(UIDP) prior under the Weibull distribution d atas e ts. (A) The mean squared error (MSE) ratio betw e en the Bayesian estimator and the KM 

es timator unde r diffe re n t values of ( ν, η). (B) B i as of the Bayesi a n es timator unde r diffe re n t values of ( ν, η). (C) Poin twise c ov er age r ates of 
95% credible in te rvals unde r diffe re n t values of ( ν, η). 

FIG URE 3 Sen sitivity analysis of the Bayesi a n es tima tor in Equa t ion 13 for est imat ing the Weibull cumulat ive distribut ion funct ion F (x ) over 
[0, 2] using the unit information Dirichle t proces s (UIDP) prior with the expone n ti al bas e distribution under the Wei bull distri bution d atas e ts. 
(A) The mean squared error (MSE) ratio betw e en the Bayesian estimator and the KM estimator under different values of η and ν = 0.8. 
(B) The MSE ratio between the Bayesian estimator and the KM estimator under different values of η and ν = 1.2. 
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FIG URE 4 Comparis on be tw e e n Bayesia n es tima tors in Equa tion 13 using the unit informa tion Dirichlet pr oce ss ( UIDP) prior with a 
misspec i fied expone n ti al bas e dis tribution a nd the true Weibull base dis tribution in es t imat ing wei gh ts a nd the effe ctiv e s amp le size of historical 
d atas e ts. (A) Estimated wei gh t w 1 unde r diffe re n t values of η a nd ν = 0.8. (B) Es tim ate d w ei gh t w 1 unde r diffe re n t values of η a nd ν = 1.2. 
(C) The effe ctiv e s amp le size M unde r diffe re n t values of η a nd ν = 0.8. (D) The effe ctiv e s amp le size M unde r diffe re n t values of η a nd ν = 1.2. 
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e ne rally main tain low MSE whe n the base dis tribution is spec-
fie d inc orre ctly, be cause our UIDP prior can adaptively reduce
he impact of a misspec i fied base distribution G θ on the Bayesian
stimator, as shown by the posterior mean of weight w 1 and the
verage value of sele cte d ESS M in Fi gure 4 . As a be nchma rk for
 omparison, w e also perform Bayesia n infe re nce using the UIDP
rior with the c orre ctly spe cifie d Weibull base distribution on

he same datasets. As shown in Figure 4 A and B, the posterior
ean of w 1 using the UIDP prior with a misspec i fied base dis-

ribution is diffe re n t fr om tha t with the corr ectly spec i fied base
is tribution. Unde r the UIDP prior with a misspec i fied base dis-

ribution, the pos te rior mea n of w 1 is smaller when ν = 0 . 8 and
s la rge r whe n ν = 1 . 2 tha n th at using a c orre ctly spe cifie d base
istribution. Spec i fically, when ν = 0 . 8 , less information is bor-
ow e d from D 1 ( w 1 is smaller than 0.5), while more informa-
ion is borrow e d from D 2 ( w 2 = 1 − w 1 is la rge r). Because the
arge t d atas e t D is more similar to D 2 than D 1 when η is large,
orr owing mor e informa tion fr om D 2 can pr ovide a mor e accu-
a te estima te of F (x ) . The adva n tage of our Bayesian estimator
ver the KM estimator when ν = 1 . 2 and η are small can also
e exp l aine d an alogously. Figure 4 C and D show that when the
a ra mete r η does not lie betw e en η1 and η2 , the sele cte d ESS

decreases as η moves further away from η1 and η2 . This in-
ica tes tha t under the misspec i fied base distribution, the UIDP
rior can ad aptively s elect the ESS a ccordin g to the similarity be-
w e en the target dataset and historical d atas e ts. 

4 R E A L  DATA  A N A LY  S  I S  

o i l lus trate the e mpirical pe rforma nce of the UIDP prior in
mpro vin g the efficiency of s tatis tical infe re nc e, w e an alyze the
 razil canc er d atas e t, which contain s patient data in Brazil can-
 er c enters from 2000 to 2019. In our study, w e extracte d o bs er-
 ation s from 7 st ate s, including Acre (AC), A lagoas (A L), Mi-
as Gerais (MG), Par ́a (PA), Paran ́a (PR), S ̃

 a o Paulo (SP), and
 er gipe (SE). In the extracted 7 d atas e ts, each patie n t re c ord c on-

ains the dates of diagnosis, last contact, and the death. We treat
e c ords with the dates of death as uncen s ored o bs erv ation s, and
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FIG URE 5 (A) Kap l an–Meier e stimators of the survival functions of ca nce r patie n ts in the 7 s t ate s of Br azil within the first 3 y e ars of follo w -up 

after diagnosis. (B) MSE ratios between the Bayesian estimator and the KM estimator in est imat ing survival functions of ca nce r patie n ts in 

diffe re n t s t ate s. (C) The a moun t a nd the proportion of infor mation bor row e d fr om historical da tasets when w e altern ate each state as the study 
ta rget a nd keep the re maining s t ate s as historical dat asets. 
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cen s ored o bs erv ation s if otherwis e. As a result, the n umbe r of
o bs erv ation s and the cen s oring rate for these 7 st ate s ar e, r e-
spe ctiv ely, (1) AC: (2146 , 48 . 70%) ; (2) AL: (6100 , 39 . 62%) ;
(3) MG: (42077 , 22 . 87%) ; (4) PA: (18729 , 4 . 76%) ; (5) PR:
(42009 , 37 . 25%) ; (6) SP: (208753 , 28 . 41%) ; and (7) SE:
(10160 , 20 . 68%) , corresponding to 7 time-to-eve n t d atas e ts
D state = { (Z i, state , �i, state ) ; i = 1 , . . . , n state } ( state = AC, AL,
MG, PA, PR, SP, and SE). The o bs erv e d ev ent time of an un-
cen s ored o bs erv ation is the n umbe r of days from diagnosis to
death, and the o bs erv e d follo w -up time for a cen s ored o bs erv a-
tion is the n umbe r of days from diagnosis to the last contact. 
Figure 5 A shows the KM estimators of survival functions for can- 
ce r patie n ts in diffe re n t s t ate s within the firs t 3 yea rs (1095 days)
after diagnosis. 

To compare the NPMLE and our Bayesian UIDP ap- 
proach in est imat ing the CDF F (x ) = 1 − S (x ) , we s e t the
state AC as the study target and s ynthesi ze 1000 d atas e ts 
D 

(b) 
AC 

( b = 1 , . . . , 1000 ) of size 600 by randomly draw- 
ing o bs erv ation s without rep l ace me n t from the AC d atas e t
D AC 

. For b = 1 , . . . , 1000 , we also s ynthesi ze 6 d atas e ts
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(b) 
AL , D 

(b) 
MG 

, . . . , D 

(b) 
SE of each size 400 to serve as historical

 atas e ts and incorporate them to compute the Bayesian estima-
or using an exponenti al bas e distribution G θ(x ) . We take the
M estimator of the original d atas e t D AC 

(pres e n ted as the red
ine in Figure 5 A) as the true survival function, and compare
he MSEs of the Bayesian es timator a nd the KM estimator over
000 synthetic datasets. We also inves ti g ate ho w much informa-
ion is borrow e d fr om differ ent historical da tasets in analyzing
 

(b) 
AC 

’s by s umm arizing the sele cte d M and posterior means of
 AL , . . . , w SE over 1000 synthetic datasets. We perform the

a me expe rime n t b y, respe ctiv ely, takin g ea ch individual state
s the study target and the r emaining sta t es as hist orical studies
o examine how similarities among different d atas e ts affect
he a moun t (refle cte d by the sele cte d M) and the proportion
refle cte d by posterior means of w k ’s) of information borrow e d. 

Fr om Figur e 5 B, it is o bs erv e d th at our Baye sian e stimator
 as c ompa rable pe rforma nce to the KM estimator in est imat ing

he CDF. Spec i fically, when the study target is AC or PA, the
M estim ator h as low er MS E th a n our Bayesia n es timator be-

aus e both surviv al curves of AC and PA subs ta n tially diffe r from
he rest. As a result, borrowing information from other st ate s

i gh t bias the infe re nce, a nd our UIDP prior adaptively limits
he a moun t of infor mation bor row e d from other d atas e ts with
he av erage sele cte d M = 25 . 4 for A C and 17.9 for PA, as sho wn
n Figure 5 C. Because our cros s-v alid ation proc e dure is used to
elect M from { 1 , 60 , 120 , . . . , 600 } , such a small average se-
e cte d M implies that our proc e dure sele cts M = 1 for more th an
0% r eplica tes . How ev e r, whe n we take either AL, PR, SP, or SE
s the s tudy ta rget, the MSE of our Bayesia n es timator is gen-
 rally lowe r tha n the KM estimator, because these 4 st ate s h av e
imil ar surviv al curves a nd m utually bor rowing infor mation can
i gnifica n tly improve the efficienc y. A s shown in Figure 5 C, our
I DP prior adapt ively borr ows mor e historical informa tion with
 la rge r ave rage value of M a nd, more importa n tly, the propor-
 ions of informat ion borrow e d among these 4 st ate s (AL, PR, SP,
 nd SE) a re m uch hi ghe r tha n the pr oportions fr om the other 3
t ate s (AC, MG, and PA), implying the ability of our UIDP prior
n a daptively a djustin g the proportions of information borrow e d
c c ording to simil arities be tw e en the d atas e ts. When the study
arget is MG, the amount of information borrow e d from other
 atas e ts is moderate (the average selected M equals 52.1) with
uite balanc e d w ei gh ts a mong othe r d atas e ts . The m ain reason

s that the survival curve of MG lies in the middle of all survival
urves, and the inference of MG can bor row infor mation from
 atas e ts with both hi ghe r survival rat es ( AL, PR, SP, and SE) and

ow er s urvival rat es ( AC and PA). 

5 CO N C LU S I O N 

s an extension of UI in Bayesian nonparametrics, we propose
he UIDP prior as a ve n ue for borrowing informa tion fr om his-
orical d ata. Bas e d on the Fisher inform a tion for the differ en-
ial of CHF deriv e d under the Dirichle t proces s, the UIDP prior
s defined by matching the prior mean and prior UI of CHF

ith the wei gh ted ave rage of the est imated CH Fs and wei gh ted
I from historical d atas e ts. W ithout any parametric assumption

mposed on the target dataset and historical information, both
a ra metric a nd nonpa ra metric information of historical d atas e ts
an be inc orporate d in the UIDP prior to improve the s tatis tical
fficiency of Bayesian nonparame tric inference. W ith an elabo-
ated MCMC algorithm to draw pos te rior sa mples a nd a cross-
 alid a tion pr oc e dure t o det e rmine the a moun t of his torical infor-
ation to be borrow e d , simulat ions and real data analysis reveal

he adva n t age s of the UIDP prior over the cl as sic nonpa ra met-
ic maximum l ikel ihood approach in est imat ing the CDF of the
arge t d atas e t. More ov e r, the a moun t of infor mation bor row e d
r om differ ent historical da tasets is shown to be consis te n t with
heir similarities to the target dataset. 

As the UI prior is defined only in terms of the prior mean
nd UI, it can be gener aliz ed to other nonparametric pri-
rs . How ev er, be cause the independent increment property
ov { d �(x 1 ) , d �(x 2 ) } = 0 (for all x 1 � = x 2 ) may not hold un-
e r othe r Bayesia n nonpa ra metric mode ls, their corre sponding
I priors wa rra n t furthe r inves ti gation. Anothe r possible future

irection for research is to incorporate the UIDP prior into the
ramework of the empirical Bayes. As shown in Section 3.3 , mis-
pec i fication of the pa ra me tric bas e distribution ine vita bly has
e gativ e impact on the pe rforma nce of our Bayesian inference.
h us, it is in te res ting to develop a n e mpirical Bayes proc e dure

hat uses the nonpa ra metrically es tim ate d base distribution to
ddress the misspec i fication issue. 
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