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Abstract

Recursive types and bounded quantification are prominent features in many modern programming
languages, such as Java, C#, Scala, or TypeScript. Unfortunately, the interaction between recursive
types, bounded quantification, and subtyping has shown to be problematic in the past. Consequently,
defining a simple foundational calculus that combines those features and has desirable properties,
such as decidability, transitivity of subtyping, conservativity, and a sound and complete algorithmic
formulation, has been a long-time challenge.

This paper shows how to extend F< with iso-recursive types in a new calculus called F. F< is
a well-known polymorphic calculus with bounded quantification. In F%, we add iso-recursive types
and correspondingly extend the subtyping relation with iso-recursive subtyping using the recently
proposed nominal unfolding rules. In addition, we use so-called structural folding/unfolding rules
for typing iso-recursive expressions, inspired by the structural unfolding rule proposed by Abadi et
al. (1996). The structural rules add expressive power to the more conventional folding/unfolding
rules in the literature, and they enable additional applications. We present several results, including:
type soundness; transitivity; the conservativity of % over F<; and a sound and complete algorithmic
formulation of F¥. We study two variants of F%. The first one uses an extension of the kernel F < (a
well-known decidable variant of F. ). This extension accepts equivalent rather than equal bounds and
is shown to preserve decidable subtyping. The second variant employs the full F< rule for bounded
quantification and has undecidable subtyping. Moreover, we also study an extension of the kernel
version of F, called F£Z, with a form of intersection types and lower bounded quantification. All
the properties from the kernel version of FX are preserved in F 2 . All the results in this paper have
been formalized in the Coq theorem prover. o

1 BOTH AUTHORS CONTRIBUTED EQUALLY TO THIS WORK.
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1 Introduction

Recursive types and bounded quantification are two prominent features in many modern
programming languages, such as Java, C#, Scala, or TypeScript. Bounded quantification
was introduced by Cardelli & Wegner (1985) in the Fun language and has been widely
studied (Curien & Ghelli, 1992; Cardelli ef al., 1994; Pierce, 1994). Bounded quantifica-
tion addresses the interaction between parametric polymorphism and subtyping, allowing
polymorphic variables to have subtyping bounds. Recursive types are needed in practically
all programming languages to model recursive data structures (such as lists or trees) or
recursive object types in Object-Oriented Programming (OOP) languages to encode binary
methods (Bruce et al., 1995). For adding recursive types to a language with subtyping,
it is desirable to have recursive subtyping between recursive types. The first rules for
recursive subtyping, due to Cardelli (1985), are the well-known Amber rules. Recursive
subtyping has been studied in two different forms: equi-recursive subtyping (Amadio &
Cardelli, 1993; Brandt & Henglein, 1998; Gapeyev et al., 2003) and iso-recursive subtyp-
ing (Bengtson et al., 2011; Ligatti et al., 2017; Zhou et al., 2020, 2022). In equi-recursive
subtyping, recursive types and their unfoldings are considered to be equal. In contrast, in
iso-recursive subtyping they are only isomorphic, and explicit fold/unfold operators are
necessary to witness the isomorphism.

From the mid-80s and throughout the 90s, there was a lot of work on establishing the
type-theoretic foundations for OOP. Both recursive subtyping and bounded quantifica-
tion played a major part on this effort. The two features were perceived to be important
to model objects in some forms of object encodings. At that time the key ideas around
F- (Curien & Ghelli, 1992; Cardelli ef al., 1994; Cardelli & Wegner, 1985), which is a
polymorphic calculus with bounded quantification (but no recursive types), were reason-
ably well understood due to the early work on the Fun language by Cardelli & Wegner
(1985). Therefore, F<-like calculi were being used in foundational work on OOP. Some
landmark papers on the foundations of OOP, which established important results such as
the distinction between inheritance and subtyping (Cook et al., 1989), F-bounded quantifi-
cation (Canning et al., 1989), or encodings of objects (Cook et al., 1989; Abadi et al., 1996;
Bruce et al., 1999), essentially assumed some F< variant with recursive types. Typically,
recursive subtyping was supported via the Amber rules. However, extensions of F< with
recursive types had still not been developed and formally studied when many of those
works were published.

After the first formalization of F< (Curien & Ghelli, 1992), Ghelli (1993) questioned
this state-of-affairs, which implicitly assumed that the extension of F- with recursive
types was straightforward. He conducted the first formal study for such an extension and
showed a wide range of negative results. Most importantly, he showed that equi-recursive
types are not conservative over full F<. In other words, adding equi-recursive types to
full F< changes the expressive power of the subtyping relation, even when the types being
compared do not involve any recursive types.

The simple addition of equi-recursive types allows well-formed, but invalid subtyping
statements in F'< to be valid in an extension with recursive types. Ghelli (1993) also shows
that applying equi-recursive types to full /< invalidates transitivity elimination: we cannot
drop the transitivity rule without losing expressive power. In addition, while subtyping in
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Table 1. Comparison among different works

Ghelli  Colazzo & Ghelli Jeffrey Abadi et al. This

(1993) (2005) (2001) (1996) work
Kernel/Full F< full kernel full  kernel full kernel  full
Equi-/Iso-Recursive equi equi equi  equi iso iso iso
Transitivity X v v v built-in v v
Decidability v a v v X
Conservativity X X v v
Type system v v v
Algorithmic typing v v
Type soundness v v
Modularity X X X X v v
Mechanized proofs X X X X X v v

A x symbol denotes a negative result (the property or feature does not hold). A v' denotes a posi-
tive result, while v*denotes a partial result (such as semi-decidability). Whitespace denotes that the
property/feature has not been studied or it is unknown.

full F< is undecidable (Pierce, 1994), the change in expressive power reopened questions
about the decidability or undecidability of the system.

Even if we choose the weaker form of bounded quantification present in the Fun lan-
guage and kernel F'<, the natural extension of Amadio & Cardelli (1993)’s algorithm to
kernel F< is incomplete (Colazzo & Ghelli, 2005). In kernel F'<, only universal quantifiers
with equal bounds are allowed to be in a subtyping relation. This more restrictive for-
mulation of bounded quantification is known to be decidable. However, complications still
arise after adding equi-recursive types to kernel F <. Instead of Amadio & Cardelli (1993)’s
meet 2 times rules, Colazzo & Ghelli (2005) gave an alternative meet 3 times algorithm,
accompanied by a very challenging correctness proof, showing that the subtyping relation
is transitive and complete but did not prove conservativity. Based on an earlier draft from
Colazzo & Ghelli (2005), Jeffrey (2001) extended the system and proved it correct and
complete. By transferring the polar bisimulations (Sangiorgi & Milner, 1992) technique
from concurrency theory, Jeffrey (2001)’s system is more general than Colazzo & Ghelli’s,
but it is only partially decidable. It is decidable for kernel F< with equi-recursive types,
but for full F< with equi-recursive types, only when the algorithm terminates it returns
the correct answer, but it may not terminate. Furthermore, although being more powerful,
Jeffrey (2001)’s full system is not conservative over full < either.

Table 1 summarizes the results of previous work on extending F< with recursive types.
Note that, in the table, the Type System row simply means whether the typing relation of the
F - extension with recursive types has been studied/presented in the paper. For properties
such as type soundness, decidability, or conservativity, there is a corresponding entry in
the table, which states whether the property was proved or not. Modularity here means
whether the original rules and definitions of F< are the same or they need to be modified.

The proofs in all the four systems with equi-recursive types are complex because of
the strong recursion, as can be seen from the literature. Adding equi-recursive subtyping
requires major changes in existing definitions, rules, and proofs compared to F<, mak-
ing most of the existing metatheory on F< not reusable. No prior work has proved the
conservativity of kernel F- with equi-recursive types. This result is likely to be hard to
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prove because of the numerous non-modular changes in F< induced by the introduction
of equi-recursive subtyping. Furthermore, in those works, the full type systems are not
provided.

Motivated by the technical challenges and negative results posed by equi-recursive
types, some researchers set their sights on iso-recursive types. In their work on object
encodings, Abadi et al. (1996) proposed the F_.,, calculus, which supports bounded univer-
sal types, bounded existential types, and iso-recursive types via the Amber rules. However,
reflexivity and transitivity are built in, so the system is not algorithmic. Furthermore, while
they presented the typing, subtyping, and reduction rules, they have not proved any proper-
ties, including type soundness or the conservativity over full F<. One potential reason for
the absence of technical results is that the iso-recursive Amber rules are hard to work with
formally (Backes et al., 2014; Ligatti et al., 2017; Zhou et al., 2020, 2022): it is difficult to
prove results such as transitivity or define sound and complete algorithmic formulations.

This paper shows how to extend F- with iso-recursive types in a calculus called F£.
In F£, we add iso-recursive subtyping using the recently proposed nominal unfolding
rules (Zhou et al., 2022). The nominal unfolding rules have been formally proved to be
type sound and shown to have the same expressive power as the well-known iso-recursive
Amber rules (Cardelli, 1985). Moreover, the nominal unfolding rules address the difficul-
ties of working formally with the (iso-recursive) Amber rules. With the nominal unfolding
rules, proving transitivity and other properties is easy, also enabling developing algo-
rithmic formulations of subtyping instead. Furthermore, a nice property of the nominal
unfolding rules is that they are modular, allowing an existing calculus to be extended with
recursive types without major impact on existing definitions and proofs. In other words,
they allow reusing most existing metatheory and definitions that existed before the addition
of iso-recursive types. Our work shows that the nominal unfolding rules proposed by Zhou
et al. (2022) can be integrated modularly into F< subtyping rules, while retaining desirable
properties. In particular, we prove, for the first time, the conservativity of an extension of
F - with recursive types over the original F-.

In FZ, we use the so-called structural folding/unfolding rules for typing expressions
with recursive types, inspired by the structural unfolding rule proposed by Abadi et al.
(1996). The structural rules add expressive power to the more conventional folding/un-
folding rules in the literature, and they enable additional applications. In particular, we
illustrate how the structural rules play an important role in modeling encodings of objects,
as well as encodings of algebraic datatypes with subtyping.

We study two variants of F£. The first one has a generalization of the kernel F < rule for
bounded quantification that accepts equivalent rather than equal bounds. The second vari-
ant uses the rule of full F- for bounded quantification. We will refer to the first variant as
kernel F£ and to the second variant as full F£. We present several results, including: type
soundness; transitivity and (un)decidability of subtyping; the conservativity of F£ over F;
and a sound and complete algorithmic formulation of . The kernel FZ variant is proved
to have decidable subtyping, whereas the full FZ variant has undecidable subtyping. We
also present an extension of F%, called F22, which has a bottom type, intersection types,
and lower bounded quantification in addition to the conventional (upper) bounded quantifi-
cation of F<. As we show, lower bounded quantification is useful to model the subtyping
of algebraic datatypes. Intersection types are used to encode record types, similarly to how
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the Dependent Object Calculus (DOT) (Rompf & Amin, 2016) encodes object types. All
the results in this paper have been formalized in the Coq theorem prover.
In summary, the contributions of this paper are as follows:

o FZ: extending F- with iso-recursive types. We have two variants of F%: kernel
F% as the extension of kernel F- with iso-recursive subtyping, and full F£ as the
extension of full F< with iso-recursive subtyping. We prove several properties for
F, including: type soundness; transitivity of subtyping; decidability of subtyping of
kernel F%; undecidability of subtyping of full F£; and the unfolding lemma, a key
property to ensure type soundness.

o The conservativity of F~ over F-. Conservativity is an expected but nontrivial
property that has eluded past work on the combination of bounded quantification
and recursive types. We show that FZ is conservative over F-.

o Type soundness for the structural folding/unfolding rules. We present the first
formal type soundness proof for the structural unfolding rule, and we also present a
new structural folding rule, together with its type soundness.

o Decidability for kernel FZ. We show that kernel FZ is decidable. The measure
needed for decidability is nontrivial because there are significant differences in the
measures for kernel /- and nominal unfoldings. We show how to develop a new
measure that can account for both features at once. In addition, due to our general-
ization of the kernel rule to allow equivalent bounds, a key property for decidability
is that equivalent types have equal sizes.

e An extension of Fg with intersection types, both upper and lower bounded
quantification: We present an extended calculus, called F£Z, with a form of
intersection types, both top and bottom types, and both upper and lower bounded
quantification, and illustrate its applicability to encodings of datatypes with subtyp-
ing.

e Coq formalization: We have formalized all the calculi and proofs in this paper in
Coq and made the formalization available online at https://github.com/juda/
Recursive-Subtyping-for-All/tree/main/JFP.

Differences to the Conference Version. This article is a substantial enhancement of the
conference paper (Zhou et al., 2023). It introduces three major improvements over the orig-
inal conference paper. The first improvement is the extension of our results to the full F£
calculus, along with proofs demonstrating its type soundness and its conservativity over
F. The initial conference version only addressed the addition of iso-recursive types into
kernel F< and left the extension to the full variant as an unresolved issue. The second
improvement is a further generalization of the unfolding lemma that is capable of dealing
with full F-, intersection types, and all the other extensions in this paper. The unfold-
ing lemma is a central lemma in the metatheory of iso-recursive subtyping, and it is also
where the main challenge in the metatheory lies. In the conference version, the generalized
unfolding lemma was not able to deal with full F-. Our new generalization addresses this
issue, and it is shown to be general and applicable to a variety of extensions. The final
improvement involves the combination of several important features within the system
F 22, and a much more detailed overview of F2. Unlike the conference version, which

did not include intersection types, the updated_;“’gg can model objects using structural
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folding/unfolding rules, intersection types, and single-field record types. This alternative
way to model objects is inspired by, and aligns closely with, the encoding of objects in the
DOT calculus.

2 Overview

This section provides an overview of our work. We first briefly review basic concepts and
some applications. Then we show our key ideas and results.

2.1 Bounded quantification and recursive subtyping

Bounded Quantification. Bounded quantification allows types to be abstracted by type
variables with a subtyping constraint (or bound). The standard calculus with bounded
quantification, < (Cardelli & Wegner, 1985; Curien & Ghelli, 1992; Cardelli et al., 1994),
has two common variants when it comes to subtyping universal types. The full < vari-
ant (Curien & Ghelli, 1992; Cardelli et al., 1994) compares bounded quantifiers with the
following rule:

S-FULLALL
I'HA4, <4 I' a<A,-B<C

I'-V(a <A4)).B<V(ax <4,).C

The most significant characteristic of full F-< is that it allows two bounded quantifiers to
be contravariant on their bound types 4; and 4, when being compared. However, the rich
expressive power of full F< results in an undecidable subtyping relation (Pierce, 1994),
which is undesirable. In addition, as Ghelli (1993) demonstrates, the rule S-FULLALL may
even prevent conservative extensions of F'< in the presence of additional features.

There are several ways to restrict bounded quantification to a fragment with decidable
subtyping, such as removing top types, or assuming no bounds when comparing type
abstraction bodies (Castagna & Pierce, 1994). Among those the most widely used vari-
ant is the kernel F< calculus. In kernel F-, bounded quantifiers can only be subtypes
when their bound types are identical (Cardelli & Wegner, 1985), which is stated in the
rule S-KERNELALL.

S-KERNELALL S-EQUIVALL
-4 I'ha<AFB<C T FA <A, I'A4, <4, I'a<4,-B<C
I'EVY(a<A4).B<V(a<A4).C '=V(a<A4)).B<V(ax<4,).C

In our paper, we will show how iso-recursive subtyping can be integrated with both kernel
and full variants of F<. However, for the kernel variant, differently from kernel F<, we will
generalize the rule S-KERNELALL to a rule S-EQUIVALL that accepts equivalent bounds
instead. The main motivation for using rule S-EQUIVALL is to enable more subtyping
involving records. While typically kernel F< is presented without records, in this paper, we
include records in the calculus and we wish to consider types such as {x : nat, y: nat} and
{y : nat, x : nat}, to be equivalent (despite being syntactically different). Note that, while
in plain F< the subtyping relation is antisymmetric (Baldan et al., 1999) (i.e. if two types
are equivalent then they must be equal), the addition of records breaks antisymmetry since
there are equivalent types that are not equal. The rule S-EQUIVALL is more general than
the kernel rule with identical bounds but retains decidability, as we shall see in Section 4.3.
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Recursive Types. Recursive types pa. A can be traced back to Morris (1968). There are
two basic approaches to recursive types: equi-recursive types and iso-recursive types. The
essential difference between them is how they consider the relationship between a recur-
sive type pa. A and its unfolding [« — po.A] A. In equi-recursive types, a recursive
type is equal to its unfolding. That is, uo. 4 = [ — pea.A] A. In other words, recursive
types and their unfoldings are interchangeable in all contexts. Equi-recursive types also
allow for more general equalities than unfoldings. For example, the types puo.int — « and
ua.int — int — « are considered equivalent in the equi-recursive setting, since they have
the same infinite unfolding (Amadio & Cardelli, 1993).

In iso-recursive types, a recursive type and its one-step unfolding are not equal but only
isomorphic. To convert between ua.4 and [« — pa.A] A, we need explicit unfold and
fold operators. A fold expression constructs a recursive type, while an unfold expression
opens a recursive type, as rule TYPING-FOLD and rule TYPING-UNFOLD illustrate:

TYPING-UNFOLD TYPING-FOLD
NFe:pua.4 lke:[la—> pa.A] A '+ pa.A
' ~unfold [ua.4] e: [a— pna.A] A I'+fold [ua.A] e: pa.A

Despite being less convenient, iso-recursive types are known to have the same expressive
power as equi-recursive types (Abadi & Fiore, 1996; Zhou et al., 2024). We will focus
next on iso-recursive types.

Recursive Subtyping. Subtyping between recursive types has been studied for many
years (Cardelli, 1985; Amadio & Cardelli, 1993; Ligatti et al., 2017). The most widely used
subtyping rules for recursive types are the Amber rules, first introduced in 1985 by Cardelli
(1985) in a manuscript describing the Amber language (Cardelli, 1985). The iso-recursive
Amber rules deal with recursive subtyping with three rules: rule S-AMBER, rule S-ASSMP,
and rule S-REFL.

S-AMBER S-ASSMP
I'a<pFA<B a<Bel S-REFL
I'-pa.A<uB.B lFa<p ''H4<4

The Amber rules are simple, but their metatheory is troublesome. For example, transitiv-
ity is hard to prove (Bengtson et al., 2011; Zhou et al., 2020, 2022). Furthermore, due
to the reliance on the reflexivity rule (rule S-REFL), the Amber rules are problematic for
subtyping relations that are not antisymmetric (Ligatti et al., 2017). Recently, Zhou et al.
(2020, 2022) proposed a new specification for iso-recursive subtyping and some equivalent
algorithmic variants (Zhou & Oliveira, 2025). For this paper, we use one of those algorith-
mic variants, called the nominal unfolding rules (Zhou et al., 2022). The main reason for
choosing the nominal unfolding rules is that they are easy to work with formally: indeed,
Zhou et al. (2022) have a full Coq development, including proofs of decidability, that we
will reuse and extend.

Nominal Unfolding Rules. The nominal unfolding rules provide a formal mechanism
for handling iso-recursive subtyping. These rules are designed to address the challenges
posed by contravariant occurrences of recursive type variables. For recursive types, it is
expected that if two recursive types pa.4 and puw.B are subtypes, then their unfolding
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[a > pa.A] A and [« — pa. B] B should also be subtypes. This property can be tricky to
achieve with contravariant occurrences of recursive variables. The Amber rules deal with
this issue by remembering pairs of recursive variables as subtyping assumptions, as can be
seen in rule S-AMBER. In contrast, the nominal unfolding rules unfold the recursive body
twice to ensure the correctness of the subtyping relation.

For example, consider the subtyping statement po.o« — nat < wo.a — T. If we unfold
the recursive types twice, we obtain:

(. = nat) > nat) > nat < (nx.a > T)—> T)—> T

This statement requires both nat < T (which is true) and T < nat (which is false), thus
correctly rejecting the subtyping statement. Unfolding once would not expose the invalid
T < nat comparison.

The nominal unfolding rules simulate this double-unfolding process by replacing
recursive types with labeled types (4%):

S-NOMINAL S-LABEL
[, ab[a—>A“lA<[a+— B*]B ''-4<B
'-puo.A<upuo.B 'A% <B”

In rule S-NOMINAL, every time two recursive types are compared, a fresh label « is used
to label the unfolded parts. Labeled types can only be compared to other labeled types with
the same label, which ensures that they arise from the same recursive type, as shown in
rule S-LABEL. The bound type variable « in the recursive body becomes free variable after
unfolding'. For instance, to compare pa. — nat and juo. o0 — T, the subtyping statement
becomes:

(¢ —>nat) - nat<(¢—>T)* =T

The one-time unfolding is captured by the labels, since if we ignore the body of the
labeled types, « — nat and @ — T are compared. On the other hand, when ignoring
the labels, the double-unfolding statement is obtained, which exposes the invalid T <
nat comparison. The key design in the nominal unfolding rules is to use labels as a
syntactic device to ensure that recursive types are compared correctly. Without labels
providing distinct identities to recursive types, unsound subtyping statements such as
po.nat — @ < pa.nat — nat — T, which unfolds to nat — nat > o <nat — nat—> T,
may be accepted.

The nominal unfolding rules are formally proven to be type sound and have the same
expressive power as the iso-recursive Amber rules (Zhou et al., 2022). They are also eas-
ier to work with formally, enabling the development of sound and complete algorithmic
formulations of subtyping. Additionally, these rules are modular, allowing the extension of
existing calculi with iso-recursive types without significant changes to existing definitions
and proofs.

! In our Coq formalization, we use a locally nameless representation (Aydemir ez al., 2008), which distinguishes
free and bound variables naturally. With a locally nameless representation, we can reuse the free variable name
« for the fresh label «. In the paper we use the named representation for better readability, so type variables
« and label variables « are distinguished by color. In a black-and-white printout, these label variables can be
identified by noting that they only occur as superscripts in labeled types 4.
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2.2 Applications of bounded quantification and recursive types

We now turn to applications of bounded quantification and recursive types. In particu-
lar, the classic application for both features is encodings of objects (Bruce et al., 1999).
In addition, we also show that the two features are useful to model encodings of algebraic
datatypes with subtyping.

Object Encodings. A simple and well-known typed encoding of objects is the recursive
records encoding (Canning et al., 1989; Cook et al., 1989; Bruce ef al., 1999). In this
encoding, the idea is that object types are encoded as recursive record types, and objects
are encoded as records.” For example, we can define a type Point:

Point £ x pnt.{x: Int, y: Int, move: Int — Int — pnt}

which consists of its coordinates and a move function. We use a recursive type because
move should return an updated point. To implement Point, we define some auxiliary
functions:
function getX(p : Point) = (unfold [Point] p).x
function getY(p : Point) = (unfold [Point] p).y
function moveTo(p : Point, x : Int, y : Int) = (unfold [Point] p).move x y
then a constructor mkPoint can be defined as:
function mkPoint(x; : Int, y; : Int) = fold [Point] {
X=X1,
Y=Y,
move = Ax; y2. mkPoint(xz, y2)
}
Note that the auxiliary functions above would not be needed in a source language, since a
source language would treat p.x as syntactic sugar for (unfold [Point] p).x. Similarly, the
source language would automatically insert a fold in the object constructor. In other words,
in a source language with iso-recursive subtyping, the fold’s and unfold’s do not need to be
explicitly written and are automatically inserted by the compiler. For instance, this is what
Abadi et al. (1996)’s translation of a language with objects into an iso-recursive extension
of F< does.
With subtyping, we can develop subtypes of Point, such as:

ColorPoint £ 1 pnt.{x: Int, y: Int, move: Int — Int — pnt, color : String}
EqPoint = 1 pnt.{x: Int, y:Int, move:Int — Int — pnt, eq: pnt — Bool}

Now, suppose we wish to translate the coordinates by one unit for a point, but we do not
want to write such a translation function for each subclass of Point. As a first attempt, this
is achieved with a polymorphic function:
function translate [P < Point] (p: P) =
(unfold [Point] p).move (getX p + 1) (getY p + 1)

2 We will use a simplified form of the encoding that does not deal with self-references, which allows program-
mers to refer to the object itself in method implementations using the self-parameter. But self-references could
be dealt with in standard ways (Canning ef al., 1989).
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The type of this translate function is V(P < Point). P — Point, which is obtained from the
following typing derivation (some parts omitted):

P < Point, p:PFp:P P < Point, p: PF P < Point
P < Point, p: PF p: Point

x:Int, y:Int,
move : Int — Int — Point

TYPING-SUB
TYPING-UNFOLD

P <Point, p: P (unfold [Point] p): {

F translate : V(P < Point).P — Point

However, this type is unsatisfying because it loses precision: it returns a Point instead
of a P. The type that we want instead is:

V(P < Point).P - P

Unfortunately, we cannot obtain this more general type with only bounded quantification
and the usual unfolding rule TYPING-UNFOLD. In the rule TYPING-UNFOLD, the unfold
annotation must be a recursive type. However, if we wish to return P, then we should use
unfold with the annotation P, which is not a recursive type, but a type variable.

Some advanced techniques, such as F-bounded quantification (Canning et al., 1989;
Baldan et al., 1999), address this issue. In F-bounded quantification, the bounded variables
are allowed to appear in the bound, and universal types take the form V(« < F[«]). B, where
F is a type-level function applied to the bound variable «. For the example above, the
bound in the translate function is no longer the closed recursive type Point but would
have the form Fla]={x:Int, y:Int, move:Int — Int — «}. Therefore, with F-bounded
quantification, the translate function could have the type:

V(e <{x:Int, y:Int, move:Int— Int > a}).a > «

Then the o can be instantiated to Point or subtypes of Point, since Point < F[Point].
Note that to satisfy the F-bounded constraints o < F[«], the subtyping statements must
be interpreted in an equi-recursive setting. F£ uses a less intrusive approach to achieve
the same effect for typing the translate function, without requiring recursive bounds or
equi-recursive types. This is achieved by using the structural unfolding rule (Abadi ef al.,
1996), which we will discuss in Section 2.3.

Encoding Positive F-Bounded Quantification. Fortunately, with the structural rules, we
can use a type variable as an annotation for unfold. This enables us to encode forms of F-
bounded quantification with positive occurrences of recursive variables, which is the case
for Point. We can change the unfold annotation in translate from the recursive type Point
to its subtype, the type variable P:
function translate [P < Point] (p: P) =
(unfold [P] p).move (getX p + 1) (getY p + 1)

In Section 2.3, we will discuss the typing of this program via the structural unfolding rule
in detail. After this change, the type of translate is V(P < Point).P — P. Then we can
apply translate to Point or any of its subtypes, without losing static precision. Thus, if
we call translate [EqPoint] (mkEqPoint 0 0), then we obtain an EqPoint object at (1, 1).
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Here, mkEqPoint is a constructor for objects with type EqPoint, which contain a binary
method (Bruce et al., 1995) eq:
function mkEqPoint(x; : Int, y; : Int) = fold [EqPoint] {
X = X1,
Yy =¥y
move = Ax; y2. mkEqPoint(xy, y2),
eq = Ap. (getX p == x1) A (getY p ==y)

}

Encoding Objects with Bounded Existentials. Recursive types are not the only way
to encode objects. Another common encoding is to use bounded existentials (Cardelli &
Wegner, 1985). Existential types can be used to encode objects (Pierce & Turner, 1994),
or they can be employed together with recursive types (Bruce, 1994). Since the intentional
behavior of existential types can be encoded by universal types, we can obtain a form of
bounded existentials for free in F< (Cardelli & Wegner, 1985):

J(x <A).B VB<T).M(a<A4).B—>p—p)
pack [C, e] as (A(x < 4).B) AB<T)LAf:Ya<d).a—pB)fCe
unpack e as [, x] in e; e; C(A(a <A). Mx:B).ey)
where e : (@ <A4).Bande,: C

@.1)

> 1> >

Abadi et al. (1996) presented an encoding of objects using a combination of recursive
types and bounded existential quantification, called the ORBE encoding. In their work, an
interface /(«) is defined as a record of type-level functions, each having a self variable «
argument ({/; : I;(@)’¢'~"}). For example, the interface for the Point object is:

Ipoint(@) £ {x: Int, y : Int, move : Int — Int — «}
The general ORBE encoding for an interface /(«) is:

self : B,

iel,...,
ORBE()2 pa. IB<a). { B> I(B)"

1P (B> 1B) — B
The bounded existential quantification (3(8 < «)) is used to indicate that the true type of an
object can be a subtype of the object type «. Intuitively, it allows the object implementation
to contain more fields, such as private variables, than the interface specifies. The field self
is the object itself with all its methods including private ones so that the listed methods
can access the object’s private fields. Through fields /¢, users of the object can access
the object’s public methods. The fields /; Pd are optional in the encoding. They allow users
to update method /; by taking a new function of self and returning a new object with the
updated method, which is a feature not supported in many other object encodings. For
example, the Point object from above can be encoded with the ORBE encoding as follows:

self: B,

x*¢': B —Int, x"9:(8— Int)— B,
Pointograr = 1 pnt. 3(B < pnt). y*': B —Int, y'Pd: (B — Int) = B,

move® : f — Int — Int — B,

move'Pd : (B — Int — Int — B) — B

n
B

~~~~~~
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We can implement the Point object with the ORBE encoding as follows:
function mkPointORBE(x;: Int, y;: Int) = fold [Pointorsg] (
pack [Pointogrse, {
self = mkPointORBE(x1, y1),
x*¢ = A (self: Pointorge). X1,
ysel = A (self: PointORBE). Y1,
moves®' = A (self: Pointorge) X2 y2. mkPointORBE(x; + x2, y1 + y2),
S }] as 3(B < Pointogrse). {. . })
Method calls are encoded by unfoldings of iso-recursive types and unpacking of bounded
existentials. For example, accessing the x field of a Point object can be implemented as:
function getXORBE(p: Pointorge) =
(unpack (unfold [Pointorge] p) as [a, o] in 0.x*¢'(o.self) )
We omit the encodings for the method update fields in the mkPointORBE function for
brevity, but they can also be written using F%. More details about the encoding can be
found in the original work (Abadi et al., 1996). As we can see, the ORBE encoding requires
both recursive types and bounded existentials. By rewriting all bounded existentials into
universal quantification using (2.1), we are able to write all the programs and types in the
ORBE encoding presented above in our F% calculus. Therefore, F£ can serve as a target
language for the ORBE encoding.

When it comes to subtyping, as Bruce et al. (1999) observe, the ORBE encoding requires
full F< for the bounded quantification subtyping rule. Consider the encoding for the object
ColorPoint, which has more fields than Point. ColorPointorge should extend the record
in Pointogrge with color™ upd fields. When we try to compare the two encodings,
we see that the bounds in (8 < pnt) for the two types are not the same — the recursive
variable pnt in ColorPointprge stands for more fields than in Pointogrge. As a result,
contravariant subtyping is needed for comparing the bound in the existential type, which
in turn requires full F- instead of kernel F-. Therefore, we also study the full F£ calculus
in this paper in order to support subtyping between objects in the ORBE encoding.

and color

Encodings of Algebraic Datatypes with Subtyping. It is well known that, in the
polymorphic lambda calculus (System F) (Reynolds, 1974), we can use Church (1932)
encodings to encode algebraic datatypes (Bohm & Berarducci, 1985). However, Church
encodings make it hard to encode some operations, or worse they prevent encoding cer-
tain operations with the correct time complexity. A well-known example (Church, 1932) is
the encoding of the predecessor function on natural numbers, which is linear with Church
encodings instead of being constant time.

An alternative encoding that captures the intentional behavior of datatypes in the
untyped lambda calculus and avoids the issues of Church encodings is due to Scott (1962).
Unfortunately, Scott encodings cannot be encoded in plain System F. The addition of recur-
sive types to a polymorphic lambda calculus allows a typed Scott encoding (Parigot, 1992).
Moreover, in the presence of subtyping, we can also encode algebraic datatypes with sub-
typing, enabling certain forms of reuse that are not possible without subtyping. Oliveira
(2009) has shown this assuming a F'<-like language with recursive types and records, but
he has not formalized such a language. Here, we revisit Oliveira’s example. A similar
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encoding for datatypes can be achieved in F%. For example, one may define a datatype

Exp, for mathematical expressions, with const_ant, addition, and subtraction constructors:
data Exp; = Num Int | Add Exp; Exp; | Sub Exp; Exp;

The encoding in F of this datatype can be defined as follows:

Exp; £ uE.VA. {num:Int > A, add:E—>E— A, sub:E—E— A} > A

If we unfold the recursive type, this encoding is a polymorphic higher-order function that
takes a record with three fields (num, add, and sub) as input. Each field corresponds
to a constructor in the datatype definition. This encoding is particularly useful for case
analysis, since the polymorphic function essentially encodes case analysis directly. To
write a function that performs case analysis on this datatype, one can unfold the recursive
type, instantiate A with the result type, and then provide a record that maps each case to
an implementation function that takes the constructor components as input and returns a
result of type A. For example, given an expression e with type Exp,, a case analysis-based
evaluation function can be written as:
function eval (e : Exp;) = (unfold [Exp;] €) [Int] {
num = An. n,
add = Xe; e;. (eval e; + eval &),
sub = ie; e;. (eval e — eval &)
}
where we use [. . .] to represent type instantiation. Here, Exp, is instantiated with the eval-
uation result type Int. A record of three functions is supplied to implement case analysis.
The num field implements a function that returns the integer n of the Num constructor
directly, while the functions in add and sub fields perform the evaluation process recur-
sively. To construct concrete instances of the datatype, each constructor also comes with a
corresponding encoding in the calculus:
function Numy (n: Int) = fold [Expi] (A A. A e. (e.num n))
function Add; (e; : Expi, e : Exp;) = fold [Expi] (A A. A e. (e.add e €;))
function Suby (e; : Expy, e : Exp;) = fold [Expi] (A A. A e. (e.sub e &;))
One can easily check, using rule TYPING-FOLD, that the result type of each constructor
encoding becomes Exp; after a recursive type folding. Therefore, in this encoding, the use
of constructors and case analysis functions is natural: one can construct the expression 1 +
2 directly with the encoded constructors as Add; (Num; 1) (Num; 2) and get its evaluation
result by calling eval (Add; (Numy 1) (Num; 2)).

Subtyping Between Datatypes. Now consider a larger datatype Exp,, which extends the
Exp, datatype with a new constructor Neg, for denoting negative numbers.

data Exp, = Num Int | Add Exp; Exp, | Sub Exp, Exp, | Neg Exp,
This datatype is encoded in F% as:

Exp, £ uE.VYA. {num:Int > A, add:E—E— A, sub:E—E— A neg:E— A} > A

The datatype Exp; differs from Exp; only in the new constructor: the other constructors are
just the same. To reduce code duplication, it is desired that the constructor functions such
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as Add; can be polymorphic and used for both datatypes. Note that Exp, has more con-
structors than Exp,, so it should be safe to coerce Exp; expressions into Exp, expressions,
that is, Exp; < Exp,. Therefore, we would like the F2 encoding for the Add constructor to
have the following type so that both encodings of Exp; and Exp, can use this constructor
function:

Addy :V(E>Exp;). E>E—E

There are two problems here. First, similarly to the issue that we have faced in the translate
function, we would like to use a type variable in the fold’s of the constructors. This way we
can make the constructors polymorphic. Second, as evidenced by the desired type for Add,
we need lower bounded quantification, but in F£ (and F-) we only have upper bounded
quantification.

Polymorphic Constructors with Lower Bounded Quantification. For applications such
as encodings of algebraic datatypes, the dual form of bounded quantification (lower
bounded quantification) seems to be more useful. Thus, we have an extended system,
called F2Z, that also supports lower bounded quantification. Polymorphic datatype con-
structors become typeable with the structural folding rule. For example, we can encode the
polymorphic Add constructor as:
function Addy [E > Expi] (e; : E, e; : E) = fold [E] (A A. A e. (e.add e &))
Other polymorphic constructors such as Numy and Suby can be encoded similarly,
enabling more useful programming patterns. For example, if we want to implement a
compiler that uses Exp, as its core language, but also want to support richer datatype
constructors in a source language like Exp, does, we would like to be able to reduce code
duplication across the two similar languages. For instance, if we define a pretty printer
function for Exp,
function print (e: Expy) = (unfold [Expy] e) [string] {
num = A n. (int_to_string n),
add = A e ;. ((print e1) +4+ "+" ++ (print e;)),
sub = A e ep. ((print ;) ++ "—" ++ (print e;)),
neg = A e ("—" ++ (print e))
}
we can use this function to print Exp; expressions as well: all the constructors in Exp, are
also in Exp, and have their pretty printing methods defined in the above function.
Suppose also that we wish to implement a simple desugaring function that transforms
Exp, into Exp,, by transforming negative numbers —# into subtractions 0 — x. This func-
tion should do case analysis on Exp, and use only the constructors in Exp; to produce the
result, that is, it should have a type Exp, — Exp,. The following code, with polymorphic
constructors, has the desired typing:
function desugar (e: Exp;) = (unfold [Exp,] €) [Expi] {
num = A n. Numy [Exp;] n,
add = A e e;. Addy [Expi] (desugar e;) (desugar e;),
sub = A e e,. Suby [Exp;] (desugar e;) (desugar e;),
neg = A e. Suby [Exp;] (Numy [Expi] 0) (desugar e)
}
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In contrast, in many practical programming languages, this task involves either code dupli-
cation or loss of type precision. In a typical functional language, we can define both Exp,
and Exp, and also obtain precise static typing guarantees for the desugar function. But
this comes at the cost of duplication, since the constructors for the two datatypes are dif-
ferent, and many operations, such as pretty printing, need to be essentially duplicated.
In F' gg, in addition to polymorphic constructors, we would just need to define the pretty
printer for Exp,, and that function would also work for Exp;. Alternatively, in a typi-
cal functional language, one could define only Exp, and type desugar with the imprecise
type Exp, — Exp,, which does not statically guarantee that the Neg constructor has been
removed. This solution avoids the duplication at the cost of static typing guarantees. In
F 22, we do not need such compromises: we can avoid code duplication and preserve the
static typing guarantees.

2.3 Key ideas and results

As Table 1 shows, no previous calculi with bounded quantification and recursive types
are fully satisfactory in all dimensions. In particular, equi-recursive types are problematic,
since they can change the expressive power of the subtyping relation in unexpected ways.
More importantly, adding equi-recursive subtyping to F'< requires novel algorithms, and
the extension is non-modular, requiring several changes to existing definitions and proofs.

Kernel F- with Iso-Recursive Types. Our type system directly combines kernel F< and
the nominal unfolding rules together. The addition of the nominal unfolding rules has
almost no effect on the original proofs in kernel F<. That is, the proofs for important
lemmas, such as transitivity, are nearly the same as those in kernel F-, except that we need
a new case to deal with recursive types. Thus, proofs that have been very hard in the past,
such as transitivity, are very simple in FZ.

The more challenging aspect in the metatheory of F£ lies in the unfolding lemma:

l'-rpe.A<pae.B = T'FHlar— pa.AlA<[a+> ua.B]B

which reveals an important property for iso-recursive types: if two iso-recursive types are
subtypes, then their one-step unfoldings are also subtypes. To prove the unfolding lemma,
a generalized lemma is needed (Zhou et al., 2022). In F£, we show that the previous gen-
eralized approach is insufficient due to bounded quantification. Therefore, an even more
general lemma is proposed.

Another challenge is decidability. Although both kernel < and the nominal unfold-
ing rules (for simple calculi) have been independently proved decidable, their decidability
proofs use very different measures. A natural combination is problematic; thus, we need a
new approach.

After overcoming those challenges, we show that kernel F£ is transitive, decidable,
conservative, and modular. Furthermore, there is a simple, sound, and complete algorith-
mic type system to enable implementations and to provide important help in the proofs of
results such as conservativity of typing.
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Full F- with Iso-Recursive Types. We have also integrated full F< with iso-recursive
subtyping. The most significant challenge compared to the kernel variant is proving the
unfolding lemma. As we will discuss in Section 4.3, the method used to prove the gener-
alized unfolding lemma for the kernel variant does not apply to the full variant due to the
contravariance of the bounds. Therefore, a yet more sophisticated adaptation of the gener-
alized unfolding lemma is required. Additionally, we establish several other properties for
full F£, such as type soundness, conservativity, and undecidability.

Structural Folding and Unfolding Rules. In our work, instead of standard rules for
fold/unfold expressions, we use structural rules:

TYPING-SUNFOLD TYPING-SFOLD
I'ke: 4 'rd<pua.B Thre:la—B]A '-ua.A<B
' Funfold [A] e: [a+— A] B I'+fold [B]e:B

The key point about the structural rules is that the annotations are generalized to be a
subtype/supertype of a recursive type, instead of exactly a recursive type. In particular,
this generalization enables annotating fold/unfold with a bounded type variable. This is
forbidden in the traditional rules. In the rule TYPING-SUNFOLD, it is worthwhile to men-
tion that when we have 4 < ua.B where o appears negatively in B, then there are very
limited choices to what 4 can be. Essentially, it can be ua. B itself and little else. In other
words, negative recursive types have very restricted subtyping, which is why the structural
unfolding rule can be type safe. Note also that, since the structural unfolding rules provide
almost no flexibility for negative recursive subtyping, they are insufficient to fully express
F-bounded quantification for negative recursive types.

The structural unfolding rule was presented by Abadi et al. (1996) for supporting struc-
tural updates in the object calculus that was being encoded into F< with iso-recursive
types. In their work, the structural unfolding rule is presented with an informal explana-
tion. We provide structural rules for both unfold and fold expressions, together with the
formalization of the type soundness for both rules. With the structural unfolding rule we
can, for instance, obtain the desired typing for the translate function.

P < Point, p:PFp:P P < Point, p: PF P < Point

x:Int, y:Int,
move : Int — Int — P

TYPING-SUNFOLD

P < Point, p: P (unfold [P] p): {

F translate : V(P < Point). P — P

Readers can compare this derivation to the one in Section 2.2, where the conventional
unfolding rule and the subsumption rule are used instead. The use of rule TYPING-SUN-
FOLD enables us to give a more precise type for the translate function.

Lower Bounded Quantification and F“2. We have also formalized an extension of
FZ with both upper and lower bounded quantification, called F' ég All the same results
that are proved for FZ are also proved for F' gg, including transitivity, decidability, and
type soundness. The structural folding rules become more useful in Fgg With lower
bounded quantification and the structural folding rules, we can get the correct typing for
the polymorphic Add constructor:
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num : Int —> A,
F AA. le(e.adde; e):VA.{add:E—-E— A, } - A
sub:E—E— A

E Z EXpl’
e E, e:E
TYPING-SFOLD

E > Exp;, e;:E, e;: Efold [E] (AA. Le. (e.add e; &;)): E
FAddy:V(E>Exp,). E>E—E

Records as Intersection Types. It is well known that multi-field records can be encoded
using intersection types and single-field records (Reynolds, 1988; Dunfield, 2012). In F° 22,
we follow this alternative approach to type record expressions. The record type {x : nat, y :
nat} in FZ is now simply syntactic sugar in Fgg for the intersection type {x: nat}&f{y:
nat}. To avoid records with duplicate labels being intersected, we restrict the labels in
the intersection types to be disjoint. For instance, {x : nat} & {x: nat — nat} is not a valid
type in F' gg We will further discuss such design choice in Section 5. The combination
of unrestricted intersection types and iso-recursive subtyping was studied by Zhou et al.
(2022). Our work models a restricted form of intersection types. In F" gg, only types that
are formed by intersecting single-field record types are considered, and the disjointness
relation discussed in Zhou et al. (2022) is in turn simplified to a compatibility relation
for checking well-formedness of intersection types. The intersection type operator & is
commutative and associative in terms of type equivalence so that record permutations are
obtained for free.
The typing rules for record expressions and projections in F" gg are shown below:
TYPING-SRCD TYPING-SPROJ
I; €1 are disjoint Fhei:Ad; Vijl<i<n Ttle:{l:4)

TH{li=e ") {l; : A} & ... &{l,:4,}) Threl:d

With intersection types, record expressions are now typed using rule TYPING-SRCD. As a
result, we no longer need a dedicated rule for subtyping multi-field record types, which has
a complicated definition since it needs to decide the subset inclusion of record fields and
check the subtyping relation for common fields. Instead, we can now rely on the subtyping
relation for intersection types and a direct subtyping rule for subtyping types in single-
field records. Moreover, record projections can be defined in terms of subtyping now, as
rule TYPING-SPROJ shows. When projecting a field from a record expression e, we can
simply check if the record type of e is a subtype of the expected record type.

The treatment of records in F° gg aligns closely with the way DOT (Rompf & Amin,
2016) deals with object types. Rule TYPING-DOT-OBJECT shows the typing rule for object
expressions in DOT. In DOT, object expressions are a record with a self reference variable
x bounded to the object itself, containing a list of labeled declarations d; . . . d,. When type
checking objects, each declaration is checked on its own, and the intersection of all the
declaration types forms the type of the object.

TYPING-DOT-OBJECT
d; "7 have disjoint labels T, x:4;d;:4; Vi, 1<i<n

TH{x=d...d}: x4 & ... &A4,)
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Types A,B,... = nat|T|4 > A |a|pua.4|A”

|Y(a <A).B|{l;: 4; €™
Expressions e = xl|ileiey|Ax:Ad.eled| Al@ <A).e

| unfold [A] e | fold [4] e | {I; = ¢; "€ "} | e.]
Values v = i|Ax:d.e|fold [A]v]| Ale <A4).e|{l; =v; €7}
Contexts r = -|Na<4d]|l,x:4

Fig. 1. Syntax ong.

F 22 and DOT share the same idea of using intersection types to type record expressions
or objects and both require the labels to be disjoint. Due to the use of path-dependent
types (Amin ef al., 2014) in DOT, the treatment of recursive types is different. In F’ zg, we
do not have a self reference variable in record expressions or types, and F’ gg lacks some
DOT features. On the other hand, F’ gg has key properties, such as decidability, transitivity
of subtyping, and being a conservative extension of F<, which are partly missing in DOT.
Despite these differences, we hope that F' gg can provide insights into the design of DOT-
like calculi with bounded quantification and recursive types and complement the existing
work in terms of the design space.

3 Bounded quantification with iso-recursive types

This section introduces a new calculus, called F%, integrating bounded quantification,
record types, and recursive types. We show two variants of F%. One is kernel F%, by
adopting the kernel rule for subtyping bounded quantification from kernel < (Cardelli &
Wegner, 1985). The other one is full F%, which instead adopts the full rule for subtyping
bounded quantification from full F< (Curien & Ghelli, 1992; Cardelli et al., 1994).

3.1 Kernel F - with iso-recursive subtyping

First, we introduce how to combine kernel bounded quantification, multi-field records, and
iso-recursive subtyping in kernel F£.

Syntax and Well-Formedness. The syntax of types and contexts for F% is shown in
Figure 1. Meta-variables 4, B, C, D range over types. Types consist of natural numbers
(nat), the top type (T), function types (4 — B), type variables («), recursive types (na.A4),
labeled types (4%), universal types (V(a < 4).B), and record types ({/; : 4; "€'""}). Labeled
types are types that are annotated with a label. They enable distinguishing between oth-
erwise structurally compatible types (equal types or subtypes). That is if the two types
being compared have different labels or one of the types is unlabeled, then the two types
will not be related, even when, ignoring the labels, they would be structurally compatible.
Expressions, denoted by the meta-variable e, include term variables (x), natural numbers
(i), applications (e; e;), abstractions (Ax : 4. e), type applications (e 4), type abstractions
(A(x < A). e), fold expressions (fold [4] e), unfold expressions (unfold [4] e), records
({l; = ¢; €"™}), and record selection (e.l). Among them, natural numbers, abstractions,
and type abstractions are values. Fold expressions and records can be values if their inner
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'-A (Well-formed Type)
WFT-VAR WFT-ALL
WFT-NAT wrt-Top a<Ael A I, a<ArB
I'+ nat T INa I'V(a<A).B
WFT-ARROW WFT-REC WFT-LABEL WFT-RCD
I'tA; I'tA, I a<THA I'A I'HA; for each i
[FA; — Ay [+ua.A [FAY Cr{l;:A; €y
(Subtypng)
S-NAT S-top S-vAar S-ARROW
T T I'rA FT I'ra I'tBy <A I'rA, < B,
I' + nat < nat I'rA<T Na<a I'tAy > A, <B;—B)
S-REC S-VARTRANS
Ia<Tr[la—AYlA<[a— BB a<Bel 'rB<A
I'rpa.A<ua.B I''rae<A
S-EQUIVALL S-LABEL
I'tA <Ay I'tAr, <A I',a<A+rB<C I'tA<B
I'tV(a<A)).B<V(a<A,).C I'+A® <B¢
S-rcp ) ) ]
FT Dr{kj A 7Sy (i€ (k€™ k=1 impliesTA; < B;

I'r {kj ZAj jel»--m} < {ll :B; iEl-»-n}

Fig. 2. Well-formedness and subtyping rules for kernel F° g .

expressions are also values. The context is used to store type variables with their bounds
and term variables with their types. Note that it is not necessary to distinguish recursive
variables and universal variables.

The definition of a well-formed environment I I' is standard, ensuring that all variables
in the environment are distinct and all types in the environment are well formed. A type
is well formed if all of its free variables are in the context. The well-formedness rules for
types are shown at the top of Figure 2.

Subtyping for Kernel FZ. The bottom of Figure 2 shows the subtyping judgment. Our
subtyping rules are mostly standard. The rules essentially include the rules of the algorith-
mic version of kernel F< (Cardelli & Wegner, 1985; Cardelli et al., 1994), but the rule for
bounded quantification is generalized. The rules S-VAR and S-VARTRANS are standard F<
rules. Since we do not distinguish universal and recursive variables, those rules apply also
to recursive type variables. The rule for function types (rule S-ARROW) is contravariant on
the input types and covariant on the output types. We have placed well-formedness checks
on all the base cases of the subtyping rules, which ensures that the context and types in a
subtyping relation are well formed, as shown in Lemma 3.1. Note that for this regularity
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property to hold, in rule S-RCD we require the left record type to be well formed but not the
right one, since the well-formedness of the right type can be derived from the subtyping
relation on record fields, while there might be extra fields in the left record type that are
not compared in the subtyping relation.

Lemma 3.1 (Regularity of subtyping). If I' = 4 < B, then the following well-formedness
conditions hold: (1) -T", (2)T’'+A4,and 3) ' - B.

Subtyping Bounded Quantification. The rule for bounded quantification is interesting,
stating that two universal types are subtypes if their bounds are equivalent (i.e. they are
subtypes of each other) and the bodies are subtypes. Rule S-EQUIVALL is more general
than rule S-KERNELALL since the latter requires the bounds to be equal. The reason to
have the more general rule using equivalent bounds is that, for records, we wish to accept
subtyping statements such as:

V(e <{x:nat,y:nat}).ad > o <V(x <{y:nat,x:nat})).ad > «

where the bounds can be syntactically different, but equivalent, types. In the presence of
records or other features, such as intersection and union types (Pottinger, 1980; Coppo
et al., 1981; Barbanera et al., 1995), we can have such equivalent but not syntactically
equal types. Therefore, we should generalize the rule for bounded quantification to deal
with those cases. This generalization to equivalent bounds retains decidable subtyping just
as kernel F< as we shall see in Section 4.3.

Subtyping Recursive Types. For dealing with iso-recursive subtyping, we employ the
recent nominal unfolding rules (Zhou et al., 2022), which have equivalent expressive
power to the well-known (iso-recursive) Amber rules (Cardelli, 1985). The nominal
unfolding rules have been discussed in Section 2.1. The reason for choosing the nomi-
nal unfolding rules is that they enable us to prove important metatheoretical results, such
as transitivity, and develop an algorithmic formulation of subtyping.

We extend the rule S-NOMINAL to the rule S-REC in F%, by bounding recursive variables
with T when they are introduced into the context. Therefore, recursive variables are also
treated as universal variables, and we do not need to adjust the form of contexts in F'< for
F. Apart from this, no other changes are necessary, making the addition of recursive types
mostly noninvasive. Consequently, the proofs of narrowing, reflexivity, and transitivity
are the same as the original one for F'-, except for the new cases dealing with recursive
types and minor adjustments to the rule of bounded quantification due to the generalization
to equivalent bounds. For those new cases, the proofs are all straightforward from the
induction hypothesis.

Lemma 3.2 (Narrowing). If ' C<C' andT'j,a <C, T, -4 <B,then 1,0 <C, I, -
A <B.

Theorem 3.3 (Reflexivity). If FI'and ' A4, then ' -4 < 4.

Theorem 3.4 (Transitivity). f’'FA<Band'FB<C,then'+4 <C.
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The Unfolding Lemma. Another important lemma is the unfolding lemma, which reveals
that, if two recursive types are subtypes, then their unfoldings are also subtypes. The
unfolding lemma is important for proving type preservation in a calculus with iso-recursive
subtyping. A key difficulty in the formalization of FZX is proving the unfolding lemma
which, due to the presence of bounded quantification, requires a different proof technique
compared to the proofs by Zhou et al. (2022). We discuss the proof of the unfolding lemma
in Section 4.1.

Lemma 3.5 (Unfolding Lemma). If '+ pe.4 < pa.B, then I' - [o > po. Al 4 <[o +—
uo.B] B.

3.2 Full F with iso-recursive subtyping

In full F£, which incorporates full F- and iso-recursive types, the sole distinction from
the kernel variant of F% lies in permitting contravariant bounds, so we only present the
differences between the two variants.

(Section 3.1). As for the subtyping rules, rule S-EQUIVALL is replaced by rule S-FULLALL
in full F£.

Syntax and Subtyping. The syntax of the full F£ is identical to that of the kernel F£

S-EQUIVALL
I'A4, <4, A4, <A, ' a<A,FB<C

'FVY(a<A4)).B<V(a<4,).C

S-FULLALL
I'+4, <4, ' a<A,FB<C

'FY(a<A4)).B<V(a<4,).C

The only distinction between these two rules lies in the variance of the bounds:
rule S-FULLALL permits contravariance, allowing A4, to be a subtype of A4;, whereas
rule S-EQUIVALL demands 4, to be equivalent to 4;. The change to the subtyping rules
in full F£ does not impact many subtyping lemmas, such as reflexivity (Theorem 3.3)
and transitivity (Theorem 3.4), which remain provable by reusing proof techniques from
full F<. However, as we shall see in Section 4.1, the unfolding lemma (Lemma 3.5) needs
a different proof technique due to the presence of contravariant bounds in full F£. In
Section 4.1, we will present a new generalized unfolding lemma that can be proved in both
kernel and full F£. With this new lemma, we can prove the unfolding lemma (Lemma 3.5)
for full F£.

3.3 Typing, reduction, and type soundness

The two variants of the subtyping rules have no impact on proving type soundness.
Therefore, the typing and reduction rules remain consistent across both variants. Figure 3
shows the typing rules and reduction rules. Most rules are standard except for the typ-
ing rules for unfold and fold. For these two expressions, we use structural rules instead
(rule TYPING-SUNFOLD and rule TYPING-SFOLD), as explained in Section 2.3.
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(Typing)

TYPING-NAT TYPING-VAR TYPING-SUB

T +T x:Ael I're:A I'rA<B
I'ti:nat I'kx:A I'te:B

TYPING-ABS TYPING-APP

I', x:Ajre: Ay I'te :Al > A I'tey: Ay
I'tAx:A.e: A1 > A I'terer:Ap

TYPING-TABS TYPING-TAPP

I, a<Are:B Tre:V(a<B)).B» TrA<B
I'rA(e<A).e:V(e<A).B

Il'reA:[a—A] B,
TYPING-SFOLD TYPING-SUNFOLD

I'te:[a—B]A 'rua.A<B Ire:A 'rA<upa.B
I'+fold [B] e:B

I'+unfold [A] e: [a— A] B

TYPING-RCD

D TYPING-PROJ .
I; '€ are disjoint I'te;:A; Vi,1<i<n Cre:{l;:A; €}
FI—{liZeildmn}:{liiAilElmn} er.li:Ai
e > e (Reduction)
STEP-APPL STEP-APPR
STEP-BETA 1> e e ¢}

(Ax:A.e1) vy = [x > 1] e ejer—el e viey— v e
STEP-UNFOLD
STEP-FLD

e—eée

unfold [A] (fold [B] v) — v unfold [A] e = unfold [A] ¢’

STEP-FOLD STEP-TAPP
STEP-TABS
e—eée e <> e
fold [A] e — fold [A] € etA>e A (Ala<A).e)B— [a—B] e
STEP-PROJ
e el STEP-PROJRCD
’ _ iel---n
e.lee.lj {li—Vi }.lj%\/j
STEP-RCD
’
e; ad ej

iel---j—1 kej+1--- jel---j—1 kej+1--
{li=vi "7 lj=ej, lk=ex "My o {li=v T Ly =el, k= T

Fig. 3. Typing and reduction rules.
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Fe:la—~>ClA4 -Fua.A<C
‘Hfold[C'] e: C’ HC' <D
-Ffold[C']e: D’ =D < po.B
- unfold[D'](fold[C'] ¢) : [ +— D'] B

TYPING-SFOLD
TYPING-SUB
TYPING-SUNFOLD

Fig. 4. Structural unfolding derivation.

Structural Unfolding Lemma. Since the typing rules that we adopt for fold/unfold
expressions are the structural rules, which generalize the conventional rules, we need a
more general form for the unfolding lemma. The generalization of the lemma is necessary
for the type preservation proof with the structural folding/unfolding rules. We call the new
lemma the structural unfolding lemma:

Lemma 3.6 (Structural unfolding lemma). If '+ pe.4 < puo.C < pa.D < pa.B, then
'lo— pa.Cl4A <[a+ pa.D] B.

In this lemma, in the one-step unfolding the recursive types substituted in the bodies are,
respectively, a supertype and a subtype of puo.4 and pe. B. In contrast, in the unfolding
lemma proposed by Zhou et al. (2022), the recursive types that get substituted in the bodies
are the same. As Sections 4.1 and 5.3 will discuss, both forms of the unfolding lemma can
be proved using a more general lemma.

Type Soundness. To see how the structural unfolding lemma is used in the proof of type
preservation, let us consider the typing derivation of an expression unfold [D’] (fold [C"] e)
in Figure 4. Starting from a closed expression, both C" and D" must be recursive types;
thus, we assume that C’' is ua.C and D’ is pua.D. The type of unfold [D'] (fold [C'] e)
becomes [« +— wo. D] B, and it should be a subtype of [« — ua.C] 4, which is the type
of reduction result e.

The other parts of the type soundness proof are standard; thus, we have:

Theorem 3.7 (Preservation). If-e: 4 and e ¢/, thent¢': 4.

Theorem 3.8 (Progress). If e : A, then e is a value or e < ¢’ for some ¢'.

3.4 Algorithmic typing

The rules that we have presented in Figure 3 are declarative. The conclusion of the
subsumption rule overlaps with all other rules, making it nontrivial to derive an imple-
mentation from the rules.

Figure 5 shows the algorithmic rules for typing. Compared with the declarative typing
rules, the subsumption rule (TYPING-SUB) is removed. Also, the application (TYP-
ING-APP), type application (TYPING-TAPP), structural folding (TYPING-SFOLD), structural
unfolding (TYPING-SUNFOLD), and record projection (TYPING-PROJ) rules are replaced
by rules ATYP-APP, ATYP-TAPP, ATYP-SFOLD ATYP-SUNFOLD, and ATYP-PROJ, respec-
tively. In the algorithmic typing rules, we take the standard approach of distributing
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I'rANB (Upper Exposure)
XA-PROMOTE XA-up
a<Ael I'rAN B A is not a type variable
'ra I B 'rAfA
I'rA|lB (Lower Exposure)
XA-DOWN
XA-op A is not a type variable or T
I'eT™ | pa. T I'rA |l A
(Algorithmic Typing)
ATYP-NAT ATYP-VAR ATYP-ABS
I I x:Ael’ I', x:Ajrpe: Ay
I't,i:nat I'tyx:A Ity Ax:Aj.e: Al > Ay
ATYP-APP
I'tie1:A Fr'rAftA —A I'tyer:B I'tB<A;
I'toerer:Ap
ATYP-TABS ATYP-TAPP
I' a<Av,e:B T'tye:B I'tB I Y(e <By).B; I'tA<B;

I'rg Al@<A).e:V(@<A).B

ATYP-SFOLD

I'tye:A I'-C | pa

I'rgeA:|la—A] B

.B I''rA<[a—C]B r'eC

'+, fold [Cle:C

ATYP-SUNFOLD

rpe:A r

FB ) pa.C I''A<B

I't,unfold [B] e: [a— B] C

ATYP-RCD
L iel---
i

" are disjoint

I'tgeitA; Vi, 1<i<n

Fl—a {ll =e;

ATYP-PROJ

IN'tge:A

i€1~--n} . {ll :Ai i€1~--n}

CrA T {l A €0y

I'+, e.l,- tA;

Fig. 5. Algorithmic typing.
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subtyping checks in appropriate places in the other rules, thus eliminating the need for
the subsumption rule.

One interesting point is the two exposure relations f and | in F£. In F-, there is only
the upper exposure function (I' - 4 1} B), which is used to find the least non-variable upper
bound for a variable in the context (Pierce, 2002). Consider the term

(A(x <nat— nat). A(y: ).y 5): V(o < nat — nat).« — nat.

Without the upper exposure function in the rule ATYP-TAPP, the y in the function body
would be typed as its minimal type «, which cannot be unified with a function type with
the argument type nat. The exposure function finds the smallest type that matches the
expected type, such as the function type for the argument y in the example above. Thus,
the upper exposure function plays an important role in finding the minimal type with the
algorithmic typing rules. To make our rules more general, we additionally define the lower
exposure function (I' =4 | B) to find the greatest non-variable subtype B for A. For F£,
lower exposure only helps to find the correct shape for the recursive type body to be folded
in rule ATYP-SFOLD by mapping T to pe. T so that it is valid to type check expressions
accepted by the structural rule TYPING-SFOLD like

(fold[T] 1) : pa. T

with the algorithmic typing rules. The lower exposure function will be more useful when
we have lower bounded variables in the system, as we will see in Section 5.

The algorithmic rules are equivalent (sound and complete) with respect to the declarative
rules:

Theorem 3.9 (Soundness of the algorithmic rules). If ', e:A4,then ' Fe: 4.

Theorem 3.10 (Completeness of the algorithmic rules). If [' e : 4, then there exists a B
suchthatT',e:Band ' B < A.

Theorem 3.10 implies that our algorithm can always find a minimal type, which is an
important property for F.

It should be noted that there is no difference in terms of algorithmic typing rules for both
variants of FZ, though for full FZ, the algorithm might not terminate, since subtyping is
undecidable for full FZ£.

4 Metatheory of %

In this section, we discuss the most interesting and difficult aspects of the metatheory of
F% in more detail. We cover three key properties: the unfolding lemma for F£, the con-
servativity of F£ over the original F, and (un)decidability of subtyping. The interaction
between iso-recursive types and bounded quantification requires significant changes in the
proofs of the unfolding lemma and decidability. In addition, we show how to prove the
conservativity of F£ over F- using the algorithmic formulation of F£.

4.1 Unfolding lemma

The unfolding lemma (Lemma 3.5) is a core lemma for the metatheory of a calculus with
iso-recursive subtyping. Though the statement of the unfolding lemma is quite simple and
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intuitive to understand, the lemma cannot be proved directly. We will first review previous
approaches for proving the unfolding lemma, which do not account for bounded quantifi-
cation or only apply to kernel F%. Then we show how to generalize the unfolding lemma
to address all the complications arising from the interaction of iso-recursive subtyping and
bounded quantification, including the case of full F£.

The Generalized Unfolding Lemma for Iso-Recursive Subtyping. We first review the
unfolding lemma for the special case of iso-recursive subtyping without bounded quantifi-
cation. Because the premise of the unfolding lemma is restricted to a subtyping relation
between two recursive types ua.4 < po. B instead of two generic types 4 and B, a direct
induction on the premise is problematic, as it fails to provide a useful induction hypothesis
for reasoning with nominal unfoldings like [« > A“] 4, where the type after substitu-
tion may not be a recursive type. In Zhou et al. (2022)’s work, the unfolding lemma is
generalized to the following form:

Lemma 4.1 (The generalized unfolding lemma in Zhou et al., 2022). If ', ¢, I, A <B
and I'y F pa. C < pa. D, then
1. T,o, e~ C*]14 < [a+ D*] B implies
,HFla— pa.Cl4 <[a+— pna.D] B;
2. T,o, Fla— D*1 4 <[a+— C*] B implies
', MHFla— pa.D]A <[a+— ua.C]B.

Due to the tricky interaction between rule S-VAR and rule S-ARROW, in the generalized
unfolding lemma we need two mutually dependent lemmas: one for covariant cases (1)
and the other for contravariant cases (2). The proof for Lemma 4.1 proceeds by induction
on I'y, o, ', A4 < B. In the inductive proof, we need to switch between covariance and
contravariance. In particular, in the rule S-ARROW case for functions, we need an induction
hypothesis that arises from conclusion (2) to prove the contravariant premise I' - B} < 4,
relating the input types of the function.

The Generalized Unfolding Lemma for kernel FX. When bounded quantification is
taken into account, Lemma 4.1 is unfortunately not general enough. The key difference
is that now the contexts are no longer just a list of type variables but also associate a type
bound with each type variable. Moreover, the bounds are dependent on the type variables
in the order they appear so that in the context I';, the bounds may contain the type variable
«. Since rule S-VARTRANS may look up a bound in the context I';, and compare it with
the right-hand side of the subtyping relation, to apply the induction hypothesis, the bound
type in the context should be equal to the substitution form [« +—?“]U as in the subtyp-
ing relation. To address this issue, Zhou et al. (2023) extend the unfolding lemma to the
following form:

Lemma 4.2 (The generalized unfolding lemma for kernel F£ in Zhou et al., 2023). If (1)
I, a<T,MFA<B, Q)T 1 Fua.C<pax.Sand (3) ' F pe.S < po.D then
1.T, a<T, e~ S*|F[a > C*] 4 <[« — D“] B implies
Iy, Dila— pe.SIH[a— pa.Cl A4 <[a+— noa.D] B;
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2.7, a<T, e S*1F[a+— D] 4 <[a+> C“] B implies
Iy, Do po.S1H[a— pa.D] A <[+ ua.C] B.

We explain a few key points in the proof of Lemma 4.2 together with some proof
sketches below.

Firstly, the context I'y now comes with a substitution. Here, the syntax I' [« +— §] denotes
that all the occurrences of « in context I' will be replaced by a specified type S. With
substitutions in the context I';, in case S-VARTRANS and S-EQUIVALL, the premise from
inversion can have the same form as the original premise and thus the induction hypothesis
can be applied. For example, in case S-VARTRANS, assume that 4:= 8, B:=B, and I';
contains a bound 8 < U. We need to prove the following goal:

I, Mo pa.SEB<[e¢r— uax.D]B

By analyzing the context we know that § <[«o +— puw.S] U € I'[a — pa.S], so we only
need to show

I, Dofa— pa.S1H o= pe.S]U <[a+— pua.D] B.

This can be proved by instantiating the induction hypothesis with C :=S and D:=D. In
this way, we overcome the issue with the substitutions in the context I';.

Second, note that the substituted type is neither C nor D, but an intermediate type S that
lies between C and D. This is to ensure that the induction hypothesis can be applied to
both the contravariant and covariant subgoals in case S-ARROW. Otherwise, consider an
alternative lemma where S is fixed to be D. In case S-ARROW, assume that 4 :=4; — 4,
and B := B — B;. We need to prove two subgoals:

1. I', Do — po. Dl [a— po.Cl Ay <[a+— pa.D] B,

2. I, Dhlat— po. D) [a+— puo.D] By < [a+— pa.Cl 4,

If one follows the original proof steps in Lemma 4.1, the induction hypothesis has to be
instantiated with C := D and D := C so that the substitution matches with the two types in
the subtyping relation for the contravariant subgoal (2). In that case, the substituted type in
the context I', becomes pw. C, which cannot be used to prove the subgoal (2). Therefore, in
Lemma 4.2 an intermediate type S is introduced to decouple the substitution in the context
and in the subtyping relation for the function case. In other words, the invariant substitution
with type puw.S to the context makes the induction hypothesis applicable to both subgoals,
regardless of the substitution in the subtyping relation.

Finally, having the intermediate type S will not affect the inductive proof for case
S-EQUIVALL in kernel F%X. We assume that 4 :=V(8 <4,).4, and B:=V(B <B)).B,.
The goal would look like:

I, Do pa.STH[a— pa. C1 V(B <A41).4A, <[a+— pa.D]V(B < By).B;
After simplification and applying rule S-EQUIVALL, one of the goals becomes:
', Do pa.S), B<[er— pua.D] B Fla— pua.Cl A; <[a+— pua.D] B,

To apply the induction hypothesis, we need to unify the new bound 8 < [a — uw.D] B,
and the existing context I';[a — pe.S] into the same substitution form. In other words,
we need to show the following two environments are equivalent:
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Mla— pa.S), B<[a+> pa.D]B; =, B <B))|[a+ na.S] 4.1

This can be done by showing that pe. S is equivalent to pwa. D. To prove this, we rely on
the fact that the bounds [o — C“]4; and [a — D“]B, are equivalent, and the following
inversion lemma on substitution:

Lemma 4.3 (Substitution inversion). If 4 is equivalent to B, and [« +— C*] 4 is equivalent
to [ — D“] B, then either C is equivalent to D or « is not in 4 nor B.

For the first case we get from Lemma 4.3, by the fact that S lies in the middle of C and
D, we can show that all the three types pa.C,ue.S, and pa.D are equivalent. For the
second case, since « is not in 4 nor A,, we can freely rewrite the substituted types to
any types in the context. In either case, the rewriting in (4.1) can be achieved, so that the
induction hypothesis can be applied to the subgoal. The critical point here is that, although
the substitution form in the context is indeed affected by the new bound introduced by
rule S-EQUIVALL, since kernel F£ requires all pairs of the bounds in the subtyping relation
to be equivalent, the type S will converge into the types C and D in the end.

The Generalized Unfolding Lemma for Kernel FZ.. In Zhou et al. (2023)’s work, an
extension to kernel F£ is proposed, called F%., which extends kernel FX with lower
bounded quantification and bottom types. It is worth noting that these new features will
break the proof of Lemma 4.2 we have discussed above. The interaction of lower bounds
and upper bounds invalidates the following inversion lemma for rule S-VARTRANS, which
has been used to prove Lemma 4.2:

Lemma4.4. fao<Aelandl'+a <B,where « #B,then' -4 <B.

In Lemma 4.2, there is more than one subtyping statement on the premises related to
type A and B. During the proof we do induction on the premise (1), and use the inver-
sion lemma to match the subderivation of [a — C%] 4 < [a +— D“] B with the induction
hypothesis we get from the premise (1). Lemma 4.4 holds when the bounds in the context
can only have one direction. However, when we have both kinds of bounds in the context,
a counterexample can be found as follows:

x<T,y2xkx<y = x<T,y>2xFT=<y

To avoid using this inversion lemma in the proof of unfolding lemma, we need to refine
the generalized unfolding lemma for kernel F£:

Lemma 4.5 (The generalized unfolding lemma for F%. in Zhou et al., 2023). If
1. T, a<T, hFA4and Ty, a <T, I'yFB;
2. GH[a— C*] A <[a+ D*]B;
3. Gdiffers from I'y, o < T, I'x[a — S“] only in the components labeled by o, where
S% can be replaced by 7 that satisfies [, - po.S<pue.Tand I') F po. T < pa. S,
then
I. T/ Fpae.C<upa.S and '+ pa.S <pa.D implies ', Do pa.STH[o—
ua.ClA <[a+— ua.D] B;
2. MFpae.D<pwa.S and T+ pe.S < po.C implies ', o pa.STH[o—
ua.ClA <[a+— ua.D]B.
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In the refined generalized unfolding lemma, we integrate the two subtyping statements
into one statement, by having the premise (1) in Lemma 4.2 induced implicitly. This can
be justified by the fact that the one-time unfolding is implicitly derived from the nominal
unfolding:

Lemma 4.6 (Inversion on nominal unfoldings). If I' F[o+— C“] 4 <[a +— D] B, then
'HA4<B.

To accommodate this change, the context is also refined to be more general, by allowing
the substitution type in the subtyping context of premise (2) to be any type T equivalent to
S. We omit the detailed proof for this lemma, since it was done in the appendix of Zhou
et al. (2023) and is no longer used in the generalized unfolding lemma for full 7% and F%2
we will present in this paper. However, the idea of using Lemma 4.6 to avoid the issue of
using Lemma 4.4 still applies, as we will show next.

The Generalized Unfolding Lemma for full F£. It is not straightforward to generalize
the unfolding lemma to full F£. As we have seen in the last observation of Lemma 4.2,
the proof relies on the fact that the bounds in the subtyping relation are equivalent, so that
during the proof, the intermediate type pc.S can be rewritten to pe. C or pe. D. However,
in full F£ we use rule S-FULLALL, which fails to maintain the equivalence of the bounds.
We need to consider a new approach to generalize the unfolding lemma for full F£.

If we revisit the use of the generalized substitution type S in the context I', in
Lemma 4.2, we can see that, during the proof, in most cases we just pass the same type S
around in the induction hypothesis. The exception is for the case of S-VARTRANS, where
the type S is instantiated to C or D. This suggests that the issues with the unfolding lemma
in full F£ can be solved if we can find a different approach to the S-VARTRANS case and
remove the intermediate type S from the generalized unfolding lemma. In that case, the
requirement for the equivalent bounds can also be lifted.

To this end, we note that the introduction of the type S in Lemma 4.2 is essentially an
over-generalization, since throughout the derivation of [a > C%] 4 < [a +— D*] B, only
the substitution C or D will be introduced into the context. Thus, the generalized unfolding
lemma can focus only on the substitution of C or D. However, in full F%, it can happen that
we cannot find a uniform substitution type for the variable « in the context I';. Due to the
contravariant subtyping in rule S-ARROW, the substitutions can flip between the two sides
of the subtyping relation, so both C and D can be introduced into the context. Therefore,
we define the following notion of related contexts to characterize such contexts:

Definition 4.7 (Related contexts). Given a type variable «, an initial context 'y, and two
types pua.C, po.D, two contexts I' and I', are related, written I' =T, if they can be
derived using the following rules:
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r=r, (Related contexts)
EXTENV-BASE EXTENV-CONSC
FTy a ¢ dom Ty F’EF; B ¢ dom T
o, < T =Ty I p<[ar CIA=T), B <[ar> pua.Cl4

EXTENV-CONSD
!~ /
'=r, B ¢ domI'y

I',B<[ar> D*JA=T, B <[a+> pa.DlA

The definition of related contexts is parameterized by a type variable o and a subtyping
relation Iy - pa. C < pa. D3 As we will see, the two contexts I' and I', are essentially
the subtyping contexts that will be used in the generalized unfolding lemma for the premise
and the conclusion, respectively. They extend the context I'y with new bindings that are
either under the substitution C or D. Moreover, each pair of bindings in the two contexts
should be matched in terms of the substitution type C or D and the base type A should be
the same. For example, consider the following instance of the unfolding lemma we aim to
prove:

I'Ele— C*(4) = 42) <[a+> D*](B1 — B»)
MF[a pa.Cl(4) = 42) <[a+— pa.D](By — By)
where T1=a<T,B8<[a+> C|T},y <[a+> D“IT;
=g <lar pua.ClT\,y <[a > pa.D]T;
and A, A4, By, By, T1, T, can be any well-formed types.

By definition, I'; and I'; are related under the subtyping relation -+ pua. C < ua. D, that
is, I'y = I',. When proving the above goal, for the contravariant case of function types, we
need to show that the following holds:
' F[a— D¥IB; <[a+— C*]4;
I e pa.D]B; <[a+— ua.Cl4;

To prove this by induction, I'; and T', should be related under the subtyping relation
-k pa.D < pa. C, which flips the order of na. C and po. D in the parameter of the related
contexts. This is possible because the related contexts are defined to be symmetric in terms
of the substitution types C and D. This flexibility allows us to prove the generalized unfold-
ing lemma for full F£ without the need for the intermediate type S as in Lemma 4.2 to
handle the contravariance.

With the notion of related contexts, we can prove inversion lemmas for looking up the
bounds in the related contexts:

Lemma 4.8 (Inversion lemma for related contexts). If I' and I',, are related under the
variable «, the shared context Iy, and the types pwa. C and pa. D, then for any type variable
B,if B <U €T and B # «, one of the following holds:

3 We say that the related contexts are parameterized by the subtyping relation just for the sake of convenience.
They are actually parameterized by the components in the subtyping relation, that is, the variable «, the shared
context Iy, and the types C and D. Whether the subtyping relation I'g - pe. C < pee. D holds does not matter,
as we shall see shortly.
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1. there exists U’, s.t. U =[a = C*]U" and B <o~ pa.ClU' €T, or
2. there exists U', s.t. U =[a +> D*]U" and 8 < [ > pa.D]JU’ € Ty,.

We can now state the generalized unfolding lemma for full F%:

Lemma 4.9 (The generalized unfolding lemma for full F£). If contexts I and I',, are related
under variable « and if I'g - pa. C < po. D, then

I. 'F[a— C*]4 < [a+— D“]B implies I, - [a — po. Cl4 < [ — pa. D]1B

2. I'Fla— D¥]4 < [a +— C*]B implies I, - [a = po. DA < [a = pa. C1B

3. 'l C*]4 <[a+— C¥]B implies I', F [a¢ = po. CJA < [ = po. C]B

4. ' la— D¥]A <[+ D*]B implies I', - [a — po.D]A < [ — pa.D]B

Compared to previous versions of the unfolding lemma, in addition to conclusion (1)
and (2), which talk about the covariant and contravariant substitutions, now we add two
more conclusions (3) and (4) for the case where the substitutions are the same as C or
D. As we will show in the proof sketch below, these two additional conclusions generate
useful induction hypotheses for the proof of rule S-VARTRANS so that we no longer need
to rely on the intermediate type S as we did in Lemma 4.2. Moreover, we follow the same
approach as in Lemma 4.9 to drop the premise of 4 < B and avoid the use of inversion
lemmas.

Proof We prove the four mutually dependent goals in the lemma by induction on the
premise I' - [ 714 < [a —7*]B. We unroll the mutual induction hypothesis here and
assume four separate induction hypotheses available in the proof for the sake of presenta-
tion. In the rest of the proof, we will refer to them as IH(#) for the induction hypothesis
generated by the proof goal (n). We show the interesting cases below:
e Rule S-VARTRANS: We show the proof goal (1) here. Assume 4 = 8, where 8 <
UeT,and T H U <[a+ D“]B, by Lemma 4.8 we get two cases:
1. There exists U', U=[a +> C*]U’ and B < [a — pa.ClU’ €T',,. We need to
show ', F [a — po. ClU’ < [a > pa. D]B. We can apply TH(1) directly.
2. There exists U’, U=[a+ D*]U" and B <[a+> pne.D]JU’ €T,. We need
to show I', - [ = po. D]U’ < [ > pa. D]B. We can apply TH(4) directly.
Note that in this case, the substituted type on both sides is D, which motivated
us to state cases (3) and (4) in the lemma.
The proof for the other cases is similar to this one, by first applying Lemma 4.8 to
get the corresponding cases, and then choosing the induction hypothesis that applies
to complete the proof.
e Rule S-ARROW: Assume 4 = A} — A, and B = B; — B;, for proof goal (1), we need
to prove two subgoals:
1. I'yFla— pa.D]B) < [a— pa.Cl4;
2. I'yFla pa.Cld; < [a— pa.D]B,
The covariant subgoal (2) follows from IH(1) directly. In subgoal (1), due to the
contravariant subtyping, the substituted types are flipped in the subtyping relation.
Therefore, we need to apply IH(2) to complete the proof. The proof of subgoal (2) is
similar to the proof of subgoal (1), by applying IH(1) to the contravariant subgoal,
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and [H(2) to the covariant subgoal. For subgoals (3) and (4), the induction hypothesis
can be applied directly since the substituted types are the same on both sides.
e Rule S-FULLALL: Assume A =V(8 <Bj).A; and B=V(B < B;).4,. We show the

proof of goal (1) here. In this case, we need to prove two subgoals:

I. Ty e pa.D]B; <o+ po.ClB;

2. T, B<[ar pa.D]By F[a— pua.Cl4; <[o+ poa.D]A;
The proof of subgoal (1) is similar to the proof of subgoal (1) in the rule S-ARROW
case, by applying IH(2) to the contravariant subgoal. Next, in order to apply IH(1) to
the covariant subgoal (2), we need to show that the context (I, 8 < [o > D*]B;) and
(I'y, B <[+ pa.D]B,) are related, which follows from the definition of related
contexts. Therefore, we can apply IH(1) to complete the proof. The proof of other
goals is similar to the proof of goal (1). Thanks to our definition of related contexts,
we do not need to worry about whether the substituted type is C or D when we add
a new binding into the context in the proof of subgoal (2). |

To conclude, in this generalized unfolding lemma, we introduce two more conclusions
for the case where the substitutions are the same as C or D, and we define related contexts
to characterize the contexts that will be used in the proof. In this way, we prove the case
of rule S-VARTRANS without the need for an intermediate type S, so that rule S-FULLALL
can be handled as well. In fact, the proof technique we use here is quite general. We also
redevelop a generalized unfolding lemma for kernel % using the same approach as in
full F%. As we will see, this generalized unfolding lemma can also be used to prove F:2,
without the need for significant changes.

4.2 Conservativity

One important feature of F% is that it is conservative over F<. Conservativity means that
equivalent F< judgments in F£ should behave in the same way as in F-. For instance, if a
subtyping statement is valid in -, then it should also be valid in F%. Dually, if a subtyping
statement over F-types is invalid in F-, then it should also be invalid in F%. In some
calculi, including extensions of < with equi-recursive types (Ghelli, 1993), conservativity
is lost after the addition of new features.

To avoid ambiguity, we let Fr " be the well-formedness of environment, I' -5 4 be
the well-formedness of types, I' -r 4 < B be the subtyping relation, Fx e be the well-
formedness of expressions, and I' -5 e : 4 be the typing relation in <, where the subscript
F stands for the original F< calculus. All the definitions and rules for F< are essentially
subsets of the corresponding definitions and rules for F% presented in Section 3, except
that the rules involving records and recursive types are removed, and that in kernel F.,
the rule S-EQUIVALL is replaced with the rule S-KERNELALL. Note that the properties we
will show below in this section are demonstrated in both variants of FZ£. In other words,
full F£ is conservative over full F- and kernel FZ is conservative over kernel F-.

Conservativity of Subtyping. Our conservativity result for subtyping is relatively easy
to establish:
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Lemma 4.10 (Conservativity for subtyping). IfI', 4, and B are well formed in F, namely
Dk, 2)THrAd,and 3) ' B, then'Fp A <Bifandonlyif ' A4 <B.

Here, the well-formedness conditions ensure that I', 4, and B must be respectively a valid
F - environment, and valid F'< types. That is they cannot contain recursive types (or record
types). Therefore, the lemma states that for environments and types without recursive
types, the two subtyping relations (for F< and F%) are equivalent, accepting the same
statements.

The proof of this lemma is straightforward, except for the case of rule S-EQUIVALL
from FZ to F-, as the rule S-KERNELALL in F< requires the two types to be exactly the
same instead of being equivalent. This is easy to fix, given that kernel F< subtyping is
antisymmetric. This property was shown by Baldan et al. (1999) for a restricted form of F-
bounded quantification, and we adapt their proof to our setting. The antisymmetry property
is stated as follows:

Lemma 4.11 (Antisymmetry of kernel F< subtyping). If TFrA<Band 'pB <4 in
kernel F<, then 4 = B.

Conservativity of Typing. It is straightforward to obtain one direction of the conserva-
tivity result, from a typing relation in F< to a typing relation in FZ. As for the reverse
direction, the situation is more complicated. If we want to derive ' Frpe: 4 from ' e : 4,
when doing induction, for the subsumption case (rule TYPING-SUB), we need to guess an
intermediate type. However, we do not know if it involves recursive types or not. Consider
the following example:

Flix.x:T—>T FT>T<ua.T)—T
Fixx:(uoe. T)— T Fuae. T)->T<T
Fix.x:T

TYPING-SUB
TYPING-SUB

Although the final judgment - Ax. x: T does not involve recursive types, the typing sub-
derivations can contain recursive types. As a result, the induction hypothesis cannot be
applied.

This problem can be addressed by employing the algorithmic formulation of F, shown
in Section 3.4. With algorithmic typing, we can have more precise information about
the types of an expression, since algorithmic typing always gives the minimum type.
Therefore, it can be proved that, for expressions that do not use fold/unfold constructors,
their minimum types do not contain recursive types either. We state this property as the
conservativity lemma for subtyping:

Lemma 4.12. If ', 4, and e are well formed in F, namely (1) FrT", (2) ' Fr 4, and (3)
Fre,then ', e: 4 implies'Fre: A.

Now, given a typing relation I'e: 4 in FZ, we first use the minimum typing property
(Theorem 3.10) to obtain its minimum type B suchthatI' -, e: Band I' - B < 4. Applying
Lemmas 4.12 and 4.10, we complete the conservativity proof for the declarative version
of F£.
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Theorem 4.13 (Conservativity). If I, 4, and e are well formed in F<, namely (1) Fr T, (2)
'pAd,and B)Fre,then'Fre:Aifandonlyif 'e: A4.

4.3 Decidability

This section focuses on the decidability of kernel F£. We first start by reviewing the
approaches to proving decidability in kernel F<, and in nominal unfoldings, and then
describe our approach to prove decidability. These two previous approaches to prov-
ing decidability employ different measures, which creates a challenge for proving the
decidability of kernel F£.

Decidability of kernel F-. It is well known that bounded quantification for full F< is
undecidable (Pierce, 1994). However, for kernel F, identical bounds make the system
decidable. A common practice is to define a weight function to compute the size of a type
(Pierce, 2002):

weight~(T) = 1

weightr, o4, () = 1+ weightr (4)

weightr(V(a <A4).B) = 1+ weighty ,_,(B)
weight(A — B) = 14 weight(A) + weight(B)

For a universal type, we store its bound into a context I', and when we meet the universal
variable, we retrieve its bound from the context and compute the size recursively. Since
the size of a conclusion is always greater than any premise, this measure can be used to
show that the subtyping algorithm in kernel F'< terminates for all inputs.

Decidability of Nominal Unfoldings. The nominal unfolding rule in simple calculi with
subtyping is also decidable (Zhou et al., 2022). Compared with kernel F-, the decidability
proof of nominal unfoldings is trickier. Based on the substitution of the type body, after
every unfolding, the size of types will increase. Thus, a straightforward induction on the
size of types does not work. Zhou et al. (2022) choose a size measure based on an over-
approximation of the height of the fully unfolded tree. Concretely, the height of a type 4

in a measure context W (V :=- | ¥, o +— i, where i is a natural number) is defined as:
heighty,(T) = 0
height (o) = Y(x)ifaeWelse 0
heighty (A — B) = 1+ max(heighty(A), height,(B))
heighty(na.A) = 1+ leti=heighty,,  ((4)in heighty ,, ;. (4)

The size measure of a type 4 is defined as /eight(4) where the context is empty. In contrast
to kernel F-, the context here is used to store the size of the corresponding recursive
variables. The key design in the Aeight function is that the measure of a recursive type
no.A is computed by first setting the measure of the recursive variable to 0 and then
computing the measure of the body, which achieves the effect of measuring the type body
A considering « as a free variable. The computed measure is then incremented by one to
account for the labeled type A, then height(A) is computed again with the context updated
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for the recursive variable, so that intuitively the result of height(ia. A) measures the size
of [ — A%]A4 plus one. Zhou et al. (2022) prove that such height measure works well with
nominal unfolding rules, as the height of a type will precisely decrease by one for every
nominal unfolding.

Decidability of Kernel FZ. To combine these two approaches, we need to extend the

measure of nominal unfoldings with the measure of kernel F< in a seamless manner. One

easy fix to unify the two measures is to use the maximum function for both measures, as
the nominal unfolding measure does. However, there are three remaining main challenges
that we must address:

o Inconsistent measures for variables: In the height function, type variables are treated
as base cases, whereas in the weight function, the computation continues by retrieving
the variable’s bound from the context. In kernel F%, we do not distinguish between
recursive and universal variables, so we need to find a unified way to measure variables.

e Different purposes of contexts: The context in the weight function straightforwardly
keeps track of universal bounds, which are later retrieved to compute the measure of a
universal variable. This ensures that the premises in rule S-VARTRANS have smaller type
measures than the conclusion. However, this trick does not work for nominal unfoldings,
as shown by the case height, (o. A), where the context is extended with two different
measures for the same variable at different points in the computation to simulate the
nominal unfolding. This discrepancy complicates the unification of the two measures.

e Loss of measure information with equivalent bounds: We use rule S-EQUIVALL
instead of the standard rule S-KERNELALL for F<. Given the equivalent bounds in
kernel F<, the measure for the subtyping relation I'V(a <4,).B) <V(x <4).B;
includes the measures of 4, 4,, B, and B,. However, the measure for the premise
I',a < A, - B| < B, loses the measure of 41 because it is not stored.

We first show the measure used for the decidability of kernel F£ and then discuss
how it addresses the concerns above. The measure is relatively simple and based on the
approach from Zhou et al. (2022). We use the same context W :=- | W, o > i and now it is
used to store the measures of (both universal and recursive) variables during the measure
computation. Then, a measure function sizey (4), is defined on types as follows:

sizey(nat) = 1
sizey(T) = 1
sizey(A — B) = 1+ sizey(A4) + sizey(B)
sizegy (A%) = 1 +sizey(4)
sizey () = 1+ {\I-’(oz) wew
1 agW
sizey(V(a <A).B) = leti:=sizey(4)in 1+ i+ sizey g i(B)
sizey(o. A) = leti:=sizeyy1(4) in 1 4 sizey 4 i(A4)
sizeg({l;: 4; €Y = n+ YL, sizey(A;)

The formulation of the size function is very similar to the height function. We have an extra
rule for universal types and slightly adjust the variable and recursive cases. The measure
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of universal types is the sum of the measure of the bound and the measure of the body.
For variables, one is added when they are retrieved. Accordingly, we do not need to add
one when storing the size of recursive variables into the context. For atomic constructs, we
follow the weight function and measure them as 1.

We solve the first challenge in a straightforward way: there is no need to distinguish
between recursive and universal variables. The fact that all recursive variables in the
context are bounded by a top type whose measure is simply the one that fits our needs
naturally.

As for the second concern, despite the different purposes of contexts, the key ideas
of measuring types in kernel F< and nominal unfoldings are the same: they both relate
the measure of a variable to what the variable will be substituted with in the context of
the subtyping rule, either its unfolded form as a labeled type or its bound type. A slight
modification is made based on the definition of weight. In the weight function, for a uni-
versal variable, its bound is first retrieved and then the measure is computed. To align with
the “pre-computation” mechanism of measuring nominal unfoldings (i := sizey 4 1(4)),
we also pre-compute the measure of the bound (i := sizey(4)) in the size function so that
we retrieve the measure instead of the type bound from the context. In a well-formed
type, variables are guaranteed to be unique, so we can use a single context W to store the
measures for both recursive variables and universal variables.

A subtler issue arises with variables in the initial subtyping context. When measuring
nominal unfoldings, the context in a subtyping relation is simply a list of variables, without
any bound information, so variables that occur freely can be counted as 0 in the height
function. In contrast, now the subtyping context stores the bound information, and the
measures of bounds play a role in deciding the subtyping relation. To address this issue,
we need to make sure that the bound information is pre-computed in the measure function.
We transform a subtyping context into an environment containing measures W, which track
universal variables. In our decidability proof statement (Lemma 4.14), ¥ is computed from
the subtyping context I' by an evaluation function eval : I' — W, defined as:

eval(-) = -
evall', x:4) = eval(l")
evall', a <A4) = let V' =eval(l’)in V', o > sizey (4)

With both eval and size, we can then state the decidability theorem:

Lemma 4.14. If sizeeyqyry(4) + sizeovairy(B) < k, then there exists an algorithm that
terminates and decides whether ' -4 < B.

Theorem 4.15 (Decidability of kernel F£ subtyping). I' -4 < B is decidable in kernel FZ.
Theorem 4.16 (Decidability of kernel F£ typing). Tk e: 4 is decidable in kernel F£.

As for the third concern, note that in F<, the subtyping relation is antisymmetric (Baldan
et al., 1999). Adding recursive types does not change the property of antisymmetry.
However, the addition of records makes the subtyping relation not antisymmetric: two
equivalent record types may be syntactically different. The lack of antisymmetry poses a
challenge to our decidability proof, particularly for rule S-EQUIVALL. Nevertheless, for
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kernel FX two equivalent records must have the same set of fields, and the two types
for each field must be equivalent. Therefore, the measures of two equivalent record types
remain the same. As a result, the measure of two equivalent bounds A4; and A4, is equal, as
Lemma 4.17 describes. The measure information of type 4; can therefore be reconstructed
from type A4,, addressing the final concern with decidability.

Lemma 4.17. If ' A <Band I" = B < 4, then sizeeyair)(A) = sizecvairy(B).

Undecidability of Subtyping full F£. It is well known that the full F- subtyping relation
is undecidable (Pierce, 1994). Although the original formulation of full F< includes the
transitivity rule, it can be reformulated into a syntax-directed version (Curien & Ghelli,
1992) that eliminates the transitivity rule, as we have adopted in F%. The syntax-directed
version of F- naturally forms a subtype checking algorithm. However, for full F-, Ghelli
(1993) demonstrated a non-terminating example for the subtyping algorithm. Furthermore,
Pierce (1994) proved the undecidability of full F< by encoding a Turing machine using
full F-. Since we have shown in Section 4.2 that full F£ is conservative over the syntax-
directed version of full F, Ghelli (1993)’s counterexample for full F< also applies to
full F£. Therefore, the undecidability of full F£ is a corollary of the undecidability of
full F< and the conservativity of full F£ over full F-.

Theorem 4.18 (Undecidability of typing and subtyping for full F£). The subtyping relation
' -4 < B and the typing relation I' - e : 4 are undecidable in full F£.

5 A calculus with lower and upper bounded quantification

In this section, we introduce an extension of F%, called FZ, with lower bounded quan-
tification, the bottom type, and an alternative formulation of record types in terms of
intersections of single field record types. While upper bounded quantification has received
a lot of attention in previous research, lower bounded quantification for an F--like lan-
guage is much less explored, though it appears in a few works (Amin & Rompf, 2017;
Oliveira ef al., 2020). We follow the same approach as Oliveira ef al. (2020), whose F<
extension allows type variables to have either a lower bound or an upper bound, but not
both bounds at once. We also introduce single-field record types and intersection types to
replace record types in FZ. Intersection types enable type-level record extension and fur-
ther applications resembling the treatment of object types in the DOT calculus (Rompf &
Amin, 2016). As discussed in Section 2.2, our extensions in F gg enable further applica-
tions, such as a form of extensible encodings of datatypes. We have proved all the same
results for F2 that were proved for kernel F%, including type soundness, decidability,
transitivity, and conservativity over F-.

5.1 The F:Z calculus

The syntax of types, expressions, values, and contexts for the extended F“Z calculus is
shown below. The main novelties are that bottom types and lower bounded quantification
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are introduced. We also remove record types ({/; : 4; “€!*"}) from the syntax and instead
introduce intersection types and single-field record types. The syntactic differences are
highlighted in gray .

Types A,B,... = nat|T| L |4 —> Ay |a|pa.4]|A”
|V <A).B| Y(a>=A4).B | A&B | {l: 4}
Expressions e = xlilerey|Ax:d.eled| Al <A).e| A(ld=>A4).¢e

| unfold [4] e| fold [4] e| {I; =e; "€} | e.]

Values v = i|ax:d.e|fold[A]v|A(w <A).e| Al@=A).e
| {7 =v; ")
Contexts r = |La<d| T'a>4 |I',x:4

Subtyping, Typing and Reduction. The well-formedness for the additional bottom types,
single-field record types, and universal types with lower bounds are standard, as shown
in Figure 6. For intersection types, we only allow single-field record types, or intersec-
tions of record types with distinct labels to be well formed. This can be characterized by
a compatibility relation 4 # B between types. We make this simplified design choice to
avoid the complexity of general unrestricted intersection types, which would cause trou-
ble in the two key properties of the type system, namely the structural unfolding lemma
(Lemma 5.11) and the decidability of subtyping (Theorem 5.14), as we will discuss in
Section 5.3.

As for the subtyping rules, compared with F%, we add rules S-BOT, S-VARTRANSLB,
and S-EQUIVALLLB for subtyping with bottom types and lower bounded quantification.
The record subtyping rule S-RCD in F£ is now replaced by rule S-SRCD for subtyping
single-field record types together with rules S-ANDLA, S-ANDLB, and S-ANDR for sub-
typing intersection types. Note that in the subtyping rule for intersection types, we also
add the compatibility restriction in the premise, to ensure the regularity of the subtyping
relation (Lemma 5.1).

Lemma 5.1 (Regularity of subtyping in Fgg). If '+ A < B, then the following well-
formedness conditions hold: (1) FT", (2) T A4, and (3) T - B.

The new subtyping relation is reflexive and transitive:
Theorem 5.2 (Reflexivity for Fgg) IfrTand'FA,then"HA4 < A.
Theorem 5.3 (Transitivity for Fgg) Ifr'r4A<BandT'HFB<C(C,thenT'HA<C.

Figure 7 shows the changes of F gg with respect to F£ in terms of typing and reduction.
For lower bounded quantification, we add rules TYPING-TAPPLB and TYPING-TABSLB
for typing and rule STEP-TABSLB for reduction, which are simply dual forms of rules TYP-
ING-TAPP, TYPING-TABS, and STEP-TABS, respectively. For records, since the syntax
of record expressions is unchanged, there are no further changes in the reduction rules.
The typing rule for record projections is also simplified. Since record types are now repre-
sented by single-field record types, the projection of a record can be directly modeled by
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A#B (Compatible record types)
CoMP-RCD CoMP-ANDL CoMP-ANDR
L1 #1 A #B A, #B A# B, A#B;
{lliA}#{lziB} Al&Az#B A#Bl&Bz
r'-A (Well-formedness of types)
WFT-ALLLB WET-AND WFT-SRCD
WETBOT 'rA T,a>A+B 'rA T+rB A#B A
'L I'V(ae>A).B I'rA&B I'+{l:A}
(Subtyping)
S-BoT S-srcp S-VARTRANSLB
FT 'rA I'rA<B a>Bel I'rA<B
'L <A I'r{l:A}<{l:B} 'rA<a
S-EQUIVALLLB S-ANDLA
I'tA; <Ay I'tA; <A I' a>A+B<C I'tB I'rA<cC A#B
I'tVY(@=A)).B<V(a>A,).C I'''rA&B<C
S-ANDLB S-ANDR
I'rA I'tB<C A#B I'tA<B I'rA<C B#C
N'rA&B<C 'rA<B&C

Fig. 6. Additional well-formedness and subtyping rules for 2 with respect to .

the subtyping relation. Rules TYPING-RCDNIL and TYPING-SRCD form the typing rules
for record expressions.

Structural Folding and Lower Bounded Quantification. The structural folding
rule TYPING-SFOLD on recursive types has already been shown for F£. Note that this rule
is not strictly necessary for F%, because a recursive type can only be a subtype of another
recursive type or the T type. Thus, the effect of structural folding in F£ can be subsumed
by other subtyping/typing rules. Perhaps for this reason, Abadi ef al. (1996) have only
considered a structural unfolding rule. However, in F’ gg, a recursive type can also be a
subtype of a type variable. In this case, the structural folding rule can give the desired
typings to the Addy constructors of the Exp; and Exp, datatypes that we have presented
in Section 2.2, while the standard folding rule cannot. The rule TYPING-SFOLD has the
same form in F2Z as in F%. Therefore, we believe that the structural folding rule that we
have proposed, together with the structural unfolding lemma in the metatheory, is broadly
applicable to various type system extensions to F.

Type Soundness. Our type soundness proof for F° gg is standard:

Theorem 5.4 (Preservation for Fgg) If-e:Aand e € thenk¢ : A4.
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(Typing)

TYPING-TAPPLB TYPING-TABSLB
I'te:Y(a>By).B, I'EB, <4 I'a>AkFe:B
'-ed:[a— A] B, I'-A(e>A).e:Y(a>A).B
TYPING-SPROJ TYPING-SRCD
Cke:{l:4) TYPING-RCDNIL 1; €1 are disjoint ke :4; Vijl<i<n
Thel:A CH(}:T CH{li=e ") (I 1A & ... &I, 4,)
e e (Reduction)

STEP-TABSLB

(Ala=A4).e)B— [a+— Ble
Fig. 7. Additional typing and reduction rules for F° g/z\ with respect to F g

Theorem 5.5 (Progress for F2). If - e: A then e is a value or exists ¢/, e < ¢'.

5.2 Algorithmic typing

Similarly to F£, we can define an algorithmic typing system for F gg We present the
changes in the algorithmic typing rules for Fgg in Figure 8. Rules ATYP-TABSLB and
ATYP-TAPPLB are added to handle lower bounded quantification. Rules ATYP-RCDNIL
and ATYP-SRCD replace the record typing rule TYPING-RCD in F%. In addition to these
standard changes, there are also a few special cases that need to be handled for F2Z.

First, bottom types bring several extra cases to the algorithmic typing rules. In the
declarative system, one can always use the subsumption rule to transform a term with
type L to any function type or universal type and apply it to any argument, as also
observed by Pierce (1997). To ensure that the algorithmic typing rules are complete, we
need to add rules ATYP-APPBOT and ATYP-TAPPBOT to handle these cases. We also
develop a similar treatment for recursive types, as shown in rules ATYP-SUNFOLDBOT
and ATYP-SFOLDTOP.

Moreover, with two kinds of bounded quantification, the meanings of the two expo-
sure functions also need to be refined. For example, the upper exposure function (1) is
now used to find the least upper bound in the context that is not an upper-bounded vari-
able, so it will return the variable itself if the variable is lower bounded. We redefine the
exposure functions for F' gg in Figure 9. For lower exposure, we also need a dual form of
the rule XA-PROMOTE, which finds the greatest lower bound in the context that is not a
lower-bounded variable, as shown in rule XA-DOWNPROMOTE.

Record Exposure. Furthermore, for typing record projections, recall that in the declara-

tive rule TYPING-SPROJ, the lookup of the field label / is implied by the implicit subtyping
between the expression type and the single-field record type for {/: A}. In the algorithmic
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(Algorithmic Typing)

ATYP-TABSLB ATYP-TAPPLB
I'a>Avr,e:B I'rye:B I'tB ) V(a>B)).B; I'tB; <A
'ty Al@>A).e:V(a>A).B I'taeA:[a—A] By
ATYP-SPROJ
Tree:A  TrA=B ATYP-RCDNIL
I'tyel:B I {}:T
ATYP-SRCD

I; '€t are disjoint Iroe;:A; Vi, 1<i<n

Cro{li=e; " " {1 i A} & ... &A{l,:An)

ATYP-APPBOT ATYP-TAPPBOT
I'toe A rrAf L I'tper:Ar I'ty,e:B B L I'tA
I'kperen: L Il'rgeA: L
ATYP-SUNFOLDBOT ATYP-SFOLDTOP
Irpe:A kB L '-rA<B Irye:A reCcyT r-cC
'+, unfold [B] e: L 't fold [Cle:T

N

Fig. 8. The additional algorithmic typing rules for F_5.

system, we need to find a mechanism to find such 4. Therefore, we define a new expo-
sure relation for record types in F’ gg The record exposure relation I' - 4 =>; B indicates
that from the type 4 we can lookup the field label / and get the type B. We show the
full definition of the record exposure relation in Figure 9. Note that, in addition to single-
field record types (rule XR-SRCD) and intersection types (rules XR-ANDA, XR-ANDB,
and XR-ANDR), one can also lookup L from L (rule XR-BOT), as well as upper bounds
from upper bounded variables (rule XR-PROMOTE). With the record exposure relation,
we define rule ATYP-SPROJ for record projections to replace rule ATYP-PROJ in F£. The
record exposure relation is sound and complete for the subtyping relation 4 < {/: B}.

Lemma 5.6 (Record exposure properties for F' gg)

. fI'FA=;BthenT"'HA4 <{l/:B}.
2. IfT' A < {l: B} then there exists C suchthat ' -4 =;Cand ' - C < {/: B}.

With these considerations in the algorithmic typing rules, we prove the soundness and
completeness of the algorithmic typing system with respect to the declarative typing rules
defined in Figure 7.

Theorem 5.7 (Soundness of the algorithmic rules for F%2). If ', e:AthenT Fe: A.

Theorem 5.8 (Completeness of the algorithmic rules for F° gg ). If I I e : 4 then there exists
BsuchthatI',e:Band ' B <A.
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'-4¢B (Upper Exposure)

XA-PROMOTE XA-UPINV XA-upP
a<Ael '4A f B a>Ael A is not a type variable
'a t B o f « 'HA 4 4
'AyB (Lower Exposure)
XA-DOWNPROMOTE XA-DOWNINV XA-DOWNWARD
a>Ael -4y B a<Ael A is not a type variable
'a | B ol « 4y 4
'-4=,B (Record Exposure)
XR-PROMOTE XR-ANDA XR-ANDB
a<Ael 'F4=;B I'HA4A, =B I't4,=;B
''ra=,B I'A4, &4, =B I'A4, &4, =B
XR-SRCD XR-BOT
I'E{l:4}=,4 ''El=;1

Fig. 9. The new exposure functions for F gg

5.3 Metatheory of F' 22

The addition of lower bounded quantification, bottom types, and intersection types creates
some difficulties in the metatheory of F£2. In the following, we describe how to overcome
the difficulties, by adjusting the proof techniques we have used for F%.

Unfolding Lemma. As discussed in Section 4.1, in a type system that simultane-
ously allows introducing lower and upper bounded types, the inversion lemma for
rule S-VARTRANS (Lemma 4.4) is not valid. This is exactly the case for F’ gg To resolve
this issue, the unfolding lemmas should only state the subtyping relation between the
nominal unfoldings [« +— C“]4 <[a +— D*]B and remove the one-step unfolding rela-
tion 4 < B from the premise. Therefore, we use the same statement of the generalized
unfolding lemma as in full % (Lemma 4.9), under an extended version of related contexts
(Definition 4.7) that takes lower bounded bindings into account. It turns out that, with only
changes of the proofin cases S-EQUIVALL and S-EQUIVALLLB, the generalized unfolding
lemma can be proved for F' gg as well, which results in the following unfolding lemma
for F*2.

Lemma 5.9 (Unfolding lemma for Fgg) IfIr'-pua.A<pa.B,thenT'H[a+— pa.A] A <
[o¢ = pwo.B] B.
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To prove type soundness, we need to show the structural unfolding lemma. If we check
the typing derivation with structural folding and unfolding illustrated in Figure 4 again in
F gg, we can see that by inversion on the subtyping relation -+ puo.4A <C' and -F D' <
wa. B, we can no longer guarantee that C’ and D' are recursive types, since they can also
be intersection types. To remedy this, the compatibility relation 4 # B is enforced by the
well-formedness of intersection types so that intersection types can only be formed from
single-field record types, not by recursive types. We can prove the following lemma to
derive a contradiction for the case of intersection types and recover the structural unfolding
lemma as well as type soundness for F:2.

Lemma 5.10. For any types A, Bj, and B,, it cannot happen that uo.4 <B; & B; or
B & By < pa.A4in FEL.

Lemma 5.11 (Structural unfolding lemma for F£2). If I'Fpa.4 < pa.C < pa.D <
ua.B,thenT'F[a+— pa.Cl A <[a+— pa.D] B.

Decidability. The interaction between bottom types and rule S-EQUIVALL breaks the
measure-based decidability proof in Section 4.3. The bottom type in F brings a new
form of equivalent types: when @ < 1 € I', one can derive that ' o < L and '+ L <a,
as observed by Pierce (1997). Simply extending the measure function with sizey (L) =1
will not work. For type variables, the measure function will recursively look up its bound
in the context and add one to the measure of its bound, making a variable equivalent to
L to have a larger measure than L. Therefore, replacing two equivalent types into the
abstracted type body may not produce the same measures. We can construct derivations
of rule S-EQUIVALL that have a larger measure in the premise than that of the conclusion,
which makes the decidability proof fail with the current measure. For example, consider
the following subtyping derivation:

a<l, p<ala=<p a<l, p<akFB=<a a<l,B=<a y<BFA=<B
a<l,B<aFVY(y=<a)d=<V(y=<p).B

If we follow the measure function defined in Section 4.3, the measure for the third
premise is:

Sizeyy 1, prs2, y»—>3(A) + sizey 1, prs2, y»—>3(B)
while the measure for the goal is
sizegs1, ps2(V(y < ). A) + sizears1, p>2(V(y < B).B)
> Sizegs1, pro2, yo2(A) + Sizeqs 1, pro2, yi>3(B)

which can be less than the measure of the premise since y is assigned a smaller mea-
sure in the goal. A similar issue arises when a variable is lower bounded by T, making it
equivalent to top types but with a different measure.

This issue can be resolved by replacing all the types whose supertype is L with L, and
all the types whose subtype is T with T before computing the measure. That way, the
subtyping relationa < 1, B <aFV(y <«).4 <V(y < B).B becomes

a<l,p<1lFV(y<l)4d=<V(y<l1l).B
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V= |V,a—~i|V,a—~ L|V,a—~>T

sizey(nat) = 1
sizey(T) = 1
sizey (L) = 1
sizey(A — B) = 1 +sizeg(A) + sizey(B)
sizey(A%) = 1 +sizey(A4)
i a—>ieVvy
sizey (o) = 14140 a>TeVorar LeWw
1 otherwise
sizey (V@ <A)B) = 1+ 1 + sizey g5 1 (B) isBoty(A4)
sizey(A) + Sizew g sizey (4)(B) otherwise
sizeg(V(@>A)B) = 1+ 1 + sizey o> T(B) isTopy(A)
sizey(A) + Sizew grs sizey (4)(B) otherwise
sizey(uo.A) = leti:=sizeyy1(4) in 1 + sizey g5 i(4)
sizey(A & B) = 1 +sizeg(A) + sizey(B)
sizey ({1 : A}) = 1 +sizey(4)
isBoty (L) = true
isBoty g 1 (o) = true
isBoty g (o) = isBoty(a)ifa #8
otherwise isBoty(4) = false
isTopy(T) = true
isTopy () = true
isTopy g, (@) = isTopy(a)ifa # B
otherwise isTopy(4) = false

Fig. 10. The measures for the decidability of F" gg

and the measure works again. This idea can be implemented by modifying the measure
function to identify upper/lower bounded variables that are equivalent to bottom/top types,
as can be seen in Figure 10. The new bindings o — L and o — T are used to store the
measure of variables or indicate them as upper bounded by L or lower bounded by T.
Figure 10 shows the measures needed for the decidability of F gg The primary measure
function is sizey(4). The main changes are in the cases for bounded quantification where
we now use is Top and isBot functions to detect whether the bounds are, respectively, equiv-
alent to top or bottom. The isTop and isBot functions use the information in the measure
context W to check whether the bound type 4 is equivalent to T or L. If so, when the vari-
able bounded by 4 is looked up in the context, it will have a measure of 1. The example
above will now be resolved by the new measure function as follows:
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sizeges 1, pr>1 (V(y S @).A) + sizegrs 1, p> 1L (V(y < B).B)
> SiZws 1, prs L, yis L(A) +Sizeus 1, prs 1, yrs L(B)
since isBoty» 1, pr>1 (¢) = true and isBoty,, |, p> 1 (B) = true

In this way, we retain the important property that equivalent types have the same measure.
Lemma 5.12. IfI'=A <Band I" - B < 4, then size.yair)(4) = Sizeeyair)(B) in Fgg

Note that in the proof of Lemma 5.12, in the case of intersection types, we make use of
the compatibility relation A4 # B to ensure that any equivalent types have the same measure.
Without the compatibility restriction, the labels may be duplicated within the intersection
type, which will lead to a different measure for equivalent types. By limiting compatible
types to single-field records and their intersections only, we also rule out the occurrence
of T in intersection types, which will cause the same problem. With the new measure
function, we can prove the decidability of subtyping and typing in F gg

Theorem 5.13 (Decidability of FZ subtyping). I' -4 < B is decidable in F£Z.
Theorem 5.14 (Decidability of F2Z typing). T'I-e: A4 is decidable in F£Z.

Conservativity. The proof of conservativity for F' gg follows the same pattern as the proof
for F£. To prove conservativity of typing, we need the help of the algorithmic typing rules
to obtain the minimum type of an F< term. We have defined the algorithmic typing rules
for F gg and proved the completeness of the algorithmic typing rules in Section 5.2. With
the algorithmic typing rules, conservativity for F' gg is straightforward.

Theorem 5.15 (Conservativity for F' gg) If T, 4, and e are well formed in F<, namely (1)
Frl 2)THrdand 3)Fre, then're:Aifand only if 'He: 4.

6 Coq proofs

We develop and verify our formalization in Coq 8.13 (The Coq Development Team,
2021) and use Metalib to formalize variables and binders using the locally nameless
representation (Aydemir et al., 2008).

The Coq formalization is available online.* The directory “kernel_fsub_main” includes
all definitions and proofs for kernel F£ described in Section 3, while the directory
“full_fsub_main” includes the full F% variant. Definition and proofs for F described
in Section 5 are in the “kernel_fsub_ext” directory. Each directory can be checked
independently, and the dependency of the proofs follows a sequential order in each
directory.

6.1 Definitions

All three systems share a similar structure for definitions: the files Rules.v contains the
core definitions for the calculus, and 4lgoTyping.v contains the algorithmic rules for typ-
ing. Tables 2, 3, and 4 show the correspondence between the paper definitions and the

4 https://github.com/juda/Recursive-Subtyping-for-All/tree/main/JFP.
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Table 2. Paper-to-proofs correspondence guide for kernel F" g (in kernel_fsub_main/ directory)

Definition File Name in Coq Notation
Types (Figure 1) Rules.v typ

Expressions (Figure 1) Rules.v exp

Values (Figure 1) Rules.v value

Contexts (Figure 1) Rules.v env

Well-formed type (Figure 2) Rules.v WFEA -4
Subtyping (Figure 2) Rules.v subEAB '-4<B
Typing (Figure 3) Rules.v typing Ee A NFe:4
Reduction (Figure 3) Rules.v step el €2 e| e
Upper exposure (Figure 5) AlgoTyping.v exposure E A B r-AqWB
Lower exposure (Figure 5) AlgoTyping.v exposure2 E B A -4y B8
Algorithmic typing (Figure 5) AlgoTyping.v typing Ee A F4e:4
Measure (Section 4.3) Decidability.v bindings_rec GEn A sizey(A4)
Context measure (Section 4.3) Decidability.v mk_benv E eval(T")

Table 3. Paper-to-proofs correspondence guide for full F' g (in full_fsub_main/ directory).
Definitions that are the same as kernel F g are omitted

Definition File Name in Coq Notation
Subtyping (Section 3.2) Rules.v subEAB r-4<B8B
Related contexts UnfoldingEquiv.v sub_env_ext EX CD E1 E2 r=ry,

(Definition 4.7)

Table 4. Paper-to-proofs correspondence guide for F' gg (in kernel_fsub_ext/ directory)

Definition File Name in Coq Notation
Types (Section 5.1) Rules.v typ

Expressions (Section 5.1) Rules.v exp

Values (Section 5.1) Rules.v value

Contexts (Section 5.1) Rules.v env

Compatible types (Figure 6) Rules.v Compatible A B A#B
Well-formed Type (Figure 6) Rules.v WFEA r+4
Subtyping (Figure 6) Rules.v subEAB '-4<B
Typing (Figure 7) Rules.v typing Ee A N'e:4
Reduction (Figure 7) Rules.v step el e2 e] <> e
Algorithmic Typing (Figure 8) AlgoTyping.v typing Ee A N4e:4
Upper Exposure (Figure 9) AlgoTyping.v exposure E A B -4 B
Lower Exposure (Figure 9) AlgoTyping.v exposure2 EB A '-44y-8
Record Exposure (Figure 9) AlgoTyping.v exposure_i EA1B 'FA4=B
Measure (Figure 10) Decidability.v bindings_rec G En A sizey(A4)

Coq formalization. The formalization mainly follows the definitions in the paper except
for some technical details. One difference to note is that throughout the paper, we use only
substitution to represent unfolding of a recursive type, application of universal quantifi-
cation, and function abstraction. In the Coq proof, due to the use of the locally nameless
representation, we also make use of the opening operation on pre-terms (Aydemir et al.,
2008). We also merge several rules for exposure and typing record expressions in the
paper, for readability.
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Table 5. Descriptions for the proof scripts for kernel F g (in kernel_fsub_main/ directory)

Theorems Description Files Name in Coq
Lemma 3.1 Regularity of subtyping Reflexivity.v sub_regular
Lemma 3.2 Narrowing Transitivity.v sub_narrowing
Theorem 3.3 Reflexivity Reflexivity.v Reflexivity
Theorem 3.4 Transitivity Transitivity.v sub_transitivity
Lemma 3.5 Unfolding lemma Unfolding.v unfolding_lemma
Lemma 3.6 Structural unfolding Preservation.v structural_unfolding
_lemma_general

Theorem 3.7 Preservation Preservation.v preservation
Theorem 3.8 Progress Progress.v progress
Theorem 3.9 Algo-typing soundness AlgoTyping.v typing_algo_sound
Theorem 3.10 Algo-typing completeness AlgoTyping.v minimum_typing
Lemma 4.2 Generalized unfolding Unfolding.v sub_generalize_

lemma for kernel F¥ in intensive

Zhou et al. (2023)
Lemma 4.3 Substitution inversion Unfolding.v subst_reverse_equiv
Lemma 4.10 Subtyping conservativity Conservativity.v sub_conserv
Lemma 4.11 Antisymmetry of Conservativity.v sub_antisym

kernel F< subtyping
Lemma 4.12 Algo-typing conservativity Conservativity.v typing_algo_conserv

Theorem 4.13 Typing conservativity Conservativity.v typing_conserv

Theorem 4.15 Decidability of subtyping Decidability.v decidability
Theorem 4.16 Decidability of typing DecidabilityTy.v decidable_typing
Lemma 4.17 Equivalent measure Decidability.v equiv_measure

6.2 Lemmas and theorems

Tables 5, 6, and 7 show the correspondence of lemmas and theorems between the paper
and the Coq formalization. We provide the file location and theorem name in Coq for each
lemma and theorem in the paper and include a brief description for each of them.

7 Related work

Throughout the paper, we have already reviewed some of the closest related work in detail.
In this section, we discuss other related work.

7.1 Bounded quantification, recursive types, and object encodings

Bounded quantification was first introduced by Cardelli & Wegner (1985) in the language
Fun, where their kernel Fun calculus corresponds to the kernel version of F<. The full
variant of F< was introduced by Curien & Ghelli (1992) and Cardelli ef al. (1994), where
the subtyping for bounds is contravariant. Although full F< is powerful, subtyping proved
to be undecidable (Pierce, 1994). As discussed in Section 1 there are several attempts to
add recursive types to F<, such as the work by Ghelli (1993), Colazzo & Ghelli (2005),
and Jeffrey (2001). Unfortunately, as Table 1 shows, such combinations are not painless,
and even the successful combinations require significant changes for the subtyping rules.
Ghelli (1993) illustrates how the combination of equi-recursive subtyping and full F sig-
nificantly alters the expressiveness of the subtyping relation. Specifically, he shows that

https://doi.org/10.1017/5S0956796825000036 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796825000036

48 L. Zhou et al.

Table 6. Descriptions for the proof scripts for full F% (in full_fsub_main/ directory)
Theorems Description Files Name in Coq
Lemma 3.1 Regularity of subtyping Reflexivity.v sub_regular
Lemma 3.2 Narrowing Transitivity.v sub_narrowing
Theorem 3.3 Reflexivity Reflexivity.v Reflexivity
Theorem 3.4 Transitivity Transitivity.v sub_transitivity
Lemma 3.5 Unfolding lemma UnfoldingEquiv.v unfolding_lemma
Lemma 3.6 Structural unfolding Preservation.v structural_unfolding

_lemma_general
Theorem 3.7 Preservation Preservation.v preservation
Theorem 3.8 Progress Progress.v progress
Theorem 3.9 Algo-typing soundness AlgoTyping.v typing_algo_sound
Theorem 3.10 Minimum typing AlgoTyping.v minimum_typing
Lemma 4.8 Related context inversion UnfoldingEquiv.v sub_env_ext_sem
Lemma 4.9 Generalized unfolding UnfoldingEquiv.v sub_generalize_
lemma for full F* intensive
Lemma 4.10 Subtyping conservativity Conservativity.v sub_conserv
Lemma 4.12 Algorithmic typing Conservativity.v typing_algo_conserv
conservativity

Theorem 4.13

Typing conservativity

Conservativity.v

typing_conserv

Table 7. Descriptions for the proof scripts for F22 (in kernel_fsub_ext/ directory)

Theorems Description Files Name in Coq
Lemma 5.1 Regularity of subtyping Reflexivity.v sub_regular
Theorem 5.2 Reflexivity Reflexivity.v Reflexivity
Theorem 5.3 Transitivity Transitivity.v sub_transitivity
Theorem 5.4 Preservation Preservation.v preservation
Theorem 5.5 Progress Progress.v progress
Lemma 5.2 Record exposure AlgoTyping.v exposure_i_sound
exposure_i_ex
Theorem 5.7 Algo-typing soundness AlgoTyping.v typing_algo_sound
Theorem 5.8 Algo-typing completeness AlgoTyping.v minimum_typing
Lemma 5.9 Unfolding lemma UnfoldingEquiv.v unfolding_lemma
Lemma 5.11 Structural Unfolding lemma Preservation.v structural_unfolding
_lemma_general
Lemma 5.12 Equivalent measure Decidability.v equiv_measure
Theorem 5.13 Decidability of subtyping Decidability.v decidability
Theorem 5.14 Decidability of typing DecidabilityTy.v decidable_typing
Theorem 5.15 Conservativity Conservativity.v typing_conserv

there exist such subtyping relations 4 £ 4’ that do not hold in full F< but are derivable
when equi-recursive subtyping is added, by finding an intermediate type B which contains
equi-recursive types such that 4 < B and B < 4'. In Colazzo & Ghelli (2005)’s work, there
is no independent universal type, and the shape of recursive types is either po.V(x < A).B
or ua.4 — B. The recursive variables and universal variables are distinct, resulting in
changes in environments and subtyping rules. For example, the subtyping environment is
defined as IT:=-|I1,(x,y) <(4,B) | I, (¢ = A4, B =B), and the rule S-VARTRANS rule
of F< is changed to:
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x,y)<,B)ell  Va/,B#«  B#T B#y I+A<B
MFx<B

The algorithm proposed by Jeffrey (2001) is also complex and requires major changes.
Both recursive variables and the subtyping algorithm are labeled with polarity modes, and
the implementation of a-conversion is not discussed. In contrast, our subtyping rules do
not change the contexts, the types are not restricted, and most importantly, we do not have
to change the rules in the original F<. This has the benefit that we can largely reuse the
existing metatheory of the original F, and it also enables our conservativity result. While
it is plausible that Jeffrey (2001)’s or Colazzo & Ghelli (2005)’s work for the kernel F
extensions with recursive types are conservative, this has not been proved. Furthermore,
such proof is likely to be nontrivial because of the major changes introduced by equi-
recursive subtyping.

There are many other extensions to <. Bounded existentials are also studied by Cardelli
& Wegner (1985). Existential types can be encoded by universal types; thus, we can obtain
a form of bounded existentials for free in F< (Cardelli & Wegner, 1985). Another impor-
tant extension is F-bounded quantification, first proposed by Canning et al. (1989), then
studied by Baldan et al. (1999) in terms of the basic theory. In F-bounded quantifica-
tion, the bounded variables are allowed to appear in the bound, denoted as V(o < Fl«]). B.
We can encode polymorphic binary methods (Bruce ef al., 1995) and methods that have
recursive types in their signatures with F-bounded quantification. However, as we dis-
cussed in Section 2.2, for subtyping statements to satisfy the bound o < F[«], they must
be interpreted using equi-recursive subtyping, as F-bounds are normally records, and an
iso-recursive type cannot be the subtype of a record type. F-bounded quantification is
appealing because it can even deal with binary methods, where recursive types appear
in negative positions. For example, with F-bounded quantification, we can model bounds
such as o < {x: Int, eq:« — Bool} and still have the expected subtyping relations.

Whereas we show that with the structural unfolding rule we can model positive
cases of F-bounded quantification (such as translate) in F%, we can only model a
restricted form of negative F-bounded quantification. For instance, in F£ we can have
the bound o < uP.{x:Int, eq: P — Bool} and we can instantiate o with P (where P =
uP.{x:Int, eq: P — Bool}). However, we would not be able to instantiate & with some
types that have extra fields, such as uP’ {x:Int, y:Int,eq:P"— Bool}. In contrast,
F-bounded quantification allows such forms of instantiation. Nevertheless, given the
overlap between some of the applications of iso-recursive types in F% and F-bounded quan-
tification, we believe that it is worthwhile to investigate whether F-bounded quantification
can be avoided to deal with general binary methods.

F-bounded quantification offers an elegant method for encoding objects that possess
binary methods. When not seeking to fully encode binary methods, other object encod-
ings are also available. Recursive records can encode objects (Cook ef al., 1989; Canning
et al., 1989; Bruce et al., 1999). Alternatively, existential types can also be used to
encode objects (Pierce & Turner, 1994), or they can be employed together with recur-
sive types (Bruce, 1994). Pierce & Turner (1994)’s object encoding using existential types
is notable in that it requires only F< and does not employ recursive types. The ORBE
encoding (Abadi et al., 1996), as we discussed in Section 2.2, consists of recursive types,
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bounded existential quantification, records, and the structural unfolding rule. As Bruce
et al. (1999) observe, the ORBE encoding requires full F< for the bounded quantification
subtyping rule. When we try to compare two bounds, the type variable will be substituted
with the existential types, which may result in bounds that are not equivalent. The overview
paper by Bruce et al. (1999) makes a detailed comparison among different object encod-
ings. Our F£ calculus could act as a target for all those existing object encodings discussed
above. To our best knowledge, a complete formalization of F< with recursive types, fea-
turing desirable properties such as type soundness and conservativity, was not available at
the time. Our work contributes to the validation of these encodings by offering a complete
formalization of F< with recursive types, along with several desirable properties.

7.2 Dependent object types

The renewed interest in languages featuring bounded quantification and recursive types has
been reignited recently within the research community, following the introduction of the
dependent object types (DOT) calculus (Rompf & Amin, 2016). DOT is now the founda-
tion of Scala 3 (EPFL, 2021). The research on DOT has been intimately related to F<. For
instance, Amin & Rompf (2017) explain many of the features of DOT by incrementally
extending F<. DOT implements a generalized form of bounded quantification along with
recursive types. This generalized form encompasses both upper and lower bounded quan-
tification. Furthermore, DOT facilitates path selection that simultaneously supports upper
and lower bounds. Additionally, DOT incorporates intersection types (Pottinger, 1980;
Coppo et al., 1981; Barbanera et al., 1995) for typing objects. A distinctive characteristic
of DOT is its use of path-dependent types (Amin et al., 2014). With path-dependent types,
the treatment of recursive types is different from our calculus F% Q In DOT, recursive types
are introduced using recursive self types: {z = T7}. The variable z is a term variable. Thus,
a recursive self type provides a limited form of dependent types, modeling a dependently
typed fixpoint operator. In contrast, in F" gg, the variable « of a recursive type po.A4 is a
type variable. In F’ gg, the type of objects is similar to that in DOT: we employ intersections
of the types of all the fields, and we require that the labels are disjoint. If the object uses
recursive types, then we use a fold around the term.

Previous attempts to prove the undecidability of DOT reduced the problem to the unde-
cidability problem in F<, relying on a translation from F< to types in DOT (Rompf &
Amin, 2016). However, as Hu & Lhotak (2020) later observed, the translation is not con-
servative. For example, in F<, T — T <V(a <T).T is not a valid subtyping statement
because function types and universal types are not comparable. However, after translating
them into DOT, the statement becomes V(o : T). T <V(a:{T..T}). T, in which {T..T}
indicates that « is both upper and lower bounded by T. This statement is valid in DOT
variants that allow full or equivalent subtyping for bounded quantification, which breaks
the conservativity from F< to DOT. Nevertheless, Hu & Lhotak (2020) showed that the
undecidability of DOT can be reduced to an undecidable fragment FZ of full F, that
excludes the function types, and proved that DOT is undecidable.

There are two notable decidable variants of DOT: the strong kernel D_. calculus from
Hu & Lhotak (2020) and the Wyvern language by Mackay et al. (2020). These systems
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Table 8. Comparison F' gg with DOT and its variants

F gé Rompf & Amin (2016) Hu & Lhotak (2020) Mackay et al. (2020)

Path-dependent X v v v
types

Bounded a<Aor A<a<B A<a<B a<Aora>A4
quantification a>A4

Recursive types iso equi X equi

Intersection types  limited v X limited

Quantifier equiv F'< full F< equiv F< kernel F'<
subtyping

Conservativity v X X X

Reflexivity v v v v

Transitivity v built-in X X

Decidability measures X algo rules type graphs

share features akin to 7%, making comparisons worthwhile. As variants of DOT, both
support path-dependent types. The decidable variant by Hu & Lhotak (2020) selects spe-
cific features from DOT, including upper and lower bounds for path selection, and an
equivalent subtyping quantifier for <, but it lacks recursive and intersection types. To han-
dle the complexity of path types in proof of decidability, they define an algorithmic version
of the subtyping rules, called stare-at subtyping, prove its equivalence to the declarative
rules, and use a simple measure to show that the algorithmic rules terminate. The sys-
tem developed by Mackay et al. (2020) shares several similarities with F gg, including
the enforcement of comparable constraints on bounds and the integration of a restricted
version of intersection types for typing objects. However, it distinguishes itself by using
equi-recursive types for recursion.

Reflecting on the complexity inherent in full intersection types, Mackay et al. (2020)
also adopt a restricted form of these types to refine recursive objects. To ensure decidabil-
ity, their methodology employs a kernel variant of F<. As for the proof of decidability,
Mackay et al. (2020) define type graphs, a graphical representation of types, and type dec-
larations, along with the dependency information between them. They provide a general
algorithm for checking type graph subtyping and show that in the restricted system, all
types are homomorphic to type graphs that obey the material/shape separation property,
which ensures that the subtyping algorithm terminates. In contrast, the decidability proof
for F° gg does not rely on alternative subtyping rules or type representations and is solely
based on measures. Both decidable systems in DOT incorporate top and bottom types
and have been demonstrated to be reflexive, similar to F° gg However, one of the lim-
itations of DOT is that transitivity elimination is not possible (Rompf & Amin, 2016),
and even the two decidable fragments of DOT lack transitivity (Hu & Lhotak, 2020;
Mackay et al., 2020). In contrast, in F" ég transitivity can be derived from the subtyping
rules.

While F% does not have all the features of DOT, our results can potentially
help in research in that area, where the decidable fragments of DOT lack impor-
tant properties such as transitivity. In addition, F' gg preserves the conservativity over
kernel F<, while DOT does not. Table § presents a comparative analysis of the four
calculi.
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7.3 Algebraic datatypes and subtyping

Algebraic datatypes are a fundamental feature in modern functional programming lan-
guages, such as Haskell (Haskell Development Team, 1990) and OCaml (INRIA, 1987).
However, such languages do not support subtyping between datatypes. Hosoya et al.
(unpublished data) discussed the interaction between mutually recursive datatypes and
subtyping. They presented two variants of F- extending F- with user-defined datatype
declarations. The first variant has user-defined subtyping declarations between datatypes
and can be viewed as having a form of nominal subtyping. The second variant allows
structural subtyping among the datatypes.

One advantage of employing user-defined datatypes is that it is simple to deal with
formally, and that it allows mutually recursive datatype definitions easily. However, they
do not support conventional recursive types of the form pa.4 as we do in F£. Moreover,
they do not consider lower bounded quantification which, as argued in Section 2.2, seems
to be quite useful in a system targeting algebraic datatypes.

More recently, Rossberg (2023) proposed another calculus with a similar idea of using
declared subtyping for recursive types, aiming at providing better and more efficient sup-
port for mutually recursive datatypes in type-safe low-level languages like Wasm. In their
work, recursive types take the form p({o; <A, oy < 4;). B, where the declared bound 4,
can refer to o) so that two mutually recursive types can be defined at once. This avoids
the polynomial explosion of encoding mutual recursion using single recursion a la Beki¢’s
Lemma (Beki¢, 2005). However, to deal with type bounds in the w-operator, they need to
employ higher-order subtyping (Pierce & Steffen, 1997).

There has been some work integrating ML datatypes and OO classes (Bourdoncle
& Merz, 1997; Millstein et al., 2004). In the implementation of hierarchical extensible
datatypes, methods are simulated via functions with dynamic dispatch. Those works are
focused on the design of intermediate languages that have complex constructs such as
classes or datatypes. In contrast, we develop foundational calculi, where more complex
constructs can be encoded. Finally, Poll (1998) investigated the categorical semantics of
datatypes with subtyping and a limited form of inheritance on datatypes, improving our
understanding of the relation between categorical datatypes and object types.

Oliveira (2009) showed encodings of algebraic datatypes with subtyping assuming a
variant of F- extended with records, recursive types, and higher kinds. He showed that
adding subtyping to datatypes allows for solving the Expression Problem (Wadler, 1998).
However, as we mentioned in Section 2.2, he did not formalize the F'< extension, although
he showed a translation of the encoding into Scala. Moreover, his encoding is more com-
plex than ours because he employs upper bounded quantification with higher kinds. In
Section 2.2, we showed that first-order lower bounded quantification in F2Z, together with
the structural folding rule, enables such encodings. As for encodings of objects, our work
is helpful in further validating such encodings formally.

8 Conclusion

Recursive types and bounded quantification play a significant role in various programming
languages. While these features have been extensively studied individually, their com-
bined interaction has remained a challenging problem for a long time. Our F£ calculus
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demonstrates a method for integrating iso-recursive types with two variations of F-. We
achieve a transitive and decidable subtyping relation for the kernel variant, and both cal-
culi maintain conservativity over F< and are type sound. F% and F“Z could provide a
theoretical basis for object encodings and subtyping in algebraic datatypes. In particular,
the full F£ we have studied in this paper provides a foundation for the ORBE object encod-
ing (Abadi et al., 1996). Recently, there has been a renewed interest in recursive types and
bounded quantification, sparked by the DOT calculus. Our research helps in identifying
calculi that include most features found in DOT, while preserving properties such as sub-
typing’s decidability and transitivity, or even conservativity over F<. Exploring extensions
of FZ to include more features from DOT constitutes an interesting direction for future
research.

Supplementary material

The supplementary material for this article can be found at https://doi.org/
10.1017/S0956796825000036
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