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Abstract
Phylodynamics is central to understanding infectious disease dynamics through the integration of genomic and epi
demiological data. Despite advancements, including the application of deep learning to overcome computational 
limitations, significant challenges persist due to data inadequacies and statistical unidentifiability of key parameters. 
These issues are particularly pronounced in poorly resolved phylogenies, commonly observed in outbreaks such as 
SARS-CoV-2. In this study, we conducted a thorough evaluation of PhyloDeep, a deep learning inference tool for phy
lodynamics, assessing its performance on poorly resolved phylogenies. Our findings reveal the limited predictive ac
curacy of PhyloDeep (and other state-of-the-art approaches) in these scenarios. However, models trained on poorly 
resolved, realistically simulated trees demonstrate improved predictive power, despite not being infallible, especially 
in scenarios with superspreading dynamics, whose parameters are challenging to capture accurately. Notably, we 
observe markedly improved performance through the integration of minimal contact tracing data, which refines 
poorly resolved trees. Applying this approach to a sample of SARS-CoV-2 sequences partially matched to contact 
tracing from Hong Kong yields informative estimates of superspreading potential, extending beyond the scope of 
contact tracing data alone. Our findings demonstrate the potential for enhancing phylodynamic analysis through 
complementary data integration, ultimately increasing the precision of epidemiological predictions crucial for public 
health decision-making and outbreak control.
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Introduction
Phylogenetic analysis of genomic sequence data offers a 
powerful toolkit for understanding the emergence, spread, 
and evolution of infectious diseases. As an interdisciplinary 
field, phylodynamics aims to integrate genomic and epi
demiological data in a unified framework to extract detailed 
insights into epidemic history (Drummond et al. 2005; Volz 
et al. 2009; Stadler et al. 2013), population dynamics (Volz 
et al. 2009; Stadler and Bonhoeffer 2013), and disease emer
gence (Worobey et al. 2014; Pekar et al. 2022). Its key advan
tage lies in providing independent information regarding 
epidemic history, complementing traditional epidemiologic
al surveillance data (Voznica et al. 2022; Vaughan et al. 2024). 

This makes it invaluable for validating and substantiating 
findings from epidemiological modeling, particularly in con
texts where conventional surveillance data are scarce and 
genomic sampling is randomized.

However, many conventional phylodynamic models 
based on likelihood approaches (e.g. maximum likelihood 
[ML] estimation and Bayesian approaches) are computa
tionally intensive and can become practically unfeasible as 
the number of taxa increases (Hohna and Drummond 
2012). Addressing this issue sometimes involves likelihood- 
free methods such as approximate Bayesian computation 
(Saulnier et al. 2017), which sidestep the need for direct like
lihood calculations. More recently, deep learning methods 
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such as PhyloDeep (Voznica et al. 2022) have emerged as an
other potential solution, enabling rapid estimation of epi
demiological parameters from large phylogenetic trees in a 
matter of seconds. To achieve this, PhyloDeep utilizes deep 
neural network models trained against phylogenies simu
lated under well-established birth–death models: the basic 
birth–death model (BD) (Stadler et al. 2012; Leventhal 
et al. 2014), the birth–death model with exposed and infec
tious classes (BDEI) (Stadler et al. 2013; Kuhnert et al. 2016), 
and the birth–death model with superspreading (BDSS) 
(Stadler et al. 2013). PhyloDeep has also been validated for 
diversification analyses (Lambert et al. 2023) and viral phylo
geography (Thompson et al. 2024).

Despite these methodological advancements, critical 
challenges remain concerning the adequacy of data sets 
and the statistical identifiability of the parameters of interest 
from sequence data. This issue is particularly pronounced for 
viral sequences arising from epidemics and outbreaks, which 
frequently yield many identical sequences, resulting in poorly 
resolved phylogenies with numerous polytomies. Examples 
include SARS-CoV-2, Mpox (monkeypox) virus (Paredes 

et al. 2024), and respiratory syncytial virus (Eden et al. 
2022). These poorly resolved trees typically do not align 
with the “idealistic,” well-resolved trees posited by phylody
namic models like birth–death models, where branching 
events are assumed to correspond to transmission events. 
Such misalignment could introduce biases, compromising 
the accuracy and reliability of inference methods and poten
tially leading to incorrect interpretations of epidemic dy
namics and disease transmission.

To address these concerns, this study utilizes the 
PhyloDeep framework to assess the impact of potential 
biases introduced by poorly resolved phylogenies, using 
the SARS-CoV-2 as an example of a virus outbreak character
ized by the BDSS model, which splits population into normal 
and superspreaders while tracking superspreading potential 
(Fig. 1). Our analysis reveals that neural network models in 
PhyloDeep (and other state-of-the-art approaches) struggle 
to precisely predict epidemiological parameters when ap
plied to poorly resolved phylogenetic trees, but performance 
does improve when models are trained on poorly resolved, 
realistically simulated phylogenies rather than on “idealistic” 

Fig. 1. An overview of training neural network models based on simulated phylogenetic trees. The BDSS model categorizes individuals as super
spreaders (S) or normal spreaders (N), extending the traditional birth–death model parameters R0 (basic reproductive number) and 1/γ (infec
tious period). fss indicates the fraction of superspreaders in the population, while Xss represents the ratio of the transmission rate of 
superspreaders to that of normal spreaders. The BDSS model illustration adapted from PhyloDeep. Seven types of trees, Baseline, Dated 
Baseline, Dated Resolved, Dated Polytomous, Genetic Baseline, Genetic Resolved, Genetic Polytomous, are detailed in Fig. 2.
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trees from birth–death models, as previously done in 
PhyloDeep. However, capturing superspreading dynamics re
mains a challenge. Notably, integrating contact tracing data 
substantially enhances predictive accuracy by constraining 
tree space and aligning them more closely with “idealistic” 
trees. Additionally, this integration also proves beneficial in 
the Bayesian inference framework implemented in BEAST2 
(Bouckaert et al. 2014). We illustrate these findings using 
real SARS-CoV-2 data collected during the third and fourth 
waves of the epidemic in Hong Kong.

Results
Building on the PhyloDeep approach, we simulated phylo
genetic trees (idealistic) using the BDSS model, covering a 
broad range of epidemiological parameter values associated 
with the SARS-CoV-2 virus (Fig. 1). These simulated trees 
were transformed into six additional forms, ranging from 

idealized simulations to those reflecting the complexities 
of real-world sequences and trees (Figs. 1 and 2). Neural net
works trained with summary statistics (SSs) were applied to 
each tree type to perform regression tasks, estimating epi
demiological parameters and evaluating the performance 
of these models comprehensively.

Simulations of Phylogenetic Trees
Initially, we simulated 200,000 time-scaled trees using the 
BDSS model (Fig. 2, baseline tree). These trees serve as our 
reference “idealistic” trees and capture transmission events 
at internal nodes consistent with the PhyloDeep framework. 
To emulate SARS-CoV-2 phylogenetic trees, all baseline trees 
were transformed into genetic distance trees (Fig. 2, genetic 
baseline tree).This transformation relied on a binomial distri
bution of mutation counts given a mean substitution rate of 
8 × 10−4 per site per year, resulting in approximately 24 mu
tations observed annually for a sequence length of 29,903 

Fig. 2. Examples of seven types of phylogenetic trees used in simulations. Internal nodes are marked as black dots, while tips are denoted by 
numerical labels. Among these, four trees represent poorly resolved, realistic phylogenetic structures that can be derived from sequence 
data and are highlighted with a gray background. To effectively highlight the differences between poorly resolved trees, which can be con
structed from sequence data, and fully resolved idealistic trees, which cannot, tips have been color-coded into three distinct clusters. Each 
type of simulated tree used in this study has tip counts ranging from 200 to 1,000 (supplementary table S1, Supplementary Material online).
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bases (see Materials and Methods for details). Branches with 
lengths representing zero mutation were collapsed, resulting 
in trees with polytomies (Fig. 2, genetic polytomous tree), 
which were then randomly resolved using a coalescent ap
proach, yielding binary trees (Fig. 2, genetic resolved tree). 
The number and size of polytomies in our simulated trees 
varied from 1 to 170 and 3 to 934, respectively, with a total 
tip range of 200 to 1,000, encompassing those observed in 
SARS-CoV-2 trees in Hong Kong (supplementary fig. S1, 
Supplementary Material online). Lastly, each of the three 
transformed genetic distance trees was dated using LSD2 
(To et al. 2016) (Fig. 2, dated baseline tree, dated polytomous 
tree, and dated resolved tree). Genetic Polytomous Trees, 
Genetic Resolved Trees, Dated Polytomous Trees, and 
Dated Resolved Trees represent entirely altered topologies 
and are deemed poorly resolved, realistic trees. They are 
analogous to trees inferred from sequencing data using es
tablished software such as RAxML-NG (Kozlov et al. 2019), 
IQ-TREE (Nguyen et al. 2015), PhyML (Guindon et al. 
2010), FastTree (Price et al. 2010), or TreeTime (Sagulenko 
et al. 2018). In contrast, the remaining three types, namely 
Baseline Trees, Genetic Baseline Trees, and Dated Baseline 
Trees, retain a known correct topology that cannot be de
rived from sequence data alone (Fig. 2).

Performance Comparison of Neural Network Models 
for Each Type of Phylogenetic Tree
We utilized a data set totaling 199,000 trees to train the neural 
network models, reserving 1,000 trees for validation purposes. 
Ensuring consistency across the models, we utilized the same 
99 SS representations and feed-forward neural network archi
tectures for each tree type, as used in PhyloDeep (Fig. 1). 
Specifically, for the three types of genetic distance trees, 
namely Genetic Baseline Trees, Genetic Polytomous Trees, 
and Genetic Resolved Trees, we adapted the 99 SSs designed 
for time-scaled trees to 90 SSs for genetic distance trees (refer 
to the Materials and Methods section). Consequently, we 
trained seven neural network models: Baseline-Model, 
Dated Baseline-Model, Dated Resolved-Model, Dated 
Polytomous-Model, Genetic Baseline-Model, Genetic 
Resolved-Model, and Genetic Polytomous-Model.

Our results show that models trained and tested on 
trees with unchanged topologies (i.e. Baseline-Model, 
Dated Baseline-Model, and Genetic Baseline-Model) 
did well in predicting all parameters. Estimates for R0 

and 1/γ tended to exhibit greater accuracy compared to 
superspreading parameters (Xss and fss) (Fig. 3a and 
supplementary table S2, Supplementary Material online), 
which is consistent with the findings from PhyloDeep 
(Voznica et al. 2022). As expected, the Baseline-Model ex
hibited the best performance, achieving mean relative er
rors (MREs) of 0.095 for R0, 0.092 in 1/γ, 0.215 for Xss, 
and 0.167 for fss. Conversely, models trained and tested 
on trees with altered topologies (Dated Resolved-Model, 
Dated Polytomous-Model, Genetic Polytomous-Model, 
and Genetic Resolved-Model) encountered challenges in 
accurately predicting superspreading parameters. This 

suggests that phylogenetic trees with polytomies lack suf
ficient phylogenetic resolution to accurately recover para
meters related to superspreading. Models trained and 
tested on dated trees generally outperformed those 
trained and tested on the equivalent genetic distance trees 
in most scenarios, demonstrating the value of tip dates for 
informing model learning and estimating parameters.

Impact of Poorly Resolved Phylogenetic Trees on 
Models Trained with “Idealistic” Trees
To evaluate the impact of using poorly resolved realistic 
phylogenetic trees as input on neural network models 
trained with “idealistic” trees, we tested the Baseline-Model 
and Dated Baseline-Model with 1,000 Dated Resolved 
Trees and the Genetic Baseline-Model with 1,000 Genetic 
Resolved Trees (Fig. 3 and supplementary table S2, 
Supplementary Material online). The results revealed that 
the relative error for each parameter was approximately 
twice as high or more compared to when using “idealistic” 
test trees (Fig. 3b). Notably, the relative errors for the super
spreading parameters (Xss and fss) were around or exceeded 
0.5 (50%). This demonstrates that models trained on “ideal
istic” trees struggled to predict accurately epidemiological 
parameters from poorly resolved, realistic phylogenetic trees. 
Conversely, models trained on poorly resolved trees (such as 
Genetic Polytomous, Genetic Resolved, Dated Polytomous, 
and Dated Resolved) performed better, underscoring the im
portance of training on data that mirror real-world complex
ity (Fig. 3a). However, despite improvements, the higher 
predictive errors specific to superspreading parameters rela
tive to other epidemiological parameters seemed to persist 
(Fig. 3), highlighting the inherent challenge in estimating 
superspreading potential from such poorly resolved trees. 
Additionally, despite repeatedly generating different 
Genetic Resolved and Dated Resolved trees from the polyto
mous trees as input, the predicted parameters tended to 
converge toward similar estimates, which differed substan
tially from the actual parameters originally input, thus indi
cating a form of bias in the estimations.

Improving Predictions by Integrating Contact Tracing 
Data
To improve model accuracy, a reasonable approach in
volves correcting the observed topology of input trees so 
that they closely resemble the equivalent “idealistic” trees. 
In this context, we investigated the potential of leveraging 
contact tracing data (including cluster information and in
fection times) to aid in refining the topology of Genetic 
Polytomous Trees, for example, to match Baseline or 
Dated Baseline trees to varying extents (supplementary 
fig. S2, Supplementary Material online). We derived con
tact tracing information from the simulated Baseline trees, 
treating all descendants of each internal node as a cluster, 
with the dates of internal nodes considered as infection 
times of each cluster’s index case (supplementary fig. S3, 
Supplementary Material online). With this addition of 
cluster information and assuming perfect observation, 
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the topology of Genetic Polytomous Trees can be fully cor
rected (matching the Genetic Baseline Trees), with exter
nal nodes subsequently dated to produce Dated Baseline 
trees (supplementary fig. S2, Supplementary Material on
line). Furthermore, if the infection times of clusters are 
known, time constraints can also be applied to internal 
nodes, effectively recovering equivalent Baseline trees 
from the Genetic Polytomous Trees. In real-world scen
arios, however, the extent of case observation is often lim
ited and imperfect, and the accuracy of any available 
contact tracing data is uncertain and subject to additional 
biases.

Therefore, to assess how the quantity of contact tracing 
data influences our predictions within the context of phylo
genetic trees, we simulated scenarios where 0%, 25%, 50%, 
75%, and 100% of internal nodes were randomly selected to 
provide cluster information and infection times. We then 
evaluated the performance of the Baseline-Model and 
Dated Baseline-Model (Fig. 4a and supplementary table S3, 

Supplementary Material online). The former requires cluster 
information to resolve polytomies and infection times, with a 
time constraint margin of 1 d, to estimate the lengths of newly 
created internal branches from Genetic Polytomous Trees 
(supplementary fig. S2g, Supplementary Material online), 
while the latter relies solely on cluster information 
(supplementary fig. S2f, Supplementary Material online). 
For any remaining nodes lacking contact tracing data, we re
solved them randomly as before. Our results indicated that 
even with just 25% of contact tracing data incorporated, 
the MREs for R0 and 1/γ could be reduced to below 0.2, repre
senting an improvement of 48% to 66% (supplementary table 
S3, Supplementary Material online). As the availability of con
tact tracing data increased, model performance consistently 
improved, particularly in predicting superspreading para
meters as could be expected. Incorporating 50% or more of 
contact tracing data yielded estimates of superspreading 
parameters, with MREs around or below 30%, achieving an 
improvement of at least 22% (supplementary table S3, 

Fig. 3. Performance comparison of models. a) Performance comparison of models trained on seven types of phylogenetic trees. Each bar depicts 
the relative error observed when testing trees of the same type as those used in training. The  horizontal lines above the boxes denote the median 
relative error when testing the Baseline-Model and Dated Baseline-Model with Dated Resolved Trees, as well as the Genetic Baseline-Model with 
Genetic Resolved Trees. Models trained using poorly resolved phylogenetic trees (i.e. Dated Resolved, Dated Polytomous, Genetic Resolved, and 
Genetic Polytomous) are highlighted in bold. b) Performance comparison of models tested using poorly resolved phylogenetic trees. 
“Baseline-Poor” represents the evaluation of the Baseline-Model tested using Dated Resolved Trees. “Dated Baseline-Poor” indicates the assess
ment of the Dated Baseline-Model with Dated Resolved Trees, while “Genetic Baseline-Poor” reflects the performance of the Genetic 
Baseline-Model when testing with Genetic Resolved Trees.
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Fig. 4. Performance comparison by incorporating varying levels of contact tracing data based on Baseline-Model, Dated Baseline-Model, and 
BEAST2. a) Comparison between the Baseline-Model and Dated Baseline-Model with varying levels of contact tracing data based on 1,000 si
mulated trees. The models are represented by Baseline-Model and  Dated Baseline-Model, with the color intensity within each bar signaling the 
degree of contact tracing data integrated into the input trees. Darker shades denote a higher percentage of data incorporation. The term 
“Baseline_50” refers to the performance of the Baseline-Model with Genetic Polytomous Trees refined using 50% contact tracing data, encom
passing cluster information and infection times. “Dated Baseline_50” indicates the performance of the Dated Baseline-Model with Genetic 
Polytomous Trees refined using 50% contact tracing data, including only cluster information. It is notable that the input trees are refined by 
infection time, with a 1-day time constraint margin using LSD2 (To et al. 2016), and an additional refinement with a stricter margin of 0.1 
day, as shown in supplementary table S3, Supplementary Material online. b) Comparison between the Baseline-Model and BEAST2 (blue 
bar) with varying levels of contact tracing data (cluster information and infection times) based on 100 simulated trees. c) Comparison between 
Dated Baseline-Model and BEAST2 (blue bar) with varying levels of contact tracing data (cluster information only) based on 100 simulated trees. 
“BEAST2_50” indicates the performance of BEAST2 with Genetic Polytomous Trees refined using 50% contact tracing data, incorporating both 
cluster information and infection times in b), and only cluster information in c).
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Supplementary Material online). Notably, the Dated 
Baseline-Model generally outperformed the Baseline-Model 
except when contact tracing was 100% complete and a harsh 
time constraint margin of 0.1 d (supplementary table S3, 
Supplementary Material online). Furthermore, the Dated 
Baseline-Model only required cluster information to refine 
the input trees, suggesting its greater relevance to real-world 
scenarios.

We compared the Dated Baseline-Model and Baseline- 
Model to the gold standard likelihood-based Bayesian tool 
BEAST2 (Bouckaert et al. 2014) across varying levels of con
tact tracing data. BEAST2’s performance improved with in
creased proportions of contact tracing data, which includes 
cluster information and infection times (Fig. 4b and 
supplementary table S4, Supplementary Material online). 
However, BEAST2 consistently underperformed compared 
to our Baseline-Model, except when no contact tracing 
data were incorporated. Even in this scenario, it still per
formed worse than models trained on poorly resolved phylo
genies (Fig. 3a and supplementary tables S2 and S4, 
Supplementary Material online). Additionally, BEAST2 
struggled to accurately infer superspreading parameters, 
even with 100% contact tracing data, which aligns with the 
findings of PhyloDeep (Voznica et al. 2022). Further, providing 
only cluster information, which modifies the tree topology 
without correcting the time of internal nodes, did not sub
stantially enhance BEAST2’s performance (Fig. 4c and 
supplementary table S4, Supplementary Material online), 
likely due to the loss of this crucial temporal information.

Case Study of SARS-CoV-2 Waves in Hong Kong
By 2022, Hong Kong had effectively controlled the local 
spread of SARS-CoV-2, experiencing four significant waves 
during which extensive sequence sampling and epidemio
logical surveillance were conducted, as detailed in our pre
vious study (Gu et al. 2022). To demonstrate our method 
of integrating contact tracing data to improve model 

prediction, we used real-world SARS-CoV-2 data from 
the third and fourth waves in Hong Kong, analyzed from 
2020 May 13 to August 1 (460 sequences and 1,930 local 
cases) and from 2020 September 30 to December 8 (243 
sequences and 1,577 local cases). Utilizing all available 
SARS-CoV-2 sequences from these periods along with par
tial contact tracing data (only cluster information avail
able), covering 16.56% for the third wave and 9.50% for 
the fourth wave (see Materials and Methods), we evaluate 
the differences in prediction outcomes when using the 
Dated Baseline-Model, with input trees refined by contact 
tracing data (Dated Resolved-Cluster) and without it 
(Dated Resolved, random resolution of polytomies).

Initially, we verified the suitability of the input trees gen
erated by RAxML-NG (Kozlov et al. 2019) using the GTR + 
G4 + FO substitution model with random resolution of poly
tomies, through principal component analysis (PCA) and by 
comparing the range of each simulated SS to ensure the 
models and scenarios were predictive. All trees from Hong 
Kong passed this PCA check, but seven SSs related to trans
mission chain features for the Dated Resolved tree of wave 4 
were outside the [min, max] range of the simulated values 
(supplementary fig. S4 and table S5, Supplementary 
Material online). After integrating the available contact tra
cing data (9.50%, as detailed in the Materials and Methods), 
only one SS remained outside the simulated range, albeit 
very close to the lower boundary (supplementary table S5, 
Supplementary Material online).

The prediction results indicated a notable change when 
contact tracing data were used to refine tree topology, espe
cially for wave 4 (Table 1). With the Dated Resolved-Cluster 
tree, we estimated an R0 of 1.59 and 1.52, infection-to- 
sampling periods (infectious periods, 1/γ) of 4.6 and 8.6 d, 
Xss of 8.1 and 16.4, and fss of 0.091 and 0.078 for waves 3 
and 4, respectively. Given Xss and fss, we can calculate the dis
persion value k (see Materials and Methods), which is com
monly used as a measure of superspreading potential. For 
waves 3 and 4, we calculated k = 0.47 and 0.25, respectively, 

Table 1 Comparison of inference of epidemiological parameters based on waves 3 and 4 of SARS-CoV-2 in Hong Kong

Waves Input tree R0 Infection-to-sampling period (d) Xss fss Dispersion k

3 Dated Resolved 1.699 ± 0.096 
(1.460, 2.172)

5.720 ± 1.018 
(4.427, 10.804)

7.608 ± 1.496 
(4.141, 18.696)

0.090 ± 0.022 
(0.057, 0.163)

0.488 
(0.441, 0.543)

Dated Resolved-Cluster 1.588 ± 0.077 
(1.330, 1.993)

4.636 ± 0.635 
(3.373, 8.238)

8.078 ± 1.709 
(3.911, 17.733)

0.091 ± 0.021 
(0.054, 0.167)

0.467 
(0.418, 0.517)

Epidemiological inferencea 1.693 
(1.649, 1.738)

NA NA NA 0.451 
(0.421, 0.481)

4 Dated Resolved 2.062 ± 0.072 
(1.628, 3.220)

20.071 ± 1.663 
(14.235, 32.668)

7.232 ± 1.423 
(2.197, 23.198)

0.076 ± 0.009 
(0.050, 0.154)

0.658 
(0.596, 0.737)

Dated Resolved-Cluster 1.518 ± 0.091 
(1.284, 2.055)

8.629 ± 0.881 
(6.548, 14.929)

16.388 ± 2.692 
(5.895, 33.409)

0.078 ± 0.007 
(0.050, 0.161)

0.250 
(0.227, 0.278)

Epidemiological inferencea 1.933 
(1.858, 2.012)

NA NA NA 0.264 
(0.248, 0.279)

Values predicted by neural network models are expressed as mean ± standard deviation generated by randomly resolving polytomies n = 200 times. Values in parentheses are 
the 95% CI. In the BDSS model, the term “infectious period” refers to the interval from the time of infection to the sampling date. To prevent confusion in epidemiological 
contexts, we have opted to use “infection-to-sampling period” in place of “infectious period.”
aEpidemiological inference uses a combination of line-listed incidence data to estimate R0 and contact tracing data to estimate k.
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where lower values of k represent increasing superspreading 
potential. Conversely, using the Dated Resolved tree, we esti
mated an R0 of 1.70 and 2.06, infection-to-sampling periods of 
5.7 and 20.1 d, Xss of 7.6 and 7.2, fss of 0.090 and 0.076, and k of 
0.49 and 0.66 for waves 3 and 4, respectively. The unusually 
long infection-to-sampling periods of 20.1 d observed in 
wave 4 may be attributed to the seven SSs that exceeded 
the expected range, which likely influenced these skewed pre
dictions (supplementary fig. S4 and table S5, Supplementary 
Material online). Further, based solely on epidemiological re
cords, we estimated an R0 of 1.69 and 1.93, and k of 0.45 and 
0.26 for waves 3 and 4, separately (Table 1). The observed dis
crepancies highlight the critical need for integrating diverse 
data sources and analytical methods in estimating epidemio
logical parameters, thereby enabling a more comprehensive 
and systematic understanding of epidemic dynamics.

Additionally, we conducted 200 random resolutions of 
polytomies for these SARS-CoV-2 trees to measure the ro
bustness of the predictions. The resulting standard devia
tions were notably small (Table 1), indicating that the 
predictions were not significantly affected by the random 
resolution of polytomies, suggesting our models could ef
ficiently extract essential cluster information and guide ro
bust predictions. The 95% confidence intervals (CIs) were 
generated by parametric bootstrap as per the method
ology of PhyloDeep. The substantial width of CIs for super
spreading parameters again highlights the inherent 
difficulty in predicting these metrics.

Discussion
In this study, we assessed the performance of established 
neural network models (PhyloDeep) in predicting epi
demiological parameters and the applicability of these 
models to real-world scenarios using SARS-CoV-2 as a 
case study for both simulation and empirical analyses. 
Our findings demonstrate the relative performance limita
tions of utilizing neural network models trained on simu
lated phylogenetic trees (“idealistic” trees) when 
predicting parameters from poorly resolved trees (“realis
tic” trees) and show that models alternatively trained on si
mulated trees of similar resolution can improve the 
accuracy of predictions. Beyond upstream improvements 
to model training, we show that by using contact tracing 
data to partially resolve the topology and node dates of in
put trees downstream, additional performance enhance
ments can be achieved. We apply this approach to 
SARS-CoV-2 genome sequences from Hong Kong matched 
to minimal contact tracing data, producing new phylody
namic estimates of both R0 (basic reproductive number) 
and k (dispersion measure of superspreading potential).

Without the incorporation of contact tracing data, we 
found that our improved models trained on simulated poorly 
resolved trees still struggled to accurately estimate para
meters related to superspreading, even when attempting to 
overfit neural network models on smaller subsets of trees 
(supplementary table S6, Supplementary Material online). 
This issue is particularly pronounced when sequences are 

nearly identical, like for SARS-CoV-2, which results in 
potentially biased estimations likely to misinform public 
health decision-makers. Traditional phylodynamic inference 
methods (e.g. ML estimation and Bayesian approaches) 
with models that assume ideal binary trees and not represent
ing sequence evolution also struggle in parameter estimation 
under these conditions (supplementary table S4, 
Supplementary Material online) (Lewis et al. 2005; Morel 
et al. 2021). Together this emphasizes the importance of in
corporating even minimal contact tracing data as we have 
done in our study, but also utilizing more comprehensive 
SSs focused on clusters and polytomies that can effectively 
capture the complexity of the underlying transmission dy
namic. One previous study (Tran-Kiem and Bedford 2024) 
has demonstrated a connection between the size distribution 
of identical sequence clusters and transmission dynamics; 
however, our attempts to incorporate similar information 
into our neural network models, trained on genetic distance 
trees, yielded limited improvements. As an ongoing area of re
search interest, future studies could evaluate the relative pre
dictive performance of models that expand the potential 
range of SSs related to clusters and polytomies, and experi
ment with alternate architectures such as Graph Neural 
Networks and Convolutional Neural Networks incorporating 
a more complete representation of trees, such as Compact 
Bijective Ladderized Vectors (Voznica et al. 2022).

Besides superspreading, the incubation period is another 
significant aspect of pathogen transmission dynamics. For ex
ample, estimates of the SARS-CoV-2 incubation period were 
used to justify the World Health Organization’s (WHO) rec
ommendation of a 14-d quarantine period for contacts of in
fected cases (Wells et al. 2021). In our approach, we utilized a 
BDSS model, which does not account for the incubation per
iod, but defines the infectious period as the interval from in
fection time to sampling date otherwise known as the delay 
interval. Employing the Dated Baseline-Model with the Dated 
Resolved-Cluster tree, we determined the infectious period/ 
delay interval of waves 3 and 4 to be approximately 1 week; 
however, the delay for wave 4 was longer than that for 
wave 3, suggesting case detection speed was somewhat chal
lenged. The longer delay in wave 4 could be explained by the 
sudden rise in cases associated with the largest single 
SARS-CoV-2 superspreading event detected in Hong Kong 
prior to widespread vaccination, which also triggered the start 
of wave 4 (Adam et al. 2022; Gu et al. 2022).

Remarkably, the estimation of R0 exhibited robust per
formance across our neural network models, with models 
trained on dated trees outperforming those based on genetic 
distance trees. This underscores the value of tip dates for R0 

estimation, particularly as sequence variability decreases. 
This is in line with recent studies that highlight the increasing 
importance of sampling dates for phylodynamic inference 
when sequence variability is low (Featherstone et al. 2023). 
When poorly resolved trees were used as input, models like 
the Dated Resolved-Model and Dated Polytomous-Model 
showed excellent performance, suggesting their potential 
for effective and accurate R0 and 1/γ predictions from se
quence data. This offers a promising avenue for tracking 
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epidemic dynamics using sequence data, which, when com
pared with epidemiological records, can provide deeper in
sights and mitigate potential sampling biases. Future 
investigations are needed to ascertain the extent to which se
quence data can facilitate robust predictions and to evaluate 
the effects of progressively incorporating new sequence 
samples.

Our study acknowledges certain limitations. Notably, the 
BDSS model does not account for the incubation period of 
the disease, introducing a significant source of uncertainty. 
The omission of the incubation period from our transmis
sion models necessitates further exploration in future studies 
to mitigate these uncertainties. For example, an alternative 
approach could use a Susceptible-Exposed-Infected- 
Recovered model with a superspreading compartment, 
grounded in structured coalescent theory (Volz and 
Siveroni 2018), which has been used to study superspreading 
and nonlinear incidence in SARS-CoV-2 studies (Miller et al. 
2020; Moreno et al. 2020; Geidelberg et al. 2021; 
Ragonnet-Cronin et al. 2021). Additionally, real-world con
tact tracing data may contain inherent biases and inaccur
acies. In applying our model to the SARS-CoV-2 data set 
from Hong Kong, we presumed the accuracy of the contact 
tracing data. This assumption allowed us to collapse all asso
ciated children (see Materials and Methods), including those 
are not recorded within the cluster, potentially leading to an 
inaccurate refinement of the tree topology and biased pre
dictions. Our primary epidemiological inference of R0 as
sumed a comparable SIR model of transmission and an 
exponentially distributed generation time like BDSS, though 
tended to be slightly higher than the mean R0 estimated 
from PhyloDeep (Table 1). This method, which links the ini
tial growth rate of an epidemic to R0 (Wallinga and Lipsitch 
2007) is however known to exhibit a slight upward bias for 
smaller R0 values (R0 < 2) (Obadia et al. 2012). Further sen
sitivity analyses assuming gamma-distributed generation 
times, unlike BDSS, resulted in even higher values R0, partially 
validating the results from our Dated Baseline-Model with 
Dated Resolved-Cluster tree (supplementary table S8, 
Supplementary Material online).

Importantly, making trees poorly resolved during training 
hinges on the specific sequence length and evolution rate of 
SARS-CoV-2, rendering the neural networks trained in this 
study inapplicable to other viruses. To extend their use to 
other pathogens, modifications are required to accommo
date variations in sequence length and evolution rate, train
ing pathogen-specific neural networks as we show for 
SARS-CoV-2. This contrasts with PhyloDeep, which was 
designed for studying a diverse array of pathogens. 
Correspondingly, the choice of a specific birth–death model 
emerges as another crucial factor that must be carefully 
considered.

Overall, this study highlights the challenges of relying 
solely on viral phylogenetic trees generated from se
quences for estimating superspreading events. The inte
gration of even minimal contact tracing data can 
significantly enhance model predictions, emphasizing the 
importance of such data in surveillance efforts for 

emerging infectious diseases, particularly when viral se
quences lack variability. We hope our comprehensive 
evaluation will not only enhance deep learning applica
tions but also extend beyond, enriching established meth
odologies within phylogenetics and phylodynamics.

Materials and Methods
Simulations
In this study, SARS-CoV-2 served as the reference pathogen 
for evaluating the performance of the existing deep learning 
model PhyloDeep. Given the marked overdispersion in 
SARS-CoV-2 transmission dynamics, characterized by super
spreading (Adam et al. 2020; Du et al. 2022; Guo et al. 2022), 
we used treesimulator (v0.1.7; Zhukova and Gascuel 2024) to 
generate time-scaled phylogenetic trees (detailed in 
supplementary table S1, Supplementary Material online). 
These trees were generated with a BDSS model, distinguishing 
cases into superspreaders (S) and normal spreaders (N), in 
addition to the conventional parameterization of the 
birth–death model, i.e. R0 and 1/γ. Superspreaders constitute 
a small fraction of the total simulated population [denoted by 
fSS = βSS/(βSS + βSN)] but can transmit the virus at rates 
significantly higher than normal spreaders, where the 
superspreading transmission ratio is denoted as 
XSS = βSS/βNS = βSN/βNN. Upon reviewing the 98 SSs (see 
details in the Feature Representation and Neural Network 
Models section), it was noted that certain metrics associated 
with branch lengths and superspreading events based on the 
SARS-CoV-2 data set from Hong Kong fell outside the [min, 
max] range of simulated values in PhyloDeep, characterized 
by a lower median/mean SS and increased variance SS (de
tailed in supplementary table S7, Supplementary Material on
line). Consequently, to better capture the complexities of 
SARS-CoV-2 transmission dynamics, we expanded the range 
of epidemiological parameters for tree simulation in 
PhyloDeep, summarized in supplementary table S1, 
Supplementary Material online.

Simulated time-scaled trees are transformed into Genetic 
Baseline Trees, with branch lengths determined by a 
binomial process, B (n = sequence length, p = evolutionary 
rate × branch length of time-scaled trees). For 
SARS-CoV-2, the sequence length is 29,903, and the evolu
tionary rate has a mean of 8 × 10−4 and a standard deviation 
of 4 × 10−4 substitutions per site per year, with a lognormal 
distribution (Hadfield et al. 2018; Jolly and Scaria 2021). In 
Genetic Baseline Trees, branches representing zero mutation 
are collapsed to form Genetic Polytomous Trees. Within 
these trees, polytomies are resolved by randomly coalescing 
two offspring until binary trees, termed Genetic Resolved 
Trees, are obtained. These genetic distances are then redated 
using LSD2 (To et al. 2016), assigning dates to the tips by 
adding the lengths from the tips to the root within the time- 
scaled trees to a dummy date designated as the root date. 
Additionally, a temporal constraint for the root is established 
by setting a range (dummy date − 1 d, dummy date + 1 d), 
ensuring the root’s time is not excessively early. The clock 
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rate used is the same as mentioned above, with a mean of 
8 × 10−4 and a standard deviation of 4 × 10−4 substitutions 
per site per year.

Additional 100,000 trees were simulated, and the 
PhyloDeep methodology was applied to establish the 
95% CIs.

Feature Representation and Neural Network Models
We represent time-scaled phylogenetic trees using sam
pling probability and 98 SSs, as employed in PhyloDeep 
(Saulnier et al. 2017; Voznica et al. 2022). However, for gen
etic distance trees, certain concepts like transmission 
chains (14 SSs) associated with superspreading and lineage 
through time (49 SSs) are not directly applicable. To ad
dress this, we designed 62 SSs to capture the distribution 
of nodes in the phylogenetic tree: 31 SSs for internal nodes 
(nonleaf nodes within the tree structure, corresponding to 
transmission events) and 31 SSs for external nodes (leaves 
of the tree, corresponding to sampling events), by counting 
the nodes that are n (0 to 30) mutations away from the tree 
root. Additionally, we included 10 SSs related to the size dis
tribution of clusters of identical sequences. These counts 
capture the number of clusters for each size from 1 to 9, 
with a combined count for clusters larger than 9, reflecting 
the underlying transmission dynamics and heterogeneity 
(Tran-Kiem and Bedford 2024). Consequently, 90 SSs are 
utilized to characterize the genetic distance tree. While 
time-scaled trees are rescaled so the average branch length 
equals 1 prior to representation (Voznica et al. 2022), gen
etic distance trees do not require this adjustment.

Following the PhyloDeep methodology, we implemen
ted our neural network model using Python 3.6, with the 
Tensorflow 1.5.0, Keras 2.2.4, and scikit-learn 0.19.1 librar
ies. We partitioned 200,000 simulated phylogenetic trees 
into 190,000 for training, 9,000 for validation, and 1,000 
for testing. The network architecture includes an input 
layer with either 99 or 90 nodes, followed by four sequen
tial hidden layers arranged in a funnel shape with 64, 32, 16, 
and 8 neurons, respectively, and an output layer that pre
dicts the four parameters of the BDSS model (R0, 1/γ, Xss, 
and fss). We experimented with adding or removing hid
den layers in the Baseline-Model, which did not improve 
accuracy. The neurons in the last hidden layer utilize linear 
activation, whereas the others employ exponential linear 
(ELU) activation. The model employs the Adam optimiza
tion algorithm and uses mean absolute percentage error 
(MAPE) as the loss function, with a batch size of 200 
and a maximum of 1,000 epochs. Early stopping, with a pa
tience value of 50, was used to prevent overfitting based on 
MAPE performance on the validation set. A dropout rate 
of 0.5 was applied in the hidden layers, and variations in 
dropout rates between 0.3 and 0.7 did not enhance the 
Baseline-Model’s accuracy. The performance of our neural 
network models is assessed as the MRE of the estimator:

MRE =
1
n

􏽘n

i=1

predictedi − targeti

targeti

􏼒 􏼓

where n is the number of simulated trees used in the test 
set.

To draw a parallel with epidemiological inference, Xss 

and fss can be transformed into the dispersion k. Utilizing 
the multitype birth–death model process (Stadler and 
Bonhoeffer 2013), it becomes possible to estimate the prob
ability of an individual infecting “n” others over its lifespan, 
aligning with a geometric distribution. By synthesizing the 
probability with the cumulative number of infections, the 
offspring distribution was ascertained. The approach out
lined in the Estimating R0 and k from Epidemiological 
Data Only section was employed to derive k from this off
spring distribution.

Integration of Contact Tracing Data into 
Phylogenetic Trees
In our simulations, we utilize time-scaled trees to derive con
tact tracing data, treating all descendants of each internal 
node as a single cluster, with the node’s age representing 
the infection time (supplementary fig. S3, Supplementary 
Material online). Using such contact tracing data, we refine 
the phylogenetic trees by identifying the most recent com
mon ancestor (MRCA) for each cluster. We then iterate 
through children of the MRCA and coalesce all associated 
children, encompassing both leaves and children of internal 
nodes within the cluster. This process enables us to resolve 
polytomies in Genetic Polytomous Trees, facilitating their 
transformation back into Genetic Baseline Trees 
(supplementary fig. S2, Supplementary Material online).

Additionally, by applying the infection times as time con
straints on the internal nodes, we can revert Genetic Baseline 
Trees to their Baseline counterparts using LSD2 (To et al. 
2016). We achieve this by setting a specific time range for 
the internal nodes, using a margin of (infection time − 1 d, 
infection time + 1 d). Narrowing this margin to 0.1 d brings 
the converted trees even closer to the Baseline trees, thereby 
yielding performance on the Baseline-Model that is nearly 
identical to that obtained when directly using Baseline trees 
for testing, as detailed in supplementary tables S2 and S3, 
Supplementary Material online.

SARS-CoV-2 Data Set in Hong Kong
We used sequences and epidemiological data from the 
third and fourth waves of SARS-CoV-2 in Hong Kong, as 
detailed in our prior study (Gu et al. 2022). These waves 
were characterized by single introduction events that 
sparked local transmissions, and they were notable for 
their relatively consistent sequence sampling and compre
hensive surveillance data. In this study, we focused on the 
exponential stages of waves 3 and 4, which spanned from 
2020 May 13 to August 1, with 460 sequences and 1,930 
local cases, and from 2020 September 30 to December 8, 
with 243 sequences and 1,577 local cases, respectively. 
The sampling rates for waves 3 and 4 were 23.8% and 
15.4%, respectively. During wave 3, 84.35% (388 out of 
460) of sequences were linked to cluster information in
volving 191 clusters, among which 76 clusters comprised 
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more than one sequence. This indicates that 16.56% (76 
out of 459) of the data were supported by contact tracing. 
In wave 4, 90.53% (220 out of 243) of sequences were asso
ciated with 35 clusters, with 23 clusters containing mul
tiple sequences, amounting to 9.50% (23 out of 242) 
contact tracing data availability.

For waves 3 and 4, we reconstructed ML phylogenies 
using RAxML-NG (Kozlov et al. 2019) with the GTR + G4 + 
FO substitution model. We maintained consistency with si
mulated trees in terms of collapsing internal nodes and the 
random resolution of polytomies. Our findings revealed that 
the distribution of the number of offspring from collapsed 
internal nodes falls within the range observed in our simula
tions (supplementary fig. S1, Supplementary Material on
line). Subsequently, these trees were dated using LSD2 (To 
et al. 2016), following a strict molecular clock assumption 
of 8 × 10−4 substitutions per site per year (Hadfield et al. 
2018; Jolly and Scaria 2021), and applying time constraints 
for the root as inferred by Gu et al. (2022).

Estimating R0 and k from Epidemiological Data Only
We compared the results for R0 and k estimated using our 
deep learning models to those estimated from line-list 
data on SARS-CoV-2 available during the exponential per
iods of waves 3 and 4 in Hong Kong. Comparable estimates 
of R0 were estimated as per methods described in Wallinga 
and Lipsitch (2007) and implemented in the R package R0 

(Obadia et al. 2012) that assumes an SIR model of trans
mission like BDSS. We used line-listed incidence data of 
SARS-CoV-2 symptom onset dates and an exponential 
generation time distribution also like BDSS (mean = 5.7, 
SD = 1.8; Hu et al. 2021) with results listed in Table 1. 
Additional sensitivity analyses were conducted assuming 
alternative parameterizations of the generation time 
(mean = 7.27, SD = 3.81; Chen et al. 2022), and/or a 
gamma-distributed generation time are summarized in 
supplementary table S8, Supplementary Material online.

Epidemiological estimates of k were generated by con
structing empirical offspring distributions from contact 
tracing data on SARS-CoV-2 available from previous stud
ies in Hong Kong (Adam et al. 2022). These distributions 
were generated from infector–infectee pairs, where the 
number of secondary cases is counted for each unique in
fector and includes chain-terminating infectees as zero. 
We subsetted the empirical offspring distributions to the 
same exponential periods for wave 3 and wave 4 as before, 
given the estimated infection date of each paired case as a 
deconvolution of the generation time, incubation period, 
and delay distributions given the onset date or report 
dates if asymptomatic between infector–infectee pairs. 
Importantly, offspring counts were not artificially right 
censored, meaning the observed count of each infector 
case was included even if the estimated infection date of 
paired infectee(s) fell outside the exponential periods of 
each wave. Following the approach of Lloyd-Smith et al. 
(2005), k is estimated directly from the finalized offspring 
distributions by ML estimation, assuming a negative 

binomial model jointly parameterized by the mean and 
dispersion parameter k, with 95% intervals generated by 
nonparametric bootstrap estimation sampling 1,000 repli
cates with replacement.

Parameter Inference Comparison with BEAST2
We assessed the predictive performance of the Dated 
Baseline-Model and Baseline-Model against the well- 
established Bayesian structured birth–death model, imple
mented via the bdmm package (Scire et al. 2022) in 
BEAST2 (Bouckaert et al. 2014) (version 2.6.2). We applied 
the same priors as used in PhyloDeep (Voznica et al. 
2022), maintaining the equality βSS/βNS = βSN/βNN and fix
ing the sampling proportion and tree topology during par
ameter estimation. Markov chain Monte Carlo analysis was 
run for 10 million steps, sampling every 1,000 steps with a 
10% as burn-in, and effective sample size values were as
sessed using Tracer (Rambaut et al. 2018). The analysis was 
conducted on 100 simulated Genetic Polytomous Trees in
corporating varying levels of contact tracing data (0%, 
50%, and 100%) to facilitate transforming the input trees 
back into Baseline and Dated Baseline Trees, the latter using 
only cluster information. Additionally, we conducted the 
BEAST2 analysis on the Hong Kong data sets, which pro
duced different estimations (supplementary table S9, 
Supplementary Material online). However, the poor per
formance in our simulation analysis without contact tracing 
data, or when only incorporating cluster information, along 
with the limited cluster data available in the Hong Kong data 
sets, was insufficient to meaningfully improve predictions.

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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