1872

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

PIPEMESH: Achieving Memory-Efficient
Computation-Communication Overlap for
Training Large Language Models

Fanxin Li"”, Shixiong Zhao ", Yuhao Qing

Abstract—Efficiently training large language models (LLMs) on
commodity cloud resources remains challenging due to limitations
in network bandwidth and accelerator memory capacity. Existing
training systems can be categorized based on their pipeline sched-
ules. Depth-first scheduling, employed by systems like Megatron,
prioritizes memory efficiency but restricts the overlap between
communication and computation, causing accelerators to remain
idle for over 20% of the training time. Conversely, breadth-first
scheduling maximizes communication overlap but generates ex-
cessive intermediate activations, exceeding memory capacity and
slowing computation by more than 34%. To address these limi-
tations, we propose a novel elastic pipeline schedule that enables
fine-grained control over the trade-off between communication
overlap and memory consumption. Our approach determines the
number of micro-batches scheduled together according to the
communication time and the memory available. Furthermore, we
introduce a mixed sharding strategy and a pipeline-aware selective
recomputation technique to reduce memory usage. Experimental
results demonstrate that our system eliminates most of the 28%
all-accelerator idle time caused by communication, with recompu-
tation accounting for less than 1.9 % of the training time. Compared
to existing baselines, PIPEMESH improves training throughput on
commodity clouds by 20.1% to 33.8%.

Index Terms—Deep learning, distributed training, GPU, DNN,
3D parallelism, pipeline parallelism, machine learning.

I. INTRODUCTION

ARGE language models (LLMs) [1], [2], [3], [4], [5],

[6] based on transformers [7] have shown unprecedented
capabilities. Training LLLMs with up to hundreds of billions of
parameters demands exceedingly vast computational resources
(e.g., training Llama3 [8] 70B requires 6.4 million GPU hours
of computation). Parallelization techniques that distribute the
training workload across devices (i.e., accelerators) have been
commonly adopted. Tensor parallelism [9] (TP) is an intra-host

Received 10 June 2024; revised 10 June 2025; accepted 11 June 2025. Date
of publication 27 June 2025; date of current version 17 July 2025. This work
was supported in part by National Key R&D Program of China under Grant
20227D0160201, in part by HK RGC RIF under Grant R7030-22, in part by
HK RGC GRF under Grant 17208223 and Grant 17204424, in part by Huawei
flagship research grant in 2023, in part by SupernetAl, and in part by the
HKU-CAS Joint Laboratory for Intelligent System Software. Recommended
for acceptance by B. Nicolae. (Corresponding authors: Shixiong Zhao; Heming
Cui.)

The authors are with the Department of Computer Science, Uni-
versity of Hong Kong, Hong Kong, SAR 999077, China (e-mail:
fxli@cs.hku.hk; sxzhao@cs.hku.hk; yhqing@cs.hku.hk; jyjiang@cs.hku.hk;
xschen @cs.hku.hk; heming @cs.hku.hk).

Digital Object Identifier 10.1109/TPDS.2025.3583983

, Jianyu Jiang

, Xusheng Chen”, and Heming Cui'¥, Member, IEEE

parallelization technique that splits the individual layer of the
model across devices connected with high-speed interconnects
such as NVLink. The input of an LLM is a sequence of tokens.
Sequence parallelism [10] (SP) and context parallelism [11]
(CP) are two techniques that are combined with TP and operate
on the dimension of input sequences. Data parallelism (DP)
and pipeline parallelism [12], [13] (PP) are two techniques
for inter-host parallelization. DP splits the training data across
devices and synchronizes the gradients and parameters between
devices. PP splits the model layers into stages, with each stage
assigned to a different device. The input batch is divided into
multiple micro-batches, which are processed in a pipelined
manner. State-of-the-art LLM training systems (i.e., 3D parallel
training systems) combine TP, DP, and PP to scale training to
thousands of devices.

Cloud platforms provide easy access to powerful computing
resources like GPUs and NPUs. For research labs and small
enterprises, training LLMs on clouds remains a more flexible
and affordable option compared to supercomputers [14], [15]
owned by giant companies. However, cloud-based resources typ-
ically face two limitations. First, the bandwidth of interconnects
between hosts is limited, leading to increased communication
time of inter-host parallelization techniques such as gradient
synchronization in DP. For example, the bandwidth of a host with
8 A100 GPUs on AWS is only 400 Gbps, while the bandwidth
of the 8 X A100 host is 1.6 Tbps in supercomputing clusters [2],
[16]. Second, the cloud contains many legacy but still powerful
GPUs with limited memory (referring to HBM, high-bandwidth
memory) capacity, such as V100 and A10 GPUs [17]. This limi-
tation necessitates the application of memory-saving techniques
like selective recomputation [10] and Zero Redundancy Opti-
mizer [18] (ZeRO). However, these techniques introduce extra
computation or communication overhead, further compounding
the inefficiency of cloud-based LLM training. The major chal-
lenge we aim to address is how to maximize the utilization of the
computing resources on clouds while navigating the limitations
of interconnect bandwidth and HBM capacity.

The stringent problem we found is that existing training
systems often struggle to achieve a balance between mitigating
limited interconnect bandwidth and limited memory capacity.
The pipeline schedule adopted by existing systems plays a cru-
cial role in determining the extent of communication overlapped
with computation and the amount of memory consumed. We
introduce a new perspective that views the pipeline schedule

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2268-3036
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0009-0009-1500-2192
https://orcid.org/0000-0002-8684-8509
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0001-7746-440X
mailto:fxli@cs.hku.hk
mailto:sxzhao@cs.hku.hk
mailto:yhqing@cs.hku.hk
mailto:jyjiang@cs.hku.hk
mailto:xschen@cs.hku.hk
mailto:heming@cs.hku.hk

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

O[O Forward computation of 3 layers

I [0 [0 Backward computation of 3 layers

1873

B B B DP communication of 3 layers

E: 0-2 D: 0-2 E: 3-5 D: 3-5 E: 6-8 D: 6-8 <
Stage 0 [O[I2[o[L2[o[23] a0 5[1 B[2 RO R[2]4 [e[207[3 [8[2 [6[5 [7[3 [e[4 6] 5 [7[el 4] | 6[7][8[6][7]8
Stage 1 [[o[[2[0[12[o[r] 2l o3[T [4[2 [s[o3[2 [4[2[5 A 205 3 [6[4 [7[5 [8[3 e[4 [7[5 [8[3]¢] B[6][7[8[6]7]8
Stage 2 [[[O2[2[oz 2o o[T [2[2 3o f[T [5[2 B[4] 313 4[4 5[5 e[37| 48[56 s[5 l6[6 [7[7[e[8]6]7[8

Lifespan (a) Megatron with a fixed buffer size

E: 0-8 D: 0-8
Stage 0 O[L2B[AE[e[7[Blo[2RIl [Blof RRIEIE7Ie] [| of[1]2]3]4]5]6]7[8[0]1][2[3]4]5]6]7]8
stage 1 | [0[1[2[3[4[5[6[7[8[o[Z[23[a[5[6[7[8[o[L2[3[4[5[6[7[8 O[L[2[3[4[5[6[7[8[0[1[2[3[4[5]6][7[8
Stage 2 O[T Bslel7 B0l Basle7 Bl Bla el e o T [2 4[5[6[7[8[0[L1[2[3[4[5][6]7]8

Lifespan (b) Fold3D with an infinite buffer size

E: 0-5 D: 0-2 E: 6-8 D: 3-8
Stage 0 [O[12BA[5[O[2[3[4[5[01[2[3] [a[oTs[T fe[2 7o el Je[2 [7[ofs| T Te[2 7[3[e[4[[S[[6]7]8[3[4]|5[6]7]8
stage 1 | [0[1[2[3[4[5[0[1[2[3]4[5[0]1] [2[03] 1 [4| 25| 06| 1 |7| 2 |e[oe|x|7[2]s[36| 4 [7[5 e[6| [7[8]3]4[5]6]7]8
Stage 2 o]1]2[3]4[5]o[x[2[3[4]5[o[o Jx[T [2[2 [3[0 J4] T [s[2 e[0 |7[T [8]2J6[3 [7[4 [8] 5 [6] 6 [7] 7 [8] 8 |3 |4 |5]6]7 |8

Lifespan (c) PipeMesh with an elastic buffer size

0

Fig. 1.

Iteration Time

Schedules adopted by Megatron, Fold3D, and PIPEMESH. Each pipeline stage contains 3 non-consecutive layers (corresponding to 3 model chunks defined

in Section II-A). The numbers inside the boxes represent the micro-batch IDs. We depict the lifespan of the activations for micro-batch 0. The notation E: i-j
represents the enqueuing of micro-batches with IDs ranging from i to j, while D: i-j represents the dequeuing of micro-batches with IDs from i to j. PIPEMESH
overlaps most of the DP communication with computation, with the activation lifespan shorter than Fold3D.

as a process of enqueuing and dequeuing micro-batches to and
from a buffer queue with an allocated size. Micro-batches are
enqueued until the buffer size is reached, at which point the
enqueue process runs concurrently with the dequeue process.
The enqueue represents the forward pass of a micro-batch, while
the dequeue represents the backward pass.

We summarize existing systems into two categories ac-
cording to their pipeline schedules. The first category (e.g.,
PipeDream [13], Megatron [16], MegaScale [19], and the zero
bubble pipeline [20]) adopts the depth-first schedule (DFS)
tailored for memory capacity. As shown in Fig. 1(a), the buffer
size is set to the number of pipeline stages, which is the minimum
number of micro-batches required to fill the entire pipeline. DFS
systems have the fastest micro-batch dequeue time, resulting
in the shortest lifespan for the activations generated by each
micro-batch. Theoretically, these systems have the minimum ac-
tivation memory peak. However, the interleaving of enqueue and
dequeue operations leads to a limited window for overlapping
communication with computation when combined with DP. The
communication for gradient synchronization at the end of each
training iteration must wait for the computation for all micro-
batches of a layer to complete before proceeding [21], [22]
(see Fig. 7). Consequently, while DFS systems offer minimal
activation memory consumption and are well-suited for increas-
ingly long sequence lengths (the activation size grows with the
sequence length; see Section II-B), they suffer from significant
communication on the performance-critical path. Our evaluation
of Megatron on the AWS V100 cluster shows that DP commu-
nication causes GPUs to be idle for over 20.2% of the training
time.

The second category (e.g., Fold3D [21], breadth-first
pipeline [22]) adopts the breadth-first schedule (BFS), which is
tailored for limited interconnect bandwidth. These systems set
an infinite buffer size and enqueue all micro-batches simultane-
ously, allowing the computation for all micro-batches of a layer
to be scheduled together. This approach significantly advances
the completion time of each layer, maximizing the window
for overlapping communication and computation. Fold3D can
hide over 80% of the DP communication when it is shorter
than the computation. However, BFS systems substantially

increase the activation lifespan, necessitating the use of vari-
ous memory-saving techniques. To benefit from communication
overlap while maintaining memory consumption comparable to
Megatron, Fold3D needs to discard most of the activations for
each layer generated during the forward propagation and fully
recompute them during the backward propagation. Meanwhile,
Fold3D requires CPU offloading, which transfers activations
stored (i.e., the inputs of layers) from GPU memory to CPU
memory during the forward propagation and moves the activa-
tions back to GPU memory before they are needed during the
backward propagation.

The drawback of BFS systems is that recent works [10], [16]
commonly adopt selective recomputation, which vastly reduces
the recomputation cost with an acceptable increase in activation
memory compared to full recomputation. Unfortunately, selec-
tive recomputation leads to a significant increase in memory
consumption for BFS systems. The complexity of activation
memory is O(B - a) for BFS systems and O(P - a) for DFS
systems. a is the activation memory per micro-batch, P is the
number of pipeline stages, and B is the micro-batch number
(B > P). For systems like Fold3D, due to more activations
stored, maintaining memory consumption on par with Megatron
leads to increased overhead from offloading. Our evaluation of
memory-constrained scenarios reveals that Fold3D’s offload-
ing introduces 34.1% overhead in computation time. Although
Fold3D manages to hide communication equivalent to 23.8% of
the computation time, the time of an iteration increases by 7.3%
compared to Megatron.

Overall, systems from both categories fall into the same
pitfall: their static pipeline schedules are optimized for either
extreme memory saving or extreme communication overlap.
However, in many cases, the memory is not used up for DFS
systems, and the communication is not worthy of the excessive
memory consumption. As illustrated in Section VI-A, Megatron
does not fully utilize memory while communication is not
hidden. Our evaluation (see Section VI-A) reveals that Fold3D
provides windows for overlapping communication 208.4% to
233.4% larger.

We propose a new abstraction, named elastic buffer queue,
which allows for more granular control over the trade-off

1874

between communication overlap and memory consumption. By
carefully managing the buffer queue size and the enqueue-
dequeue process, we can optimize the pipeline schedule to
maximize training throughput under the constraints of band-
width and memory capacity. Specifically, PIPEMESH increases
the buffer queue size to enqueue more micro-batches simulta-
neously, thereby scheduling the computation for more micro-
batches of a layer together and providing a larger window for
overlapping communication. The increase continues until either
the available device memory capacity is fully utilized or the
window exceeds the communication time. As shown in Fig. 1(c),
a larger buffer size leads to less interleaving of micro-batches
and earlier completion time of each layer.

However, two challenges exist when realizing PIPEMESH.
The first challenge is that the buffer queue size is bounded by
the memory available for activations, and the bounded buffer
size allows hiding only limited communication in memory-
constrained scenarios. To address this challenge, we propose
a mixed sharding technique that applies ZeRO-2 and ZeRO-3 to
the model parameters, reducing the memory consumed by gradi-
ents and parameters and allocating more memory to activations.
PIPEMESH shards the gradients of ZeRO-2 and ZeRO-3 param-
eters across devices when the computation on micro-batches
scheduled (dequeued) together finishes. The ZeRO-3 parameters
are sharded, and PIPEMESH collects the full parameters before
these parameters are needed for computation.

To support larger buffer sizes, we also devise a pipeline-aware
selective recomputation technique to reduce the activation mem-
ory per micro-batch. PIPEMESH can have shorter recomputation
times compared to BFS systems due to reduced activation lifes-
pans. The second challenge is how to determine the optimal
buffer size together with the recomputed activations. Either
choice allows trading off memory for throughput improvement,
which originates from reduced performance-critical communi-
cation or reduced computation. We took the first step in the
literature to model the challenge as a joint optimization problem.
Our observation to solve the problem is that we can divideitinto a
set of tractable sub-problems, where each sub-problem decides
the solution for a set of consecutive operators in the model.
We devised an algorithm based on dynamic programming to
solve the sub-problems. Unlike existing activation recomputa-
tion methods [23], [24], [25] considering only the recomputation
time saved when storing an activation, our pipeline-aware selec-
tive recomputation trades off between the saved recomputation
time and the increased performance-critical DP communication.

PIPEMESH is designed for specific, yet common, train-
ing scenarios. It is built on the premise that GPU mem-
ory is a constrained resource, making techniques like full
recomputation or extensive CPU offloading of activations,
as seen in BFS systems, prohibitively expensive. Besides,
PIPEMESH is particularly effective in large-scale DP where over-
lapping DP communication is crucial for performance. More-
over, PIPEMESH assumes the computation within a pipeline stage
is sufficient to hide the communication between stages. It is
not designed for scenarios where pipeline communication is the
primary bottleneck. In such cases, a simpler configuration that

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

I PipeMesh Megatron

2 60 MegaScale Fold3D
59
- [T
o 40 -
gz

(G}
=

o 20

o

0 - T T T
GPT-3 58B Llama2 55B Falcon 66B

Fig. 2. Per-GPU throughputs of four systems. All models were trained on
96 V100 GPUs. PIPEMESH consistently achieved higher TFLOPS than the
baselines.

minimizes pipeline communication would be more effective (see
Section IV-A).

We have implemented PIPEMESH based on Megatron. Our
evaluation shows that:

® PIPEMESH greatly improves the training throughput on
commodity clouds. PIPEMESH achieved 23.6%-33.8%
higher throughput than Megatron on an AWS cluster with
96 V100 GPUs and 20.1% higher throughput on an AWS 72
A100 GPU cluster. PIPEMESH can reduce Megatron’s cost
of pre-training Llama2 55B on 2.4 T tokens from 302,463
GPU days to 226,508 GPU days.

e PIPEMESH is memory-efficient, unfailingly operating
within the specified memory constraint and below the
available GPU memory capacity.

e PIPEMESH’s improvement is robust. PIPEMESH consis-
tently showed improvements for models with different
architectures and sizes (see Fig. 2).

e PIPEMESH is scalable. Our scalability evaluation on an A10
GPU cluster shows that PIPEMESH’s throughput improve-
ment over Megatron was always more than 27.1% from 48
to 192 GPUs.

Our major novelty is the elastic buffer queue abstraction,
which enables the trade-off between communication overlap and
memory consumption. We design an elastic pipeline schedule
that can achieve state-of-the-art training throughput within the
constraints of memory capacity and network bandwidth. To
further reduce memory consumption, we propose mixed shard-
ing and pipeline-aware selective recomputation techniques. We
also introduce a cost model for the elastic pipeline sched-
ule and the two aforementioned techniques, along with an
algorithm to determine the optimal solution. PIPEMESH can
significantly save the costs of training LLMs on commodity
clouds for researchers and enterprises. Our code is released at
github.com/hku-systems/pipemesh.

II. BACKGROUND AND MOTIVATION
A. Parallelism Dimensions

Data Parallelism: In data parallelism (DP), the training data
is split across devices. Each device computes gradients of the
full model on the allocated data, synchronizes the gradients with
the other devices, and updates the model parameters using the

github.com/hku-systems/pipemesh

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

Forward Computation
lzl Backward Computation

Parameters
Gradients

Parameter Update

Optimizer States

Averaged Gradients

AC A A A H—b A
DevO | g (i B°
o

Al
Devl g —» B!
Cl

A2
Dev2 | g | B?
€~ C > C C H—b C

O|m > [O]w > |0 >
T
-

e
| S

Reduce-Scatter Optimization Step All-Gather

Iteration k Iteration k + 1

Fig. 3. Data parallel training with optimizer sharding across three devices
(Dev 0, Dev 1, and Dev 2). During the parameter update phase, gradients from
all devices are first aggregated using a reduce-scatter operation. Each device
then updates its parameter shard using the reduced gradients. Finally, an all-
gather operation reconstructs the full updated model on every device for the
next iteration.

chosen optimizer (the update progress is defined as the opti-
mization step). The basic form [26] of DP replicates the model
and optimizer states (e.g., gradient momentum and variance of
Adam [27] optimizer) across devices. The model size supported
by the form of DP is limited since each device needs to hold a
full copy of model parameters, gradients, and optimizer states.

ZeRO Optimization: ZeRO [18] proposes a 3-stage optimiza-
tion for data parallelism to save memory usage by partitioning
the model and optimizer states. ZeRO-1 (stage 1) groups opti-
mizer states into D equal partitions for D data parallel devices,
and each device only stores and updates % of the optimizer
states. At the end of each training iteration, gradients across all
data parallel devices are averaged via a reduce-scatter operation.
Specifically, gradients on each device are also divided into D
partitions, such that the *" data parallel device collects and
averages the i*" gradient partitions from the other devices.
During the optimization step, each device uses its gradient
partition to update its optimizer state partition and corresponding
parameters, which account for % of the total parameters. At
the start of the next iteration, the data parallel devices obtain
all the updated parameters via an all-gather operation, where
each device broadcasts its parameters to the other devices. In
Fig. 3, we illustrate the optimizer sharding process and the
reduce-scatter and all-gather operations with an example using
three data parallel devices.

In Zero-1, each device still needs to store the parameters and
gradients of the entire model during the computation. To save
the memory allocated to gradients, ZeRO-2 (stage 2) further
incorporates gradient sharding, which partitions gradients across
devices during the backward propagation. Each time the size
of gradients generated per device reaches a predefined bucket
size, ZeRO-2 launches a reduce-scatter operation to reduce the
bucket of gradients on each device to % of its original size. As a
result, the gradient size stored by each device is no larger than %
of the total gradient size plus the bucket size. Fig. 4 demonstrates
the gradient sharding process when setting the bucket size to the
gradient size of a layer.

1875

Backward computation for a layer Gradients of a layer

[Az] AZ|Av|Ax| |Az|Av[AX
Dev 0 (97 . b Bx|—>1
] Cx
Reduce-Scatter Reduce-Scatter Reduce-Scatter
for Layer Z for Layer Y for Layer X

Fig. 4. Backward propagation with gradient sharding for a model with three
layers (X, Y, and Z). We showcase the workflow on one of three data parallel
devices. The backward pass for layer Z computes the full gradients, which are
then partitioned into shards (A, Bz, and Cz).

Forward computation for a layer

Parameters of a layer

Ax|Ay|Az| |Ax|Ay|AZ] Ax|Ay|Az| |Ax|Ay|AZ| Ax|Av|AZ| |Ax|AY|AZ
Dev 0 ->(Bx| > i > [By| Pify | BzH>{f2

Cx Cy Cz

All-Gather for Layer X All-Gather for Layer Y All-Gather for Layer Z

Fig. 5. Forward propagation with parameter sharding for a three-layer model
(X,Y, and Z). The workflow on one of three data parallel devices is shown.

Besides the gradients and optimizer states, ZeRO-3 (stage 3)
also partitions the model parameters across data parallel devices.
When a device requires parameters outside its partition for the
computation, it receives these parameters from the other devices
through all-gather communication. The received parameters are
released immediately after being used during the forward or
backward propagation. Fig. 5 shows how each device receives
and releases parameters during the forward propagation with
parameter sharding. Compared with ZeRO-2, ZeRO-3 reduces
the memory allocated to parameters while incurring more all-
gather communication.

Pipeline Parallelism: Pipeline parallelism [12], [13], [28],
[29], [30] (PP) partitions the layers of a model across devices,
and each device is a pipeline stage. The input’s gradients and
outputs of layers are propagated between the pipeline stages via
point-to-point communication. The input batch for an iteration
is split into micro-batches, and their computational tasks are
pipelined. In bulk synchronous parallel (BSP) [31] training, a
pipeline flush, which blocks the computation until all micro-
batches in the pipeline finish, is inserted between two iterations.
The blocking time is defined as the pipeline bubble.

Existing systems [16], [21] allow assigning noncontiguous
layers to devices (i.e., pipeline stages) to overlap DP commu-
nication and achieve a smaller pipeline bubble. For LLMs with
homogeneous layers, the model is evenly divided into multiple
subsets of layers (each subset is called a model chunk). The
model chunks are assigned to devices in a circular manner, and
the devices have an equal number of model chunks. For example,
when putting 12 layers on three devices, where each device holds
two model chunks, the first device would have layers 1, 2, 7, and
8; the second device would have layers 3, 4, 9, and 10; and so
on.

Depth-first schedule: Megatron [16] uses the depth-first
schedule [13] to limit activation memory. We define the forward
pass and the backward pass as the forward and backward com-
putation of a model chunk on a micro-batch, respectively. Each
pipeline stage first executes a few consecutive forward passes
in the warm-up phase and then enters the steady 1F1B phase,
where one forward pass is followed by one backward pass. In the

1876

case where each stage in the P pipeline stages contains M/ model
chunks, each stage first performs the forward computation of the
first M — 1 model chunks on the first P micro-batches. After
that, the last stage directly enters the 1F1B phase, while each
preceding stage must perform two additional forward passes.
This is because the forward computation starts one forward
pass earlier, and the backward computation starts one forward
pass later (see Fig. 7(a)). Therefore, the first stage needs to
perform (M — 1)P +2(P — 1) consecutive forward passes.
After completing all forward passes during the 1F1B phase, the
pipeline stages execute the remaining backward passes during
the cool-down phase.

B. Memory Usage of LLM Training

The memory consumption of LLM training can be classi-
fied into two parts: model states (i.e., parameters, gradients,
and optimizer states) and activations. Even though advanced
hardware (e.g., HBM3 [32]) enlarges the device’s memory, it is
still stringent compared with the growing memory requirement
of LLM training. First, the scaling law [33] verifies that larger
LLMs demonstrate better abilities and achieve higher accuracy
in various tasks. With the growth of model size, both model states
and activations consume more memory. Second, long-context
inference [6] of LLMs requires training with longer sequences.
The activation memory is proportional to the sequence length
(defined as the number of tokens per training input) used.

Model State Memory: We analyze the memory consumed
by optimizer states, gradients, and parameters for a typical
training setup using mixed precision training [34] and Adam [27]
optimizer. The optimizer states keep an fp32 copy of the pa-
rameters, momentum, and variance. Common implementations
of mixed precision training (e.g., PyTorch AMP [35]) maintain
only a single copy of fp32 parameters and dynamically downcast
them to fp16 during computation without explicitly storing fp16
parameters. However, when using optimizer sharding, the fp16
parameters on a device are mostly collected from other devices
via all-gather communication. Implementations like Megatron
downcast the fp32 parameters all at once during the optimization
step and maintain the fpl6 parameters separately. Therefore,
we account for both the memory allocated to fp32 and fpl6
parameters in the following analysis.

Systems using the depth-first schedule (e.g., Megatron) only
support ZeRO-1 due to the conflict between the gradient accu-
mulation required for PP and the gradient sharding needed for
ZeRO-2 and ZeRO-3. Specifically, these systems need to store
the intact gradients throughout the iteration to accumulate the
gradients generated by all micro-batches. When a device holds v
parameters, the gradients and parameters on that device require
41y bytes of memory in total.

Systems using the breadth-first schedule (e.g., Fold3D) can
incorporate ZeRO-3 (see Fig. 7(b)). For a model chunk, before
its first forward or backward pass, Fold3D with ZeRO-3 (de-
noted Fold3D-Z3) executes an all-gather operation to restore the
parameters of that model chunk. The parameters are released
immediately after all the forward or backward passes of that
model chunk finish. After the last backward pass of a model

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

TABLE I
OPERATIONS IN THE ATTENTION BLOCKS OF DIFFERENT MODELS

Operation FLOPs Sout Models
Query 2sbh? 2sbh GPT-3, Llama2, Falcon
KeyMHA 2sbh? 2sbh GPT-3
Key.GQA isth isbh Llama?2, Falcon
Value MHA 2sbh? 2sbh GPT-3
Value.GQA 1sbh? 1sbh Llama2, Falcon
Self-Attn 4s2bh 2sbh GPT-3, Llama2, Falcon
Linear.PA 2sbh? 2sbh GPT-3, Llama2, Falcon

All models use the same query transformation, selfattention (Self-Attn), and
post-attention linear (Linear.PA) operations. Llama2 and Falcon use
grouped-query attention (Key.GQA and Value.GQA), and GPT-3 uses
multi-head attention (Key.MHA and Value. MHA). We report the forward pass
FLOPs and the output size (S,,,) for each operation. / is the hidden size of the
transformer layer, s is the input sequence length, and b is the batch size.

TABLE II
OPERATIONS IN THE MLP BLOCKS OF DIFFERENT MODELS

Operator FLOPs Sout Models
Linear.Up-5h 18sbh? 18sbh Llama2
Linear.Up-4h 8sbh? 8sbh GPT-3, Falcon
SwiGLU.Gate ~ 18sbh? 18sbh Llama2
SwiGLUSILU ~ 42sbh 19sbh Llama2
SwiGLUMul ~ $sbh 18sbh Llama2

GeLU 56sbh 8sbh GPT-3, Falcon
Linear.Down- % h %6 sbh? %6 sbh Llama2

Linear.Down-4h 8sbh?> 8sbh GPT-3, Falcon
Llama?2 scales the hidden size to £/ (Linear.Up- $4) and then scales it down
to i (Linear.Down-%4). GPT-3 and Falcon scale the hidden size to 44
(Linear.Up-44) and then scale it down to h (Linear.Down-4/).
SwiGLU.Gate, SwiGLU.SiLU, and SwiGLU.Mul are the gated linear unit,
the SiLU function, and the element-wise multiplication in SwiGLU,
respectively.

chunk, Fold3D-Z3 launches a reduce-scatter operation to shard
the gradients of that model chunk. The communication intro-
duced by ZeRO-3 overlaps with the computation. The gradient
partition and parameter partition require %1/} and %w bytes
of memory, respectively. Besides, the gradients, as well as the
parameters, require 4% bytes of extra memory to accommodate
the intact gradients and parameters of two model chunks used
by overlapped computational and communication tasks. M is
the number of model chunks per pipeline stage.

Activation Memory: We analyze the activation memory for
three typical transformer-based model architectures (i.e., GPT-
3 [1], Llama2 [2] and Falcon [5]). A transformer layer contains
an attention block and an MLP block. The attention block con-
sists of three parts: a set of query, key, and value transformations;
a self-attention operation; and a post-linear operation. Table I
summarizes these operations. The input undergoes the query,
key, and value transformations before being processed by the
self-attention operation. The query transformation maintains the
input’s hidden size, while the key and value transformations
may either maintain or reduce it, depending on the attention
mechanism used.

Table II lists the operations in the MLP block. The MLP block
contains two linear operations, of which the first one scales up
the hidden size and the second one scales down the hidden
size to h. An activation function is applied to the output of
the first linear operation. GPT-3 and Falcon use GeLU [36] as
the activation function, and Llama2 uses SwiGLU [37], which

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

consists of a gated linear unit, a SiLU [38] function, and an
element-wise multiplication. Besides the attention and MLP
blocks, the normalization and dropout operations also contribute
to activation memory.

Adding up the memory required for each operation, the
activation memory per transformer layer for GPT-3 is 34sbh,
and that for Llama?2 is %sbh. Since Falcon uses parallel at-
tention and MLP blocks, only the sum of these two blocks’
outputs is stored, and the activation memory per layer is %sbh.
The operations in a layer vary greatly in computational costs.
The GeLU and SiLU functions, normalization operations, and
dropout operations are computationally much less expensive
than the other operations. This variety allows PIPEMESH to
recompute mostly the computationally lightweight operations
to satisfy the memory requirement.

C. Challenges

DP communication is a significant bottleneck when training
LLMs on commodity clouds. This is because existing systems
(e.g., Megatron and MegaScale) typically employ the depth-first
schedule, which provides limited windows for overlapping DP
communication. Specifically, for P pipeline stages, DP com-
munication can only overlap with the forward computation on
the first P micro-batches and the backward computation on the
last P micro-batches in an iteration. Our experiment training a
58B GPT-3 model using Megatron on the AWS 72 A100 GPU
cluster demonstrates that only 31.3% of DP communication
could be effectively overlapped with computation. The duration
of the remaining non-overlapped DP communication is equal to
25.1% of the total computation time, representing a significant
overhead.

Existing optimizations to mitigate the DP communication
bottleneck primarily rely on either increasing batch size [3] or
using asynchronous updates. The asynchronous update typically
employs a one-step delay approach [39], where the optimiza-
tion step in the (i 4+ 1)*" iteration uses gradients from the 7*"
iteration, allowing the corresponding gradient synchronization
communication to overlap with the (i 4+ 1)*” iteration. However,
larger batch sizes require training on more tokens to achieve
the same training loss [33], [40], while the gradient staleness
introduced by asynchronous updates slows down training con-
vergence [41]. Consequently, despite higher training throughput,
the total training time actually increases. Our evaluation of
training a 58B GPT-3 model in Section VI-B demonstrates this
trade-off.

III. PIPEMESH SYSTEM
A. Overview

Fig. 6 shows the architecture of PIPEMESH. To train an LLM,
users need to input the LLM and the training configuration (i.e.,
the 3D parallel configuration) into PIPEMESH. The 3D parallel
configuration can be generated by existing works like Piper [42],
and we empirically find that the configuration generated by Piper
is also optimal for PIPEMESH. On each device, PIPEMESH’s run-
time contains a planner and an executor. The planner divides the

1877

[Training Config]_’l Planner |

=
Model Sharding

Microbatch Queuing
|

H Device I

Communication Tasks H NIC I

Computational Tasks

Executor

Fig.6. PIPEMESH’s Architecture. The gray boxes are PIPEMESH’s components.
The tasks are assigned to the device and its network interface card (NIC).

model into model chunks, derives the sharding strategy (ZeRO
stage used for each parameter), and then selects the buffer queue
size with the enqueue-dequeue process and the pipeline-aware
selective recomputation strategy (see Section [V-B).

The sharding strategy and the enqueue-dequeue process are
then fed into PIPEMESH’s executor to generate the elastic
pipeline schedule. The executor schedules tasks according to
the pipeline schedule and assigns the computational tasks to
the device and the communication tasks to the device’s network
interface card (NIC). The computational tasks employ the re-
computation strategy selected by the planner. The DP commu-
nication tasks are generated based on the sharding strategy (see
Section III-C) and overlap with the computational tasks. The PP
and TP communication tasks are handled in the same way as
existing works [16], [19].

B. Pipeline Schedule

The elastic pipeline schedule realizes the novel enqueue-
dequeue mechanism introduced by PIPEMESH, which aims to
maximize the overlap of DP communication while adhering to
memory constraints. Unlike existing approaches that use fixed
schedules, our approach uses two sequences (enqueue and de-
queue) to allow for flexible micro-batch processing. We denote
the enqueue sequence as (e, e, . . .), which means that the ith
enqueue operation processes e; micro-batches together, and the
dequeue sequence as (dy,ds,...), which means that the 7*"
dequeue operation processes d; micro-batches together. The sum
of elements in a sequence equals the number of micro-batches
in an iteration.

By adjusting the elements in the enqueue and dequeue se-
quences, PIPEMESH creates variable-sized windows for overlap-
ping communication in the data parallel dimension. This brings
two benefits: first, PIPEMESH can adapt to different network
bandwidth constraints and cluster configurations; second, it pro-
vides granular control over communication overlap for different
types of DP communication. Specifically, the first element in the
enqueue sequence and the last element in the dequeue sequence
determine the overlapping window for optimizer sharding com-
munication, while the other elements define the overlapping
windows for gradient and parameter sharding communication.

PIPEMESH uniquely generates the pipeline schedule in two
distinct steps: (1) it orders the forward passes according to the
given enqueue sequence and the backward passes according

1878

[0 Forward computation of 3 model chunks

RS Ops
AG.F Ops

[0 [[J Backward computation of 3 model chunks

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

B8 B3 B DP communication of 3 model chunks

Stage 0 [o[1}2

[ofi]2

LZENREERERLIR 3[e[4]6[5]7]

7l[e] e} {2 e o

Stage 1 O[] Jo[a] SENERERZBEREE 4[75[8]3]6

EEERa 7
4]2]5) 14[2[5]3]
3[04 3[3]4[4]5]

Stage 2 o1l o1l o[o]1[2]2[2[3]0]4]1]5[2 5l6[3]7[4]8]

3[e[afe[5]7[3]e]4]o[5 {6 |-{7][8]: 6
4[75[8]3]e| 8[6]9[7 8} {6]o[7
5]6} l8|516]6]7]7 8[8]o[6 {7} 18]}

48k g!‘

[10[11]9Juofu]
10(11] 9 [10]11]
hd i ggrrllmp 11| 9 [1011]

(a) Schedule of Megatron

OO X -
o[1[2[3]4]5]6]7[8]o
ohopfo[1[2[3[4[5[e[7[s]opd] To[x]2]3[4]5]6[7]8]9]w
Stage 2 o[1]2[3]4]5]6[7[8[o]idr|o|1[2[3[4[5]6]7]8]o]oh{o[1[2]3]4]5]6|7[8[o [o[1 [2]3] 4[5] 6 [7[8] 9 [a0] 22

RS Ops *

(b) Schedule of Fold3D
_.Comm. Ops for ZeRO-2 and ZeRO-3

AG.F Ops [XXXX %6%%%% - CREIIIIILR
AG.B Ops
Stage 0 o RBlElel o Rl R Rl [[ofs[[e[2[[3]e[4]| 5 k{0
Stage 1 Jo[x[2[3[alsle[7olx[2[3[afslel7lol] [2[of3[[4[2]5]3]e]4 7[5 [e[o]9]
Stage 2 o1 /2[3[4l5le[7[ofx2[3[4]5lel7[o[o]1] 2]22]3]3 4|4]5]5]ele 72]e[2
(c) Schedule of PipeMesh
0 Iteration Time "

Fig. 7.

Comparison of pipeline schedules. Fold3D incorporates ZeRO-3 and has a longer computation time due to activation offloading. We demonstrate the

communication operations (comm. ops) on the first pipeline stage (stage 0). Among the operations for ZeRO-2 and ZeRO-3, reduce-scatter operations (RS ops)
and all-gather operations for the backward computation (AG.B ops) overlap with the backward passes; all-gather operations for the forward computation (AG.F

ops) overlap with the forward passes.

to the given dequeue sequence. PIPEMESH further overlaps DP
communication with computation based on these ordered passes
(see Section III-C); (2) it determines the optimal interleaving of
forward and backward passes, which minimizes the memory
consumption for the given enqueue and dequeue sequences.

Step (2): All pipeline stages order the forward passes and
backward passes in the same way. Forward passes on earlier
enqueued micro-batches are executed before forward passes on
later enqueued micro-batches, and similarly, backward passes on
earlier dequeued micro-batches are executed before backward
passes on later dequeued micro-batches. For a group of micro-
batches enqueued or dequeued together, the forward or backward
passes of each model chunk on these micro-batches are exe-
cuted consecutively. The example given in Fig. 7(c) contains 12
micro-batches in an iteration. The enqueue process of PIPEMESH
adopts sequence (8, 4), which means PIPEMESH first enqueues 8
micro-batches and lets each pipeline stage complete the forward
computation for micro-batches 0 to 7, and then enqueues the
remaining 4 micro-batches and lets each pipeline stage complete
the forward computation for micro-batches 8 to 11. The dequeue
process of PIPEMESH adopts sequence (6,6), which means
PIPEMESH first dequeues 6 micro-batches and lets each pipeline
stage complete the backward computation for micro-batches
0 to 5, and then dequeues the remaining 6 micro-batches and
lets each pipeline stage complete the backward computation for
micro-batches 6 to 11.

Step (2): PIPEMESH interleaves forward and backward passes
according to the task dependencies between pipeline stages.
PIPEMESH runs the first backward pass right after its required
forward pass finishes (for the last pipeline stage) or its required
backward pass finishes (for other stages). Specifically, on the
last stage, the backward pass starts after the last model chunk
finishes its first forward pass. The backward passes on the other
stages need to wait for inputs from the subsequent stages. After
the first backward pass, PIPEMESH performs one forward pass
followed by one backward pass (1F1B) until all forward passes
are finished. PIPEMESH then finishes the remaining backward
passes.

On each stage, the activation memory usage reaches the peak
before the first backward pass starts. Afterward, each backward
pass releases activation memory equal to that consumed by the
previous forward pass, and the memory usage becomes steady.
In Section IV-A, we formulate the memory consumption at each
stage for the elastic pipeline schedule.

A requirement for the enqueue and dequeue sequences is that
each element in both sequences should be no smaller than the
number of pipeline stages to fill the pipeline. Specifically, due to
the circular assignment of model chunks, the forward passes on
the first stage depend on the forward passes on the last stage, and
the backward passes on the last stage depend on the backward
passes on the first stage. If the element is smaller than the number
of pipeline stages, there would not be enough computational
tasks between the forward or backward passes of different model
chunks on the same stage, and an additional bubble would be
introduced.

C. Communication Schedule

PIPEMESH builds on top of ZeRO-3. It utilizes the parameter
and gradient sharding concepts from ZeRO-3 to reduce memory
consumption on each device. PIPEMESH further introduces a
novel communication scheduling mechanism specifically de-
signed to optimize performance with pipeline parallelism, which
is our primary contribution.

In network-constrained scenarios, applying ZeRO-3 to all
parameters is problematic because, except for the breadth-first
schedule, communication cannot be fully overlapped, resulting
in significant training slowdowns (see Section VI-E). We pro-
pose a novel mixed sharding technique that applies different
ZeRO stages to different parameters to address this limitation.

Like Megatron, PIPEMESH shards all the optimizer states.
Once a model chunk has completed the backward computation
for all micro-batches in an iteration, PIPEMESH shards gradients
of that model chunk across D data parallel devices through
a reduce-scatter operation, and each device retains L of the

D
gradients. The optimization step starts after the reduce-scatter

LI et al.: PiPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

[[] Gradients of ZeRO-2 Parameters Gradients of ZeRO-3 Parameters

=
Ol

bo b1 b2 b3 by

Gradient Buckets

Resultant
Gradient Shard

Fig. 8. A fraction of the backward passes from the pipeline schedule in
Fig. 7(c). The gradients of the third model chunk are sharded during the backward
computation of the second model chunk. The gradients of ZeRO-2 and ZeRO-3
parameters in a model chunk are divided into 5 buckets. RS-b; represents the
reduce-scatter operation for bucket b;.

operations for all model chunks finish. At the next iteration,
PIPEMESH sequentially launches an all-gather operation for each
model chunk to collect updated parameters. Starting from the
second model chunk, the all-gather operation of a model chunk is
initiated with the first forward pass of the model chunk preceding
it. Compared with Megatron, PIPEMESH overlaps more com-
munication for optimizer sharding with computation, benefiting
from more micro-batches enqueued and dequeued together.

PIPEMESH shards the gradients of ZeRO-2 and ZeRO-3
parameters. The communication for gradient sharding of a
model chunk is triggered whenever the backward passes switch
from the computation of that model chunk to the computa-
tion of another. PIPEMESH overlaps the triggered reduce-scatter
communication with subsequent backward passes. Specifically,
PIPEMESH divides the gradients to be reduced into a few buckets
(determined by the planner in Section IV-B) and overlaps the
communication on a bucket with one backward pass. For exam-
ple, when executing the pipeline schedule in Fig. 7(c), on each
pipeline stage, the backward computation of the third model
chunk on micro-batches 0 to 5 is followed by the backward
computation of the second model chunk on micro-batches 0 to
5. PIPEMESH launches reduce-scatter operations for the third
model chunk after its backward computation on micro-batch 5
ends. Fig. 8 further depicts how these reduce-scatter operations
run in parallel with the backward computation of the second
model chunk.

Similar to systems like DeepSpeed, PIPEMESH accumulates
the gradients produced by the computation on different micro-
batches in an iteration. The reduce-scatter communication re-
sults in each device retaining a shard of the gradients. PIPEMESH
then accumulates the resultant gradient shard of a model chunk
with the previous gradient shard of the same model chunk (if
it exists). For example, in Fig. 7(c), the gradient shard gener-
ated from the reduce-scatter communication on gradients for
micro-batches 0 to 5 is accumulated with the gradient shard
generated from the reduce-scatter communication on gradients
for micro-batches 6 to 11.

PIPEMESH shards ZeRO-3 parameters and replicates the re-
maining parameters across data parallel devices. PIPEMESH
separately manages the ZeRO-3 parameters used for the forward
and backward computation and ensures that the devices receive
all parameters of a model chunk before the computation of that
model chunk begins by launching all-gather communication in
advance. To be specific, the ZeRO-3 parameters in each model
chunk are divided into Bz3 buckets. Before the forward or
backward passes switch to a model chunk, PIPEMESH performs

1879
[[] zeRrO-2 Parameters ZeRO-3 Parameters
N5 AG-bo AG-b;
10 Iﬂl -
Partially Missing (7Yt

Parameters Complete Parameters

Fig.9. A fraction of the forward passes from the pipeline schedule in Fig. 7(c).
The ZeRO-3 parameters of the third model chunk are divided into two buckets,
and corresponding all-gather operations overlap with the two forward passes of
the second model chunk. AG-b; represents the all-gather operation for bucket
b;.

B3 all-gather operations, each of which collects a bucket of
parameters in that model chunk. These operations overlap with
the B3 forward or backward passes that occur before the model
chunk switch. Since the backward passes take longer than the
forward passes, we use different Bz3 values for the forward
and backward passes (see Section IV-B). Fig. 9 illustrates how a
device collects the parameters of the third model chunk before
its forward computation on micro-batch 8.

The collected ZeRO-3 parameters of a model chunk are re-
leased each time its forward passes on micro-batches enqueued
together or its backward passes on micro-batches dequeued
together finish.

Our mixed sharding technique reduces memory consump-
tion while maintaining training performance by leveraging the
strengths of different ZeRO stages and carefully scheduling
communication tasks.

IV. PIPEMESH PLANNER

We use the following notation in this section:

P: Pipeline parallel size (number of pipeline stages).

D: Data parallel size (number of data parallel devices).

M : Number of model chunks per pipeline stage.

B: Number of micro-batches per pipeline.

Comp: Computation time of a model chunk on a micro-

batch. We use CJ22¢ for the time of a forward pass and

ng’mdp for the time of a backward pass.

e (Cpp: Time spent on reduce-scatter communication to
reduce all gradients or all-gather communication to collect
all parameters for a model chunk.

e (Y p: Time spent on reduce-scatter communication to
reduce gradients of ZeRO-2 and ZeRO-3 parameters for
a model chunk.

e (% p: Time spent on all-gather communication to collect
ZeRO-3 parameters for a model chunk.

® R:Length of the enqueue sequence (e1,€a, ..., €R).

S: Length of the dequeue sequence (d1,ds, ..., dg).
Bz5: Number of gradient buckets for ZeRO-2 and ZeRO-3
parameters in a model chunk.

e B! BYwd: Numbers of parameter buckets for ZeRO-
3 parameters in a model chunk during the forward and
backward passes, respectively.

® 1,74,y Numbers of parameters, ZeRO-2 and ZeRO-3
parameters, and ZeRO-3 parameters on a device, respec-
tively.

1880

Cop CM?Z
6]|7]8]9]10]11] o[1]2[3]4

. Cfwd
€1 Ccomp

. Cbwd . Cbwd
ds Ccomp Bz Ccomp

(a) Communication for Optimizer Sharding (b) Commmnication for

Gradient Sharding
ChplB2Y? ChylB2Y?
B%d : C?grip BZbng : Ccawrgp

(c) Communication for
Parameter Sharding (Forward)

(d) Communication for
Parameter Sharding (Backward)

Fig. 10. DP communication of the third model chunk for the pipeline schedule
in Fig. 7(c).

A. Cost Model

The objective of PIPEMESH’s planner is to maximize through-
put under the given memory constraint. Maximizing throughput
equals minimizing the time of an iteration. In this subsection, we
model the iteration time and the memory usage on each device
for PIPEMESH and its elastic pipeline schedule. The iteration
time T}, 1S Written as:

Titer = Teomp + Toubvte + TEp + T3 (1)

where Tt 1s the total computation time of the forward and
backward passes in an iteration, Ty, ppie 1S the pipeline bubble
time, and T¢:! and T are the PP and DP communication
times on the performance-critical path, respectively.

The computation time T¢op,p, is calculated as M - B - Ceomp.
The recomputation time is included in Clyypyp, and all model
chunks use the same recomputation strategy (see Section IV-B).
The pipeline bubble time Tj,,pp1¢ is calculated as (P — 1)Clomp,
equal to the sum of the first forward passes and the last backward
passes on all pipeline stages, excluding the first stage.

PIPEMESH prioritizes scenarios where communication-
computation overlap is feasible. Specifically, the planner in-
tentionally constrains its search space to configurations where
Cgﬁ’,ilp remains larger than C'p p (defined as the time spent on re-
ceiving the input of a forward pass or backward pass) by limiting
the number of model chunks per pipeline stage. Thus, only the PP
communication of the first forward pass and the last backward
pass does not overlap with computation. The critical-path PP
communication T8} is calculated as 2(P — 1)Cp p. PIPEMESH
may not be optimal for cases where pipeline communication
dominates (Cpp > C{g"nfp), such as ZeRO-1 without tensor
parallelism. In such cases, the ideal strategy would be to mini-
mize pipeline communication by placing only one model chunk
per pipeline stage. However, this conflicts with PIPEMESH’s
core mechanism of using multiple model chunks to enable DP
communication overlap.

To formulate the critical-path DP communication T3, we
divide the DP communication into the communication for op-
timizer sharding, gradient sharding, and parameter sharding,
respectively. On each pipeline stage, the communication for
optimizer sharding of all model chunks, except for the first model
chunk, overlaps with computation (see Fig. 10(a)). The reduce-
scatter communication of a model chunk can overlap with at

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

most e; forward passes, and the all-gather communication can
overlap with at most dg backward passes. e; is the firstelement in
the enqueue sequence, and dg is the last element in the dequeue
sequence. We formulate the critical-path communication D,, for
optimizer sharding as:

D, =2Cpp + (M — 1) (H (Cpp,er - CL24)

comp

+H (Cpp,ds - Ciny)))

comp

where H(C, C") = max(0,C — C") checks whether communi-
cation C fully overlaps with computation C". If not, the compu-
tation time is deducted from the communication time.

The communication for gradient sharding of all model chunks
takes the same amount of time. For a model chunk, each time
it finishes the backward computation on micro-batches de-
queued together, PIPEMESH triggers the corresponding gradient
sharding communication, which overlaps with the subsequent
Bz backward passes (see Fig. 10(b)). The gradient sharding
communication of each model chunk is triggered S — 1 times
for S dequeue operations in an iteration since the last dequeue
operation triggers the optimizer sharding communication. The
critical-path communication D, for gradient sharding is formu-
lated as:

Dy=(S—1)M-H(Chp,Bza-CL1L) A3)

comp

We separately consider the communication incurred by pa-
rameter sharding for forward and backward computation. For
each model chunk, PIPEMESH performs all-gather communi-
cation each time before the model chunk starts forward com-
putation on micro-batches that are enqueued together or back-
ward computation on micro-batches that are dequeued together.
The communication overlaps with B%’d forward passes (see
Fig. 10(c)), or B%’gd backward passes (see Fig. 10(d)). The
all-gather communication for forward computation is triggered
for every enqueue operation except the first one. The critical-path
communication D]{f wd for parameter sharding during the forward
computation is written as:

DUt = (R—1)M - H (Chp B Clud)) @)

comp

The all-gather communication for backward computation is
triggered for all dequeue operations. The last model chunk di-
rectly uses the parameters for forward computation and does not
require all-gather communication for the first dequeue operation.
The critical-path communication Dzw”l for parameter sharding
during the backward computation is written as:

Dyt = (5-M—1)-H(Chp, By -Cotl) (5)

comp

The critical-path DP communication 77 equals the sum of
D,, Dy, D{*?, and D4

Memory Usage: We model the memory consumed by the
optimizer, gradients, and parameters for the mixed precision
training and Adam optimizer setup. The optimizer states on a
device require M, = 1—D21/) bytes of memory.

PIPEMESH allocates intermediate buffers to stage the commu-
nication for buckets, which introduces a manageable memory
overhead. For gradient sharding, the buffer size is equivalent to
the total size of the ZeRO-2 and ZeRO-3 parameters’ gradients

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

within a single model chunk. For parameter sharding, the total
buffer size is twice the number of ZeRO-3 parameters in a model
chunk since we allocate separate buffers for the forward and
backward passes.

PIPEMESH allocates up to My = 2(¢) — 1g) + (& +)1y
bytes of memory for gradients. The gradients of ZeRO-1 pa-
rameters need 2(¢ — 1,) bytes of memory, and the gradient
partition of ZeRO-2 and ZeRO-3 parameters needs %wg bytes
of memory. Besides, the backward computational task requires
257 Yy % bytes of memory for a model chunk’s full ZeRO-2/ZeRO-3
gradlents and the intermediate buffer for gradient sharding uses
another 2% bytes.

PIPEMESH allocates up to M, = 2(¢) — 1) + (3 + 2)1,
bytes of memory for parameters. The ZeRO-1 and ZeRO-2
parameters need 2(v) — 1) bytes of memory, and the partition
of ZeRO-3 parameters needs pr bytes of memory. The addi-
tional —zl;p bytes of memory are used as follows forward and
backward computational tasks each require -+ wp bytes to store
full ZeRO-3 parameters of a model chunk, while the intermediate
buffer for parameter sharding occupies %vﬁp bytes. Since M,,
is no smaller than 2¢) when M < 4, PIPEMESH only enables
ZeRO-3 when M > 4.

The activation memory is determined by the number of con-
secutive forward passes before the first backward pass. Accord-
ing to the pipeline schedule introduced in Section III-B, the
" pipeline stage executes up to e;(M — 1) +2(P —i) +1
consecutive forward passes. Each pipeline stage first performs
the forward computation of the first M — 1 model chunks on
the e; micro-batches. Afterwards, the last stage executes one
extra forward pass followed by the first backward pass, while
each preceding stage performs two additional forward passes.
The required activation memory M, is calculated as the size of
the activations stored by these consecutive forward passes. We
define M, as the sum of M,, My, M, and M,.

The theoretical lower bound for the iteration time 7j;., in
PIPEMESH s (M - B + P — 1)C%,,,.., + TEE + 2Cpp. C},ypp
is the minimum value of C,,,; and represents the computation
time excluding recomputation. 2C'pp corresponds to the opti-
mizer sharding communication time for the first model chunk,
which necessarily remains on the critical path. In our experi-
mental evaluation, PIPEMESH achieves iteration times that are
5.1% to 7.2% larger than this theoretical lower bound. The gap
between theoretical and achieved performance can be attributed
to two main factors (see Section VI-A): the practical slowdown
in computation when overlapping with communication and the
additional computation overhead introduced by PIPEMESH’S
selective recomputation strategy.

B. Planning Algorithm

PIPEMESH’s planner determines the optimal buffer queue
size q of the elastic pipeline schedule and identifies the set of
operations O to be recomputed in order to minimize the iteration
time under the memory budget My:

argmin Ty, subject to Mgyum < M, (6)
q,0

1881

The planner mainly consists of two parts: the first part determines
the enqueue and dequeue sequences and the sharding strategy
for all possible buffer sizes; the second part determines the buffer
size and the pipeline-aware selective recomputation strategy of
PIPEMESH jointly.

Determine the model chunk number: The planner first deter-
mines the number of model chunks. As the number of model
chunks increases, the DP communication of the first model
chunk, which is always on the performance-critical path, de-
creases. Thus, the planner increases the number of model chunks
M as long as the PP communication time C'p p does not exceed
the forward pass time ng"nfp

Determine the enqueue sequence: The enqueue sequence is
derived from the buffer queue size g. The planner sets the
first element in the enqueue sequence e; to ¢ to maximize
the window for overlapping the communication incurred by
optimizer sharding. The remaining B — ¢ micro-batches are
evenly distributed across [?] enqueue operations to minimize
the sequence length and the number of model chunk switches.
The planner uses a dequeue sequence of the same length as the
enqueue sequence (R = 5), allowing the enqueue and dequeue
processes to be interleaved.

Determine the dequeue sequence and sharding strategy: The
planner ensures that the communication for gradient sharding
and parameter sharding can fully overlap with computation by
selecting proper 1, and),. Before that, the planner deter-
mines the dequeue sequence based on the comparison between
the total backward computation time B - C(lj;”n‘fp and potential
DP communication time S -Cpp. If B - C’fowmdp >S.-Cpp,
it indicates that even if gradient sharding is enabled for all
parameters, the corresponding communication can fully overlap
with computation. Therefore, the planner sets all parameters to
either ZeRO-2 or ZeRO-3 (i.e., 14 =). The micro-batches are
evenly divided across the dequeue operations, and all elements
in the dequeue sequence are set to %. Bys is set to [%W
which corresponds to the minimum number of backward passes
required to hide communication for gradient sharding of a
model chunk. We use the computation time of a backward
pass without recomputation because the recomputation strategy
has not been determined at this stage. PIPEMESH then uses the
remaining backward passes for parameter sharding and sets
BY%4t0 £ — B, and the number of ZeRO-3 parameters 1), to

the largest value that makes D = 0. Similarly, BLYYi

CP
IV Cf?“}; —|

is set to

comp

If B-Cfwd < S-Cpp, the planner sets a portion of pa-
rameters to ZeRO-2 and the remaining parameters to ZeRO-1
(i.e., ¥, = 0) to avoid critical-path communication for gradient
sharding. dg, the last element in the dequeue sequence, is set
to the minimum value that satisfies dg - C’g;“n‘fbp > Cpp. The
remaining B — dg micro-batches are then evenly assigned to
S — 1 dequeue operations, and B%4? equals £-45. The number
of ZeRO-2 parameters 1) is 1ncreased as long as the correspond-
ing communication for gradient sharding can be fully overlapped
(Dg = 0).

Overall, for each buffer queue size g, the planner determines
the enqueue and dequeue sequences with the sharding strategy

1882

and then calculates the critical-path DP communication time
T¢it (q) and the allocated memory M g, (q).

Determine buffer queue size and pipeline-aware selec-
tive recomputation strategy: Selective recomputation allows
PIPEMESH to enable a larger buffer size with a larger window
for overlapping communication with computation. The plan-
ner selects the buffer size and determines which activations
to recompute in order to minimize the iteration time, taking
into account both the critical-path DP communication time and
the time required for recomputation. The same recomputation
strategy is used for all model chunks, and the computation
times of different model chunks for a micro-batch are the same.
PIPEMESH collects the sizes of activations and the computation
times for all operations in a model chunk. After performing a
topological sort for the DAG of these operations, we denote the
activation size of the k-th operation as o, and its computation
time as uy. We present an algorithm based on dynamic program-
ming to find the optimal set of operations to recompute.

We define a dynamic programming table L[k][o] as the mini-
mum execution time when the memory consumed by activations
of the first k operations is o. The execution time sums the
recomputation time and the critical-path DP communication
time. We initialize the table as:

L[0][0] = THH (B))

which is the critical-path DP communication time when the
buffer queue size equals the micro-batch number B. We recur-
sively construct the dynamic programming table based on the
optimal substructure of the subproblems:

Lik][o] = min (L[k — 1][o] + j - wk, L[k — 1][o — o]
+I(O — Ok, O)) (8)

where L[k — 1][o] and L[k — 1][o — o] are the subproblems for
which we have planned the recomputation strategy for the first
k — 1 operations. The first term in the min function refers to the
case where the k-th operation is recomputed. j equals M - B +
(P —1) and j - u corresponds to increased computation time
and pipeline bubble time due to recomputing the operation. The
second item corresponds to the case where the activation of the
operation is stored.

We define I(0',0) as the increased critical-path DP commu-
nication when the activation memory is changed from o’ to o,
and we formulate it as:

I(d,0) = T (F(0) — THp (F (o) ©)

Function F'(0) looks for the largest buffer queue size ¢ that
satisfies My (q) < M, when the size of activations stored
per forward pass is o.

After constructing the dynamic programming table, we
choose 0* = argmin, L[K][o], where K is the number of opera-
tions in a model chunk. The buffer queue size is set to F'(0*). We
can reconstruct the optimal set O by tracing back the operations
recomputed when forming L[K][o*].

The search space size is B - 2%, where B represents the
number of possible buffer queue size choices and 2¥ is the
number of possible recomputation strategy choices, as each
operation can either be recomputed or not. The time complexity

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

Algorithm 1: PIPEMESH Executor.

Input: enqueue sequence s. = (e1, €2, - - -), dequeue
sequence sq = (d1,ds, - -), pipeline parallel size
P, model chunk number M and micro-batch
number B
1 Initialize model chunk lists chunk f.,a, chunkywa;
// number of consecutive forward passes
at the start of an iteration
2 Nfwa — (M —1)er + 2(P —i);
// number of forward passes followed by
backward passes
3 Nfwdbwd < M - B — Npwd;
4 for j =1 to s..length do
5 fork=1to M do
// add the model chunk ID to
forward list
6 forn =1toe; do
L chunkyq.append(k);
8 for j = 1 to sq.length do
9 for k=M to 1 do
// add the model chunk ID to
backward list
10 forn =1to d; do
11 | chunkyy,q.append(k);

12 forn = 1to nyyq do
13 L forwardPass ();

14 forn = 1t0 nfwdapwa do
15 forwardPass ();
16 backwardPass ();

17 forn = 1 to nyyq do
18 L backwardPass ();

19 Function forwardPass ():

20 chunkID < chunk f.q.popleft();
21 allGather((chunkID + 1) mod M);
22 forward(chunkID);

23 Function backwardPass ():

24 chunkID < chunky.q.popleft();

25 if gradBucket((chunkID + 1) mod M) then
26 | reduceScatter((chunkID + 1) mod M);
27 else

28 | allGather((chunkID — 1) mod M);

29 | backward(chunklD);

of our algorithm is O(K % + B), where A™* represents
the sum of activation sizes across all operations, and A™" is
the greatest common divisor of all operation activation sizes.
O(B) is the time used to construct function F'(-), which maps

activation memory to PIPEMESH’s buffer queue size.

V. PIPEMESH EXECUTOR

The executor realizes the elastic pipeline schedule given the
enqueue and dequeue sequences. Algorithm 1 describes the ex-
ecutor’s logic: it invokes all computational and communication
tasks based on the pipeline stage rank ¢. The executor first orders
the forward and backward passes, respectively (lines 4— 11).
It then sequentially executes a few forward passes (line 13),
interleaved forward and backward passes (lines 15 and 16), and
a few backward passes (line 18).

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

During the forward passes, the executor launches all-gather
communication (line 21) for the ZeRO-3 parameters of the
next model chunk. During the backward passes, the executor
launches either reduce-scatter communication for gradients of
the previous model chunk’s ZeRO-2 and ZeRO-3 parameters
(line 26) or all-gather communication (line 28) for the ZeRO-3
parameters of the next model chunk.

VI. EVALUATION

Testbeds: We conducted most of the experiments on an AWS
cluster with 12 p3dn.24xlarge nodes. Each node has 8 NVIDIA
V100 GPUs (32 GB memory and 125 fp16 TFLOPS per GPU)
interconnected by NVLink, and the nodes are connected through
a 100 Gbps network. We further evaluated on an AWS cluster
with 12 p4d.24xlarge nodes. Each node has 8 NVIDIA A100
GPUs (40 GB memory and 312 fp16 TFLOPs per GPU) inter-
connected by NVLink, and the nodes are connected through
a 400 Gbps network. We also used 48 pnv4.28xlarge nodes
on Tencent Cloud with a total of 192 NVIDIA A10 GPUs to
evaluate the scalability of PIPEMESH. Each node has 4 NVIDIA
A10 GPUs (24 GB memory and 125 fp16 TFLOPS per GPU).
The network bandwidth of a node is 50 Gbps. Unless otherwise
specified, we used the AWS cluster with 96 V100 GPUs as our
default testbed.

Baselines: We took Megatron [16], MegaScale [19], and
Fold3D [21] as our baselines. Megatron and MegaScale are the
state-of-the-art 3D parallel training systems for LLMs. Fold3D
is designed for 3D parallel training on commodity clouds and can
overlap most of the DP communication. The Megatron release
(Core 0.4.0) we used provides the functionality of overlapping
DP and PP communication with computation. We implemented
MegaScale’s communication component based on Megatron’s
codebase according to the description in MegaScale’s paper.
Specifically, we modified Megatron’s data loader and performed
a series of data loading operations before computation. By
doing so, we overlapped the first all-gather operation with the
advanced data loading operations. We also decoupled the point-
to-point send and receive operations following MegaScale. We
did not compare with pure data parallelism approaches such
as ZeRO stages 1-3 or PyTorch FSDP. This is because pure
data parallelism faces excessive DP communication costs for
synchronizing full parameters and gradients of a model across
all devices. In contrast, 3D parallelism leverages the comple-
mentary strengths of three parallelization dimensions to enable
superior throughput [16].

ZeRO stages: We used ZeRO-3 for Fold3D and ZeRO-1 for
Megatron and MegaScale. PIPEMESH applied different ZeRO
stages to different parameters.

Data, pipeline, tensor parallelism degrees: We list the par-
allelization configurations, including the number of model
chunks per pipeline stage, in Table IV. The parallelization
configuration is derived by Piper [42], an algorithm that au-
tomatically determines the optimal configuration for the given
model and cluster. For all systems, we enabled sequence paral-
lelism [10] in the tensor parallel dimension.

1883

TABLE III
MODELS USED FOR END-TO-END EVALUATION
Model l Ng Niy h s
GPT-358B 72 64 64 8192 3072
Llama255B 80 64 8 8192 4096
Falcon 66B 96 64 8 8192 3072

1is the number of layers. 1, and n,, are the numbers of query heads and
key/value heads in the attention block, respectively. 4 is the hidden size
of a transformer layer. s is the length of an input sequence.

CPU offloading: Fold3D offloaded activations that couldn’t
fit into GPU memory to CPU memory, while other systems kept
the model states and activations in GPU memory.

Checkpoint frequency: We saved a model checkpoint to CPU
memory every 500 iterations. We used synchronous checkpoint-
ing, and the overhead was small in practice.

Gradient accumulation: We set the micro-batch size to 1,
which is large enough to saturate GPU ALUs. We accumulated
gradients of % micro-batches per device for batch size B and
pipeline parallel degree P.

Models: We trained 3 notable LLMs (i.e., GPT-3 [1],
Llama?2 [2], and Falcon [5]). GPT-3 is natively supported by
Megatron, and we used the operations (e.g., RMS-norm [43],
SwiGLU [37] and grouped-query attention [44]) provided by
Megatron to implement Falcon and Llama2. We selectively
recomputed the self-attention operations following common
practices [10], [45]. We chose the model sizes that can be
supported by Megatron without incurring out-of-memory er-
rors. When Megatron enables DP, it can support smaller model
sizes compared to those supported by ZeRO-3. This is because
Megatron replicates the model parameters and gradients across
data parallel devices, which significantly increases memory con-
sumption per device compared to ZeRO’s parameter sharding
approach.

The official Llama2 suite includes a limited number of model
size options. To test larger models that our cluster could support,
we constructed additional model size variants by experiment-
ing with different numbers of layers and hidden sizes while
maintaining the core architecture of Llama2. The model sizes
selected favor the baselines, which use pipeline schedules de-
signed for memory-constrained cases. Detailed model architec-
tures are listed in Table III. We trained these models on the
OpenWebText [46] dataset. To demonstrate the effectiveness of
PIPEMESH, we set the memory budget for each model to match
the memory usage of Megatron, allowing for a fair comparison
of performance under equivalent memory constraints.

Training configurations: We trained each model on 5B tokens.
We used the cosine learning rate scheduler and warmed up the
learning rate on 0.25B tokens. We determined the learning rate
by testing a range of learning rates and selecting the one that
achieves the minimum loss after training on 0.5B tokens. For
each model, we selected the per-iteration batch size that allowed
Megatron to make that model converge in the shortest amount
of time.

One-step delayed update: We implemented the one-step delay
mechanism [39] in Megatron by delaying the reduce-scatter
and all-gather communication by one step. Specifically, in the

1884

TABLE IV
BREAKDOWN OF THE PERFORMANCE CRITICAL PATH WHEN TRAINING THREE LLMS

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

Model B T,P,D System M q Tyl Th% Tyune TEE TR MEEE Mgpuy Ma Mg M, Thrp. MFU

GPT-3 58B PIPEMESH 6 6 15541 25672 1145 2451 1403 n/a 299 115 3.0 39 120.6 387%
36 (83,3 Megaton 2 n/a 14922 24854 3315 9936 2628 n/a 301 96 45 45 1004 322%

7% A100 %) MegaScale 2 n/a 15013 2497.0 3332 9864 2540 n/a 301 9.6 45 45 1003 322%
Fold3D 6 n/a 23121 34316 159.5 2477 1349 735 370 287 3.0 3.0 89.3 28.6%

GPT-3 585 PIPEMESH 6 12 50120 92171 2964 7579 5059 n/a 253 114 23 27 521 41.7%
72 (84,3 Megaton 2 n/a 49145 91096 8765 39231 9227 n/a 256 99 34 34 421 337%

965 V100 *%%) MegaScale 2 n/a 49179 91045 8764 38638 9190 n/a 256 99 34 34 423 33.8%
Fold3D 6 n/a 7997.2 122250 4213 7604 5097 2169 290 430 23 23 381 305%

Llama? 55B PIPEMESH 5 8 48836 88411 5147 8592 6356 n/a 256 118 24 28 462 37.0%
48 (8,4,3) Megatron 1 n/a 4789.0 8664.1 25225 4263.8 11551 n/a 25.7 106 32 32 348 27.7%

96x V100 %) MegaScale 1 n/a 4769.7 8651.5 25165 42231 11675 n/a 257 106 32 32 345 27.6%
Fold3D 5 n/a 78428 117257 7338 8547 6176 2134 292 425 24 24 340 272%

Falcon 66B PIPEMESH 8 12 60359 108054 2631 6388 5487 n/a 265 116 22 27 522 41.8%
72 (84,3 Megaon 3 n/a 59113 106767 6911 45958 9675 n/a 269 93 38 38 423 338%

965 V100 *%%) MegaScale 3 n/a 5917.4 10687.9 6919 45664 9551 n/a 269 93 3.8 38 423 33.8%
Fold3D 8 n/a 9117.8 139009 359.7 6321 5364 2400 291 447 22 22 394 31.6%

We list each model with the cluster used. We report the batch size per iteration (B) and the 3D parallel configuration (tensor parallel size 7, pipeline parallel size P, and data
parallel size D). M is the number of model chunks on a pipeline stage, and ¢ is the buffer queue size used by the elastic pipeline schedule of PipeMesh. We also report the
forward computation time (7, in microseconds), the backward computation time (7o), the pipeline bubble time (Tyyy), the critical-path DP communication time (Ta),
and the critical-path PP communication time (T¢,) in an iteration. Specifically for Fold3D, we report its extra CPU memory used for offloading (M¢p;) per host.We list the
peak GPU memory usage (Mg, in GB), peak activation memory usage (M,), peak gradient memory usage (M,) and peak parameter memory usage (Mp) for the first pipeline
stage. We provide the device throughput (Thrp., in TFLOPS) and model FLOPs utilization (MFU). n/a means the column is not applicable to the system as explained in

Section 6.1.

(i + 1)*" iteration, we first perform reduce-scatter communica-
tion on gradients from the i‘" iteration, then update the optimizer
states, and finally broadcast the updated parameters to all data
parallel devices through all-gather communication. Given suffi-
cient GPU memory in our setup, we maintained these gradients
and parameters for communication in GPU memory.

We focus on addressing the following questions. Section
VI-A: Does PIPEMESH enable faster training for LLMs? Section
VI-B: How do batch sizes and asynchronous updates affect train-
ing convergence? Section VI-C: How does PIPEMESH perform
in large-scale training? Section VI-D: How does PIPEMESH per-
form under different training hyper-parameters (e.g., the number
of model chunks)? Section VI-E: How effective are PIPEMESH’s
components?

A. End-to-End Performance

Table IV lists the performance breakdown of PIPEMESH and
the baselines when training three LLMs. The iteration time is
broken down into forward computation time, backward com-
putation time, pipeline bubble time, and critical PP and DP
communication times. The memory usage is categorized into
three parts: memory consumed by activations, gradients, and
parameters. The elastic buffer queue size is specific to the elastic
pipeline schedule of PIPEMESH. For all three LL.Ms, the planner
of PIPEMESH found dequeue sequences identical to the enqueue
sequences, which contain two elements. We evaluate the perfor-
mance of these systems using two key metrics: throughput per
GPU and model FLOPs utilization (MFU). MFU is calculated
as the ratio of model FLOPs per second to the GPU’s theoretical
peak throughput. Model FLOPs represent the floating point
operations required for the forward and backward computation,
irrespective of implementations such as recomputation.

On the A100 cluster, PIPEMESH achieved a throughput of
120.6 TFLOPS, which is 20.1% higher than Megatron. This
performance improvement stems from PIPEMESH’s ability to

reduce critical-path DP communication by 75.3%. Megatron
only managed to overlap 31.3% of DP communication due to
limited overlapping windows. In contrast, PIPEMESH’s elastic
pipeline schedule provided larger overlapping windows, en-
abling it to overlap 82.5% of DP communication. On the V100
cluster, PIPEMESH demonstrated the highest throughput, ranging
from 46.2 to 52.2 TFLOPS, for all the LLMs evaluated. This
represents a 1.24x to 1.34x speedup over both Megatron and
MegaScale.

Despite the significant portion of iteration time attributed
to DP communication (optimizer sharding communication in
Megatron), the 3D parallelism configuration derived by Piper
remains optimal. Increasing the pipeline parallel size further
leads to areduction in DP communication; however, this is offset
by increased PP communication and a larger pipeline bubble,
resulting in an overall increase in iteration time.

MegaScale achieved similar performance to Megatron due
to the use of the depth-first pipeline schedule, which limits the
overlap between DP communication and computation. However,
MegaScale’s critical DP communication is marginally smaller
than Megatron’s because MegaScale also overlaps the DP com-
munication with data loading operations. In our evaluation, the
data loading operations per iteration ranged from 40.3 to 78.1
microseconds.

PIPEMESH also reduced the critical PP communication com-
pared to Megatron. Breath-first systems [21], [22] reveal that
Megatron leaves the PP communication of forward passes on the
first micro-batch and backward passes on the last micro-batch on
the performance-critical path. By running micro-batches more
than the pipeline parallel size during the warm-up phase, the
critical PP communication, except for that of the first forward
pass and the last backward pass, can be hidden.

PIPEMESH divided the model into more model chunks
compared with Megatron. The critical PP communication in
Megatron, which is proportional to the number of forward and
backward passes on a micro-batch, increases with the number

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

of model chunks. Although Megatron can reduce the pipeline
bubble by increasing the number of model chunks, the benefits
are overshadowed by the increased critical PP communication.
In contrast, PIPEMESH is designed to hide most of the PP com-
munication, allowing it to benefit from a larger number of model
chunks without incurring the same communication overhead.

When training the Llama2 55B model with Megatron, we
encountered out-of-memory errors when attempting to place
multiple model chunks on a pipeline stage. While Falcon 66B
has more parameters than Llama2 55B, the per-layer activation
size of Llama?2 is actually larger than Falcon’s when processing
the same number of tokens with the same hidden size (as detailed
in Section II-B). Additionally, we used a longer sequence length
for training Llama2 (see Table III). In our experiments, Falcon
66B generated 1.86 GB of activations per device for a micro-
batch, while Llama2 55B generated 2.66 GB of activations
per device. According to the formula for calculating warm-up
forward passes defined in Section II-A, Llama2 would require an
additional 4.2 GB of memory when placing two model chunks
per pipeline stage, which exceeded the GPU memory constraint.

Compared with Megatron, the computation time in PIPEMESH
is slightly larger due to two factors. The first factor is that
the communication overlapped with the computation would
contend for GPU resources and slow down the computation [47].
The computation in PIPEMESH, which overlapped with more
communication, became slower. However, the contention only
slowed down the computation by 2.4% to 3.1%.

The second factor is that PIPEMESH recomputed more opera-
tions, increasing the backward computation time. When training
GPT-3 58B on the V100 cluster, PIPEMESH recomputed all
GeLU, layer-norm and dropout operations in a model chunk.
Besides, PIPEMESH also recomputed one query transformation
operation among three transformer layers in a model chunk.
For Llama2 55B, PIPEMESH recomputed all SiLU, RMS-norm
and element-wise multiplication operations and three key-value
transformation operations among four transformer layers in a
model chunk. For Falcon 66B, PIPEMESH recomputed all GeLU
and layer-norm operations in a model chunk. PIPEMESH only
incurred small recomputation overhead. The additional recom-
putation time introduced by PIPEMESH for GPT-3 58B is less
than 2.6% of the forward computation time. The ratio is smaller
for the other two LLMs.

Memory usage breakdown: Due to PIPEMESH’s mixed shard-
ing strategy, it requires less memory for model states compared
to Megatron. This allows PIPEMESH to allocate more memory for
activations when operating under the same total memory budget
as Megatron. When further incorporating selective recompu-
tation, PIPEMESH achieved slightly lower total memory usage
compared to Megatron in practice. For instance, when training
the 58B GPT-3 model on the V100 cluster, per device, PIPEMESH
allocated 1.5 GB more memory for activations while using
1.8 GB less memory for model states compared to Megatron.

PIPEMESH’s mixed sharding strategy set a portion of param-
eters to ZeRO-3 and the rest to ZeRO-2 for all the models
evaluated. The percentages of parameters set to ZeRO-3 on
the V100 cluster were 84.4%, 90.9%, and 86.9% for GPT-3
58B, Llama2 55B, and Falcon 66B, respectively. PIPEMESH

1885

—— MT-B36
—— MT-B72
—— MT-B144
MT-B36-DU

Training loss
Training loss
Y
L

2000 3000

GPU hour

1000

#tokens (B)

(a) Loss vs. Training tokens (b) Loss vs. GPU hours

Fig. 11. Training of GPT-3 58B using Megatron continued until the training
loss reached 2.8 on the A100 cluster (B: batch size, MT: Megatron, DU: one-step
delayed update). When using larger batch sizes or one-step delayed update, more
training tokens were required.

TABLE V
TRAINING TOKENS REQUIRED FOR GPT-3 58B TO REACH A LOSS OF 2.8

Batch Size 36 72 144 36-DU
Ftokens (B) 247 (Ix) 2.90 (L17x) 3.56 (1.44x) 4.17 (1.69%)
Thrp. (A100) 100.4 (Ix) 1149 (1.14x) 1239 (1.23x) 121.3 (1.21x)
Thrp. (VIO0) 328 (Ix) 421 (1.28x) 49 (1.49x) 46,6 (1.42%)
We list Megatron’s throughput (Thrp., in TFLOPS) when using these batch sizes. DU represents

onestep delayed update. The throughput of batch size 36 with DU is lower than batch size 144 due
to a higher pipeline bubble ratio.

fully overlapped the communication for gradient sharding and
parameter sharding with computation.

PIPEMESH effectively reduced the activation memory foot-
print through recomputation. For example, the per-layer activa-
tion size of Falcon 66B was reduced from 79.5 MB in Megatron
to 43.5 MB in PIPEMESH.

B. Large Batch Sizes and Asynchronous Update

Our experiments with GPT-3 58B using different batch sizes
and the one-step delay revealed trade-offs between computa-
tional efficiency and convergence, as illustrated in Fig. 11 and
Table V. While larger batch sizes and the one-step delay reduced
the proportion of critical-path DP communication in an iteration
and improved throughput, they also increased the number of
tokens required to reach a target loss. This observation aligns
with existing research [33], [40]. Compared to our original batch
size settings for Megatron in Table IV, these alternative configu-
rations actually resulted in longer overall training times. On the
A100 cluster, increasing the batch size from 36 to 72 and 144 led
to 2.6% and 16.8% longer training times, respectively, because
they required 17.4% and 44.1% more tokens. Even with the
one-step delay effectively hiding nearly all DP communication,
training time increased by 39.7% compared to Megatron with
synchronous updates.

We also observed that optimal batch sizes varied across differ-
ent cluster configurations, even when training the same model.
For instance, with a batch size of 36, critical-path DP communi-
cation constituted 29.5% of the iteration time on the V100 cluster
but only 17.2% on the A100 cluster. When increasing the batch
size to 72 to reduce the ratio of critical-path DP communication,
the V100 cluster showed a 28.4% throughput improvement that
outpaced the increased token requirement. In contrast, the A100
cluster only achieved a 14.4% throughput increase, indicating

1886

TABLE VI
MODELS USED IN THE WEAK SCALING SETUP AND CORRESPONDING
TRAINING CONFIGURATIONS

#GPUs Model B 1 ngke
48 GPT-315B 48 24 56
96 GPT-326B 96 32 64 8192 4 8 3
192 GPT-349B 192 48 72 9216 4 12 4 4

We report the number of layers (/), the number of query, key and value heads

(n4,), and the hidden size (/) of each model. The training configuration includes

the number of GPUs (#GPUs), the 3D parallelism configuration (TP, PP and DP),

the batch size per iteration (B), and the number of model chunks (M).

h TP PP DP M
7168 4 6 2 4
4

o

E;ﬁ 5 -| EEE PipeMesh Megatron

29 4 MegaScale Fold3D

g w

55,

iz

®O 2 1

8T

0 - T T T
48 96 192
GPU Number

Fig. 12. Weak scaling evaluation on different numbers of GPUs. PIPEMESH
consistently achieved higher throughput for all the scales evaluated.

that increasing the batch size to 72 would not reduce overall
training time.

C. Scalability

We evaluated the scalability of PIPEMESH using a weak
scaling setup. Following the baseline [16], the setup scales the
number of GPUs and the model size simultaneously. We varied
the number of GPUs from 48 to 192 and proportionally increased
the model size by increasing the number of layers and the hidden
size. Table VI lists the models used and corresponding training
configurations of PIPEMESH. With the scaling of GPU number,
both the pipeline parallel size and data parallel size increased
accordingly, while the tensor parallel size was bounded by the
number of GPUs in a host.

Fig. 12 shows that PIPEMESH’s throughput was 25.0% to
27.2% higher than Megatron and MegaScale. The critical DP
communication of the baselines always accounted for a large
portion (from 32.0% to 38.6%) of the iteration time for all the
scales we evaluated. The key reason is that the DP communi-
cation kept being much greater than the computation during the
warm-up and cool-down phases of the baselines. In contrast,
PIPEMESH was able to overlap most of the DP communication,
since both the computation and DP communication grew when
scaling the model size and the batch size. For all three scales,
PIPEMESH enqueued and dequeued half of the micro-batches
each time, and the forward and backward passes scheduled
together contained enough computation to hide the DP com-
munication.

D. Ablation Study

We evaluated the impact of the number of model chunks and
the buffer queue size on PIPEMESH’s performance. We used the
Falcon 66B model and the 3D parallelism configuration reported
in Section VI-A. We first kept the buffer queue size at 12 and var-
ied the number of model chunks. Fig. 13 shows the throughput of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

Throughput
per GPU (TFLOPS)
w
o
1

10

3 4 6 8 12 24
Number of model chunks

Fig. 13. The throughput when training Falcon 66B with a buffer queue size
of 12 and various model chunk numbers. The model chunk number selected by
PIPEMESH’s algorithm achieved the highest throughput.

50
40 -
30
20

Throughput
per GPU (TFLOPS)

10

4 6 8 12 24
Buffer queue size

Fig. 14. The throughput for Falcon 66B when setting the number of model
chunks to 8 and varying the buffer queue size. The buffer queue size selected by
PIPEMESH’s algorithm achieved the highest throughput.

PIPEMESH when using 3, 4, 6, 8, 12, and 24 model chunks. When
the number of model chunks was 8, PIPEMESH balanced the crit-
ical PP communication and the sum of the pipeline bubble and
the critical DP communication. For the model chunk numbers
smaller than 8, less DP communication was overlapped and more
pipeline bubble existed. For the model chunk numbers larger
than 8, the PP communication exceeded the computation and
offset the benefits of decreased pipeline bubble and critical DP
communication.

Fig. 14 demonstrates how PIPEMESH performed when setting
the buffer queue size to 4, 6, 8, 12, and 24. For each size,
we selected the recomputation strategy and mixed sharding
strategy based on PIPEMESH’s algorithm. The buffer queue
size of 12, which was automatically selected by PIPEMESH,
made PIPEMESH achieve the highest throughput. With that
size, PIPEMESH overlapped optimizer sharding communica-
tion except that of the first model chunk. Less optimizer
sharding communication was overlapped for buffer queue
sizes less than 12, leading to increased critical DP commu-
nication time and iteration time. For the buffer queue size
greater than 12, PIPEMESH had to additionally recompute all
query transformation operations and up-scaling linear opera-
tions in each model chunk, increasing the computation time by
12.0%.

E. Effectiveness of Components

We evaluated the effectiveness of the elastic pipeline schedule
and mixed sharding strategy of PIPEMESH. We trained Falcon
66B, setting all parameters to ZeRO-1 (PIPEMESH-Z1), ZeRO-2
(PIPEMESH-Z2), and ZeRO-3 (PIPEMESH-Z3), respectively. To

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS

PipeMesh
PipeMesh-Z3
PipeMesh-Z2
PipeMesh-Z1

PipeMesh w/o ES
T T T T T T T

42 44 46 48 50 52 54
Throughput per GPU (FLOPS)

Fig. 15. The throughput for Falcon 66B when using PIPEMESH with different
ZeRO stages (PIPEMESH-Z1, PIPEMESH-Z2, and PIPEMESH-Z3) and PIPEMESH
without the elastic pipeline schedule (PIPEMESH w/o ES). The elastic pipeline
schedule and mixed sharding strategy are crucial for achieving high throughput.

ensure a fair comparison, we used the same buffer queue size
for all systems. Additionally, we evaluated a variant of our
system without the elastic pipeline schedule (PIPEMESH w/0 ES),
which employed the depth-first pipeline schedule and enabled
ZeRO-3. For these systems, we set the number of model chunks
to 8 and allocated a memory budget equal to the memory
consumption of Megatron. The recomputation strategy for each
system was selected using a simplified version of PIPEMESH’s
algorithm. Fig. 15 presents the throughput achieved by each
system. Compared to PIPEMESH, the throughput of PIPEMESH
w/o ES, PIPEMESH-Z1, PIPEMESH-Z2, and PIPEMESH-Z3 was
9.7%, 6.0%,4.2%, and 2.7% lower, respectively. The throughput
degradation observed in PIPEMESH-Z3 can be attributed to in-
creased DP communication resulting from parameter sharding.
In contrast, the reduced throughput in the other systems was
primarily caused by increased recomputation time. PIPEMESH-
Z2 had to additionally recompute two query transformation
operations among the three transformer layers of each model
chunk; PIPEMESH-Z1 had to recompute one query transforma-
tion operation and one up-scaling linear operation in each model
chunk; PIPEMESH w/o ES had to recompute all three query
transformation operations and two up-scaling linear operations
in each model chunk.

F. Lessons Learned

PIPEMESH has two limitations. First, the recomputation used
by PIPEMESH increases the computation time compared with
Megatron. PIPEMESH leverages selective recomputation to over-
lap communication with more micro-batches within the memory
capacity. Our evaluation shows that the gain of the reduced
performance-critical communication achieved by PIPEMESH
significantly outperforms the cost of the increased computa-
tion, and PIPEMESH can effectively improve the overall training
throughput. Second, same as Megatron, PIPEMESH is designed
mainly for LLM pre-training and is also applicable to fine-tuning
methods that update all the model parameters (i.e., instruction
fine-tuning [48], [49]). Recent works [50], [51], [52], [53]
propose to fine-tune open-source LLMs by freezing most of
the model parameters and updating only limited parameters.
These workloads have far less computation requirement and
memory consumption and can be efficiently supported by ZeRO
or FSDP [54].

1887

VII. RELATED WORK

Pipeline parallel training: Pipeline parallelism [12], [13],
[28], [30], [55], [56], [57], [58] is commonly used for training
large DNN models. BPipe [59] transfers activations between
GPUs to balance memory usage across pipeline stages. Hip-
pie [60] is designed to automatically partition models and reduce
the memory overhead for large DNN models. AdaPipe [58]
adaptively configures the recomputation and pipeline stage par-
titioning strategies to reduce the training cost. These systems are
orthogonal to PIPEMESH, making a trade-off between memory
usage and communication overlap for pipeline parallel training
combined with data parallelism.

Parallelization algorithms: Alpa [61] and Unity [62] auto-
matically partition a model across multiple devices by solving a
cost minimization problem. However, these approaches focus on
finding the optimal parallelization strategy for existing pipeline
schedules (e.g., the 1F1B schedule [13]), while PIPEMESH pro-
poses a new elastic pipeline schedule. We believe that PIPEMESH
is orthogonal to Alpa and Unity.

Activation recomputation: Activation recomputation reduces
memory usage during DNN training by selectively recomputing
activations instead of storing them all. For an n-layer DNN, a
heuristic [23] that checkpoints layers in equal intervals achieves
O(n) memory cost. Checkmate [24] is a system that searches
for optimal recomputation strategies in reasonable times (under
an hour) using ILP solvers. Online algorithms [25], [63] can be
applied to DNNs with dynamic graphs. Current recomputation
approaches [10], [45], [64] for LLMs discard the activations gen-
erated by self-attention operations during forward passes. Differ-
ent from the approaches that minimize the recomputation time
within the memory budget, PIPEMESH leverages recomputation
to enable larger windows for overlapping DP communication.

Overlapping communication in distributed training: Over-
lapping communication with computation is an effective ap-
proach to improve the throughput of distributed training. Sys-
tems like P3 [65], TicTac [66], and ByteScheduler [67] are
designed for training without pipeline parallelism and overlap
DP communication based on priority scheduling. Eager-1F1B
schedule [68] shifts the forward computational tasks of 1F1B
schedule and launches more warm-up micro-batches to overlap
the PP communication. Centauri [69] attempts to overlap DP
communication by increasing warm-up micro-batches, but its
effectiveness is limited by the available memory for activations
of the increased warm-up micro-batches. In contrast, PIPEMESH
achieves memory usage comparable to Megatron while enabling
the overlapping of DP communication in memory-constrained
scenarios.

VIII. CONCLUSION

We present PIPEMESH, a 3D parallel training system that over-
laps communication with computation in a memory-efficient
way. We design the elastic pipeline schedule that allows
PIPEMESH to enable ZeRO-2 and ZeRO-3 to save the memory
consumed by model states. PIPEMESH also incorporates selective
recomputation to reduce the memory consumed by activations.

1888

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 9, SEPTEMBER 2025

PIPEMESH can significantly accelerate LLM training under con-
straints of memory capacity and network bandwidth.

(1]
(2]
(3]

[4]
(5]

(6]
(71

(8]
[9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]

[28]

[29]

REFERENCES

T. B. Brown et al., “Language models are few-shot learners,” 2020, arXiv:
2005.14165.

H. Touvron et al., “Llama 2: Open foundation and fine-tuned chat models,”
2023, arXiv:2307.09288.

B. Workshop et al., “BLOOM: A 176B-parameter open-access multilin-
gual language model,” 2022, arXiv:2211.05100.

A. Q. Jiang et al., “Mistral 7B,” 2023, arXiv:2310.06825.

E. Almazrouei et al., “The falcon series of open language models,”
2023, arXiv:2311.16867.

M. N. Team, “Introducing MPT-30B: Raising the bar for open-source
foundation models,” 2023. Accessed: Jun. 22, 2023. [Online]. Available:
www.mosaicml.com/blog/mpt-30b

A. Vaswani et al., “Attention is all you need,” 2017, arXiv: 1706.03762.
Meta Llama 3, 2024. [Online]. Available: https://llama.meta.com/llama3/
M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-LM: Training multi-billion parameter language models
using model parallelism,” 2019, arXiv: 1909.08053. [Online]. Available:
http://arxiv.org/abs/1909.08053

V. Korthikanti et al., “Reducing activation recomputation in large trans-
former models,” 2022, arXiv:2205.05198.

H. Liu, M. Zaharia, and P. Abbeel, “Ring attention with blockwise trans-
formers for near-infinite context,” 2023, arXiv:2310.01889.

Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” 2018, arXiv: 1811.06965.

D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1-15.

NVIDIA DGX GH200, 2023. [Online]. Available: https://www.nvidia.
com/en-gb/data-center/dgx-gh200/

NVIDIA DGX BG200, 2024. [Online]. Available: https://www.nvidia.
com/en-us/data-center/dgx-b200/

D. Narayanan et al., “Efficient large-scale language model training on GPU
clusters using megatron-LM,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2021, Art. no. 58. [Online]. Available: https://doi.
org/10.1145/3458817.3476209

Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling
in large-scale heterogeneous GPU clusters,” in Proc. 19th USENIX Symp.
Netw. Syst. Des. Implementation, 2022, pp. 945-960.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “ZeRO: Mem-
ory optimizations toward training trillion parameter models,” in
Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., 2020,
pp. 1-16.

Z.Jiang et al., “MegaScale: Scaling large language model training to more
than 10,000 GPUs,” 2024, arXiv:2402.15627.

P. Qi, X. Wan, G. Huang, and M. Lin, ‘“Zero bubble pipeline parallelism,”
2023, arXiv:2401.10241.

F. Li et al, “Fold3D: Rethinking and parallelizing computational
and communicational tasks in the training of large DNN models,”
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 5, pp. 1432-1449,
May 2023.

J. Lamy-Poirier, “Breadth-first pipeline parallelism,” in Proc. Int. Conf.
Mach. Learn. Syst., 2023, pp. 48-67.

T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” 2016, arXiv:1604.06174.

P. Jain et al., “Checkmate: Breaking the memory wall with optimal tensor
rematerialization,” in Proc. Int. Conf. Mach. Learn. Syst., 2020, pp. 497—
S1L.

M. Kirisame et al., “Dynamic tensor rematerialization,” 2020, arXiv:
2006.09616.

A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in tensorflow,” 2018, arXiv: 1802.05799.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

S. Zhao et al., “vPipe: A virtualized acceleration system for achieving
efficient and scalable pipeline parallel DNN training,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 3, pp. 489-506, Mar. 2022.

B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, “PipeMare:
Asynchronous pipeline parallel DNN training,” in Proc. Int. Conf. Mach.
Learn. Syst., 2021, pp. 269-296.

[30]

[31]
[32]
[33]
[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]
[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel DNN training,” in Proc. Int. Conf.
Mach. Learn., 2021, pp. 7937-7947.

L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103-111, 1990.

J. Choquette, “NVIDIA hopper GPU: Scaling performance,” in Proc. 2022
IEEE Hot Chips 34 Symp., 2022, pp. 1-46.

J. Kaplan et al., “Scaling laws for neural language models,” 2020, arXiv:
2001.08361.

P. Micikevicius et al.,
1710.03740.

Automatic mixed precision package - torch.amp — pytorch.org,, 2020.
Accessed: Feb. 01, 2025. [Online]. Available: https:/pytorch.org/docs/
stable/amp.html

D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

N. Shazeer, “GLU variants improve transformer,”
2002.05202.

S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning,” Neural
Netw., vol. 107, pp. 3—11, 2018.

J.Renetal., “ZeRO-Offload: Democratizing billion-scale model training,”
in Proc. 2021 USENIX Annu. Tech. Conf., 2021, pp. 551-564. [Online].
Available: https://www.usenix.org/conference/atc21/presentation/ren-jie
S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An empirical
model of large-batch training,” 2018, arXiv: 1812.06162.

S. Stich, A. Mohtashami, and M. Jaggi, “Critical parameters for scalable
distributed learning with large batches and asynchronous updates,” in Proc.
Int. Conf. Artif. Intell. Statist., 2021, pp. 4042-4050.

J. M. Tarnawski, D. Narayanan, and A. Phanishayee, “Piper: Multidimen-
sional planner for DNN parallelization,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2021, Art. no. 1902.

B. Zhang and R. Sennrich, “Root mean square layer normalization,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2019, pp. 12360-12371.

J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebron, and
S. Sanghai, “GQA: Training generalized multi-query transformer models
from multi-head checkpoints,” 2023, arXiv:2305.13245.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast and
memory-efficient exact attention with I0-awareness,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2022, pp. 16344—-16359.
jepeterson/openwebtext., 2019. [Online]. Available: https://github.com/
jepeterson/openwebtext

S. Rashidi et al., “Enabling compute-communication overlap in distributed
deep learning training platforms,” in Proc. ACM/IEEE 48th Annu. Int.
Symp. Comput. Archit., 2021, pp. 540-553.

J. Wei et al., “Finetuned language models are zero-shot learners,”
2021, arXiv:2109.01652.

V. Sanh et al., “Multitask prompted training enables zero-shot task gener-
alization,” 2021, arXiv:2110.08207.

J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “To-
wards a unified view of parameter-efficient transfer learning,” 2021,
arXiv:2110.04366.

N. Houlsby et al., “Parameter-efficient transfer learning for NLP,” in Proc.
Int. Conf. Mach. Learn., 2019, pp. 2790-2799.

E.J. Hu et al., “LoRA: Low-rank adaptation of large language models,”
2021, arXiv:2106.09685.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLORA:
Efficient finetuning of quantized LLMS,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2024, Art. no. 441.

Y. Zhao et al., “PyTorch FSDP: Experiences on scaling fully sharded data
parallel,” 2023, arXiv:2304.11277.

H. Oh, J. Lee, H. Kim, and J. Seo, “Out-of-order backprop: An effective
scheduling technique for deep learning,” in Proc. 17th Eur. Conf. Comput.
Syst., 2022, pp. 435-452.

S. Fan et al., “DAPPLE: A pipelined data parallel approach for training
large models,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2021, pp. 431-445.

S. Li and T. Hoefler, “Chimera: Efficiently training large-scale neural
networks with bidirectional pipelines,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2021, pp. 1-14.

Z. Sun et al., “AdaPipe: Optimizing pipeline parallelism with adaptive
recomputation and partitioning,” in Proc. 29th ACM Int. Conf. Architect.
Support Program. Lang. Operating Syst., 2024, pp. 86—100.

T. Kim, H. Kim, G.-I. Yu, and B.-G. Chun, “BPIPE: Memory-balanced
pipeline parallelism for training large language models,” in Proc. Int. Conf.
Mach. Learn., 2023, pp. 16639-16653.

“Mixed precision training,” 2017, arXiv:

2020, arXiv:

www.mosaicml.com/blog/mpt-30b
https://llama.meta.com/llama3/
http://arxiv.org/abs/1909.08053
https://www.nvidia.com/en-gb/data-center/dgx-gh200/
https://www.nvidia.com/en-gb/data-center/dgx-gh200/
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://www.nvidia.com/en-us/data-center/dgx-b200/
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/amp.html
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://github.com/jcpeterson/openwebtext
https://github.com/jcpeterson/openwebtext

LI et al.: PIPEMESH: ACHIEVING MEMORY-EFFICIENT COMPUTATION-COMMUNICATION OVERLAP FOR TRAINING LARGE LANGUAGE MODELS 1889

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

D. Li et al.,, “A memory-efficient hybrid parallel framework for deep
neural network training,” IEEE Trans. Parallel Distrib. Syst., vol. 35, no. 4,
pp. 577-591, Apr. 2024.

L. Zheng et al., “Alpa: Automating inter-and intra-operator parallelism for
distributed deep learning,” 2022, arXiv:2201.12023.

C. Unger et al., “Unity: Accelerating DNN training through joint opti-
mization of algebraic transformations and parallelization,” in Proc. 16th
USENIX Symp. Operating Syst. Des. Implementation, 2022, pp. 267-284.
A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves, “Memory-
efficient backpropagation through time,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2016, pp. 4125-4133.

T. Dao, “FlashAttention-2: Faster attention with better parallelism and
work partitioning,” 2023, arXiv:2307.08691.

A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN training,” in
Proc. Int. Conf. Mach. Learn. Syst., 2019, pp. 132—145.

S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating
distributed deep learning with communication scheduling,” in Proc. 2nd
Conf. Mach. Learn. Syst., 2019, pp. 418—430.

Y. Peng et al., “A generic communication scheduler for distributed DNN
training acceleration,” in Proc. 27th ACM Symp. Operating Syst. Princ.,
2019, pp. 16-29.

Y. Zhuang et al., “On optimizing the communication of model parallelism,”
in Proc. Int. Conf. Mach. Learn. Syst., 2023, pp. 526-540.

C. Chen et al., “Centauri: Enabling efficient scheduling for communi-
cation-computation overlap in large model training via communication
partitioning,” in Proc. 29th ACM Int. Conf. Architect. Support Program.
Lang. Operating Syst., 2024, pp. 178-191.

Fanxin Li received the BE degree from Xi’an Jiao-
tong University, in 2019. He is currently working
toward the PhD degree with the University of Hong
Kong. His research interests include distributed ma-
chine learning and cloud computing.

Shixiong Zhao received the bachelor’s degree from
the University of Hong Kong (HKU), the master’s
degree from HKUST, and the PhD degree in computer
science from HKU. He was under the supervision
of Prof. Heming Cui. His research interests include
large-scale distributed systems for machine learning,
distributed systems, and system security.

iz ﬂ

Yuhao Qing received the bachelor’s degree from
the City University of Hong Kong. He is currently
working toward the PhD degree in computer science
with the University of Hong Kong (HKU), under the
supervision of Prof. Heming Cui. His research in-
terests includes machine learning systems and cloud
computing.

Jianyu Jiang received the bachelor’s degree from
Xi’an Jiaotong University, in 2016, and the PhD
degree from the University of Hong Kong, in 2023.
He is currently a researcher, with a broad research
interest in large language model (LLM) training and
inference systems, heterogeneous computing, and
system security. He published more than 10 research
paper, and served as the artifact evaluation committee
co-chairs of OSDI/ATC in 2023 and 2024. He won the
distinguished paper award in ACSAC 2017.

Xusheng Chen received the bachelor’s degree from
the University of Hong Kong (HKU), and the PhD
degree from the University of Hong Kong, supervised
by Prof. Heming Cui. He is a research scientist with
Huawei Cloud. His research focuses on large-scale
distributed systems, including distributed storage sys-
tems, distributed databases, and serverless systems.

Heming Cui (Member, IEEE) is an associate pro-
fessor in computer science of HKU. His research
interests include operating systems, programming
languages, distributed systems, and cloud computing,
with a particular focus on building software infras-
tructures and tools to improve reliability and security
of real-world software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

