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ABSTRACT

Prior distributions, which represent one’s belief in the distributions of unknown parameters before observing the data, impact Bayesian inference
in a critical and fundamental way. With the ability to incorporate external information from expert opinions or historical datasets, the priors, if
specified appropriately, can improve the statistical efficiency of Bayesian inference. In survival analysis, based on the concept of unit informa-
tion (UI) under parametric models, we propose the unit information Dirichlet process (UIDP) as a new class of nonparametric priors for the
underlying distribution of time-to-event data. By deriving the Fisher information in terms of the differential of the cumulative hazard function,
the UIDP prior is formulated to match its prior UI with the weighted average of UI in historical datasets and thus can utilize both parametric
and nonparametric information provided by historical datasets. With a Markov chain Monte Carlo algorithm, simulations and real data analysis

demonstrate that the UIDP prior can adaptively borrow historical information and improve statistical efficiency in survival analysis.

KEYWORDS: Bayesian nonparametric; Fisher information; hazard function; Markov chain Monte Carlo; time-to-event data.

1 INTRODUCTION

Prior distributions play a crucial role in the paradigm of Bayesian
inference. By incorporating external information from expert
opinions or historical datasets, an elaborated informative prior
can improve efliciency for statistical inference. In clinical tri-
als, the effect of the same treatment may be investigated on
patients of different ethnicity groups or different disease sub-
types (Borghaei et al,, 2015; Brahmer et al., 2015; Rittmeyer
et al, 2017; Wu et al,, 2019). Under similar experimental set-
tings, a suitable prior that borrows information from historical
datasets can alleviate the sample size requirement for achieving
adequate power in the current trial. However, practitioners often
face challenges in eliciting such an elaborated prior due to a lack
of unified rules for determining the amount of information to be
borrowed from multiple historical datasets. Typically, more in-
formation should be borrowed from historical datasets whose
sample sizes are larger and data patterns are more similar to or
commensurate with the current one. Another issue is how to
control the total amount of information borrowed from histor-
ical datasets, which, in principle, should not be too large to over-
whelm the current study, even when the total sample size of his-
torical datasets is exceedingly large. In addition, as individual ob-
servations in historical datasets may not be accessible due to pri-
vacy protection or confidentiality, some historical information
exists only in the form of summary statistics (eg, point estimates
and confidence intervals of parameters) or curve estimates (eg,
the Kaplan—Meier estimator for a survival curve or a cumulative
incidence curve). It is thus desirable that the developed prior

can incorporate both parametric and nonparametric historical
information.

Several methods have been developed to use historical in-
formation for elaborating a prior. Pocock (1976) proposed
a weighted estimator for the parameter of interest using the
current and historical datasets, where weights are computed
by modeling the differences of the parameter estimates across
the current and historical datasets as a zero-mean random vari-
able. The power prior proposed by Ibrahim and Chen (2000)
discounts the likelihood functions of historical datasets with a
power parameter in [0, 1]. The modified power prior is further
developed to incorporate information from multiple historical
datasets (Banbeta et al, 2019; Gravestock and Held, 2019).
To account for the consistency between historical datasets and
the current study, the meta-analytic-predictive prior (Neuen-
schwander et al., 2010; Schmidli et al., 2014) weighs likelihood
functions of historical datasets according to the predictive dis-
tribution. The unit information (UI) prior (Jin and Yin, 2021)
directly weighs the UI of historical datasets with respect to the
current trial data. However, all the aforementioned methods
require that the current dataset and historical datasets are in-
terred under the same parametric model. As a result, historical
information provided by parameter estimation under different
parametric models or nonparametric models cannot be incorpo-
rated, and the inference may suffer from model misspecification.

Following the definition of the UI for a parameter and the
Ul prior distribution (Kass and Wasserman, 1995; Jin and
Yin, 2021) constructed from a historical dataset, we propose
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the unit information Dirichlet process (UIDP) as a new class
of priors for Bayesian nonparametric inference of time-to-event
data. Based on the definition of the Dirichlet process (Fergu-
son, 1973; 1974), we derive the Fisher information under the
Dirichlet process prior and historical datasets in terms of the cu-
mulative hazard function (CHF), for which the independent in-
crement property circumvents the major difficulty of construct-
ing the nonparametric UL The UIDP prior is formulated by
matching its unit prior information with the weighted average of
Ul in historical datasets. Using the UIDP prior, both paramet-
ric and nonparametric information of historical datasets can be
utilized to carry out Bayesian inference for the current time-to-
event data. Unlike the work of Reimherr et al. (2021), where the
effective sample size (ESS) of a prior is evaluated via frequen-
tist assessment of a Bayesian estimator of the target parameter
(Efron, 2015), ESS of the UIDP prior is selected via a cross-
validation procedure to maximize the concordance between the
prior and the current dataset. With a Markov chain Monte Carlo
(MCMC) algorithm, extensive simulations and real data analy-
sis show that the proposed UIDP prior can improve statistical
efficiency in Bayesian nonparametric estimation of the cumula-
tive distribution function (CDF) and adaptively borrow histori-
cal information according to the consistency or commensurabil-
ity between the current dataset and historical datasets.

The remainder of this article is organized as follows. In Sec-
tion 2, we propose the UIDP prior by deriving the information
under the Dirichlet process prior of time-to-event data. We fur-
ther develop an MCMC algorithm for making Bayesian nonpara-
metric inference by borrowing historical information through
the UIDP prior. The gain in statistical efficiency and adaptivity
of information borrowing using the UIDP prior is investigated
via extensive simulations in Section 3 and real data analysis in
Section 4. Section 5 concludes with some discussion.

2 METHODOLOGY

2.1 Prior information under Dirichlet process

Consider a CDF, F(x) = P(X < x), and let dF (x) denote the
differential of F(x). In survival analysis, Cadlag functions are
commonly used, which are right-continuous with left limits. Let
F(x) be a Cadlag function, and thus we define

dF(x) = F(x) — F(x—) and
Flx—)=PX <x) = ll;r}cF(u) (1)

as the differential and the left limit of F(-) at x, respectively.
When F(x) is continuous, dF (x) measures the probability in
the infinitesimal interval (x — dx, x); when F(x) is discrete,
dF (x) measures the point mass probability at x. Let A (x) =
x 1 .

fioo{l — F(u—)}"'dF(u) be the CHF corresponding to F(-).
To make Bayesian nonparametric inference on F(-), 1 popular
way is to impose a Dirichlet process (DP; Ferguson, 1973, 1974)
prior,

F ~ DP(a, G), (2)
where o > 0 is the concentration parameter measuring how
close F(-) is to the base distribution G(- ). The DP prior in Equa-

tion 2 renders that for any —00 <) <y < -+ < Ay <
X, < 00,itholds that

(F(xl),F(xz) —F(x1), ..., F(x)
—F (1), 1= F(x,))
~ Dir(otG(xl), a{G(xy) — G(x1)}, ..., a{G(x,,)

—Glw-1)). al1 = Gx)}). 3)

which is the Dirichlet distribution with parameters
aGx), a{G(x) — G(x1)}, .., {G(xm) — Ga—1)},
a{l — G(x,)}.

Remark 1 Under the prior DP(«, G), F is a discrete distribu-
tion almost surely (Ferguson, 1973). If the base distribution G has
probability point masses on xi, ..., x,, Equation 3 is well de-
fined; if G has no probability point mass but non-zero densities on
Xiy - ey X AF (1), ..., dF (x,,) are non-zero with infinitesimal

probability.

Analogously to Equation 1, we define
dG(x) = G(x) — G(x—), withG(x—) = li;n G(u),

dA(x) = A(x) = A(x—) = {1 = F(x—)} " dF (),
and present the properties of the CDF F (x) as follows.

Theorem 1 If F ~ DP(«, G), then for all —oo < x; <
%y < 00, (i) the mean and covariance matrix of the vector
{F(x1—), F(xy—), dF (x1), dF (x,)} " are, respectively, given
by

[E{F(xl_)9 F(xl_)9 dF(xl)v dF(xZ)}T = {G(xl_)’ G(xZ_)9 dG(xl)’ dG(xZ)}Ta

Var(F (x;—), F(x,—), dF (x,), dF (x,)} " =

—G(x1—)dG(xy)

a+1

G(x1=){1 = G(x1—)} G(x1=){1 — G(x,—)}
G(x1—){1 — G(x2—)} Gl = ){1 — G(x,—)} {1 — G(x,—)}dG (1)
{1 = G(x,—)}dG(x1) dG(x1){1 —dG(x1)}

—G(xz—)dG(xz)

_G(xl_)dG(xl) —G(xl—)dG(xz)
—G(x,—)dG(x,)
—dG(xl)dG(xz)

—dG(x1)dG(x2)  dG(x){1 — dG(x,)}
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(ii) For the cumulative hazard function, we have

E{dA(x1)} = {1 — G(x1—)} 'dG(x1), (4)

dG(x){1 — G(x1)}
G e+ O
Cov{dA(x;),dA(x;)} = 0. (6)

Var{dA (x,)} = {

Theorem 1 provides the joint distribution of probabilities in in-
tervals (—00, x;) and (—00, x,) and point mass probabilities
at x1 and x;, for which the proofis provided in Section A1l of the
Appendix. By the stick-breaking construction of DP (Ferguson,
1973), the distribution F ~ DP(w, G) is discrete almost surely.
If the base distribution G is continuous at point x, dF (x) is in-
finitesimal almost surely and so is d A (x). If the base distribution
G has non-zero point mass probability at point x, dF (x) is a non-
zero point mass probability almost surely and so is d A (x). More
importantly, by Equation 6, the increments of CHF A (x) at dif-
ferent points x; and x, are independent, no matter whether the
base distribution G is continuous or not at x; and x,. Together
with the prior variance in Equation 5, we can derive the prior in-
formation of d A (x) under the DP prior in Equation 2 as follows:

Z{dA(x)} = [Var{dA(x)}]"!
{1 =GE—)P(a+1)
~ dG(0){1 - G(x)}

which can serve as the medium for information borrowing. Ex-
amples of E{dA (x)} and Z{d A (x)} under different base func-
tions G(x) are given in Section A2 of the Appendix.

(7)

2.2 Unit information Dirichlet process

Suppose that there are K historical datasets Dy, ..., Dx with
corresponding sample sizes of g, . . ., ng, which are potentlally
related to the dataset of the current study D. Let F.(x) and
A (x) denote the estimators of CDF F (x) and CHF A (x) un-
der historical dataset Dy, respectively. We define the estimated
Ul for A(x) under Dy as

TuldAw(x)} = I(dAk(x) > 0) - [Yi(x)Var{d A (x)}] 7",

where Y;(x) is the number of observations in Dy that contribute
to dA k(x), and I(-) is the indicator function. In particular, we
do not discriminate whether F.(x) and Ag(x) are parametric
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or nonparametric estimators. For parametric historical informa-
tion, if we take the exponential distribution as an example, we
have dAk(x) = dex as shown below, and thus all n; obser-
vations in Dy contribute to the estimation of J; and Y;(x) =
n. For nonparametric historical information, as the calculation
d A (x) only requires the information of all observations in Dy
with Zy > x, wehave Yy (x) = D> % I(Zy > «x).

For illustration, we consider historical datasets D, =
((Zg, Ag);i=1,...,m} (k=1,...,K), where Zj =
min(Xy, Cx) and Ay = I(Xy < Cy) are, respectively, the
observed time and the censoring indicator obtained by the
failure time Xj and the censoring time Cy of subject i in study
k. Under the independent censoring assumption that Xy and
Cit are mutually independent in each study k, we can derive
de(x) and fU{dAk(x)} under a parametric model and a
nonparametric model, respectively.

* Parametric model: If an exponential distribution
F(x) =1 —exp(—6x) (0 < x < 00) is fitted to the
historical dataset Dy, the maximum likelihood estimator
and the estimated information of 6 are, respectively, given

by

2
~ ™Ay ~ ~ (A,

_ i=1 T — —_*_ 7
Or = —Z,,k ~ and Z(6,) = E ( > Zi | .

i=1 ik =1 k

Consequently, we can obtain de(x) and /I\U{d?\\k(x)} as
dAi(x) = Oedx  and
1 T Aik
TG 2 (97

follows:
2
- Zlk) )
where Y. (x) = n; forall0 < x < oo.
* Nonparametric model: Without loss of generality, we as-
sume that Z), < - -+ < Z(u, )k are the M distinct values

TuldAw(x)} =

of event times in Dy. Let F.(x) be the Kaplan-Meier esti-
mator for Dy,

~ " I(Zie = Zye A = 1
B =1- [] 1—2‘:1(”" e A = 1) |
Z;;l I(Zik > Z(m)k)

M:Z () SX

Thus, we have de(x) = {Z?;l
/Y (x), where Yy (x) =

I(Zik =X, Aik = 1)}
>t I(Zy = x),and

1
-~ — — , ifxe{Zo, ..., 2 1,
UldAe(x)) = | Ye(x)dAr(x){1 — dAg(x)) (L (MoK
R otherwise.
To borrow information from historical datasets Dy, ..., Dy, FIM,w,...,wk, D1, ..., Dx ~ DP(a, G),

we design weights wy, ..., wg € (0,1) satisfying ZIk{:l wr =
1, to characterize the contributions from Dy, ..., Dx. We
let the prior of A(x) concentrate at the weighted average
of its empirical counterparts Kl(x), R KK(x) with the
prior information approximated by the weighted average of
/I\U{dxl(x)}, e, fU{dKK(x)} The UIDP prior of F(x) is
then formulated as follows:

K
with  E{dA(x)} = > widAy(x),
k=1
K

T{AA(x)} = MY wIu{dAr(x)},  (8)
k=1
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where M is the ESS corresponding to the total number of units
borrowed from historical datasets. From Equations 4, 7, and 8,
we can obtain the matching relations,

d X K -~
—1 _GG((x)—) = Zk:l wdek(x), (9)
1—exp[— [* ZIk{:l wid Ay (u)],
G(x) =

The concentration parameter « is over-identified if doing so
and there exists no solution satisfying Equation 10. In addition, it
is difficult to make inference when some of A, (x), . . ., Ax(x)
are continuous and others are discrete.

To tackle such difficulties, we suggest imposing a continuous
parametric model Gy (x) as the base distribution in the DP prior
(2) to perform approximate matching. Here, Gg(x) represents
one’s prior belief on the family of parametric models that F(x)
belongs to. For example, we may use Weibull distribution for
continuous CDFs on (0, 00) or negative-binomial distribution
for discrete CDFs. Substituting Gy (x) in the matching relations
(9) and (10), we have

0= argn;inz |:/ {1 — Gy (u=)}""dGg (u)
I=1 -1

X|

K PR 2
_Zwk/ dAk(u):| (11)
k=1 *-1
and

XL Lo 1= Go()H1 — Go(u=)}dGo ()
S wZol [) | AR )]

where —00 <uxg < x; < -+ <&, < 00, and the interval
points {xg, x1, %2, ..., Xu_1, Xy} control both the quality and
robustness of matching in Equations 11 and 12. The value of x,
should be as small as possible to incorporate the most historical
information, while an extremely large «,, may result in too large
{1 — Gg(u—)}~" in Equation 11 and cause breakdown of com-
putation. In practice, we recommend using a set of interval points
{xo, %1, ..., %} such that

-1, (12)

(i) x = inf(UI,le{x : ﬁk(x) > 0});

(i) m = /min Yi(x0);

(iii) x,, = ming(sup{x : Fe(x) < 0.9}); and

(iv) the total number of historical observations that con-
tribute to dA; (xp), . .., dAx(xo) is the same for all in-
tervals (xg, 211, . ., (%m—1, % .

2.3 Bayesian inference

Let X; denote the failure time and C; the censoring time of
subject i in the current study. The time-to-event data D =
{(Zi, A);i=1,...,n} include Z; = min(X;, G;) and A; =
I(X; < G;). For the K historical datasets, we pre-determine

{1 - G(x—)) (e +1)
dG(x){1 — G(x)}

= MY X wTy{dA(x)).
(10)

Although we can directly obtain G(x) from Equation 9 that

ile(x), cee KK(x) are continuous,

1 —exp { JFlog[1 — Zle wkdxk(u)]}, if A, (x), . .., Ag(x) are discrete.

the ESS M using a cross-validation procedure, and then set
the hyper-prior (wy, ..., wx) ~ Dir(yy, ..., yx) with y =
min(1, m/n) (k=1,...,K) and pre-specify —00 < xg <
X <Xy <o < Xy < Xy < 00. We propose a MCMC al-
gorithm to draw posterior samples of the CDF F(x) as detailed
in Algorithm A1 in the Appendix.

It remains a task for selecting an appropriate ESS M whose im-
pact on the posterior inference is enormous. Ideally, when histor-
ical datasets Dy, . .., Dx are informative to the current dataset
D, we should choose a larger M to improve the statistical effi-
ciency, while M should be smaller when D deviates much from
Dy, ..., Dg.To select an appropriate value for M, we propose a
cross-validation procedure as follows:

e Set the candidate values 1 <M; <:--- <My <

min{n, ZIk{:l ny} for M.

* Partition the current data D into V folds.
e Forv=1,...,V:

— Obtain F\(V) (x) as the nonparametric maximum like-
lihood estimator (NPMLE) of F (x) under the vth fold
D).

- Forh =1, ..., H, apply Algorithm Al with M}, to
D(_,), the current dataset excluding the vth fold, and
obtain B posterior samples Fh((l,)l,) (x),..., Fh((BJV) (x).

— Compute the Wilcoxon-type statistics as

B
1 ®)
Wi = 3 2 Wi
b=1

(b)
where Wh )

U, ~ f*'zv), U, ~ Fh((bz y The detailed computation
procedure is presented in Section A4 of the Appendix.

=Pr(U; < U,) — Pr(U; > U,) with

e Select M = M- where

v
1
h* = in — E Wi |-
argmhan (Wil

v=1

This cross-validation procedure allows us to select the optimal
M that minimizes the deviation,

|P1‘(U1 < Uz) — PI‘(Ul > U2)|, WithU] ~ F, U2 ~ G,
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between F(x) and the prior mean G(x). Specifically,
throughout the experiments in Sections 3 and 4, we
use the candidate values M; =1 and (M,,...,M;;) =
(0.1,0.2,...,1) x min{n, Zle ni}. We prefer cross valida-
tion over a fully Bayesian approaches in selecting M because
a fully Bayesian approach presumes the number of distinct
values in the target dataset follows Chinese restaurant table
distribution (which depicts the distribution of the number of
tables under the Chinese restaurant process) with the parameter
« under the DP prior (2). However, in practice, time-to-event
observations Zi, ..., Z, are usually distinct, often leading to
too much historical information being borrowed. To mitigate
the situation where the historical information is not helpful,
we propose using the cross-validation method to choose M
that maximizes the consistency between the target data and the
posterior samples of F(x). With the selected M, we then apply
Algorithm A1 to the complete current data D to draw posterior
samples F(l)(x), e F(B)(x).

Among all possible ways to compute the Bayesian estimator of
F(x), the most straightforward estimator is the posterior mean
B! Zf: F () (x), which, however, is not the most efficient. In-
stead, we utilize the Rao-Blackwell theorem and compute the
Bayesian estimator based on (a(!), 0y, ..., (a®,0%P)) as
follows:

B
Bayes(x) =B Y _EFY (0)|D, ™, 0V} (13)

b=1

It can be shown that the 2 estimators give the same mean,

[E{B‘1 > F(x)

b=1

B
D} =B Y E{F" (x)|D}
b=1

=B ) E[EFY()ID.a, 6)D]
b=1

= [E{?Bayes(x”D},
but the Rao-Blackwell Bayesian estimator yields a smaller

variance,
B
Var{B_1 ZF(h)(x) D}
b=1
B
=E |:Var{B_1 ZF(h)(x)

b=1

D, a(b), o(b)}

’
°

d
= Var{Byayes (%) D).

Thus, the Rao—Blackwell Bayesian estimator fBayeS (x) is used
throughout the numerical studies. Based on B posterior samples

FW(x), ..., F® (x) obtained by Algorithm Al, the 100(1 —

+Var |:E {Bl > FY(x)

b=1

D, oe(b), 0(17)}

> Var [E{Bl > F9(x)

b=1

D, a(b), 0(17)}

Biometrics, 2024, Vol. 80,No.3 e §

q)% pointwise crgflible interval of the CDF F(x) can be ob-
tained as [L, (%), U, (x)], where

B
Ly(x) = max [y: %ZI(F(b)(x) <y) < q/l},

b=1

U,(x) = min iy : % D IED () <y) = 1- q/l}. (14)

b=1

3 SIMULATIONS

To illustrate the performance of the proposed UIDP prior and
the MCMC algorithm, we conduct experiments to compare the
Bayesian estimator of the CDF F (x) with the classic NPMLE.

3.1 Exponential distributions

We simulate 1000 target datasets with the study period [0, 2]
and sample size n = 200, each denoted as D = {(Z;, A;); i =
1, ..., n}, where

Z;=min(X;,C,2), A =I1(X;<C,X; <2),

X, ..., X, 1’l\ilF(oc) =1—exp(—0x),

Ci.....C " Exp(0.5),

for each value of the parameter 6 € {0.7, 0.75, ..., 1.3}. Cor-
responding to each target dataset, we generate K = 2 histor-
ical datasets Dy, D,, where Dy = {(Zy, Ap);i=1,..., n}
fork =1, 2,and

Zj = min(Xy, Ci, 2), A = I(Xig < Ci, Xpe <2),

iid.
Xiky « ooy Xk ~ Fe(x) = 1 — exp(—6ix),

iid.
Cits - - - » Gyt ~ Exp(0.5),

with parameters (61, 6,) = (0.9, 1.1) and sample sizes n; =
n, = 100.

Although historical datasets may be accessible in the pub-
lic databases or through extensive collaborations, there remain
practical situations where only summary statistics are available
due to data privacy or confidentiality. To mimic the latter sce-
narios, we compute the Nelson;Aalen (Né) estimators (Nel-
son, 1969, 1972; Aalen, 1978) A;(x) and A, (x) based on the
2 historical datasets, respectively, for historical information bor-
rowing. To perform the matching in Equations 11 and 12, we
use data-dependent interval points xo, .. ., x5 with xg = 0 and
x5 = ming (sup{x € [0, 2] : K(x) < 0.9}) and keep the num-
bers of observed eventsin the 2 historical datasets the same for all
intervals (xg, %], . .., (4, x5]. We adopt the cross-validation
procedure in Section 2.3 to select the ESS M, and then apply
Algorithm Al to draw posterior samples, from which we com-
pute the Bayesian estimator in comparison with the KM estima-
tor. The 2 estimators are compared using the mean squared error
(MSE) for estimation of the CDF F(x) = 1 — exp(—6x).

Figure 1A presents the ratio of MSEs between the Bayesian es-
timator in Equation 13 and the KM estimator over the study pe-
riod [0, 2] under different values of 0 for the target dataset D.
The UIDP prior improves the estimation efficiency when his-
torical datasets are similar to the target dataset. The Bayesian
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FIGURE 1 Performance of the Bayesian estimator of F(x) = 1 — exp(—6x) over [0, 2] using the unit information Dirichlet process (UIDP)
prior under the exponential distribution datasets. (A) The mean squared error (MSE) ratio between the Bayesian estimator in Equation 13 and
the KM estimator under different values of 6. (B) Bias of the Bayesian estimator under different values of 0. (C) Pointwise coverage rates of
95% credible intervals by Equation 14 under different values of 6. (D) Average values of the selected M and posterior means of (w;, w;) under

different values of 6.

estimator outperforms the KM estimator and the former’s ad-
vantage amplifies as x decreases (or increases) when x € [0, 1]
(orx € [1,2]). Such a trend of the MSE ratio mainly originates
from the larger estimation uncertainty of F(x) when F(x) is
close to 0.5. The Bayesian estimator performs better for 6 €
[0.9, 1.1] than # < 0.9. However, when 6 > 1.1, MSE reduc-
tion of the Bayesian estimator over the KM estimator becomes
smaller as 6 increases. The main reason is that as 6 increases,
historical datasets become more dissimilar to the target dataset
and thus borrowing historical information becomes more detri-
mental. Similar trends can also be observed from the bias of the
Bayesian estimator and the coverage rate of the 95% credible in-
terval [Lo o5 (x), Up.os (x)] in Figure 1B and C. When the param-
eter 0 of the target dataset is between 6, and 6, the Bayesian es-
timator yields smaller bias, and the coverage rate of credible in-
tervals is close to the nominal level 95%. When 6 is not between
0 and 0, the bias of the Bayesian estimator becomes larger com-
pared with the KM estimator (see Section AS.1 of the Appendix)
and the coverage rate is no longer close to the nominal level 95%.
However, the coverage rate remains above 85% in most of the
cases, suggesting that our method can reduce the negative im-
pact of poor historical information on credible intervals. From

Figure 1D, it is observed that as 6 grows, the average value of the
selected M increases until 6 exceeds 6, and then decreases after
0 exceeds 0,, while the posterior mean of w, keeps increasing.
This implies that the proposed UIDP prior can adaptively adjust
the amount of information borrowed from historical datasets ac-
cording to the similarity between the target dataset and historical
datasets.

We further investigate how our method performs as sample
size grows. Specifically, in Section AS.2 of the Appendix, we
perform experiments where sample sizes of the target dataset
and historical datasets are (n, ny, n,) = (400, 200, 200) and
(n, ny, ny) = (800, 400, 400). Compared with Figure 1, it is
clear that increasing sample size would decrease both the bias
of the Bayesian estimator and its advantage in MSE reduction
over the KM estimator when 6 ¢ [0, 6,]. The main reason is
that when the sample size is larger, the relative amount of bor-
rowed historical information is lower if 0 ¢ [6;, 6,], as shown
in Figure A4 of the Appendix.

3.2 Weibull distribution

We simulate 1000 target datasets with the study period [0, 2]
and sample size n = 200, each denoted as D = {(Z;, A;); i =
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TABLE 1 Average values of the selected M and posterior means of wy, . ..

distribution parameters (v, 17).
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, ws under different combinations of Weibull

Scenario v N M wi (%) w, (%) w3 (%) w4 (%) ws (%)
1 0.90 0.90 110.32 24.48 30.62 17.98 12.71 14.21
2 0.95 0.95 134.76 22.11 28.69 18.63 14.20 16.38
3 1.00 1.00 144.80 19.53 26.57 19.35 15.38 19.18
4 1.05 1.05 143.03 17.51 24.74 19.53 16.21 22.01
S 1.10 1.10 128.23 15.58 23.11 19.29 16.97 25.05
6 0.90 1.10 126.75 24.58 25.16 19.20 15.47 15.58
7 0.95 1.05 137.30 21.96 25.54 19.34 15.64 17.52
8 1.05 0.95 146.63 17.77 27.49 19.26 14.57 2091
9 1.10 0.90 144.54 15.81 28.65 19.15 14.00 22.39
Historical datasets Vi 0.90 1.00 1.00 1.00 1.10
Nk 0.90 1.00 1.10 1.00
1,...,n},where of wy, ..., wg under all scenarios in Table 1. The selected M is
Z =min(X,C,2), A =I(X<C,X <2), larger when D is more similar to Dy, ..., Dg and the average

Xty oo X K E(x) = 1— expl—(x/1)"),

C,...,C, i"i;('i'Exp(O.S),

for each combination of parameters (v, 17) listed in Table 1.
For each target dataset, we generate K = § historical datasets
Dy, ..., Dsandeach Dy = {(Zy, Ay);i=1, ..., n}, where

Zyg = min(Xi, Ci, 2),  Ag = I(Xi < Ci, Xge < 2),
Lid.
Xigs « o » Xk ~ Fo(x) = 1 — exp{—(x/n;.)"™},

iid.
Ciks oo Gk ™~ EXp(O.S),

with Weibull distribution parameters (v, 1) listed in Table 1
and sample size n, = 300fork =1, ..., 5.

From Table 1, it is observed that Scenarios 1, 5, 6, and 9
correspond to the case that D deviﬁtes from DL& ..., Dg. We
also compute the NA estimators A (x), ..., As(x) for his-
torical information borrowing and use data-dependent interval
points xo, ..., xjo for the matching in Equations 11 and 12,
with xyp = 0, x;9 = ming(sup{x € [0, 2] : F(x) <0.9}) and
keep the numbers of observed events in S historical datasets
the same for all intervals (xg, x1], ..., (%9, x10]. We evaluate
the Bayesian estimator in comparison with the KM estima-
tor in terms of MSE for estimation of the CDF F(x) =1 —
expl—(x/n)").

Figure 2A presents the ratio of MSEs between the Bayesian
estimator and the KM estimator in estimating F(x) over the
study period [0,2] under different values of parameters v and
n of the target datasets. Similar to Figure 1A, the UIDP prior
dramatically improves the efficiency in estimating F(x) with
about 50% reduction in the MSE when D does not deviate from
D, ..., Dx (Scenarios 2, 3, 4, 7, and 8). Even when D devi-
atesfrom Dy, ..., Dk (Scenarios 1, 5, 6,and 9), the MSE of the
Bayesian estimator is still smaller than that of the KM estima-
tor. In Figure 2B, it is observed that for all scenarios, the bias of
the Bayesian estimator is negligible. As shown in Figure 2C, the
coverage rates of 95% credible intervals [Lo.os (x), Ug.os(x)] by
Equation 14 are close to the nominal level 95% when D does not
deviate from D, ..., Dx (Scenarios 2, 3, 4, 7, and 8). We also
present the average value of the selected M and posterior means

value of the posterior means of wy’s reflects the similarities be-
tween D and Dy’s.

3.3 Model misspecification
To evaluate whether the UIDP prior is vulnerable to model
misspecification, we perform Bayesian sensitivity analysis on
Weibull distributed data using the UIDP prior with the exponen-
tial base distribution Gg. We simulate 1000 target datasets with
the study period [0, 2] and sample size n = 200, each dataset
denotedas D = {(Z;, A;);i=1, ..., n},where

Z;=min(X;,C,2), A =I(X;<C,X <2),

Xt X "R (x) = 1 — exp{—(x/n)"),

Ci. ..., C % Exp(0.5).

for each combination of n =0.7,0.75,...,1.3 and v =
0.8, 1.2. Under the Weibull distribution, the value of v deter-
mines the shape of the hazard function: v = 1leads to a constant
hazard (corresponding to an exponential model), v < 1 yields
a decreasing hazard over time, and v > 1 results in an increas-
ing hazard over time. For each target dataset, we generate K =
2 historical datasets D; and D, with Dy = {(Zy, Ayg); i =
1,...,n} fork =1, 2, where

Zj = min(Xy, Cir, 2), A = I(Xix < Ci, X <2),

it -+ X ™ Be(x) = 1= expl—(x/m)"},

Cits - -+ Gt & Exp(0.5),
and we set parameters (775, 1) = (0.9, 1.1) and v; = v, equal
to the v used in generating the target dataset. Using an exponen-
tial CDF as the base distribution Gy, we evaluate the Bayesian
estimator in comparison with the KM estimator in terms of the
MSE for estimating the CDF F(x) = 1 — exp{—(x/n)"}.

As shown in Figure 3, the Bayesian estimator using the UIDP
prior with an exponential base distribution has comparable ac-
curacy with the KM estimator. Specifically, when v = 0.8 and
1 are large or when v = 1.2 and 7 are small, our Bayesian esti-
mator outperforms the KM estimator throughout the entire in-
terval [0, 2]. The Bayesian estimator under the UIDP prior can

G20z Jequiaydas 9} uo 1sanb Aq 20vE€S/./1609IN/E/08/I01ME/SOLIBIOIG/WOY"dNO"DILSPEDE//:SA)Y WOy PAPEOjUMO]



8 e Biometrics, 2024, Vol. 80, No. 3

(A) -5 (0.9,09) (B) o (0.9,09)
- (0.95095) c (0.95,095)

o (1.1) (1.1)

- o (1.05,1.05)
o | (1.1,1.1)
~- (091.1) 5 (0.9,1.1)

s —4- (0.95,1.05) 3 - (0.95,1.05)
x —6— (1.05,0.95) (1.05,0.95)
w @ e iy
B3 —o- (1.1,09) s (1.1,09)
= 2
] é =3 S Wt NP = o RS- S
3 g
W oo
E o
S |
g
o
o
g |
T T T T T T o T T T T T T
0.0 05 10 15 20 25 Y 05 10 15 20 25
X X

(C) | (0.9,09)
i|-e— (0.95.0.95)
[§8))]
“|-e— (1.05,1.08)
—— (1.1,1.1)
> & e (091.1)
£ ~&- (0.95,1.05)
3 o~ (1.05,0.95)
] —— (1.1,09)
°
[=%
Ss
>
(=]
(&)
w
0
o
00 05 10 15 20 25

FIGURE 2 Performance of the Bayesian estimator of F(x) = 1 — exp{—(x/n)"} over [0, 2] using the unit information Dirichlet process
(UIDP) prior under the Weibull distribution datasets. (A) The mean squared error (MSE) ratio between the Bayesian estimator and the KM
estimator under different values of (v, 7). (B) Bias of the Bayesian estimator under different values of (v, 77). (C) Pointwise coverage rates of
95% credible intervals under different values of (v, n).

(A) | e 07 (B) = 07
- —— 075 —-— 075
- 08 -4 08
I 0.85 -~ 0.85
- 09 - 09
o ~— 0.95 - 095
= - == 1 s —— 1
x p4
i -a- 1.0% it - 1.05
0 11 7] . 1.1
= 1.15 = 1.15
= —— 1.2 == - 12
£ 2 -8 1.25 3 -8 125
@ —— _ —— £
w 18 i 13
17} 17}
= =
©
o
©
o T T T T T T T T T T
0.0 0.5 1.0 15 20 0.0 0.5 1.0 15 2.0
X X

FIGURE 3 Sensitivity analysis of the Bayesian estimator in Equation 13 for estimating the Weibull cumulative distribution function F (x) over

[0, 2] using the unit information Dirichlet process (UIDP) prior with the exponential base distribution under the Weibull distribution datasets.

(A) The mean squared error (MSE) ratio between the Bayesian estimator and the KM estimator under different values of 7 and v = 0.8.
(B) The MSE ratio between the Bayesian estimator and the KM estimator under different values of  and v = 1.2.

GZ0gz Jequieidag g1 uo 3senb Aq L0¥EG . L/1609BMN/E/08/310IIE/SOLIOUWIOIG/L0Y"ANO"DILISPEDE//:SAY WO.) PAPEOUMOQ



(A)
—e— Misspecified
—a— True

\ .
|
——
—

Posterior mean of w;
025 030 035 040 045 050 055 0.60 065
e
i
——i
——i

0.7 0.8 0.9 10 1.1 12 13

—_

C)
|—*— Misspecified
—a— True

100 110 120 130

70

60
=
——
——

50
L

Effective sample size of Borrowed Historic Information
80 90

40
.
i

. ‘ ‘
07 0.8 0.9 10 1.1 12 13
D, n D,

Biometrics, 2024, Vol. 80,No.3 e 9

5. —e— Misspecified
J —A— True
IR
o
N }
5 24
(=
: i
£ 2 % {
= O
el J
8, { } } { }
wn ™
o o
¢ i
Py
0
d_ T T T T T T T
07 0.8 0.9 1.0 1.1 12 13
Dy n D,
(D)
g 8{* Misspecified
T |~ True {
E {
S 8
28
i
32 { }
£ c
-g 1 }
§8’ L] [ }
3 g- { }
o o
1] {
§ 2
e ¥ }
g #1
i%1]
07 08 0.9 1.0 1 12 13
D-‘ n Dg

FIGURE 4 Comparison between Bayesian estimators in Equation 13 using the unit information Dirichlet process (UIDP) prior with a
misspecified exponential base distribution and the true Weibull base distribution in estimating weights and the effective sample size of historical
datasets. (A) Estimated weight w; under different values of  and v = 0.8. (B) Estimated weight w; under different values of 7 and v = 1.2.

(C) The effective sample size M under different values of 7 and v = 0.8. (D) The effective sample size M under different values of n and v = 1.2.

generally maintain low MSE when the base distribution is spec-
ified incorrectly, because our UIDP prior can adaptively reduce
the impact of a misspecified base distribution Gy on the Bayesian
estimator, as shown by the posterior mean of weight w; and the
average value of selected ESS M in Figure 4. As a benchmark for
comparison, we also perform Bayesian inference using the UIDP
prior with the correctly specified Weibull base distribution on
the same datasets. As shown in Figure 4A and B, the posterior
mean of w; using the UIDP prior with a misspecified base dis-
tribution is different from that with the correctly specified base
distribution. Under the UIDP prior with a misspecified base dis-
tribution, the posterior mean of w is smaller when v = 0.8 and
is larger when v = 1.2 than that using a correctly specified base
distribution. Specifically, when v = 0.8, less information is bor-
rowed from D; (w, is smaller than 0.5), while more informa-
tion is borrowed from D, (w, = 1 — w is larger). Because the
target dataset D is more similar to D, than D; when 7 is large,
borrowing more information from D, can provide a more accu-
rate estimate of F(x). The advantage of our Bayesian estimator

over the KM estimator when v = 1.2 and 7 are small can also
be explained analogously. Figure 4C and D show that when the
parameter 1) does not lie between 7, and 1, the selected ESS
M decreases as 11 moves further away from 7; and 1,. This in-
dicates that under the misspecified base distribution, the UIDP
prior can adaptively select the ESS according to the similarity be-
tween the target dataset and historical datasets.

4 REAL DATA ANALYSIS

To illustrate the empirical performance of the UIDP prior in
improving the efficiency of statistical inference, we analyze the
Brazil cancer dataset, which contains patient data in Brazil can-
cer centers from 2000 to 2019. In our study, we extracted obser-
vations from 7 states, including Acre (AC), Alagoas (AL), Mi-
nas Gerais (MG), Para (PA), Parana (PR), Sao Paulo (SP), and
Sergipe (SE). In the extracted 7 datasets, each patient record con-
tains the dates of diagnosis, last contact, and the death. We treat
records with the dates of death as uncensored observations, and
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FIGURE 5 (A) Kaplan-Meier estimators of the survival functions of cancer patients in the 7 states of Brazil within the first 3 years of follow-up
after diagnosis. (B) MSE ratios between the Bayesian estimator and the KM estimator in estimating survival functions of cancer patients in
different states. (C) The amount and the proportion of information borrowed from historical datasets when we alternate each state as the study

target and keep the remaining states as historical datasets.

censored observations if otherwise. As a result, the number of
observations and the censoring rate for these 7 states are, re-
spectively, (1) AC: (2146, 48.70%); (2) AL: (6100, 39.62%);
(3) MG: (42077, 22.87%); (4) PA: (18729, 4.76%); (S) PR:
(42009, 37.25%); (6) SP: (208753,28.41%); and (7) SE:
(10160, 20.68%), corresponding to 7 time-to-event datasets
Dstate = {(Zi,stateo Ai,state); i= 17 cee ”state} (State :AC) AL)
MG, PA, PR, SP, and SE). The observed event time of an un-
censored observation is the number of days from diagnosis to
death, and the observed follow-up time for a censored observa-

tion is the number of days from diagnosis to the last contact.
Figure SA shows the KM estimators of survival functions for can-
cer patients in different states within the first 3 years (1095 days)
after diagnosis.

To compare the NPMLE and our Bayesian UIDP ap-
proach in estimating the CDF F(x) =1 — S(x), we set the
state. AC as the study target and synthesize 1000 datasets
Dj(\bc) (b=1,...,1000) of size 600 by randomly draw-
ing observations without replacement from the AC dataset
Dac. For b=1,...,1000, we also synthesize 6 datasets
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Df\?, Dl(vlfg;, R Dé;) of each size 400 to serve as historical
datasets and incorporate them to compute the Bayesian estima-
tor using an exponential base distribution Gg(x). We take the
KM estimator of the original dataset D¢ (presented as the red
line in Figure SA) as the true survival function, and compare
the MSEs of the Bayesian estimator and the KM estimator over
1000 synthetic datasets. We also investigate how much informa-
tion is borrowed from different historical datasets in analyzing

Dgg ’s by summarizing the selected M and posterior means of
WAL, - - -, Wsg over 1000 synthetic datasets. We perform the
same experiment by, respectively, taking each individual state
as the study target and the remaining states as historical studies
to examine how similarities among different datasets affect
the amount (reflected by the selected M) and the proportion
(reflected by posterior means of wys) of information borrowed.

From Figure SB, it is observed that our Bayesian estimator
has comparable performance to the KM estimator in estimating
the CDF. Specifically, when the study target is AC or PA, the
KM estimator has lower MSE than our Bayesian estimator be-
cause both survival curves of AC and PA substantially differ from
the rest. As a result, borrowing information from other states
might bias the inference, and our UIDP prior adaptively limits
the amount of information borrowed from other datasets with
the average selected M = 25.4 for AC and 17.9 for PA, as shown
in Figure 5C. Because our cross-validation procedure is used to
select M from {1, 60, 120, ..., 600}, such a small average se-
lected M implies that our procedure selects M = 1 for more than
60% replicates. However, when we take either AL, PR, SP, or SE
as the study target, the MSE of our Bayesian estimator is gen-
erally lower than the KM estimator, because these 4 states have
similar survival curves and mutually borrowing information can
significantly improve the efficiency. As shown in Figure SC, our
UIDP prior adaptively borrows more historical information with
a larger average value of M and, more importantly, the propor-
tions of information borrowed among these 4 states (AL, PR, SP,
and SE) are much higher than the proportions from the other 3
states (AC, MG, and PA), implying the ability of our UIDP prior
in adaptively adjusting the proportions of information borrowed
according to similarities between the datasets. When the study
target is MG, the amount of information borrowed from other
datasets is moderate (the average selected M equals 52.1) with
quite balanced weights among other datasets. The main reason
is that the survival curve of MG lies in the middle of all survival
curves, and the inference of MG can borrow information from
datasets with both higher survival rates (AL, PR, SP,and SE) and
lower survival rates (AC and PA).

5 CONCLUSION

As an extension of UI in Bayesian nonparametrics, we propose
the UIDP prior as a venue for borrowing information from his-
torical data. Based on the Fisher information for the differen-
tial of CHF derived under the Dirichlet process, the UIDP prior
is defined by matching the prior mean and prior UI of CHF
with the weighted average of the estimated CHFs and weighted
UI from historical datasets. Without any parametric assumption
imposed on the target dataset and historical information, both
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parametric and nonparametric information of historical datasets
can be incorporated in the UIDP prior to improve the statistical
efficiency of Bayesian nonparametric inference. With an elabo-
rated MCMC algorithm to draw posterior samples and a cross-
validation procedure to determine the amount of historical infor-
mation to be borrowed, simulations and real data analysis reveal
the advantages of the UIDP prior over the classic nonparamet-
ric maximum likelihood approach in estimating the CDF of the
target dataset. Moreover, the amount of information borrowed
from different historical datasets is shown to be consistent with
their similarities to the target dataset.

As the UI prior is defined only in terms of the prior mean
and UJ, it can be generalized to other nonparametric pri-
ors. However, because the independent increment property
Cov{dA(x;), dA(x,)} = 0 (for all x; # x,) may not hold un-
der other Bayesian nonparametric models, their corresponding
UI priors warrant further investigation. Another possible future
direction for research is to incorporate the UIDP prior into the
framework of the empirical Bayes. As shown in Section 3.3, mis-
specification of the parametric base distribution inevitably has
negative impact on the performance of our Bayesian inference.
Thus, it is interesting to develop an empirical Bayes procedure
that uses the nonparametrically estimated base distribution to
address the misspecification issue.
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