
Imperative Compositional Programming
Type Sound Distributive Intersection Subtyping with References via Bidirectional Typing

WENJIA YE, The University of Hong Kong, China

YAOZHU SUN, The University of Hong Kong, China

BRUNO C. D. S. OLIVEIRA, The University of Hong Kong, China

Compositional programming is a programming paradigm that emphasizes modularity and is implemented in the

CP programming language. The foundations for compositional programming are based on a purely functional

variant of System F with intersection types, called 𝐹+i , which includes distributivity rules for subtyping.

This paper shows how to extend compositional programming and CP with mutable references, enabling

a modular, imperative compositional programming style. A technical obstacle solved in our work is the

interaction between distributive intersection subtyping and mutable references. Davies and Pfenning [2000]

studied this problem in standard formulations of intersection type systems and argued that, when combined

with references, distributive subtyping rules lead to type unsoundness. To recover type soundness, they

proposed dropping distributivity rules in subtyping. CP cannot adopt this solution, since it fundamentally relies

on distributivity for modularity. Therefore, we revisit the problem and show that, by adopting bidirectional
typing, a more lightweight and type sound restriction is possible: we can simply restrict the typing rule

for references. This solution retains distributivity and an unrestricted intersection introduction rule. We

present a first calculus, based on Davies and Pfenning’s work, which illustrates the generality of our solution.

Then we present an extension of 𝐹+i with references, which adopts our restriction and enables imperative

compositional programming. We implement an extension of CP with references and show how to model a

modular live-variable analysis in CP. Both calculi and their proofs are formalized in the Coq proof assistant.

CCS Concepts: • Software and its engineering→ Imperative languages; Data types and structures.

Additional Key Words and Phrases: Bidirectional Typing, Mutable References, Intersection Types, Distributive

Subtyping, Type Soundness, Compositional Programming

ACM Reference Format:
Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2024. Imperative Compositional Programming: Type Sound

Distributive Intersection Subtyping with References via Bidirectional Typing. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 342 (October 2024), 30 pages. https://doi.org/10.1145/3689782

1 Introduction
Compositional programming [Zhang et al. 2021] is a programming paradigm that emphasizes

modularity and is implemented in the CP programming language. The well-known expression
problem [Wadler 1998] can be naturally solved with compositional programming. Compositional

programming borrows ideas from both functional and object-oriented programming (OOP). The

OOP idea of family polymorphism [Ernst 2001] is closely related to compositional programming.

Prior research on family polymorphism [Aracic et al. 2006; Ernst et al. 2006; Nystrom et al. 2004,

2006; Zhang and Myers 2017] explored extensions to OOP that enable inheritance of complete

Authors’ Contact Information: Wenjia Ye, The University of Hong Kong, Hong Kong, China, yewenjia@connect.hku.hk;

Yaozhu Sun, The University of Hong Kong, Hong Kong, China, yzsun@cs.hku.hk; Bruno C. d. S. Oliveira, The University of

Hong Kong, Hong Kong, China, bruno@cs.hku.hk.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART342

https://doi.org/10.1145/3689782

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0002-3968-6201
HTTPS://ORCID.ORG/0000-0002-7011-2441
HTTPS://ORCID.ORG/0000-0002-1846-7210
https://doi.org/10.1145/3689782
https://orcid.org/0000-0002-3968-6201
https://orcid.org/0000-0002-7011-2441
https://orcid.org/0000-0002-1846-7210
https://doi.org/10.1145/3689782
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689782&domain=pdf&date_stamp=2024-10-08

342:2 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

hierarchies of classes, instead of just a single class. In compositional programming, complete sets

of traits [Bi and Oliveira 2018; Ducasse et al. 2006] (which play a similar role to classes) can be

composed. This is similar to the composition of whole hierarchies of classes in family polymorphism.

However, the programming style employed in compositional programming departs from tradi-

tional OOP programming, and is based on a form of open pattern matching. This is an influence

from functional programming. Compositional programming fits within a more general and recent

theme of work [Fan and Parreaux 2023; Jin et al. 2023; van der Rest and Poulsen 2022, 2023], which

aims at addressing modularity problems of functional programming. In particular, in functional

programming, both algebraic datatypes and functions, defined by pattern matching, are closed
to extensions. Several researchers have noted this problem and have proposed language designs

with constructs that enable a similar programming style based on pattern matching, but where

definitions are open, and nonetheless checked for exhaustiveness of patterns. In compositional

programming, compositional interfaces play a similar role to algebraic datatypes, declaring sets of

constructors. Unlike algebraic datatypes, compositional interfaces are composable and extensible.

Traits are used to implement sets of reusable patterns, playing a similar role to pattern matching

definitions in functional programming. However, traits are also open and extensible.

The foundations for compositional programming are based on a variant of System F [Girard 1972;

Reynolds 1974] with intersection types [Coppo et al. 1981; Pottinger 1980], called 𝐹+i [Fan et al. 2022],

which includes distributive subtyping rules [Barendregt et al. 1983] and a merge operator [Dunfield
2014; Reynolds 1997]. Distributive subtyping rules are needed to support nested composition [Bi

et al. 2018], which is key to compositional programming, and enables the composition of sets of

traits. For instance, the distributivity rule between intersection and function types is:

(𝐴 → 𝐵1)&(𝐴 → 𝐵2) <: 𝐴 → (𝐵1&𝐵2)
S-d

So far, compositional programming, as well as work within the same theme [Fan and Parreaux

2023; Jin et al. 2023; van der Rest and Poulsen 2022, 2023], has focused on purely functional styles.

The current implementation of CP and the core 𝐹+i calculus is purely functional and lacks support

for imperative features. However, the addition of imperative features, such as mutable references,

can be helpful. For instance, CP supports objects. Adding mutable references would enable CP

to model stateful objects. In addition, mutable references are useful to model certain programs,

which are hard to model in a purely functional setting. For instance, in program analysis, we often

need algorithms that operate on graphs. More generally, graph algorithms are common in several

domains such as graph databases, grammars, finite state machines or transition systems. While

in a purely functional setting, it is easy and natural to write programs on tree structures, graph

structures are challenging, and not many techniques exist to deal with graph structures (but see

[Erwig 2001; Oliveira and Cook 2012b]). The use of references provides a simple way to model

graph structures. Cycles can be created using mutable references and detected using reference

equality.

Our goal is to extend previous calculi for compositional programming with references, to broaden

the scope of compositional programming to imperative programming. This will enable mutable

objects, as well as programs that operate on graph structures. Unfortunately, there is a major obstacle

to achieving this goal. Davies and Pfenning [2000] have argued that references are incompatible

with distributive intersection subtyping, including the rule S-d. They showed that a calculus with

standard distributive intersection subtyping and references leads to type unsoundness. Thus, since
compositional programming fundamentally relies on distributive intersection subtyping, it seems,

at first, that there is little hope of adding references to compositional programming.

In this paper, we propose a simple, and lighter, alternative restriction that enables references in

the presence of distributive intersection subtyping, while preserving type soundness. Our restriction

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:3

exploits bidirectional typing [Dunfield and Krishnaswami 2021], which distinguishes between two

modes of typing: checking and inference. With bidirectional typing, an expression can be checked

against many types, but typically it can only infer the most precise type. We exploit this distinction

to restrict the typing rule for references, allowing only a rule in inference mode:

Σ; Γ ⊢ 𝑒 ⇒ 𝐴

Σ; Γ ⊢ ref 𝑒 ⇒ Ref 𝐴

We show that, with a bidirectional type system with this rule, we can forbid the problems identified

by Davies and Pfenning. Our restriction enables an unrestricted intersection introduction rule

and distributivity. We present two type sound calculi with distributive intersection subtyping

and references. Both calculi adopt our lighter restriction. The first one is a variant of the calculus

presented in Davies and Pfenning’s work. This calculus is useful to show the key ideas of our

approach, and to illustrate that the solution can be applied to a wide range of calculi with intersection

types. The second calculus is a variant of 𝐹+i with references, and it is the calculus that underlies our

new extension of the CP programming language. Using our new implementation of CP extended

with references, in Section 2, we illustrate how graph structures are encoded by CP using a live-
variable analysis example. Overall, the contributions of this paper are as follows:

• Imperative Compositional Programming:We show how to integrate references into a

language with compositional programming, enabling highly modular imperative programs.

• A lightweight restriction, based on bidirectional typing, to enable a calculus featuring

distributive intersection subtyping and references.

• Two type sound calculi that demonstrate the use of the restriction. The first calculus is a

variant of Davies and Pfenning’s calculus while the second is a variant of 𝐹+i with references.

• Coq formalization, CP implementation and examples. Both calculi and their proofs in

the paper are formalized in the Coq proof assistant. Furthermore, we have an implementation

of CP, based on 𝐹+i extended with references, that can type check and run examples for the

paper. An extended version of the example is also provided in the artifact [Ye et al. 2024].

2 Compositional Programming with References
In this section, we provide background on the expression problem and compositional programming,

and show how compositional programming and the CP language are extended with support for

references. We illustrate this support via an example that modularly constructs components of an

imperative programming language and its control-flow graph, enabling a live-variable analysis [Aho

et al. 2007].

2.1 Background: The Expression Problem
The imperative programming language that we are going to model starts with a minimal set of

language constructs. We first illustrate how one could model such language constructs in Java to

motivate and demonstrate the expression problem [Wadler 1998]. The expression problem is a

well-known dilemma in programming languages, which shows that some programming languages

are good at achieving certain forms of extensibility but bad at some other forms of extensibility.

The abstract syntax of the initial language is defined in Java as follows:

interface Exp { String print(); }

class Var extends Exp { String print() { ... } } // variable: x, y, z, ...

class Ass extends Exp { String print() { ... } } // assignment: x = y

class Seq extends Exp { String print() { ... } } // sequential composition: p; q

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:4 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Exp represents the interface for all language constructs, which only contains a pretty-printing

method at the beginning. Var, Ass, and Seq implement the interface and contain different print

implementations.

First dimension of extensibility: more language constructs. The initial language is so minimal that

we can hardly write any useful programs. In particular, it does not even allow primitive values. To

make the language more expressive, we may want to add more language constructs like booleans

and while-loops. In Java, adding more language constructs is simply done by adding new classes:

class NewConstruct extends Exp { String print() { ... } }

The addition of language constructs is modular because we do not need to modify existing code.

This demonstrates that Java has good support for this form of extensibility.

Second dimension of extensibility: more operations. However, it is hard to modularly add more

operations other than pretty-printing in Java. Usually, we have to modify the Java Exp interface to:

interface Exp { String print(); T newOperation(); }

Of course, we need to do similar modifications to the classes that implement the interface to include

the new operation. Changing existing code like this is not modular. Thus, Java is not good at this

second form of extensibility. Such a modularity problem is known as the expression problem. As we

shall see, compositional programming provides a natural solution to this dilemma of extensibility.

2.2 A Brief Introduction to Compositional Programming
The compositional programming paradigm [Zhang et al. 2021] is implemented by the CP language

and introduces several new notions for modularity. The first notion that needs explanation is

that of a compositional interface. A compositional interface consists of type signatures for a set of

constructors, and plays an analogous role to algebraic datatype definitions in functional languages.

For example, the same abstract syntax previously defined in Java can be rewritten in CP as follows:

type SeqSig<Exp> = {

Var: String → Exp; -- variable: x, y, z, ...

Ass: String → Exp → Exp; -- assignment: x = y

Seq: Exp → Exp → Exp; -- sequential composition: p; q

};

In this compositional interface, we declared three constructors for three language constructs. The

type parameter Exp, delimited by angle brackets, is called a sort and must be the return type of

every constructor. A sort abstracts over different kinds of operations that can be applied to the

program. A simple example is the aforementioned pretty-printing operation. We can instantiate

the sort with type Print as follows:

type Print = { print: String };

printSeq = trait implements SeqSig<Print> ⇒ {

(Var x).print = x;

(Ass x e).print = x ++ " = " ++ e.print;

(Seq e1 e2).print = e1.print ++ "; " ++ e2.print;

};

The instantiated interface is implemented by a compositional trait [Bi and Oliveira 2018; Ducasse

et al. 2006], which is a basic reusable unit in CP. A trait is by default in an anonymous form, such as

trait ... ⇒ { ... }, but we can always assign it to a variable, for example printSeq, to give it a

name. The pattern-matching-like syntax (Var x).print = x is called amethod pattern and desugars
into a record field with nested traits:

Var = \x → trait ⇒ { print = x };

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:5

-- Extension 1: Compositional interface and trait for booleans and pretty-printing

type BoolSig<Exp> = {

Lit: Bool → Exp; -- literal: true, false

Not: Exp → Exp; -- negation: not x

};

printBool = trait implements BoolSig<Print> ⇒ {

(Lit b).print = toString b;

(Not e).print = "not " ++ e.print;

};

-- Extension 2: Compositional interface and trait for while-loops and pretty-printing

type LoopSig<Exp> = {

WhileDo: Exp → Exp → Exp; -- while (...) do { ... }

DoWhile: Exp → Exp → Exp; -- do { ... } while (...)

};

printLoop = trait implements LoopSig<Print> ⇒ {

(WhileDo cond body).print =

"while (" ++ cond.print ++ ") do { " ++ body.print ++ " }";

(DoWhile body cond).print =

"do { " ++ body.print ++ " } while (" ++ cond.print ++ ")";

};

Fig. 1. Adding more language constructs for booleans and while-loops in CP.

Such syntactic sugar allows programming in CP in a style resembling pattern matching in functional

languages like Haskell and ML.

First dimension of extensibility: more language constructs. Although the initial language is too

simple to be useful in isolation, it captures basic imperative constructs in a standalone manner and

can be composed with other features later, enabling a modular style advocated in compositional

programming. What we expect is to add more language constructors in a modular way like in Java.

The extension of language constructs is similarly easy in CP. Instead of new classes, we create a

compositional interface and some traits implementing the existing operation for new constructs.

For example, we add two more compositional interfaces and traits for booleans and while-loops

respectively in Figure 1.

Second dimension of extensibility: more operations. We have shown the second dimension of the

expression problem is difficult to solve in mainstream OOP languages like Java. In CP, the solution

to the second dimension is trivial. We will show how CP solves the expression problem next.

2.3 Solving the Expression Problem: Adding CFG Construction
Extending CP with imperative features. The original formulation of CP [Zhang et al. 2021] is

purely functional and lacks support for imperative programming constructs, such as mutable

references. In this work, we extend CP itself with references and four related operations:

(1) ref e creates a reference cell with an initial value e.

(2) !e reads the value stored in the reference cell e (a.k.a. dereference).

(3) e1 := e2 writes the value e2 to the reference cell e1 (a.k.a. assignment).

(4) e1 >> e2 executes the imperative statement e1 and then returns e2 (a.k.a. sequencing).

To illustrate the importance of imperative features in compositional programming, we present an

example of a data-flow analysis. The goal is to compute the set of variables that are live at each

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:6 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

graphSeq = trait implements SeqSig<Graph> ⇒ {

(Var x).graph = let r = ref (newNode ("Var " ++ x) [] [x]) in

mkPair r r;

(Ass x p).graph = let r = ref (newNode ("Ass " ++ x) [x] []) in

addAdj (snk p) [r] >>

mkPair (src p) r;

(Seq p1 p2).graph = addAdj (snk p1) [src p2] >>

mkPair (src p1) (snk p2);

};

newNode (s: String) (def: [String]) (use: [String]) = {

name = s; adj = ref ([] : [Ref Node]);

def = def; use = use;

IN = ref ([] : [String]); OUT = ref ([] : [String]);

};

addAdj (x: Ref Node) (ys: [Ref Node]) = !x.adj := !(!x.adj) ++ ys;

Fig. 2. Building a CFG for the initial language constructs.

program point. The live-variable analysis is done on a control-flow graph (CFG) constructed from

the program. Without mutable references, it is inconvenient to construct a CFG and perform some

analysis in CP. The first difficulty is how to represent the directed edges in the CFG. Since a while-

loop may introduce a cycle in the graph, the connected nodes should be represented by references

instead of values. When traversing a cyclic graph, we need to detect cycles using reference equality

to avoid infinite loops. In addition, we also need flag variables to indicate whether an analysis has

converged.

Representation of the CFG. In a CFG, each node represents a program segment, whose edges

are directed and represent possible execution paths. The directed edges are implemented as an

adjacency array stored in a node. The whole graph is represented by a pair of nodes: one for the

source, and the other for the sink. The definitions are as follows:

interface Node {

name: String; adj: Ref [Ref Node];

def: [String]; use: [String]; -- variables defined and used

IN: Ref [String]; OUT: Ref [String]; -- for live-variable analysis

};

type Graph = { graph: PairRefNode }; -- (src, snk)

Node uses the keyword interface instead of type because it is a recursive type – the adj field uses

Node itself. Recursive types are not supported in the work by Zhang et al. [2021]. Our enhanced

implementation of CP supports recursive types, via interface declarations, based on the work by

Zhou et al. [2022]. The adjacency array can be updated during the construction of the CFG, so the

adj field is a reference. In other words, adj is similar to a mutable field in other languages. The

element of the adjacency array is also a reference – otherwise, the same node can have multiple

copies in its predecessors, and cycles in the graph cannot be represented.

CFG construction for the initial language. In CP, adding a new operation is as easy as adding new

language constructs – all that we need is to create more traits. In Figure 2, we create one more trait

for the initial language. We instantiate Exp with type Graph in the trait graphSeq and implement the

CFG construction. Both Var and Def are mainly creating new CFG nodes, while the task of Seq is to

add a directed edge from the sink node of p1’s graph to the source node of p2’s graph.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:7

graphBoolLoop = trait implements BoolSig<Print ⇒ Graph> & LoopSig<Graph> ⇒ {

[self]@(Lit b).graph = let r = ref (newNode self.print [] []) in mkPair r r;

(Not e).graph = e.graph;

(WhileDo cond body).graph = addAdj (snk cond) [src body] >>

addAdj (snk body) [src cond] >>

mkPair (src cond) (snk cond);

(DoWhile body cond).graph = addAdj (snk body) [src cond] >>

addAdj (snk cond) [src body] >>

mkPair (src body) (snk cond);

};
Fig. 3. Building a CFG for booleans and while-loops.

……src src
cond

snk

snk
cond

cond

……
src
body

snk
body

body

(a) while (cond) do { body }

……src src
body

snk
body

body

……
src
cond

snksnk
cond

cond

(b) do { body } while (cond)

Fig. 4. CFG examples for while-loops.

In newNode, we initialize the adjacency array to be empty. Some extra type annotations are needed

there because, by default, an empty array [] is inferred to have type [Bot]. Then ref [] has type

Ref [Bot] and cannot be coerced into type Ref [String], for instance, because the former is not a

subtype of the latter. The addAdj function adds more nodes to the adjacency array, to add more

directed edges that start from a certain node. Since the function body is merely an assignment

statement, addAdj returns the unit value.

CFG construction for booleans and while-loops. As mentioned in Section 2.2, adding new language

constructs is easy. The implementation for both booleans and while-loops is shown in Figure 3.

Of course, if desired, we could also separate the implementation into two traits. Compositional

programming allows finer- or coarser-grained traits for different scenarios. The boolean part does

not affect control flow, but shows CP’s ability to modularly inject dependencies between different

traits [Zhang et al. 2021]. Instead of directly creating a string for the node identifier, as we did in

graphSeq, we call print. Although print is not defined in graphBoolLoop, we state the dependency

on print by instantiating BoolSig with <Print ⇒ Graph>. Thus we can use self.print in (Lit

b).graph. At composition time (see Section 2.4), an implementation of Print must be provided to

satisfy the dependency. The CFGs built for while-loops are shown in Figure 4. The two variants

of CFGs are similar except that the sink node for while (cond) do { body } is not in body, but in

cond, since we have to check if the condition holds before quitting the loop.

2.4 Putting Everything Together: Distributive Intersection Types in Action
After we have the five traits that implement pretty-printing and CFG construction for the seven

existing language constructs, we may combine them together. Our goal is graphically illustrated in

Figure 5. The difficulty here is how to nestedly compose multiple operations (in this case, print and

graph) within the same constructor. In CP, such nested trait composition [Bi et al. 2018] is achieved

by the merge operator [Dunfield 2014; Reynolds 1997], which is denoted by a comma:

type ProgSig<Exp> = SeqSig<Exp> & BoolSig<Exp> & LoopSig<Exp>;

merged: ProgSig<Print&Graph> = new printSeq,printBool,printLoop,graphSeq,graphBoolLoop;

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:8 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Without nested composition and distributivity (as indicated by the type annotation), merged would

have type ProgSig<Print> & ProgSig<Graph> and contain duplicate fields for each constructor. After

desugaring method patterns, merged would be:

merged = {

Var = \x → trait ⇒ { print = x };

Var = \x → trait ⇒ { graph = let r = ... in mkPair r r };

-- other constructors are similar

};
However, what we actually expect is, as shown in Figure 5, to have only one Var field that serves as

a constructor that can be used for both pretty-printing and CFG construction:

merged = {

Var = \x → trait ⇒ { print = x; graph = let r = ... in mkPair r r };

-- other constructors are similar

};
In other words, we desire merged to be coerced into the type ProgSig<Print&Graph>. The subtyping

relation between ProgSig<Print> & ProgSig<Graph> and ProgSig<Print&Graph> is valid because

intersection types in CP are distributive over function, trait, and record types.

Encoding of traits. It is helpful to understand how traits are encoded in CP, to understand how

the distributivity of traits works. As we shall see in Section 4, 𝐹+im does not include any OOP-related

constructs. This is because these language constructs are encoded using functions and records in

𝐹+im. For example, a trait in CP is desugared to a function, where the argument of the function is the

self-reference of the trait [Bi and Oliveira 2018; Zhang et al. 2021]. This encoding of traits follows

the denotational model of inheritance by Cook and Palsberg [1989]. A simple example illustrating

the encoding is given next:

t1 = trait ⇒ { x = 1 }; -- is desugared to:

t1' = \(self: Top) → { x = 1 }; -- having type: Top → {x: Int}

t2 = trait [self: {x: Int}] ⇒ { y = self.x }; -- is desugared to:

t2' = \(self: {x: Int}) → { y = self.x }; -- having type: {x: Int} → {y: Int}

Thus, the nested composition of two traits is essentially merging two functions, powered by the

distributive intersection subtyping over functions. In other words, distributivity over trait types

boils down to distributivity of intersections over function types, and the rule rule S-d. For example,

the merge t1',t2' has type

(Top → {x: Int}) & ({x: Int} → {y: Int})

which is, via distributivity, a subtype of

Top & {x: Int} → {x:Int} & {y: Int} -- or equivalently, {x: Int} → {x: Int; y: Int}

Back to CP’s trait encoding, the function type above corresponds to Trait<{x: Int} ⇒ {x: Int;

y: Int}>. That is, the trait itself contains two fields x and y while assuming the self-reference has

type {x: Int}. We refer the readers who are interested in the encoding of other constructs like

compositional interfaces to previous work [Zhang et al. 2021].

2.5 Live-Variable Analysis
Let us go back to the topic of data-flow analysis. Since we can already build a CFG from a given

program, it should be easy to do various analyses based on the CFG. Here we pick live-variable

analysis, which computes the set of variables that are live at each program point. As shown in

Figure 6, we continue making use of imperative features in CP to make the analysis possible. The

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:9

,, =
graphSeq

Seq

+ graph

Var

+ graph

Ass

+ graph

printSeq

Seq

+ print

Var

+ print

Ass

+ print , ,

merged

Var

+ print

+ graph

Ass

+ print

+ graph

Seq

+ print

+ graph

Lit

+ print

+ graph

Not

+ print

+ graph

WhileDo

+ print

+ graph

DoWhile

+ print

+ graph

graphBoolLoop

WhileDo

+ graph

DoWhile

+ graph

Lit

+ graph

Not

+ graph

printLoop

Lit

+ print

Not

+ print

printBool

WhileDo

+ print

DoWhile

+ print

Fig. 5. Nested trait composition in CP.

algorithm is standard and can be found in any textbook on program analysis (see, for instance,

Aho et al. [2007]). The analysis is performed in a backwards manner, starting from the sink node of

the whole CFG and propagating the live variables back to the source node. The IN and OUT states

represent the set of live variables corresponding to the entry and exit of each node, respectively.

The basic idea of the analyze function is to iteratively update the IN/OUT states of each node until

no IN is changed anymore. The transfer functions for IN/OUT in each iteration are:

IN[𝑃] = use𝑃 ∪ (OUT[𝑃] \ def𝑃)

OUT[𝑃] =
⋃

𝑄 ∈adj𝑃

IN[𝑄]

The live variables at the entry of a node 𝑃 are those used in 𝑃 plus the live variables at the exit of 𝑃

that are not defined in 𝑃 . The live variables at the exit of 𝑃 are the union of those at the entry of all

nodes that are successors of 𝑃 . Since IN/OUT need to be updated iteratively, they are modeled as

references in CP, or mutable fields in other languages. Some implementations of set operations on

arrays like union and difference are omitted for brevity. Note that the notation adj!!i is used to

access the 𝑖-th element of the array adj. The visited set is used to avoid repeated visits to the same

node as well as infinite loops if the CFG is cyclic. The set is cleared before a new iteration. The

flag variable changed, in the first line of analyzeLiveVar’s body in Figure 6, is also a reference. It is

initialized to store the boolean value false at the beginning of each iteration and will be updated

with true if there is any change on the IN states. The analyzeLiveVar function is essentially a loop

that checks if the dereferenced value !changed is true. If so, it will start a new iteration; otherwise,

the loop ends. A sample program is constructed in the last part of Figure 6. The open keyword is

used to open a record, which brings all constructors in merged into the current scope. Thus we can

directly use, for example, Seq instead of merged.Seq. Then we call analyzeLiveVar on the program

to compute the live variables, which are stored in IN/OUT fields of each node.

In conclusion, CP extended with mutable references enables imperative compositional pro-

gramming, as showcased by our modular live-variable analysis example. Some more complicated

algorithms that usually depend on mutability, such as program analysis, are made possible by the

imperative features. What is more, distributive intersection types can interact well with mutable

references in CP, resulting in a type sound language.

2.6 CP Implementation and Extended Example
All the examples presented in this section can run in our CP implementation. Note that we extended

the original implementation by Zhang et al. [2021]. In particular, we added references and some other

features such as recursive types [Zhou et al. 2022]. In the original design of CP, the implementation

works by elaborating CP into a core calculus, called 𝐹+i [Fan et al. 2022], which is based on disjoint
intersection types [Oliveira et al. 2016] and disjoint polymorphism [Alpuim et al. 2017] and distributive

subtyping. Our implementation works similarly, except that we extend 𝐹+i with additional features.

In Section 4, we formalize an extension of 𝐹+i with references, called 𝐹+im, which serves as a foundation
for our implementation. The elaboration from source language constructs (such as traits and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:10 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

analyze (x: Ref Node) (changed: Ref Bool): () = if isVisited x then () else

visited := !visited ++ [x] >>

letrec go (i: Int): [String] =

let adj = !(!x.adj) in

if i == #adj then [] else analyze (adj!!i) changed >>

union !(!(adj!!i).IN) (go (i+1)) in

!x.OUT := go 0 >>

let oldIN = !(!x.IN) in

!x.IN := union !x.use (difference !(!x.OUT) !x.def) >>

if equal oldIN !(!x.IN) then () else changed := true;

analyzeLiveVar (prog: Graph): () =

let changed = ref true in

letrec go (_: ()): () =

if !changed then changed := false >>

clearVisited () >>

analyze (src prog) changed >>

go ()

else () in

go ();

prog = open merged in

Seq (Ass "x" (Lit true)) -- x = true;

(Seq (Ass "y" (Lit false)) -- y = false;

(Seq (WhileDo (Var "x") (Ass "x" (Var "y"))) -- while (x) do { x = y };

(Ass "z" (Not (Var "x"))))); -- z = not x

analyzeLiveVar prog -- main body

Fig. 6. Live-variable analysis based on the CFG.

compositional interfaces) is treated in previous work [Bi and Oliveira 2018; Zhang et al. 2021]. The

addition of references is mostly orthogonal to source language constructs and has little impact on

the elaboration. In other words, source language constructs like assignments or reference creation

map directly into similar constructs in 𝐹+im. Thus, they are trivial to add to the elaboration step. One

significant change in our implementation of CP is that CP now supports compilation into JavaScript.

The previous implementation was based on an interpreter. Our extended implementation of CP is

available in the artifact.

Extended example. An extended version of the example presented in this section is also available

in our artifact. All code that is omitted for space reasons in this section can be found there. In the

extended example, we add more language constructs like numeric literals, more operations on

booleans and integers, and if-then-else statements. We also implement a depth-first traversal of the

CFG, which can print the live variables at each program point.

3 A Type Sound Calculus with Distributive Subtyping and References
This section proposes a simple restriction for calculi with distributive subtyping, intersection types

and references based on bidirectional typing. This restriction is lighter than the one proposed by

Davies and Pfenning [2000], since it allows distributive subtyping in the presence of references. In

addition, it does not require a value restriction. Since in CP distributive subtyping is fundamental,

our lighter restriction enables the design of calculi that support compositional programming in the

presence of references, as shown in Section 4. We start by revisiting the type unsoundness problem

identified by Davies and Pfenning, and then present our solution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:11

𝐴1 &𝐴2 <: 𝐴1

S-Andl

𝐴1 &𝐴2 <: 𝐴2

S-Andr

𝐴 <: 𝐵1 𝐴 <: 𝐵2

𝐴 <: 𝐵1 &𝐵2
S-And

𝐵 <: 𝐴 𝐴 <: 𝐵

Ref 𝐴 <: Ref 𝐵
S-Ref

(𝐴 → 𝐵1) & (𝐴 → 𝐵2) <: 𝐴 → (𝐵1 &𝐵2)
S-d

Fig. 7. Declarative subtyping of Davies and Pfenning [2000] (excerpt).

let x = ref 1 : Ref Nat & Ref Pos in

let y = (x := 0) in

let z = !x in z : Pos

↩→ o = 1; let y = (o := 0) in

let z = !o in z : Pos

↩→ o = 0; let z = !o in z : Pos

↩→ o = 0; 0 : Pos
(a)

let x = (𝜆x. ref 1) unit : Ref Nat & Ref Pos in

let y = (x := 0) in

let z = !x in z : Pos

↩→ let x = ref 1 : Ref Nat & Ref Pos in

let y = (x := 0) in let z = !x in z : Pos

↩→* o = 0; let z = !o in z : Pos

↩→* o = 0; 0 : Pos
(b)

Fig. 8. Counter-examples identified by Davies and Pfenning [2000].

3.1 Problematic Interaction between References and Distributive Subtyping
Davies and Pfenning [2000] proposed a calculus and type assignment system for a language with

intersection types and references. As usual for most type assignment systems, expressions are

allowed to have multiple types. For instance, 1 can have as type Nat or Pos, among others. In their

subtyping relation, they use standard rules for intersection and reference types in Figure 7. Note

that subtyping for reference types (rule S-ref) is invariant (𝐴 <: 𝐵 and 𝐵 <: 𝐴). The distributivity

rule S-d states that an intersection of two functions with the same input type is a subtype of a

function that returns the intersection of the output types. Davies and Pfenning [2000] concluded

that general intersection types are unsound with mutable references. Next we will illustrate why

type unsoundness happens using their examples.

Type unsoundness from intersection introduction. We show some typing rules of Davies and

Pfenning [2000] that are used to illustrate the problem next:

Σ; Γ ⊢ 𝑒 : 𝐴 𝐴 <: 𝐵

Σ; Γ ⊢ 𝑒 : 𝐵
Pty-sub

Σ; Γ ⊢ 𝑒 : 𝐴
Σ; Γ ⊢ ref 𝑒 : Ref 𝐴

Pty-ref

Σ; Γ ⊢ 𝑒 : Ref 𝐴
Σ; Γ ⊢ !𝑒 : 𝐴

Pty-def

Σ; Γ ⊢ 𝑒 : 𝐴 Σ; Γ ⊢ 𝑒 : 𝐵
Σ; Γ ⊢ 𝑒 : 𝐴&𝐵

Pty-intro

Σ; Γ ⊢ 𝑒1 : Ref 𝐴 Σ; Γ ⊢ 𝑒2 : 𝐴
Σ; Γ ⊢ 𝑒1 := 𝑒2 : Unit

Pty-set

Note that, in our presentation of the two examples, we first present the original program by Davies

and Pfenning in the first 4 lines, and then present reduction steps to illustrate what happens during

execution. The first problematic program that Davies and Pfenning illustrate is in Figure 8a. In

this program, 1 has type Pos. Moreover, since Pos is a subtype of Nat, by rule Pty-sub, 1 can have

type Nat as well. Then, by rule Pty-ref, the expression ref 1 can have type Ref Pos and also type

Ref Nat. Finally, because of rule Pty-intro, the expression ref 1 can be typed as the intersection

type Ref Nat & Ref Pos. From the subtyping rule S-Andl for intersection types, we know that

Ref Nat & Ref Pos is a subtype of Ref Nat. Thus, x can be assigned a Nat number 0. Because x has

type Ref Nat & Ref Pos, and it can be upcast to Ref Pos via the subsumption rule, then z can have

type Pos. Therefore, this program is typeable. However, when we run the program, z is going to

be 0. In the first step, a new cell is created with value 1 referenced by the location o. Note that a

semicolon (;) is used to separate the cell (o = 1) and the program. Then a value 0 is assigned to that

location. After that, we read the content and annotate the value to have type Pos. Obviously, 0 can

not be typed as Pos. So typing is unsound. In essence, the assignment in the program is problematic

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:12 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

since x also has type Ref Pos, but ref 0 should not have that type, since 0 is not a positive number.

In this program the intersection introduction rule plays an important role because it allows ref 1

to be typed with two different reference types.

Type unsoundness from distributivity. A second problematic program that Davies and Pfenning

illustrate is in Figure 8b. This program is nearly the same as the first one, except for the first

line, where ref 1 is replaced by (𝜆x.ref 1) unit. The expression (𝜆x.ref 1) can be typed with

(Unit → Ref Nat) & (Unit → Ref Pos). From subtyping distributivity (rule S-d), (Unit → Ref

Nat) & (Unit → Ref Pos) <: Unit → (Ref Nat & Ref Pos) holds. Therefore, type Unit → (Ref

Nat & Ref Pos) can be used to type check (𝜆x.ref 1). Then the lambda body ref 1 can be checked

as Ref Nat & Ref Pos. This expression exploits the subtyping distributivity rule, to also create a

variable x with the same type as the x in the first program. After one step of reduction, the program

in Figure 8b becomes essentially the program in Figure 8a. Then, using the same line of reasoning

for the first program, we are able to conclude that this program also leads to type unsoundness.

It is worthwhile noting, that while we show counter-examples using Nat and Pos, the counter-

examples can be adapted to many other settings, as Davies and Pfenning observe. For instance,

suppose that the calculus contains a canonical top value ⊤, which can only be typed with ⊤, then we

can easily produce similar counter-examples by replacing Nat by ⊤, and 0 by ⊤. Another example

would be two record types 𝐴 and 𝐵 where 𝐴 <: 𝐵. In this case, 𝐴 would play the role of Pos and 𝐵

would play the role of Nat. Then we could replace 1 and 0 by two records of type𝐴 and 𝐵. Thus, it is

easy to adapt the counter-examples to various other settings, and obtain similar counter-examples

to type soundness.

3.2 Davies and Pfenning’s Solution
Davies and Pfenning [2000] suggested that the intersection introduction rule, and the distributivity

rule used in subtyping are the causes of type unsoundness. To address this problem they proposed

two restrictions: 1) a value restriction on intersection introduction; and 2) removing distributivity
from subtyping. Their value restriction is inspired by the restriction employed in ML [Wright

1995] to solve the unsoundness problem of parametric polymorphism. Concretely, only values are

allowed in intersection introduction:

Σ; Γ ⊢ 𝑣 : 𝐴 Σ; Γ ⊢ 𝑣 : 𝐵

Σ; Γ ⊢ 𝑣 : 𝐴&𝐵

Now, we can consider the first program again. With the restricted intersection introduction rule,

the first program fails to pass the type checker. Even though ref 1 can be typed with ref Nat and

Ref Pos, ref 1 is not a value. In standard calculi with references, the values denoting references

can only be locations. Therefore, the first program is rejected. More generally, type unsoundness

cannot be triggered by this restricted intersection introduction rule.

However, we still need to deal with the second program. For lambdas, (𝜆x.ref 1) is a value,

so the value-restricted intersection introduction can still be used in this case, and the program

is still well-typed. In other words, the distributivity rule on function types can escape the value

restriction. Therefore, Davies and Pfenning remove distributivity (rule S-d) from subtyping.Without

distributivity, then the program is rejected.

While, with their restrictions, Davies and Pfenning obtain a type sound system, this comes at the

cost of expressive power. In particular, we cannot adopt their restriction of removing distributivity

in subtyping in compositional programming. As we have seen in Section 2, distributivity plays a

fundamental role in CP to model nested composition, and enable a high degree of modularity. Thus

we take a different approach in our work, and propose a lighter restriction, which is able to retain

both distributivity and an unrestricted intersection introduction rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:13

3.3 Our Solution: Bidirectional Typing to the Rescue
While Davies and Pfenning identified intersection introduction and distributivity for the type

unsoundness problems, we believe that these features are not necessarily a problem. Indeed, we

can design a type system and calculus with references and both features, which is type sound.

One reason for the two counter-examples to exist is because expressions can infer multiple types.

This is expected in a type assignment system (TAS), which is often used to specify type systems.

For instance, in the TAS proposed by Davies and Pfenning, the expression 1 can have multiple

types, including Nat or Pos. However, implementations often cannot use a TAS, since a TAS may

not be syntax-directed and can guess types. Moreover, while a TAS is often specified without
type annotations, for many type systems (for instance those with undecidable type inference) we

must specify some annotations. Thus, implementations have to adopt other approaches, such as

bidirectional typing [Dunfield and Krishnaswami 2021]. For instance, in Davies and Pfenning’s

work, they adopt bidirectional typing for algorithmic typing.

For algorithmic typing and concrete implementations, we would expect that type inference is

more (if not completely) deterministic. We would usually expect that an inferred type is unique, and

that type annotations are needed in some parts of the program. In other words, we do not expect

to run the type checker twice on the same program and get different types; or to be able to type all

programs without type annotations (for many type systems, at least).

Our first observation is that with bidirectional typing, we can naturally require annotations,

and avoid inference of multiple types for the same expression if necessary. For instance, for the

expression 1 we can infer the type Pos only. Nevertheless, with bidirectional typing, 1 can still be

checked against many types, including both Pos and Nat. If we want 1 to be of type Nat, then we

can, for instance, require a type annotation 1:Nat, and then 1 has type Nat via the check mode.

Our second, and most important observation, is that with bidirectional typing we can prevent

the counter-examples by restricting the rule for typing references. In their algorithmic typing

formulation, Davies and Pfenning [2000] use the following checking rule for references:

Σ; Γ ⊢ 𝑒 ⇐ 𝐴

Σ; Γ ⊢ ref 𝑒 ⇐ Ref 𝐴

This rule allows ref 1 to be checked against both Ref Pos and Ref Nat, since 1 can be checked

with both Pos and Nat. As such, their algorithmic typing, if unrestricted, can still type-check the

problematic programs in Figure 8. We propose instead to use the following rule:

Σ; Γ ⊢ 𝑒 ⇒ 𝐴

Σ; Γ ⊢ ref 𝑒 ⇒ Ref 𝐴
With this rule, both counter-examples (or other similar ones) are not typeable in the bidirectional

type systems proposed in this paper:

• In the program in Figure 8a, intersection introduction cannot be used to type ref 1 with Ref

Pos & Ref Nat, since it would require checking ref 1 with Ref Nat. Because of our restricted

reference rule, ref 1 can only infer the type Ref Pos, and it is not possible to check ref 1

against Ref Nat. Using subsumption does not allow ref 1 to have type Ref Nat, since Ref Pos

is not a subtype of Ref Nat, due to the invariant subtyping rule for references (rule Sub-ref).

Thus, the program is not typeable.

• In the program in Figure 8b, because ref 1 infers Ref Pos, then the lambda 𝜆x.ref 1 in the

second program cannot be checked by (Unit → Ref Nat) & (Unit → Ref Pos) or (Unit

→ (Ref Nat & Ref Pos)). Therefore, the second program is not typeable either, even in the

presence of distributivity.

With this simple change on a bidirectional type system, we can have a type sound calculus with

distributive intersection subtyping, references, and an unrestricted intersection introduction rule.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:14 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Types 𝐴, 𝐵,𝐶 F Pos | Nat | Unit | ⊤ | 𝐴 → 𝐵 | 𝐴&𝐵 | Ref 𝐴
Expressions 𝑒 F 𝑥 | 𝑖 | unit | ⊤ | 𝜆𝑥 : 𝐴.𝑒 | 𝑒 : 𝐴 | 𝑒1 𝑒2 | 𝑜 | ref 𝑒 | !𝑒 | 𝑒1 := 𝑒2
Pre-Values 𝑝 F unit | ⊤ | 𝑜 | 𝑖 | 𝜆𝑥 : 𝐴.𝑒

Values 𝑣 F 𝑝 : 𝐴 | 𝜆𝑥 : 𝐴.𝑒

Contexts ΓF · | Γ, 𝑥 : 𝐴

Value Stores 𝜇 F · | 𝜇, 𝑜 = 𝑣

Typing Stores Σ F · | Σ, 𝑜 : 𝐴

Frames 𝐹 F 𝑣 □ | □ 𝑒 | ref □ | !□ | 𝑣 := □ | □ := 𝑒

Fig. 9. Syntax.

A complication is that we can no longer use a TAS and unannotated expressions to prove type

soundness directly. Our solution relies on bidirectional typing and the presence of type annotations.

Thus, we need to prove type soundness directly using a type system based on bidirectional typing.

Furthermore, the operational semantics needs to account for type annotations. Fortunately, there

are several calculi in the literature where type annotations are relevant and influence the result

of reduction [Fan et al. 2022; Garcia et al. 2016; Herman et al. 2010; Huang et al. 2021; Siek and

Wadler 2009; Wadler and Findler 2009]. These works provide techniques that are helpful to conduct

type soundness proofs in similar settings to the one that we have here. Thus, we can reuse some of

those ideas, to create a calculus similar to Davies and Pfenning’s and show type soundness. As we

shall see in Section 3.5, for this calculus (but not the one in Section 4), type annotations are still

computationally irrelevant and can be erased. Thus no overhead needs to be introduced at runtime.

3.4 Syntax and Type System
The calculus that we present next is similar to the one by Davies and Pfenning, but we directly

employ bidirectional typing. Since our goal is to illustrate how bidirectional typing can help to solve

the problematic interaction between distributive intersection types and references, we present a

simple type system, without a focus on maximizing type inference. We also make one simplification

in lambda abstractions, and allow only abstractions of the form 𝜆𝑥 : 𝐴.𝑒 , with a single annotation

for the variable. This form is limiting for calculi with intersection types, since it forbids certain

forms of overloading such as 𝜆𝑥 .𝑥 : (Nat → Nat)&(Unit → Unit). To keep the full expressive

power of an intersection type system it is well-known that standard forms of type annotations

cannot work, and we must employ other forms of annotations [Pierce 1993; Reynolds 1997]. We

avoid the extra complexity of those solutions here. Nevertheless, our form of lambda abstractions

is still sufficient to encode the abstraction needed by the program in Figure 8b, which illustrates

the issues with distributivity.

Syntax. The syntax of our calculus is shown in Figure 9. Meta-variables 𝐴, 𝐵 and 𝐶 range over

types. A type is either a positive number (Pos), a natural number (Nat), a unit type (Unit), a top
type (⊤) or a compound type. Compound types include arrow types (𝐴 → 𝐵), intersection types

(𝐴&𝐵) and reference types (Ref 𝐴).
Meta-variable 𝑒 ranges over expressions. Most expressions are standard. For references, there are

locations (𝑜), reference expressions ref 𝑒 , dereferences !𝑒 and reference assignments 𝑒1 := 𝑒2. Values

𝑣 are pre-values with a type (𝑝 : 𝐴) and lambdas. Since there is no constructor for intersection types,

the annotation for values is used for preservation. For instance, to preserve types, 1 : Nat&Pos
should keep the annotations Nat&Pos, otherwise the preservation lemma would not hold. Our

contexts Γ have bindings of term variables with their types (𝑥 : 𝐴). There are stores for values 𝜇
and types Σ . Value stores are bindings of reference locations with their values (𝑜 = 𝑣), while a
type store contains bindings of reference locations with the type of values (𝑜 : 𝐴). We use context

evaluation, and the frames are standard.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:15

Ordinary Types 𝐴◦, 𝐵◦ F Pos | Nat | Unit | ⊤ | Ref 𝐴 | 𝐴 → 𝐵◦

Typing Modes ⇔F⇒ |⇐
𝐴 <: 𝐵 (Subtyping)

𝐴 <: 𝐴
S-refl

Pos <: Nat
S-posi

𝐴1 <: 𝐴◦
3

𝐴1 &𝐴2 <: 𝐴◦
3

S-andl

𝐵1 <: 𝐴1 𝐴2 <: 𝐵◦
2

𝐴1 → 𝐴2 <: 𝐵1 → 𝐵◦
2

S-arr

𝐴 <: ⊤
S-top

𝐵 <: 𝐴

𝐴 <: 𝐵

Ref 𝐴 <: Ref 𝐵
S-ref

𝐴 <: 𝐵1 𝐴 <: 𝐵2
𝐵1 ◁ 𝐵 ▷ 𝐵2

𝐴 <: 𝐵
S-and

𝐴2 <: 𝐴◦
3

𝐴1 &𝐴2 <: 𝐴◦
3

S-andr

𝐵 ◁ 𝐴 ▷ 𝐶 (Type Splitting)

𝐴 ◁ 𝐴&𝐵 ▷ 𝐵
Sp-and

𝐶 ◁ 𝐵 ▷ 𝐷

𝐴 → 𝐶 ◁ 𝐴 → 𝐵 ▷ 𝐴 → 𝐷
Sp-arrow

Σ ; Γ ⊢ 𝑒 ⇔ 𝐴 (Bidirectional Typing)

Σ; Γ ⊢ ⊤ ⇒ ⊤
ITyp-top

Σ; Γ ⊢ unit ⇒ Unit
ITyp-unit

Σ; Γ ⊢ 0 ⇒ Nat
ITyp-lit

i > 0

Σ; Γ ⊢ i ⇒ Pos
ITyp-pos

x : 𝐴 ∈ Γ

Σ; Γ ⊢ x ⇒ 𝐴
ITyp-var

𝐴2 <: 𝐴1

Σ; Γ, x : 𝐴1 ⊢ 𝑒 ⇐ 𝐵

Σ; Γ ⊢ 𝜆x : 𝐴1 . 𝑒 ⇐ 𝐴2 → 𝐵
ITyp-abs

Σ; Γ ⊢ 𝑒1 ⇒ 𝐴1 → 𝐴2 Σ; Γ ⊢ 𝑒2 ⇐ 𝐴1

Σ; Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐴2

ITyp-app

Σ; Γ ⊢ 𝑒 ⇐ 𝐴

Σ; Γ ⊢ 𝑒 : 𝐴 ⇒ 𝐴
ITyp-anno

o : 𝐴 ∈ Σ

Σ; Γ ⊢ o ⇒ Ref 𝐴
ITyp-loc

Σ; Γ ⊢ 𝑒1 ⇒ Ref 𝐴 Σ; Γ ⊢ 𝑒2 ⇐ 𝐴

Σ; Γ ⊢ 𝑒1 := 𝑒2 ⇒ Unit
ITyp-ass

Σ; Γ, x : 𝐴 ⊢ 𝑒 ⇐ ⊤
Σ; Γ ⊢ 𝜆x : 𝐴. 𝑒 ⇐ ⊤

ITyp-abst

Σ; Γ ⊢ 𝑒 ⇒ Ref 𝐴

Σ; Γ ⊢ !𝑒 ⇒ 𝐴
ITyp-deref

Σ; Γ ⊢ 𝑒 ⇒ 𝐴

Σ; Γ ⊢ ref 𝑒 ⇒ Ref 𝐴
ITyp-ref

Σ; Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 <: 𝐵

Σ; Γ ⊢ 𝑒 ⇐ 𝐵
ITyp-sub

𝐵1 ◁ 𝐵 ▷ 𝐵2 Σ; Γ ⊢ 𝑒 ⇐ 𝐵1 Σ; Γ ⊢ 𝑒 ⇐ 𝐵2

Σ; Γ ⊢ 𝑒 ⇐ 𝐵
ITyp-intro

Fig. 10. Type system.

Subtyping. The subtyping rules are shown at the top of Figure 10. The subtyping relation is a

variant of the standard BCD-style distributive subtyping relation [Barendregt et al. 1983], and is

similar to the one employed by Davies and Pfenning. However, we choose a presentation for the

rules based on the work by Huang et al. [2021], which employs splittable types and ordinary types.
Ordinary types [Davies and Pfenning 2000; Huang et al. 2021], represented as 𝐴◦

, are types that

are not intersections or function types returning intersections. The opposite to ordinary types are

splittable types, which are types that are intersections or function types returning intersections.

Splittable types can be decomposed, unlike ordinary types, and they are helpful to eliminate the

need for an explicit transitivity rule. Splittable types, along with ordinary types, are also helpful for

obtaining an algorithmic formulation, as well as developing the metatheory of subtyping.

Ordinary and splittable types remove some overlap between the rules for intersection types.

When an intersection appears on the right (𝐴 <: 𝐵&𝐶), we know that we never lose expressive power
by employing rule S-and so, we can always pick this rule instead of the other two intersection

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:16 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′ (Small-Step Semantics)

𝜇; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′

𝜇; 𝐹 [𝑒] ↦−→ 𝜇 ′; 𝐹 [𝑒 ′]
IStep-eval

o ∉ 𝜇

𝜇; ref 𝑣 ↦−→ 𝜇, o = 𝑣 ; o
IStep-ref

o = 𝑣 ∈ 𝜇

𝜇; !(o : Ref 𝐴) ↦−→ 𝜇; 𝑣 : 𝐴
IStep-deref

𝑒 ≠ 𝑝 𝜇; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′

𝜇; 𝑒 : 𝐴 ↦−→ 𝜇 ′; 𝑒 ′ : 𝐴
IStep-anno

o = 𝑝 : 𝐶 ∈ 𝜇

𝜇; o : Ref 𝐴 := 𝑣 ↦−→ 𝜇 [o ↦→ |𝑣 | : 𝐶]; unit
IStep-ass

𝜇;𝑝 : 𝐴 : 𝐵 ↦−→ 𝜇;𝑝 : 𝐵
IStep-annov

𝜇; 𝑝 ↦−→ 𝜇;𝑝 : ty(𝑝)𝜇
IStep-p

𝜇; (𝜆x : 𝐴1 . 𝑒 : 𝐵1 → 𝐵2) 𝑣 ↦−→ 𝜇; 𝑒 [x ↦→ |𝑣 | : 𝐴1] : 𝐵2
IStep-beta

Fig. 11. Reduction.

rules. Thus, the ordinary condition expresses that in the two other rules (rules S-andl and S-andr)

the type on the right cannot be an intersection. So, the other rules will not apply in cases where

intersections appear on the right. In a setting with distributive subtyping, we need to generalize

the definition of ordinary types a bit more because 𝐴 → 𝐵&𝐶 is equivalent to (𝐴 → 𝐵)&(𝐴 → 𝐶).
So function types such as those should be considered as non-ordinary (or splittable). Ordinary and

splittable types also help in proving inversion lemmas about the subtyping relation, which are

needed for the type soundness proof. Usually, in subtyping relations with less overlapping rules, it

becomes easier to prove inversion lemmas.

Types are split in rule S-and by the type splitting relation 𝐵 ◁ 𝐴 ▷ 𝐶 , which is shown in the

middle of Figure 10. An intersection type 𝐴&𝐵 is split into 𝐴 and 𝐵 . An arrow type is split by

the output type. The rule S-d rule is admissible from rule S-and [Huang et al. 2021]. Rules S-arr,

S-andl, and S-andr are for ordinary types. The subtyping rule S-ref for references is standard: it

compares two reference types and requires that both types are subtypes of each other. Note that

Ref (𝐴&𝐵) is not equivalent to (Ref 𝐴)&(Ref 𝐵), and that reference types are unsplittable. In other

words, there is no distributivity rule for references. The subtyping rules are reflexive and transitive.

Type system. The bidirectional type system is shown at the bottom of Figure 10. The typing

judgement is represented as Σ; Γ ⊢ 𝑒 ⇔ 𝐴. There are two typing modes ⇔: infer mode (⇒) and

check mode (⇐), shown at the top of Figure 10. An expression 𝑒 is inferred or checked by type 𝐴

under the reference typing store Σ and term variable context Γ. Most rules are standard. As we

discussed, for references, expressions must infer a type (rule ITyp-ref). Because of distributivity,

the intersection introduction rule requires type splitting. Lambdas are checked by ⊤ or a function

type 𝐴2 → 𝐵 if 𝐴2 is the subtype of the lambda input type 𝐴1 and the body is checked by 𝐵 .

3.5 Dynamic Semantics
Figure 11 shows the reduction rules of our calculus. We have two variants of reduction. One

variant has type annotations, which are needed to prove type soundness. The other variant has

no annotations and is used to illustrate that annotations are computationally irrelevant in this

calculus.

Reduction with annotations. Rule IStep-eval reduces the expressions under the frames. Rule IStep-

p reduces inferrable raw values to be values by annotating their types (ty(𝑝)𝜇). The definition for

inferrable raw values is:

ty(⊤)𝜇 = ⊤ ty(unit)𝜇 = Unit ty(𝑜)𝜇 = Ref ty(𝜇 (𝑜))𝜇 ty(0)𝜇 = Nat ty(i)𝜇 = Pos (i > 0)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:17

Rule IStep-anno is applied for annotations and 𝑒 cannot be a pre-value 𝑝 . Annotations are not

included in the evaluation context because there is a side condition stating that 𝑒 is not a 𝑝 . The side

condition is needed to avoid rule IStep-anno and rule IStep-p creating a cycle. Rule IStep-annov

replaces the annotation for a value. Rule IStep-beta substitutes argument values by replacing the

annotated type with the input type of lambdas after erasing the outer annotation. The result of beta

reduction is annotated by the output type of the function. Since values include annotated values

and lambdas, |𝑣 | erases the annotation of annotated values but returns lambdas themselves. So,

after annotating the input type of functions, the argument is still a value. Similarly, rule IStep-

ass replaces new values with the type of old values in the store before updating. Rule IStep-ref

generates a fresh location and stores the reference values. Rule IStep-deref gets the values in the

store. Importantly, our calculus is proved to be type sound by the usual progress (Theorem 3.1) and

preservation (Theorem 3.2) theorems.

Theorem 3.1 (Progress). If Σ ; · ⊢ 𝑒 ⇔ 𝐴 and Σ ⊢ 𝜇 then either 𝑒 is a value or ∃ 𝑒 ′ 𝜇 ′, 𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′.

Theorem 3.2 (Type preservation). If Σ; · ⊢ 𝑒 ⇔ 𝐴, Σ ⊢ 𝜇 , and 𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′ then ∃ Σ′ ⊇ Σ ,
Σ′
; · ⊢ 𝑒 ′ ⇔ 𝐴 and Σ′ ⊢ 𝜇 ′.

Type annotations are computationally irrelevant. We show an alternative dynamic semantics,

without annotations in the extended version of the paper. The rules are standard. Importantly,

we show that dynamic semantics with annotations reduces to the same values as the dynamic

semantics without annotations (Theorem 3.3). The erase functions |𝑒 | and |Σ | remove annotations

from expressions and values of typing stores. To be distinguishable, we use the subscript |i| to
represent the dynamic semantics without annotations.

Theorem 3.3 (Type annotations are computationally irrelevant). If 𝜇 ; 𝑒 ↦−→∗ 𝜇 ′; 𝑣 then
|𝜇 |; |𝑒 | ↦−→∗

|i | |𝜇
′ |; |𝑣 |.

4 The 𝐹+im Calculus: Extending 𝐹+i with References
In this section, we introduce the 𝐹+im calculus: a variant and extension of the 𝐹+i calculus [Fan et al.

2022] with references. This calculus is the core language employed by our implementation of CP

with references. The 𝐹+im calculus employs bidirectional typing and adopts the restriction proposed

in Section 3. In addition, 𝐹+im includes several other features, including the merge operator [Dunfield
2014; Reynolds 1997], and disjoint polymorphism [Alpuim et al. 2017], which are inherited from 𝐹+i .
Note that disjoint polymorphism is a form of parametric polymorphism where type variables can

have disjointness constraints.

4.1 Syntax
The syntax of 𝐹+im is shown in Figure 12. Many of the syntactic forms are the same as the calculus

in Section 3, but we have a few new constructs.

Types and expressions. Types are extended with a type variable (𝑋), single field record types

({𝑙 : 𝐴}) and disjoint polymorphic quantification [Alpuim et al. 2017] (∀𝑋 ∗𝐴.𝐵). With disjoint

polymorphism, disjointness constraints like ∀𝑋 ∗𝐴 express that the type that instantiates 𝑋 must

be disjoint to the type 𝐴. This form of constraint is similar to absence constraints seen in row

polymorphic calculi [Cardelli and Mitchell 1989; Harper and Pierce 1991; Leijen 2005; Shields and

Meijer 2001], except that disjoint polymorphism accounts for subtyping. Ordinary types also include

records with ordinary fields and polymorphic types with ordinary type bodies. The type of numbers

is simplified to be only an integer type Int. Expressions are extended with merge expressions

(𝑒1 , 𝑒2), record projections (𝑒 .𝑙), and expressions for polymorphism. Merges can be used to encode

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:18 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Types 𝐴, 𝐵,𝐶 F Int | Unit | ⊤ | 𝐴 → 𝐵 | 𝐴&𝐵 | Ref 𝐴 | 𝑋 | {𝑙 : 𝐴} | ∀𝑋 ∗𝐴.𝐵

Ordinary Types 𝐴◦, 𝐵◦,𝐶◦ F Int | Unit | ⊤ | 𝑋 | Ref 𝐴 | 𝐴 → 𝐵◦ | {𝑙 : 𝐴◦} | ∀𝑋 ∗𝐴.𝐵◦

Expressions 𝑒 F 𝑥 | 𝑖 | unit | ⊤ | 𝜆𝑥 .𝑒 | 𝑒 : 𝐴 | 𝑒1 𝑒2 | 𝑜 | ref 𝑒 | !𝑒 | 𝑒1 := 𝑒2
| 𝑒1 , 𝑒2 | {𝑙 = 𝑒} | 𝑒 .𝑙 | Λ𝑋 .𝑒 | 𝑒 𝐴

Functionals 𝑓 F (𝜆𝑥 .𝑒) : 𝐴 → 𝐵 | 𝑓 : 𝐴 → 𝐵

Pre-Values 𝑝 F 𝑜 | Λ𝑋 .𝑒

Values 𝑣 F 𝑝 : 𝐴 | 𝑓 | unit | ⊤ | 𝑖 | 𝑣1 , 𝑣2 | {𝑙 = 𝑣 }
Contexts ΓF · | Γ, 𝑥 : 𝐴 | Γ, 𝑋 ∗𝐴
Value Stores 𝜇 F · | 𝜇, 𝑜 = 𝑣

Typing Stores Σ F · | Σ, 𝑜 : 𝐴

Application Arguments arg F 𝑣 | 𝐴 | 𝑙
Frames 𝐹 F 𝑣 □ | □ 𝑒 | □ : 𝐴 | ref □ | !□ | 𝑣 := □ | □ := 𝑒

| 𝑣 , □ | □ , 𝑒 | □.𝑙 | {𝑙 = □} | □ 𝐴

Fig. 12. The syntax of the 𝐹+im calculus.

multiple field records with single field records ({𝑙 = 𝑒}) [Reynolds 1997]. For polymorphism, we

have type abstractions (Λ𝑋 .𝑒) and type applications (𝑒 𝐴).

Values, application arguments and contexts. Because we prove type preservation using a bidi-

rectional type system, and 𝐹+im has to account for type annotations, our form of values requires

some non-standard forms to ensure that enough type information is preserved on values, and

throughout the reduction process. For instance, if 𝑣 : 𝐴 reduces to 𝑣 , simply forgetting about the

annotation, this would be ok in terms of the runtime behavior (for the calculus in Section 3.5), but

would not be ok for preservation. An example would be (𝜆𝑥 .𝑥) : Int → Int reducing to 𝜆𝑥.𝑥 . After

doing this reduction, we would not be able to type check the resulting term using the bidirectional

typing rules. Thus, we would not be able to prove type preservation. Therefore, values need to

have sufficient annotations and reductions like the above should not be allowed.

We employ a form of values similar to those adopted in approaches based on type-directed

operational semantics [Fan et al. 2022; Huang et al. 2021]. A functional value (𝑓) is a lambda

expression with one or more arrow types. Pre-values 𝑝 are locations and type abstractions. A

value 𝑣 can be an annotated pre-value (𝑝 : 𝐴), a functional value, a top value ⊤, an integer

value 𝑖 , a merge of values or a record value (𝑣1 , 𝑣2). The value form (𝑝 : 𝐴) is just a simple

way to ensure sufficient annotations, but we could inline and/or simplify the definition of values,

at the cost of making some rules more complicated. Furthermore, consider a function with two

annotations (𝜆𝑥 .𝑒) : Int → Int : (Int&Bool) → ⊤. If we want to preserve types, we must retain

(Int&Bool) → ⊤. However, for the runtime behavior, we must make sure that the argument is cast

to Int before reduction. Thus we must also retain the inner input type Int. A very similar issue

occurs in gradually typed languages, for essentially similar reasons: we wish to have preservation

but, at the same time, types can have an effect on reduction and must be preserved for that effect

to be enforced. In the work of Wadler and Findler [2009], they solve this problem by accumulating

annotations of lambdas. We adopt a similar solution too. The only difference is that we syntactically

capture that functional values can only be a lambda followed by annotations using the syntactic

category 𝑓. Overall, these value categories help to simplify the presentation.

Values, types and projection labels can also be the argument of parallel elimination (discussed

in Section 4.3). Thus, we have a syntactic category for application arguments. Our contexts Γ are
extended with bindings of type variables with their disjoint types (𝑋 ∗𝐴). Frames are augmented

with merges, records, projections and type applications as well as annotations.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:19

𝐴 <: 𝐵 (Extended Subtyping)

X <: X
S-var

𝐴2 <: 𝐴1 𝐵1 <: 𝐵◦
2

∀X ∗𝐴1 . 𝐵1 <: ∀X ∗𝐴2 . 𝐵
◦
2

S-forall

𝐴 <: 𝐵◦

{l : 𝐴} <: {l : 𝐵◦}
S-rcd

𝐵 ◁ 𝐴 ▷ 𝐶 (Extended Type Splitting)

𝐶 ◁ 𝐵 ▷ 𝐷

∀X ∗𝐴.𝐶 ◁ ∀X ∗𝐴. 𝐵 ▷ ∀X ∗𝐴. 𝐷
Sp-forall

𝐵 ◁ 𝐴 ▷ 𝐶

{l : 𝐵} ◁ {l : 𝐴} ▷ {l : 𝐶}
Sp-rcd

𝐴 ∗ax 𝐵 (Disjointness Axioms for References)

Ref 𝐴 ∗ax Int
Dax-refInt

Int ∗ax Ref 𝐴
Dax-Intref

𝐴1 → 𝐴2 ∗ax Ref 𝐴
Dax-Arrref

∀X ∗𝐴. 𝐵 ∗ax Ref 𝐴
Dax-allref

Ref 𝐴 ∗ax {l : 𝐵}
Dax-refrcd

{l : 𝐵} ∗ax Ref 𝐴
Dax-rcdref

Ref 𝐴 ∗ax 𝐴1 → 𝐴2

Dax-refarr

Ref 𝐴 ∗ax ∀X ∗𝐴. 𝐵
Dax-refall

Ref 𝐴 ∗ax Unit
Dax-refu

Unit ∗ax Ref 𝐴
Dax-uref

Γ ⊢ 𝐴 ∗ 𝐵 (Disjointness)

𝐴 ∗ax 𝐵
Γ ⊢ 𝐴 ∗ 𝐵

D-ax

⌉𝐴⌈
Γ ⊢ 𝐴 ∗ 𝐵

D-topL

⌉𝐵⌈
Γ ⊢ 𝐴 ∗ 𝐵

D-topR

𝐴1 ◁ 𝐴 ▷ 𝐴2 Γ ⊢ 𝐴1 ∗ 𝐵 Γ ⊢ 𝐴2 ∗ 𝐵
Γ ⊢ 𝐴 ∗ 𝐵

D-andL

Γ ⊢ 𝐴 ∗ 𝐵
Γ ⊢ {l : 𝐴} ∗ {l : 𝐵}

D-rcdeq

𝐵1 ◁ 𝐵 ▷ 𝐵2 Γ ⊢ 𝐴 ∗ 𝐵1 Γ ⊢ 𝐴 ∗ 𝐵2
Γ ⊢ 𝐴 ∗ 𝐵

D-andR

X ∗𝐴 ∈ Γ 𝐴 <: 𝐵

Γ ⊢ X ∗ 𝐵
D-varl

X ∗𝐴 ∈ Γ 𝐴 <: 𝐵

Γ ⊢ 𝐵 ∗ X
D-varr

Γ,X ∗𝐴1 &𝐴2 ⊢ 𝐵1 ∗ 𝐵2
Γ ⊢ ∀X ∗𝐴1 . 𝐵1 ∗ ∀X ∗𝐴2 . 𝐵2

D-for

Γ ⊢ 𝐴 ∗ 𝐵
Γ ⊢ Ref 𝐴 ∗ Ref 𝐵

D-ref

⌉𝐴 ⌈ (Top-Like Types)

⌉⊤⌈
TL-top

⌉𝐴⌈ ⌉𝐵⌈
⌉𝐴&𝐵⌈

TL-and

⌉𝐵⌈
⌉𝐴 → 𝐵⌈

TL-arr

⌉𝐵⌈
⌉∀X ∗𝐴. 𝐵⌈

TL-forall

⌉𝐴⌈
⌉{l : 𝐴}⌈

TL-rcd

⌉𝐴⌈
⌉Ref 𝐴⌈

TL-ref

Fig. 13. Subtyping and disjointness (excerpt).

4.2 Subtyping and Disjointness
The extended subtyping rules are shown at the top of Figure 13. New rules S-var, S-forall, and

S-rcd are for type variables, polymorphic types and record types. Importantly, extended subtyping

is still proved to be reflexive and transitive (Lemma 4.1 and Lemma 4.2).

Lemma 4.1 (Reflexivity of subtyping). 𝐴 <: 𝐴.

Lemma 4.2 (Transitivity of subtyping). If 𝐴 <: 𝐵 and 𝐵 <: 𝐶 then 𝐴 <: 𝐶 .

Disjointness is shown in Figure 13. Disjoint intersection types were proposed by Oliveira et al.

[2016] to solve the ambiguity problem of merging expressions such as 1 and 2. In general, in calculi

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:20 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

with a merge operator, disjointness of two types ensures that two types cannot have supertypes

in common, except for top-like types. We extend the disjointness of 𝐹+i with reference types. The

rule D-ax shows that two different structural types are disjoint, and relies on an auxiliary relation

𝐴 ∗ax𝐵 . This relation captures simple disjointness axioms, such as an integer is disjoint to a function.

The different structural types 𝐴 ∗ax 𝐵 for references are defined in the middle of Figure 13, while

the full rules are shown in the extended version of the paper. The main disjointness relation has

rules that deal with compound types, such as intersection types or records. Note that rules D-topL

and D-topR have a special treatment for top-like types, which are shown at the bottom of Figure 13.

Top-like types are disjoint to any type because they do not overlap with other types. Top-like types

arise in calculi with merges and disjoint intersection types, and are covered in detail in previous

works [Huang et al. 2021; Oliveira et al. 2016]. They are helpful to achieve determinism (see also

Section 4.4). With the disjointness relation, we know, for example, that Int is not disjoint with
Int&Bool, since Int is not disjoint with Int. Then Ref (Int&Bool) and Ref Int would not be disjoint

either.

4.3 Bidirectional Typing
For typing, similarly to 𝐹+i and the simplified system in Section 3, we use bidirectional typing. As

explained by Huang et al. [2021] and Oliveira et al. [2016], a general subsumption rule can still

cause ambiguity problems in the presence of the merge operator. For instance, 1 , True can have

type Bool and 2 can have type Int, but if we merge these two expressions, ambiguity is introduced.

Bidirectional typing avoids the ambiguity problem by using the weaker bidirectional subsumption

rule. For 1 , True, we can infer the type Int&Bool. However, we can check the same term with type

Bool and Int.
Moreover, types in programs should always be well-formed. The well-formedness relation is

defined at the top of Figure 14. Type Int and ⊤ are well-formed. Arrow types, reference types and

record types are well-formed if all their subcomponents are well-formed. The interesting case

happens with intersection types 𝐴&𝐵 : an intersection type is well-formed when types 𝐴 and 𝐵

are well-formed, and these types are disjoint (rule wel-and). If a type variable 𝑋 is bound to a

type in the context then it is well-formed (rule wel-x). Our design is based on the original work

on disjoint intersection types [Oliveira et al. 2016], which has a similar restriction. The work on

𝐹+i [Fan et al. 2022], avoids this restriction but, as we shall discuss in Section 5, in the presence of

references avoiding this restriction creates important technical difficulties.

Typing. Figure 14 shows the typing rules of 𝐹+im. Compared to the calculus in Section 3, there

are annotations for locations 𝑜 (rule Typ-loc). This design choice is essentially similar to what

happens in the work with gradual typing and references [Toro and Tanter 2020]. In their work,

reference values have a similar annotated form for references. An annotated reference type Ref 𝐵
should always be a supertype of the reference type in the store Ref 𝐴. If there is no annotation,

values in the store would need to be cast every time to preserve types. This alternative design

would be significantly more complicated, since value stores should be considered during casting.

For example, let’s assume we have a value of 1 in the store, located at 𝑜 , and this 𝑜 is annotated

with type Ref (Int&⊤) (i.e., 𝑜 : (Ref Int&⊤)). To preserve the type we would need to cast values in

the store to have type Int&⊤. However, if we keep one type annotation for 𝑜 , there is no need to

cast the value in the store. Consequently, stores do not need to be updated every time. We delve

into a more detailed discussion about the complexities and difficulties that arise if stores are carried

everywhere at runtime in Section 4.4.

Applicative distribution. In rules Typ-app, Typ-prj, and Typ-tapp, there is an applicative distri-

bution relation 𝐴 ▷ 𝐵 , which increases the flexibility of typing, and is shown at the bottom of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:21

Γ ⊢ 𝐴 (Well-Formed Types)

Γ ⊢ ⊤
wel-top

Γ ⊢ Unit
wel-unit

Γ ⊢ Int
wel-int

Γ ⊢ 𝐴 Γ ⊢ 𝐵
Γ ⊢ 𝐴 → 𝐵

wel-arrow

Γ ⊢ 𝐴
Γ ⊢ Ref 𝐴

wel-ref

Γ ⊢ 𝐴 Γ ⊢ 𝐵 Γ ⊢ 𝐴 ∗ 𝐵
Γ ⊢ 𝐴&𝐵

wel-and

X ∗𝐴 ∈ Γ

Γ ⊢ X
wel-X

Γ ⊢ 𝐴 Γ,X ∗𝐴 ⊢ 𝐵
Γ ⊢ ∀X ∗𝐴. 𝐵

wel-all

Γ ⊢ 𝐴
Γ ⊢ {l : 𝐴}

wel-rcd

Σ ; Γ ⊢ 𝑒 ⇔ 𝐴 (Bidirectional Typing)

Σ; Γ ⊢ ⊤ ⇒ ⊤
Typ-top

Σ; Γ ⊢ unit ⇒ Unit
Typ-unit

Σ; Γ ⊢ i ⇒ Int
Typ-lit

Γ ⊢ 𝐴 x : 𝐴 ∈ Γ

Σ; Γ ⊢ x ⇒ 𝐴
Typ-var

Γ ⊢ 𝐴 Σ; Γ, x : 𝐴 ⊢ 𝑒 ⇐ 𝐵

Σ; Γ ⊢ 𝜆x . 𝑒 : 𝐴 → 𝐵 ⇒ 𝐴 → 𝐵
Typ-abs

Σ; Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 ▷ {l : 𝐵}
Σ; Γ ⊢ 𝑒.l ⇒ 𝐵

Typ-prj

Σ; Γ ⊢ 𝑒1 ⇒ 𝐴

Σ; Γ ⊢ 𝑒2 ⇐ 𝐴1 𝐴 ▷ 𝐴1 → 𝐴2

Σ; Γ ⊢ 𝑒1 𝑒2 ⇒ 𝐴2

Typ-app

Σ; Γ ⊢ 𝑒1 ⇒ 𝐴

Σ; Γ ⊢ 𝑒2 ⇒ 𝐵 Γ ⊢ 𝐴 ∗ 𝐵
Σ; Γ ⊢ 𝑒1 , 𝑒2 ⇒ 𝐴&𝐵

Typ-merge

Σ; Γ ⊢ 𝑒 ⇐ 𝐴

Σ; Γ ⊢ 𝑒 : 𝐴 ⇒ 𝐴
Typ-anno

Γ ⊢ 𝐵 o : 𝐴 ∈ Σ Ref 𝐴 <: Ref 𝐵

Σ; Γ ⊢ o : Ref 𝐵 ⇒ Ref 𝐵
Typ-loc

Σ; Γ ⊢ 𝑒 ⇒ 𝐴

Σ; Γ ⊢ {l = 𝑒} ⇒ {l : 𝐴}
Typ-rcd

Σ; Γ ⊢ 𝑒1 ⇒ Ref 𝐴 Σ; Γ ⊢ 𝑒2 ⇐ 𝐴

Σ; Γ ⊢ 𝑒1 := 𝑒2 ⇒ Unit
Typ-ass

Σ; Γ ⊢ 𝑒 ⇒ Ref 𝐴

Σ; Γ ⊢ !𝑒 ⇒ 𝐴
Typ-deref

Σ; Γ ⊢ 𝑒 ⇒ 𝐴

Σ; Γ ⊢ ref 𝑒 ⇒ Ref 𝐴
Typ-ref

Γ ⊢ 𝐴 Σ; Γ,X ∗𝐴 ⊢ 𝑒 ⇐ 𝐵

Σ; Γ ⊢ ΛX . 𝑒 : ∀X ∗𝐴. 𝐵 ⇒ ∀X ∗𝐴. 𝐵
Typ-tabs

Γ ⊢ 𝐴 𝐵 ▷ ∀X ∗ 𝐵1 . 𝐵2
Γ ⊢ 𝐴 ∗ 𝐵1 Σ; Γ ⊢ 𝑒 ⇒ 𝐵

Σ; Γ ⊢ 𝑒 𝐴 ⇒ 𝐵2 [X ↦→ 𝐴]
Typ-tapp

Σ; Γ ⊢ 𝑒 ⇒ 𝐴 𝐴 <: 𝐵 Γ ⊢ 𝐵
Σ; Γ ⊢ 𝑒 ⇐ 𝐵

Typ-sub

𝐴 ▷ 𝐵 (Applicative Distribution)

𝐴 ▷ 𝐴
apd-refl

𝐴 ▷ 𝐴1 → 𝐴2 𝐵 ▷ 𝐴1 → 𝐵2

𝐴&𝐵 ▷ 𝐴1 → 𝐴2 &𝐵2
apd-andarr

𝐴 ▷ ∀X ∗𝐴1 . 𝐴2 𝐵 ▷ ∀X ∗ 𝐵1 . 𝐵2
𝐴&𝐵 ▷ ∀X ∗ (𝐴1 &𝐵1) . (𝐴2 &𝐵2)

apd-andall

𝐴 ▷ {l : 𝐴1} 𝐵 ▷ {l : 𝐵1}
𝐴&𝐵 ▷ {l : 𝐴1 &𝐵1}

apd-andrcd

Fig. 14. Type system of 𝐹+im.

Figure 14. This relation reflects the subtyping (and distributivity rules) in function application and

record projection. Normally, rule Typ-app should only allow 𝐴 to be a function type. However,

due to subtyping, we additionally allow intersections of function types to act as a function. For

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:22 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

𝐴 ⪅ 𝐵 (Isomorphic Subtyping)

𝐴 ⪅ 𝐴
IS-refl

𝐴 ⪅ 𝐵

Ref 𝐴 ⪅ Ref 𝐵
IS-ref

𝐴 ⪅ 𝐵

{l : 𝐴} ⪅ {l : 𝐵}
IS-rcd

𝐴1 ⪅ 𝐵1 𝐴2 ⪅ 𝐵2 𝐵1 ◁ 𝐵 ▷ 𝐵2

𝐴1 &𝐴2 ⪅ 𝐵
IS-and

Fig. 15. Isomorphic subtyping.

example, suppose that 𝐴 is (Int → Int)&(Bool → Bool). Since 𝐴 is a subtype of both (Int → Int)
and (Bool → Bool) it can act as any of these 2 functions, and the application should be allowed

provided that a compatible argument type is provided. Similar handling happens in rule Typ-tapp

and rule Typ-prj. Note that, in rule apd-andarr the two distributed function types should have

the same input type. Unlike output types, input types cannot be intersected. Otherwise, we would

generate types that are not well-formed. For instance, (Int → Int)&(Int → Bool) can be matched

as (Int&Int) → (Int&Bool), but Int&Int is not well-formed. Other typing rules are similar to 𝐹+i .
The typing rules infer unique types (Lemma 4.4). Furthermore, types that can be used to infer or

check expressions must be well-formed (Lemma 4.3). Lemma 4.5 shows that if an expression can be

checked by one type, then it can also be checked by a supertype.

Lemma 4.3 (Well-formedness of typing). If Σ; Γ ⊢ 𝑒 ⇔ 𝐴 then Γ ⊢ 𝐴.

Lemma 4.4 (Uniqeness of type inference). If Σ; Γ ⊢ 𝑒 ⇒ 𝐴1 and Σ; Γ ⊢ 𝑒 ⇒ 𝐴2 then 𝐴1 = 𝐴2.

Lemma 4.5 (Subsumption of type checking). If Σ; Γ ⊢ 𝑒 ⇐ 𝐴 and 𝐴 <: 𝐵 then Σ; Γ ⊢ 𝑒 ⇐ 𝐵 .

Store typing. In the dynamic semantics, types should be split first and then values are cast under

the split types in parallel. Thus we are not using the syntactic equality of types. Instead, we use a

restricted form of equivalent types called isomorphic subtyping [Fan et al. 2022], which is shown

in Figure 15. Lemma 4.7 shows that if two types are in an isomorphic subtyping relation then they

are equivalent.

With the help of typing and isomorphic subtyping, we define the relation between value and

type stores. Definition 4.6 defines well-formed stores (𝜇) with respect to the typing locations Σ:

Definition 4.6 (Well-formedness of the store with respect to Σ). Σ ⊢ 𝜇 ≜ if 𝑑𝑜𝑚(𝜇) = 𝑑𝑜𝑚(Σ) then
∀𝑜 ∈ 𝜇 , Σ; · ⊢ 𝜇 (𝑜) ⇒ 𝐴 and 𝐴 ⪅ Σ (𝑜).

A store is well-formed with the typing location if the store and the typing location contain the

same domains. For each location, which is in the store, the bounded value 𝜇 (𝑜) can be inferred

with a type, which is an isomorphic subtype of the type bound in the typing location (Σ (𝑜)).

Lemma 4.7 (Isomorphic subtyping). If 𝐴 ⪅ 𝐵 then 𝐴 <: 𝐵 and 𝐵 <: 𝐴.

4.4 Dynamic Semantics

We employ a type-directed operational semantics (TDOS) [Huang et al. 2021] for the dynamic

semantics. Following the TDOS approach, our dynamic semantics consists of two parts: casting

and reduction. Moreover, small-step reduction uses an auxiliary parallel elimination relation.

Our subtyping is essentially coercive, and casting implements coercions in the operational

semantics provided a type as the casting target, which is why we use the term type-directed

operational semantics. As a result, types cannot be erased at runtime because casting relies on

types. The simplest way to trigger casting is with an explicit type annotation like (1 , True) : Int

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:23

𝑣 ↦−→𝐴 𝑣 ′ (Casting)

⌉𝐴◦ ⌈
𝑣 ↦−→𝐴◦ TV(𝐴◦)

cast-top

i ↦−→Int i
cast-i

unit ↦−→Unit unit
cast-unit

¬⌉𝐴 → 𝐵◦ ⌈
f ↦−→𝐴→𝐵◦ f : 𝐴 → 𝐵◦

cast-f

𝐵 <: 𝐶◦ ¬⌉𝐶◦ ⌈
𝑝 : 𝐵 ↦−→𝐶◦ 𝑝 : 𝐶◦ cast-anno

𝑣 ↦−→𝐴◦ 𝑣 ′

{l = 𝑣} ↦−→{l:𝐴◦ } {l = 𝑣 ′}
cast-rcd

𝑣1 ↦−→𝐴◦ 𝑣 ′
1

𝑣1 , 𝑣2 ↦−→𝐴◦ 𝑣 ′
1

cast-mergel

𝑣2 ↦−→𝐴◦ 𝑣 ′
2

𝑣1 , 𝑣2 ↦−→𝐴◦ 𝑣 ′
2

cast-merger

𝐵 ◁ 𝐴 ▷ 𝐶 𝑣 ↦−→𝐵 𝑣1 𝑣 ↦−→𝐶 𝑣2

𝑣 ↦−→𝐴 𝑣1 , 𝑣2
cast-and

Fig. 16. Casting of 𝐹+im.

(which will trigger casting and return the value 1). Another example is function application:

((𝜆𝑥 .𝑥 + 1) : Int → Int) (1 , True)

The argument will be cast (or coerced) from (1 , True) to 1 before addition (+1). This kind of casting
(or coercion) is vital because of a semantic ambiguity issue. This issue arises when the merge

operator interacts with subtyping, and it has been identified by Cardelli and Mitchell [1989]. Let us

see an example in CP:

let f (r: {x : Bool}) = r, {y = 1} in (f {x = true; y = 2}).y

The function f expects the parameter r to have field x, but by width subtyping the argument can

actually contain extra fields like {y = 2}. After merging r with {y = 1} in the function body, field y

has two possible values, and the final result can be either 1 or 2. Our solution is to cast the argument

to exactly type {x: Bool}. That is, casting removes field {y = 2}. Therefore, we have to keep the

function type at runtime to cast the argument. In this way, we avoid the semantic ambiguity, and

the final result is always 1. Thus, type annotations are computationally relevant in 𝐹+im and play an

important role since type casting is essential for avoiding ambiguity problems.

Casting. Figure 16 shows the casting relation, which gives an interpretation to subtyping at

runtime. The 𝑣 ↦−→𝐴 𝑣 ′ notation means that we cast value 𝑣 under type 𝐴 and return 𝑣 ′. Like
subtyping, casting also needs to prioritize some rules over others in certain cases. Thus, casting

also employs the notion of ordinary and splittable types to aid with such prioritization. If the cast

type 𝐴 is splittable, then values are cast by the splitting types separately and returning a merge of

the two casting results (rule cast-and). This rule ensures that we first decompose the intersections,

as in the subtyping rule. Then most of the other rules only apply when the type is ordinary (i.e. it

cannot be split further). Note that this rule showcases why annotations are needed for locations in

rule Typ-loc. If the value store 𝜇 is carried during casting, the store 𝜇 would be updated in parallel

to be 𝜇1 and 𝜇2 (𝜇 ; 𝑣 ↦−→𝐵 𝜇1; 𝑣1 and 𝜇 ; 𝑣 ↦−→𝐶 𝜇2; 𝑣2). Thus, it would be hard to decide what the

resulting store is, which could lead to a type unsoundness problem. Thus, we annotate locations 𝑜

with an annotation to avoid carrying 𝜇 everywhere and to simplify the casting rules.

When the cast type 𝐴 is an ordinary and a top-like type, we generate the top-like values with an

auxiliary TV(𝐴) function, which is shown in the extended version of the paper. A naive rule for

casting under the top type could be:

𝐴 <: ⊤
𝑣 : 𝐴 ↦−→⊤ 𝑣 : ⊤

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:24 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

𝜇 ; 𝑣 • arg ↦−→ 𝜇 ′; 𝑒 (Parallel Elimination)

𝑣 ↦−→𝐴 𝑣 ′

𝜇 ; 𝜆x . 𝑒 : 𝐴 → 𝐵 • 𝑣 ↦−→ 𝜇 ; 𝑒 [x ↦→ 𝑣 ′] : 𝐵
pap-beta

𝜇 ; f : 𝐴 → 𝐵 • 𝑣 ↦−→ 𝜇 ; f (𝑣 : 𝐴) : 𝐵
pap-app

o = 𝑣1 ∈ 𝜇 𝑣2 ↦−→ty(𝑣1) 𝑣 ′
2

𝜇 ; o : Ref 𝐴 • 𝑣2 ↦−→ 𝜇 [o ↦→ 𝑣 ′
2
] ; unit

pap-ass

𝜇 ; ΛX . 𝑒 : ∀X ∗𝐴. 𝐵 • 𝐶 ↦−→ 𝜇 ; 𝑒 [X ↦→ 𝐶] : 𝐵 [X ↦→ 𝐶]
pap-tapp

𝜇 ; {l = 𝑣} • l ↦−→ 𝜇 ; 𝑣
pap-pj

𝜇 ; 𝑣1 • arg ↦−→ 𝜇 ; 𝑒1
𝜇 ; 𝑣2 • arg ↦−→ 𝜇 ; 𝑒2

𝜇 ; 𝑣1 , 𝑣2 • arg ↦−→ 𝜇 ; 𝑒1 , 𝑒2
pap-merge

𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′ (Small-Step Semantics)

𝜇; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′

𝜇; 𝐹 [𝑒] ↦−→ 𝜇 ′; 𝐹 [𝑒 ′]
Step-eval

𝑣 : 𝐴 ≠ f 𝑣 ↦−→𝐴 𝑣 ′

𝜇; 𝑣 : 𝐴 ↦−→ 𝜇; 𝑣 ′
Step-annov

o ∉ 𝜇

𝜇; ref 𝑣 ↦−→ 𝜇, o = 𝑣 ; o : Ref ty(𝑣)
Step-ref

𝜇 ; 𝑣1 • 𝑣2 ↦−→ 𝜇 ; 𝑒

𝜇; 𝑣1 𝑣2 ↦−→ 𝜇; 𝑒
Step-beta

o = 𝑣 ∈ 𝜇

𝜇; !(o : Ref 𝐴) ↦−→ 𝜇; 𝑣 : 𝐴
Step-deref

𝜇 ; 𝑣1 • 𝑣2 ↦−→ 𝜇 ′ ; 𝑒

𝜇; 𝑣1 := 𝑣2 ↦−→ 𝜇 ′; 𝑒
Step-ass

𝜇 ; 𝑣 • 𝐴 ↦−→ 𝜇 ; 𝑒

𝜇; 𝑣 𝐴 ↦−→ 𝜇; 𝑒
Step-tapp

𝜇 ; 𝑣 • l ↦−→ 𝜇 ; 𝑒

𝜇; 𝑣 .l ↦−→ 𝜇; 𝑒
Step-pj

Fig. 17. Small-step semantics of 𝐹+im.

but this causes a problem, because for the above merge, we could either have 1 : ⊤ ,2 : ⊤ ↦−→⊤ 1 : ⊤
or 1 : ⊤ , 2 : ⊤ ↦−→⊤ 2 : ⊤. So casting would not be deterministic. In a coercive semantics like

ours, the correct way to deal with ⊤ is to view ⊤ as the unit type that has a single value. Then

casting under the top type returns that value and then this recovers determinism. However, there

are other top-like types that cause similar issues and have to be dealt with accordingly, which is

why this notion appears in the literature of disjoint intersection types [Huang et al. 2021; Oliveira

et al. 2016]. If the cast type 𝐴 is not an ordinary and top-like type, they are covered by case analysis

on the value. An integer 𝑖 cast under type Int results in itself (rule cast-i). Rule cast-f shows that

a functional value, cast under an ordinary function type, simply adds the annotation to the value.

Annotated values replace the annotation by the cast type (rule cast-anno). Rule cast-rcd states

that records cast under ordinary record types update the field value by casting under the field type

of records. When merged values are cast under ordinary types, the result of casting comes from

either the left or the right branch (rules cast-mergel and cast-merger).

Parallel elimination. The parallel elimination relation deals with elimination forms requiring an

extra argument during the elimination process. It gives an interpretation to applicative distribution

at runtime. An argument can be a value, a type or a label. There are four expressions that benefit from

parallel elimination: applications, reference assignments, record projections and type applications.

The definition of parallel elimination is shown in Figure 17. The 𝜇 ; 𝑣 • arg ↦−→ 𝜇 ′; 𝑒 notation

means that value 𝑣 takes an argument with value store 𝜇 and returns expression 𝑒 with store 𝜇 ′.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:25

Rules pap-beta and pap-app are used for expression applications. The annotations of functional

values are erased one by one by rule pap-app. Before doing beta reduction, the argument values 𝑣

are cast under the input type of functions, and the lambda body is annotated with the output type

of function rule pap-beta. Rule pap-ass casts the value argument 𝑣2 to have the type of value 𝑣1 in

the store and then updates values in the store. The type of values is obtained from the function

ty(𝑣):
ty(𝑖) = Int ty({𝑙 = 𝑣 }) = {𝑙 : ty(𝑣)} ty(𝑝 : 𝐴) = 𝐴 ty(𝑣1 , 𝑣2) = ty(𝑣1) & ty(𝑣2)

ty(⊤) = ⊤ ty(unit) = Unit ty(𝑓 : 𝐴 → 𝐵) = 𝐴 → 𝐵 ty((𝜆𝑥.𝑒) : 𝐴 → 𝐵) = 𝐴 → 𝐵

Type applications are performed in rule pap-tapp. Rule pap-pj projects the field value of a record

by its label. For merged values (𝑣1 , 𝑣2), both values reduce in parallel (rule pap-merge).

An example showing how parallel elimination works is:

·; ((𝜆𝑥 .(𝑥 , False) : Int → Int&Bool : Int&Bool → Bool) , (𝜆𝑥.𝑥 : Int&Bool → Int)) • (1 , True)
↦−→∗ {by rules pap-merge, pap-app, and pap-beta}
·; ((1 , False) : Int&Bool : Bool) , ((1 , True) : Int)

In this example, we consider an empty value store. Two merged functional values (𝜆𝑥 .(𝑥 , False) :
Int → Int&Bool : Int&Bool → Bool) and (𝜆𝑥.𝑥 : Int&Bool → Int) are reduced in parallel under

the argument (1 , True) to be ((1 , False) : Int&Bool : Bool) and ((1 , True) : Int), respectively.

Reduction. Reduction rules are shown at the bottom of Figure 17. Reduction has the form

𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′. An expression 𝑒 with the value store 𝜇 reduces to 𝑒 ′ and store 𝜇 ′. Rule Step-eval
evaluates the expressions with different contexts. Casting is triggered by annotations (rule Step-

annov). Rules Step-beta, Step-ass, Step-tapp, and Step-pj trigger the parallel application to get

a resulting expression. Reference values allocate a fresh location and save the value in the store

(rule Step-ref). Rule Step-deref gets the corresponding value in the store by the location address.

Importantly, the reduction of 𝐹+im is deterministic. For well-typed expressions with well-formed

stores, they reduce to the same expressions and same stores:

Theorem 4.8 (Determinism of reduction). If Σ; · ⊢ 𝑒 ⇔ 𝐴, Σ ⊢ 𝜇 , 𝜇 ; 𝑒 ↦−→ 𝜇1; 𝑒1, and
𝜇 ; 𝑒 ↦−→ 𝜇2; 𝑒2 then 𝑒1 = 𝑒2 and 𝜇1 = 𝜇2.

Type soundness. Moreover, 𝐹+im is type sound. Theorem 4.9 says that every well-type expression

with well-formed stores is either or a value or can be reduced. While Corollary 4.11 shows that the

reduction of well-typed expressions 𝑒 with well-formed stores 𝜇 can be checked by the starting

type 𝐴 and the resulting stores 𝜇 ′ are well-formed with the extended typing store Σ′
. The corollary

of preservation is concluded from Theorem 4.10.

Theorem 4.9 (Progress of reduction). If Σ ; · ⊢ 𝑒 ⇔ 𝐴 and Σ ⊢ 𝜇 then either 𝑒 is a value or ∃ 𝑒 ′

𝜇 ′, 𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′.

Theorem 4.10 (Type preservation with respect to isomorphic subtyping). If Σ; · ⊢ 𝑒 ⇔ 𝐴,
Σ ⊢ 𝜇 , and 𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′ then ∃ 𝐵 Σ′, Σ′ ⊇ Σ , Σ′

; · ⊢ 𝑒 ′ ⇔ 𝐵 , 𝐵 ⪅ 𝐴, and Σ′ ⊢ 𝜇 ′.

Corollary 4.11 (Type preservation). If Σ; · ⊢ 𝑒 ⇔ 𝐴, Σ ⊢ 𝜇 , and 𝜇 ; 𝑒 ↦−→ 𝜇 ′; 𝑒 ′ then ∃ Σ′,
Σ′ ⊇ Σ , Σ′

; · ⊢ 𝑒 ′ ⇐ 𝐴, and Σ′ ⊢ 𝜇 ′.

5 Related Work
Intersection types with references. As discussed in Section 3, Davies and Pfenning identified that a

naive use of intersection types is type unsound in the presence of references, and proposed a set of

restrictions. There are some other solutions in the literature. Dezani-Ciancaglini and Della Rocca

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:26 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

[2007] solved the problem by only intersecting non-reference types. With this restriction, subtyping

is allowed to have distributivity and an unrestricted intersection introduction rule. Both counter-

examples are rejected, since ref 1 cannot be typed with Ref Nat & Ref Pos. Nevertheless, this

approach forbids reference types to be intersected even with non-reference types. For instance,

(Ref Nat) & Pos is not allowed. Dezani-Ciancaglini et al. [2009], refined the previous proposal to

allow intersections between reference and non-reference types. They proposed a kind for types

to track whether the type is a reference type or contains reference types in case of intersection.

Then the type soundness is achieved by restricting intersection elimination rule to intersection

types not containing references. While both works put restrictions on types, our solution does not

rely on the sophisticated restriction of no reference intersections. Furthermore, this restriction

seems to prevent some practical programs, such as records/objects with multiple reference fields.

Blaauwbroek [2017] used a pass-by-sharing [Liskov et al. 1981] approach to model computational

effects. In their approach, no reference type exists, and referencing and dereferencing are implicit,

while variables are mutable. For assignments, an invariant typing rule is required.

𝑥 : 𝐴 ∈ Γ Γ ⊢ 𝑒 : 𝐴

Γ ⊢ 𝑥 := 𝑒 : 𝐴

In this rule, the left expression can only be a variable and the 𝑒 should be of the same type as the

variable. Counter-examples are forbidden because the type of 𝑒 is invariant. Our solution adopts a

conventional form of references, and the restriction that we impose is lightweight, while allowing

both distributivity and unrestricted intersection introduction. Furthermore, the restriction does not

seem to be restrictive for practical programs.

Merge operator. Reynolds [1997] introduced a calculus with a restricted merge operator and

intersection types. Dunfield [2014] proposed a calculus with an unrestricted merge operator, but

the semantics is non-deterministic. To solve the source of non-determinism, Oliveira et al. [2016]

introduced the notion of disjoint intersection types. Two types can be intersected if they are disjoint.

The semantics of calculi with the merge operator is type-directed. Huang et al. [2021] proposed a

new form of semantics called Type-Directed Operational Semantics (TDOS), which we also employ in

𝐹+im. Over the years several extensions have been proposed for calculi with disjoint intersection types.
Alpuim et al. [2017] proposed disjoint polymorphism in the calculus 𝐹i. Bi et al. [2019] improved 𝐹i
with distributive subtyping and unrestricted intersections. Later, Fan et al. [2022] improved the

work of Bi et al. by employing a TDOS to obtain a 𝐹+i calculus with simpler proofs. Compared

to 𝐹+i , 𝐹
+
im is extended with references. So imperative programming is supported. However, 𝐹+im

does not support unrestricted intersections and two intersected types should be disjoint. To allow

programs such as 1 : Int&Int, a notion called consistency is required. Consistency states that two

values are consistent when casting them with the same type returns the same value. To preserve

types, consistency should be preserved at runtime. To achieve this, merge expressions should be

reduced in parallel when distributivity is present. But this introduces difficulties with references,

since two value stores would be evaluated in parallel. Thus we do not employ consistency in 𝐹+im,
and resort to restricting all intersections to be disjoint as in Oliveira et al.’s work.

Language designs for modularity. Family polymorphism [Ernst 2001] is a well-known idea in OOP.

A family of related virtual classes is refined simultaneously via inheritance in family polymorphism.

Family polymorphism provides an elegant solution to the expression problem [Ernst 2004]. There

have been several languages and calculi that incorporate the idea of family polymorphism and

virtual classes [Aracic et al. 2006; Clarke et al. 2007; Ernst 1999; Ernst et al. 2006; Jolly et al. 2004;

Madsen and Møller-Pedersen 1989; Nystrom et al. 2004, 2006; Zhang and Myers 2017]. Among these

approaches, J& [Nystrom et al. 2006] and Familia [Zhang and Myers 2017] share common features

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

Imperative Compositional Programming 342:27

with CP. J& uses intersections to compose related packages or classes. Familia, which is a Java-

like language with family polymorphism, also integrates subtype polymorphism and parametric

polymorphism successfully. However, both J& and Familia do not support the merge operator,

which allows for a more dynamic form of composition. All of the aforementioned approaches aim

at modelling a traditional OOP language (usually Java-like) with family polymorphism.

CP is inspired by some of the ideas of family polymorphism. In particular, CP adopts subtyping

and nested composition to enable powerful forms of multiple trait-based inheritance, which can

model inheritance of whole sets of traits (that are similar to classes). However, CP is both tech-

nically very different from traditional calculi with family polymorphism, and it also employs a

different programming style, based on a form of open pattern matching. As described in Section 1

compositional programming fits within a more general and recent theme of work [Fan and Parreaux

2023; Jin et al. 2023; van der Rest and Poulsen 2022, 2023], which aims at addressing modularity

problems of functional programming. All these approaches promote a programming style based

on open forms of pattern matching, although the technical details differ significantly. Previous

work has mostly focused on purely functional settings. Closer to us, van der Rest and Poulsen

[2022, 2023] also explore algebraic effects and handlers [Plotkin and Pretnar 2009], which are a

popular approach to introduce effects into purely functional languages. However, they do not fully

consider algorithmic aspects, or provide an implementation. In our work, we aim at supporting a

more classical ML-style impure (functional) programming style, which does not track effects. As

we illustrate in our work, this allows us to model mutable objects, as well as programs that create

and traverse cyclic structures, which are difficult in a pure setting.

Themotivation and inspiration for new language designs supporting open forms of patternmatch-

ing comes partly from previous work on design patterns to support extensibility and modularity.

Such design patterns include, among others: tagless-final embeddings [Carette et al. 2009] and data
types à la carte [Swierstra 2008] in functional programming; and polymorphic embeddings [Hofer
et al. 2008] and object algebras [Oliveira and Cook 2012a; Rendel et al. 2014] in OOP languages.While

these design patterns enable extensible and modular designs, they typically require boilerplate code,

the use of sophisticated type-level features, and an unconventional programming style. By adopting

a dedicated programming language design these issues can be overcome. CP is inspired by the work

on object algebras and extensible Church encodings [Oliveira 2009; Oliveira et al. 2006]. However,

CP has significantly improved linguistic support over object algebras. As discussed extensively

by Zhang et al. [2021], nested composition and modular dependencies require sophisticated and

cumbersome encodings in languages like Scala. In CP, these concepts are naturally supported.

6 Conclusion
In this paper, we propose two calculi. One solves the type soundness problem identified by Davies

and Pfenning [2000] with lighter restrictions, based on bidirectional typing. The other calculus,

named 𝐹+im, is a variant of 𝐹
+
i with references. We augment the CP language with references based

on 𝐹+im as the core calculus. With references, CP enables a modular imperative programming style.

We illustrate how graph structures can be encoded by CP with a live-variable analysis example.

A direction for future work is to study whether disjoint union types [Rehman et al. 2022] are

compatible with references, and add support for them in CP. Moreover, it would be interesting to

explore whether effect handlers and algebraic effects can be encoded in CP, perhaps with some

extensions.

Acknowledgments
We are grateful to anonymous reviewers and our colleagues at the HKU PL group. This work has

been sponsored by Hong Kong Research Grants Council project number 17209821.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

342:28 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Data-Availability Statement
The artifact that supports the paper is available on Zenodo [Ye et al. 2024].

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007. Compilers: Principles, Techniques and Tools. Pearson

Education.

João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. 2017. Disjoint Polymorphism. In ESOP. https://doi.org/10.1007/978-

3-662-54434-1_1

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. 2006. An overview of CaesarJ. Transactions on Aspect-
Oriented Software Development 1 (2006). https://doi.org/10.1007/11687061_5

Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. 1983. A Filter Lambda Model and the Completeness

of Type Assignment. Journal of Symbolic Logic 48 (1983). https://doi.org/10.2307/2273659

Xuan Bi and Bruno C. d. S. Oliveira. 2018. Typed First-Class Traits. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2018.9

Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. The Essence of Nested Composition. In ECOOP. https:

//doi.org/10.4230/LIPIcs.ECOOP.2018.22

Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. Distributive Disjoint Polymorphism for Composi-

tional Programming. In ESOP. https://doi.org/10.1007/978-3-030-17184-1_14

Lasse Blaauwbroek. 2017. On the Interaction Between Unrestricted Union and Intersection Types and Computational Effects.
Master’s thesis. Technical University Eindhoven.

Luca Cardelli and John C. Mitchell. 1989. Operations on records. Mathematical Structures in Computer Science 1 (1989).
https://doi.org/10.1017/S0960129500000049

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally Tagless, Partially Evaluated: Tagless Staged Interpreters

for Simpler Typed Languages. J. Funct. Program. 19, 5 (2009). https://doi.org/10.1017/S0956796809007205

Dave Clarke, Sophia Drossopoulou, James Noble, and Tobias Wrigstad. 2007. Tribe: a simple virtual class calculus. In AOSD.
https://doi.org/10.1145/1218563.1218578

William Cook and Jens Palsberg. 1989. A Denotational Semantics of Inheritance and Its Correctness. In OOPSLA. https:

//doi.org/10.1145/74878.74922

Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. 1981. Functional Characters of Solvable Terms. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik 27 (1981). https://doi.org/10.1002/malq.19810270205

Rowan Davies and Frank Pfenning. 2000. Intersection Types and Computational Effects. In ICFP. https://doi.org/10.1145/

351240.351259

Mariangiola Dezani-Ciancaglini and Simona Ronchi Della Rocca. 2007. Intersection and Reference Types. In Reflections on
Type Theory, Lambda Calculus, and the Mind. Radboud University Nijmegen.

Mariangiola Dezani-Ciancaglini, Paola Giannini, and Simona Ronchi Della Rocca. 2009. Intersection, Universally Quantified,

and Reference Types. In CSL. https://doi.org/10.1007/978-3-642-04027-6_17

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black. 2006. Traits: A Mechanism for

Fine-Grained Reuse. ACM Trans. Program. Lang. Syst. 28, 2 (2006). https://doi.org/10.1145/1119479.1119483

Jana Dunfield. 2014. Elaborating intersection and union types. Journal of Functional Programming 24, 2–3, 133–165.

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2021). https://doi.org/10.1145/

3450952

Erik Ernst. 1999. gbeta - a Language with Virtual Attributes, Block Structure, and Propagating, Dynamic Inheritance. Ph. D.
Dissertation. University of Aarhus.

Erik Ernst. 2001. Family Polymorphism. In ECOOP. https://doi.org/10.1007/3-540-45337-7_17

Erik Ernst. 2004. The Expression Problem, Scandinavian Style. In MASPEGHI@ECOOP. https://doi.org/10.1007/978-3-540-

30554-5_11

Erik Ernst, Klaus Ostermann, and William R. Cook. 2006. A virtual class calculus. In POPL. https://doi.org/10.1145/1111037.

1111062

Martin Erwig. 2001. Inductive graphs and functional graph algorithms. Journal of Functional Programming (2001). https:

//doi.org/10.1017/S0956796801004075

Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2022. Direct Foundations for Compositional

Programming. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2022.18

Andong Fan and Lionel Parreaux. 2023. super-Charging Object-Oriented Programming Through Precise Typing of Open

Recursion. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2023.11

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In POPL. https://doi.org/10.1145/

2837614.2837670

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1007/978-3-662-54434-1_1
https://doi.org/10.1007/11687061_5
https://doi.org/10.2307/2273659
https://doi.org/10.4230/LIPIcs.ECOOP.2018.9
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.4230/LIPIcs.ECOOP.2018.22
https://doi.org/10.1007/978-3-030-17184-1_14
https://doi.org/10.1017/S0960129500000049
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1218563.1218578
https://doi.org/10.1145/74878.74922
https://doi.org/10.1145/74878.74922
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1145/351240.351259
https://doi.org/10.1145/351240.351259
https://doi.org/10.1007/978-3-642-04027-6_17
https://doi.org/10.1145/1119479.1119483
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1007/3-540-45337-7_17
https://doi.org/10.1007/978-3-540-30554-5_11
https://doi.org/10.1007/978-3-540-30554-5_11
https://doi.org/10.1145/1111037.1111062
https://doi.org/10.1145/1111037.1111062
https://doi.org/10.1017/S0956796801004075
https://doi.org/10.1017/S0956796801004075
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.4230/LIPIcs.ECOOP.2023.11
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2837614.2837670

Imperative Compositional Programming 342:29

Jean-Yves Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. Ph. D.
Dissertation. Université Paris VII.

Robert Harper and Benjamin Pierce. 1991. A record calculus based on symmetric concatenation. In POPL. https://doi.org/

10.1145/99583.99603

David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-Order and Symbolic
Computation 23, 2 (2010). https://doi.org/10.1007/s10990-011-9066-z

Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. 2008. Polymorphic Embedding of DSLs. In GPCE.
https://doi.org/10.1145/1449913.1449935

Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. 2021. Taming the Merge Operator. J. Funct. Program. 31 (2021), e28.
https://doi.org/10.1017/S0956796821000186

Ende Jin, Nada Amin, and Yizhou Zhang. 2023. Extensible Metatheory Mechanization via Family Polymorphism. In PLDI.
https://doi.org/10.1145/3591286

Paul Jolly, Sophia Drossopoulou, Christopher Anderson, and Klaus Ostermann. 2004. Simple Dependent Types: Concord. In

FTfJP@ECOOP.
Daan Leijen. 2005. Extensible Records with Scoped Labels. In TFP.
Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan Snyder. 1981. CLU

reference manual. Springer. https://doi.org/10.1007/BFb0035014

Ole Lehrmann Madsen and Birger Møller-Pedersen. 1989. Virtual classes: a powerful mechanism in object-oriented

programming. In OOPSLA. https://doi.org/10.1145/74877.74919

Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. 2004. Scalable extensibility via nested inheritance. In OOPSLA.
https://doi.org/10.1145/1028976.1028986

Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. 2006. J&: nested intersection for scalable software composition. In

OOPSLA. https://doi.org/10.1145/1167473.1167476

Bruno C. d. S. Oliveira. 2009. Modular Visitor Components: A Practical Solution to the Expression Families Problem. In

ECOOP. https://doi.org/10.1007/978-3-642-03013-0_13

Bruno C. d. S. Oliveira and William R. Cook. 2012a. Extensibility for the Masses: Practical Extensibility with Object Algebras.

In ECOOP. https://doi.org/10.1007/978-3-642-31057-7_2

Bruno C. d. S. Oliveira and William R. Cook. 2012b. Functional programming with structured graphs. In ICFP. https:

//doi.org/10.1145/2398856.2364541

Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. 2006. Extensible and Modular Generics for the Masses. In TFP.
Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. 2016. Disjoint intersection types. In ICFP. https://doi.org/10.1145/

2951913.2951945

Benjamin C. Pierce. 1993. Intersection Types and Bounded Polymorphism. In TLCA. https://doi.org/10.1007/BFb0037117

Gordon Plotkin andMatija Pretnar. 2009. Handlers of algebraic effects. In ESOP. https://doi.org/10.1007/978-3-642-00590-9_7
Garrel Pottinger. 1980. A type assignment for the strongly normalizable 𝜆-terms. In To H.B. Curry: essays on combinatory

logic, lambda calculus and formalism.

Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira. 2022. Union Types with Disjoint Switches. In

ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2022.25

Tillmann Rendel, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2014. From Object Algebras to Attribute

Grammars. In OOPSLA. https://doi.org/10.1145/2660193.2660237

John C. Reynolds. 1974. Towards a theory of type structure. In Colloque sur la Programmation. https://doi.org/10.1007/3-

540-06859-7_148

John C. Reynolds. 1997. Design of the Programming Language Forsythe. In Algol-like Languages. Chapter 8. https:

//doi.org/10.1007/978-1-4612-4118-8_9

Mark Shields and Erik Meijer. 2001. Type-Indexed Rows. In POPL. https://doi.org/10.1145/360204.360230

Jeremy G. Siek and Philip Wadler. 2009. Threesomes, with and without Blame. In STOP@ECOOP. https://doi.org/10.1145/

1570506.1570511

Wouter Swierstra. 2008. Data Types à la Carte (Functional Pearl). J. Funct. Program. 18, 4 (2008). https://doi.org/10.1017/

S0956796808006758

Matías Toro and Éric Tanter. 2020. Abstracting Gradual References. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2020.33

Cas van der Rest and Casper Bach Poulsen. 2022. Towards a Language for Defining Reusable Programming Language

Components (Project Paper). In TFP. https://doi.org/10.1007/978-3-031-21314-4_2

Cas van der Rest and Casper Bach Poulsen. 2023. Types and Semantics for Extensible Data Types. In APLAS. https:

//doi.org/10.1007/978-981-99-8311-7_3

Philip Wadler. 1998. The Expression Problem. Posted on the Java Genericity mailing list. https://homepages.inf.ed.ac.uk/

wadler/papers/expression/expression.txt

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

https://doi.org/10.1145/99583.99603
https://doi.org/10.1145/99583.99603
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/1449913.1449935
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1145/3591286
https://doi.org/10.1007/BFb0035014
https://doi.org/10.1145/74877.74919
https://doi.org/10.1145/1028976.1028986
https://doi.org/10.1145/1167473.1167476
https://doi.org/10.1007/978-3-642-03013-0_13
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1145/2398856.2364541
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1145/2951913.2951945
https://doi.org/10.1007/BFb0037117
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.1145/2660193.2660237
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/360204.360230
https://doi.org/10.1145/1570506.1570511
https://doi.org/10.1145/1570506.1570511
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.4230/LIPIcs.ECOOP.2020.33
https://doi.org/10.1007/978-3-031-21314-4_2
https://doi.org/10.1007/978-981-99-8311-7_3
https://doi.org/10.1007/978-981-99-8311-7_3
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

342:30 Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In ESOP. https://doi.org/10.1007/978-

3-642-00590-9_1

Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP and Symbolic Computation 8, 4 (1995). https://doi.org/10.

1007/BF01018828

Wenjia Ye, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2024. Imperative Compositional Programming (Artifact). https:

//doi.org/10.5281/zenodo.13373228

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. 2021. Compositional Programming. ACM Trans. Program. Lang.
Syst. 43, 3 (2021). https://doi.org/10.1145/3460228

Yizhou Zhang and Andrew C. Myers. 2017. Familia: unifying interfaces, type classes, and family polymorphism. In OOPSLA.
https://doi.org/10.1145/3133894

Yaoda Zhou, Bruno C. d. S. Oliveira, and Andong Fan. 2022. A Calculus with Recursive Types, Record Concatenation and

Subtyping. In APLAS. https://doi.org/10.1007/978-3-031-21037-2_9

Received 2024-04-04; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 342. Publication date: October 2024.

https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1007/BF01018828
https://doi.org/10.1007/BF01018828
https://doi.org/10.5281/zenodo.13373228
https://doi.org/10.5281/zenodo.13373228
https://doi.org/10.1145/3460228
https://doi.org/10.1145/3133894
https://doi.org/10.1007/978-3-031-21037-2_9

	Abstract
	1 Introduction
	2 Compositional Programming with References
	2.1 Background: The Expression Problem
	2.2 A Brief Introduction to Compositional Programming
	2.3 Solving the Expression Problem: Adding CFG Construction
	2.4 Putting Everything Together: Distributive Intersection Types in Action
	2.5 Live-Variable Analysis
	2.6 CP Implementation and Extended Example

	3 A Type Sound Calculus with Distributive Subtyping and References
	3.1 Problematic Interaction between References and Distributive Subtyping
	3.2 Davies and Pfenning's Solution
	3.3 Our Solution: Bidirectional Typing to the Rescue
	3.4 Syntax and Type System
	3.5 Dynamic Semantics

	4 The Fim+ Calculus: Extending Fi+ with References
	4.1 Syntax
	4.2 Subtyping and Disjointness
	4.3 Bidirectional Typing
	4.4 Dynamic Semantics

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

