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Background. Population-level cycle threshold (Ct) distribution allows for R, estimation for SARS-CoV-2 ancestral strain,
however, its generalizability under different circulating variants and preexisting immunity remains unclear.

Methods. We obtained the first Ct record of local COVID-19 cases from July 2020 to January 2023 in Hong Kong. The log-
linear regression model, fitting on daily Ct mean and skewness to R, estimated by case count, was trained with data from
ancestral-dominated wave (minimal population immunity), and we predicted the R, for Omicron waves (>70% vaccine
coverage). Cross-validation was performed by training on other waves. Stratification analysis was conducted to retrospectively
evaluate the impact of the changing severity profiles.

Results. Model trained with the ancestral-dominated wave accurately estimated whether R, was >1, with areas under the
receiver operating characteristic curve of 0.98 (95% CI, 0.96-1.00), 0.62 (95% CI, 0.53-0.70), and 0.80 (95% CI, 0.73-0.88) for
Omicron-dominated waves, respectively. Models trained on other waves also had discriminative performance. Stratification

analysis suggested the potential impact of case severity on model estimation, which coincided with sampling delay.

Conclusions. Incorporating population viral shedding can provide timely and accurate transmission estimation with evolving
variants and population immunity, though model application should consider sampling delay.
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Tracking community transmission in real time is critical but
suffers delays due to the unavoidable right censoring (ie, incu-
bation period and delay in case identification) in the conven-
tional methods [1, 2]. Previous work established a novel
temporal association between epidemic dynamics and average
population cycle threshold (Ct) values measured from reverse
transcription — quantitative  polymerase chain reaction
(RT-qPCR) among positive specimens of SARS-CoV-2 [3].
At the individual level, viral loads peak around symptom onset
and decrease over time, resulting in higher Ct values as the in-
tervals between infection and testing become longer [4, 5].
Consequently, a growing epidemic dominated by recent infec-
tions will have higher viral loads and lower Ct values, while a
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declining epidemic dominated by older infections will have
lower viral loads and higher Ct values [3]. Using this rationale,
we have since applied a simplified method to incorporate the
temporal population Ct distribution into real-time transmis-
sion estimation, measured by the effective reproductive num-
ber R, [4].

While these studies have significantly advanced our under-
standing of the association between population viral shedding
and transmission, they were performed during early waves of
the COVID-19 pandemic [6]. The generalizability of the iden-
tified association to epidemics remained underinvestigated, es-
pecially in the context of the emerging SARS-CoV-2 variants
(eg, Omicron) and increasing preexisting immunity, which
were found to be associated with shorter duration in viral shed-
ding clearance at the individual level [7]. Additionally, large ep-
idemics with an exponential increase in cases could soon
exceed testing and surveillance capacity and may further pro-
long the delays between infection and diagnosis due to the con-
strained resources, making it more challenging to derive timely
and reliable R, estimates with conventional incidence-based ap-
proaches [1, 8].

Here, we examined the impact of the evolving SARS-CoV-2
variants and population immunity on the application of popula-
tion viral load distribution to estimate transmission, using data
of laboratory-confirmed COVID-19 cases from July 2020 to
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January 2023 in Hong Kong. During this period, dominant strains
transitioned from the ancestral strain to Omicron subvariants,
and the population shifted from predominantly native to possess-
ing high preexisting hybrid immunity due to natural infection and
vaccinations [9]. Additionally, we conducted secondary analyses
using Ct data from specific severity groups to predict transmission
across the entire population, thereby exploring the impact of
changing severity profiles on the model generalizability. Thus,
we can examine whether overall association between population-
level viral loads and transmission dynamics remained consistent
and validate the Ct-based R, estimation method.

METHODS

Data Source

Viral loads of COVID-19 cases were proxied by Ct [5] values
(derived from SARS-CoV-2 RT-qPCR assays targeting the E
gene) from upper respiratory tract samples, given that they
are inversely correlated (ie, lower Ct values imply higher viral
loads) [10, 11]. We collected the clinical, epidemiologic, and
demographic data of each local case from the Hospital
Authority and the Department of Health of the Government
of Hong Kong during the observation period, including the first
recorded Ct value, date of sampling, clinical outcomes, and date
of symptom onset. The confirmed cases were classified as mild
to moderate, serious, critical, and fatal according to their clin-
ical outcomes, including the assessment of oxygen desatura-
tion, medication/procedure use, and health care utilization
data [9, 12]. This facilitated a secondary analysis to further ex-
plain the generalizability of a Ct-based framework.

Statistical Analysis

R; Estimation Based on Case Counts: Incidence-Based R,

We applied a robust incidence deconvolution estimator [13]
with delay from infection to reporting to reconstruct the epi-
demic curve by infection time. Then we estimated the incidence-
based R, according to daily local case numbers using the method
of Cori et al [8]. In this framework, the incidence-based R, was
the ratio of the number of new cases to the total infectiousness of
individuals who were infective, which was the convolution of the
incubation period and the infectiousness relative to onset [14].
We conducted inference by a Markov chain Monte Carlo algo-
rithm to estimate R, [15, 16]. More details about incidence-
based R, estimation are described elsewhere [1, 4].

Incorporating Ct Distribution Into R, Estimates: Ct-Based R,

Hong Kong experienced multiple epidemic waves between 1
January 2020 and 29 January 2023 [9]. We analyzed the first re-
cords for confirmed local COVID-19 cases (ie, no travel outside
Hong Kong during incubation) with available Ct values. The whole
observed period was split into 3 uninterrupted subperiods—1 July
to 31 August 2020 (wave 3), 1 November 2020 to 31 March 2021

(wave 4), and 1 January 2022 to 29 January 2023 (wave 5-7)—to
fit a generalized additive model to characterize the population
distribution of viral load separately (supplementary appendix).

Of note, wave 6 (23 May-30 September 2022) and wave 7
(I October 2022-29 January 2023) were separated to reflect
the government’s relaxation of entry restrictions and the intro-
duction of new strains, such as XBD, BF.7, and BQ.1.1 [9, 17].
To assess the relationship between population-level distribu-
tion of viral loads and incidence-based R,, we first calculated
the Spearman’s rank correlation coefficient (p) between daily
Ct distribution (ie, mean and skewness) and the natural log-
transformed incidence-based R, for each of 5 waves (Table 1).
This study aims to validate the generalizability of association
between population Ct distribution and transmission epidem-
ics and the simplified Ct-based model [4] in the context of
SARS-CoV-2 variants and preexisting immunity. In our previ-
ous work using training data from wave 3 [4], the linear regres-
sion model of daily Ct mean and skewness on log-transformed
incidence-based R, performed the best [4]. We then applied the
fitted model to predict R, in waves 4 to 7. We included a 31-day
period in the training set (eg, 19 July-18 August 2020 for wave
3), consisting of 10 days before and 20 days after the day when
local cases peaked in that wave, as suggested by previous study
[4]. We determined the case peak by computing the 5-day roll-
ing average of confirmed local cases to minimize the impact of
sudden reporting changes.

We evaluated model prediction using the area under the re-
ceiver operating characteristic curve (AUC) as the primary
metric [18, 19], fitted to the binary outcome of whether the
Ct-based R; (predicted) or incidence-based R; (observed) was
>1. This threshold was chosen because an R, >1 indicates a
growing epidemic trend, while values <1 indicate a decreasing
trend, which plays a crucial role in providing early warnings for
public health [20]. An AUC <0.50 is considered nondiscrimi-
native; between 0.50 and 0.69, discriminative; between 0.70
and 0.79, acceptable; between 0.80 and 0.89, excellent; and
>0.90, outstanding [21]. We also computed mean absolute per-
centage error (MAPE) to reflect the numerical accuracy.

Cross-validation Between Epidemic Waves

We trained the model on data from waves 4 to 7, separately, to
further evaluate the generalizability of our method. As de-
scribed previously, we included a 31-day training period of
wave 4 (24 November-24 December 2020), wave 5 (21
February-23 March 2022), wave 6 (23 August-22 September
2022) and wave 7 (19 December 2022-18 January 2023).
With each training set, all 5 complete waves are automatically
set as the test sets, including the wave where the training set
is located. We evaluated the model predictions using AUC
and MAPE. We excluded from wave 5 the forecasts made be-
tween 1 January and 6 February 2022 due to the huge fluctua-
tion of incidence-based R,.
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Table 1. Spearman Correlation Coefficients (p) Between Ct and the Natural Log-Transformed Incidence-Based R,

Wave 3: Jul-Aug Wave 4: Nov Wave 5: Jan Wave 6: May Wave 7: Oct
2020 2020-Mar 2021 2022-May 2022 2022-Sep 2022 2022-Jan 2023
Ct p P Value p P Value P Value p P Value p P Value
Mean -0.79 <.001 —-0.51 <.001 —-0.69 <.001 -0.14 .105 —0.58 <.001
Skewness 0.80 <.001 0.27 .001 0.62 <.001 0.11 221 0.55 <.001

Two-sided P values were rounded to 3 decimal places.
Abbreviations: Ct, cycle threshold; R;, effective reproductive number.

Stratified Analysis of 2 Symptom Severity Groups
To further validate the Ct-based framework and assess the po-
tential for prediction via targeted training on a subset of cases,
we conducted an exploratory analysis to investigate the impact
of the changing severity profiles on model performance. This
involved characterizing the temporal changes of first Ct distri-
bution and delay of onset to sampling stratified by the retro-
spectively classified clinical severity. We constrained analyses
to 2 groups—namely, mild to moderate and severe—combin-
ing serious, critical, and fatal cases into a single group for the
latter (supplementary appendix). In particular, the retrospec-
tive subsettings of severity were determined by their clinical
outcomes that have already occurred, which may have been un-
known during the collection of the initial Ct values. Thus, we
also characterized the distribution of the delays between the
initial records and clinical outcomes. Subsequently, we fitted
the established model from Ct data from either the mild to
moderate or severe group only in waves 3 to 7 and then used
model and date from the corresponding severity group to esti-
mate the scenarios in waves 5 to 7.

All statistical analyses were conducted in R version 4.3.1
(R Foundation for Statistical Computing).

RESULTS

COVID-19 Waves in Hong Kong

COVID-19 cases were detected from people with respiratory
symptoms or high risk of exposures (eg, close contacts and oc-
cupational exposure) and confirmed with RT-qPCR between
January 2020 and 6 February 2022 [4], covering waves 3 and
4 and the early wave 5. Contact tracing was suspended after 7
February 2022 (waves 5-7), and self-reported positive rapid an-
tigen test (RAT) results were recorded as cases after 26
February 2022 [22]. A decline in the incidence-based R, was ob-
served throughout April and May 2022 before case numbers in-
creased again in June, partially due to the emergence of
Omicron BA.4/BA.5, which grew steadily and eventually re-
placed BA.2 as the dominant variants, with BA.5 having an ab-
solute advantage since later August 2022 [23]. By later January
2023, sublineages BA.2 and BA.5 became the dominating line-
ages in Hong Kong [24]. Two COVID-19 vaccines (CoronaVac
[Sinovac]; BNT162b2 [BioNTech/Fosun Pharma/Pfizer]) were

provided in Hong Kong since February 2021, during and after
wave 4 [25]. As of 2 January 2022 (wave 5), approximately 66%
of the population had received at least 1 vaccine dose [26].

We included local cases from July 2020 to January 2023, cov-
ering wave 3 (1 July-31 August 2020) and wave 4 (1 November
2020-31 March 2021) caused by the ancestral strain, while
wave 5 (1 January-22 May 2022) and waves 6 and 7 (23 May
2022-29 January 2023) were caused by Omicron BA.2 and
BA.4/BA.5, respectively (Figure 1) [9, 12].

In total 2 790 814 local RT-qPCR-confirmed COVID-19 cases
and self-reported RAT-positive results were recorded through
waves 3 and 7 (Supplementary Table 2). Among these local con-
firmed cases, 100% (n=3217), 100% (n = 5426), 62% (n =746
829), 32% (n =170 413), and 21% (n = 219 095) were confirmed
by RT-qPCR in waves 3 to 7, respectively. However, Ct values
were available for 114 714 cases included, with 95% (n = 3043),
96% (n=>5225), 7% (n=>51372), 13% (n=21835), and 15%
(n=33239) for RT-qPCR-positive cases in waves 3 to 7.

Correlations Between Population-Level Ct Distribution and
Incidence-Based R,

We observed consistent temporal associations between popula-
tion Ct distribution and incidence-based R, in the Omicron
variants—-dominated waves 5 and 7, as seen for the ancestral
strain—-dominated waves 3 and 4 (Figures 1 and 2). Overall,
waves 3 and 4 were marked by low community virus circula-
tion, with initially elevated incidence-based R, that subse-
quently plateaued. In contrast, wave 5 exhibited the highest
incidence early on, but transmission rapidly declined after
February 2022. Waves 6 and 7 suggested a more stable and
consistent transmission pattern throughout the observation pe-
riod. Higher incidence-based R; was observed with lower aver-
age Ct values (Spearman’s rank correlation coefficient, p =
—0.69 [P <.001] for wave 5; p=—0.58 [P <.001] for wave 7)
and as Ct skewed toward lower values (p =0.62 [P <.001] for
wave 5; p=0.55 [P < 0.001] for wave 7), although such rela-
tionships were not significant for wave 6 (Table 1).

Estimating Ct-Based R, for Waves With Changing Dominant Variant and
Population Immunity

The model was trained on 31-day data around the peak of the
ancestral strain-dominated wave 3, as suggested previously [4].
It was accurate to predict whether R, is >1 in the subsequent
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Figure 1. Temporal distribution of incidence-based R, (estimated by case counts) and population-level Ct values (measured by daily mean and skewness). A, Locally con-

firmed COVID-19 cases with available Ct values by date of reporting and incidence-based A, estimated by case counts. Black bars indicate daily case counts. Lines and shaded
areas indicate the mean and 95% credible intervals for incidence-based R, over the entire observed period. B, Temporal distribution of population-level Ct values and main
dominant strains. Black bars indicate the number of daily collected samples. Brown lines and shaded areas indicate the mean and 95% confidence intervals of Ct values
estimated by a generalized additive model (GAM) during the third and fourth waves, which were dominated by the ancestral strain. Orange lines and shaded areas correspond
to the fifth, sixth, and seventh waves, which were dominated by Omicron variants. C, Temporal distribution of Ct skewness. Dots and vertical lines represent the mean and
95% confidence intervals of daily Ct skewness. Ct, cycle threshold; R, effective reproductive number.

epidemic waves, except waves 4 and 6 (Table 2), with AUCs of
0.68 (95% CI, .60-.75; test set, wave 4), 0.98 (95% CI, .96-1.00;
test set, wave 5), 0.62 (95% CI, .53-.70; test set, wave 6), and
0.80 (95% CI, .73-.88; test set, wave 7).

We validated our methods by training the model using
31-day peaks data from waves 4 to 7. The model demonstrated
generally discriminative predictions, particularly in forecast-
ing transmission in waves 3 and 5 (Table 2). The AUC of
the predicted R; for the Omicron variants—dominated wave
5 remained outstanding regardless of the training set used.
Similarly, retrospective R, estimates for the ancestral strain-
dominated wave 3 indicated excellent, even outstanding, esti-
mates with AUC values ranging from 0.80 to 0.92 for different
training sets. However, the results occasionally showed sub-
optimal performance, especially when predicting R, of pla-
teaued waves 6 and 7. Furthermore, discriminative to
nondiscriminative performances were observed when wave
5 was the training set, with AUCs of the predicted R, being
0.53 (95% CI, .49-.57) for wave 6 and 0.49 (95% CI, .46-.53)
for wave 7.

Impact of Severity on the Association Between Population-Level Ct
Distribution and Incidence-Based R,

There were more severe cases recorded during Omicron waves
as compared with ancestral strain waves. Specifically, 40% of
cases were retrospectively classified as severe in waves 5 and
7, as compared with <25% in waves 3 and 4 (Supplementary
Table 3). As suggested, we retrospectively assessed Ct-based
R; estimates based on subsets of Ct values from cases with 2 dis-
tinct degrees of severity. Slightly distinct temporal distributions
emerged in Ct values between mild to moderate and severe
groups during waves 5 and 6 (Supplementary Figure 3a). For
instance, Ct means diverged in February, April, and August
2022, coinciding with differing delays between symptom onset
and sample collection for the 2 severity groups (Supplementary
Figure 10c and 10d).

Results for the model trained in wave 3 suggested that using
Ct values from mild to moderate or severe yielded only nondis-
criminative AUCs (eg, 0.52 [95% CI, .48-.56] for wave 5, with
severe cases only) as compared with using data from all cases
(eg, 0.98 [95% CI, .96-1.00] for wave 5), and the model trained
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in wave 4 show similar trend (Supplementary Table 5). In con-
trast, for the training periods with an increasing proportion of
severe cases, using Ct from 1 severity group could yield higher
AUCs as compared with using Ct from all cases. For instance,
the AUC of the Ct-based R, for wave 6 was 0.63 (95% CI,
.55-.71; trained with mild to moderate cases from wave 5) as
compared with 0.53 (95% CI, .49-.57; trained with all cases
from wave 5). Finally, we retrospectively described the distribu-
tion of the interval between the first Ct sampling and the onset
of severe cases, as depicted in Supplementary Figure 11, show-
ing shorter intervals in the subsequent Omicron waves.

DISCUSSION

In this study, we demonstrated that the association between
population viral load distribution and epidemics, as derived
from the ancestral strain with minimal population immunity,
remained highly informative during the Omicron subvar-
iants—-dominated waves in populations with significant preex-
isting immunity. In the previous study, reduced viral
shedding durations were observed for vaccinated individuals
and those infected with the Omicron variants; however, dispar-
ities in viral loads were minimal during the early stage of infec-
tion [7]. Therefore, our approach employing the initial Ct may
be minimally affected by variants and vaccinations, consistent
with previous studies using various measurements of transmis-
sion (eg, growth rate) [6, 27-30]. Our findings also suggested
several circumstances in which the model exhibited suboptimal
performance, such as amid sample representativeness or during
plateaued local epidemics, thereby providing insights into
broader model applicability.

For surveillance based primarily on symptoms and contact
tracing [4], Ct samples could be delayed in case identification or
sample collection, resulting in an inaccurate reflection of the over-
all viral load in the population. We observed lower population Ct

values for severe cases in early wave 5 but higher values in late
wave 5 and early wave 6 as compared with mild to moderate cases
(Supplementary Figure 3), which coincided with observed dispar-
ities in delays from symptom onset to sample collection
(Supplementary Figure 10). Our stratified analyses of sample se-
verity profile also revealed a complex impact of severity on the
Ct-based estimation of R;, highlighting the importance of sample
representativeness. During waves 3 and 4 in Hong Kong, when in-
tensive surveillance and contact tracing were adopted amid low vi-
rus circulation in the community, models trained on all cases
outperformed those trained only on mild to moderate cases, as
they better represented the full spectrum of case exposure time
distribution (Supplementary Figures 5-9). Conversely, when
training the model with data from waves that have overall increas-
es in the proportion of severe samples with delayed reporting, the
model may inaccurately associate these changes in severity profile
and reporting to changes in transmission, leading to reduced
model performance (Supplementary Table 5). This observation
is consistent with the shorter delays observed between initial Ct
reports and clinical outcomes during Omicron waves as com-
pared with the delays observed during waves 3 and 4
(Supplementary Figure 11). Note that our symptom-stratified
analysis used retrospective data, where severe outcomes were as-
certained months after the initial case confirmation. These out-
comes would not be available in real time during the initial
confirmation of cases.

Contact tracing was suspended, and RAT was implemented
in February 2022 due to the huge impact on the medical sys-
tem [9]. It was not until June 7 that cases with positive RAT re-
sults were required to undergo RT-qPCR again [12]. These
policy changes were reflected in the differences in the percent-
ages of RT-qPCR-confirmed cases and the percentages of RT-
qPCR-positive cases with Ct values (Supplementary Table 2).
Ct values were collected from RT-qPCR-confirmed cases ad-
mitted or quarantined in public hospital in Hong Kong [4,
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Table 2.

Model Performance Based on Different Training Periods to Estimate Ct-Based R; in the Other 4 Waves

Training Period

Wave 37 (19 Jul-18 Aug Wave 4 (24 Nov-24 Dec

Wave 5 (21 Feb-23 Mar

Wave 6 (23 Aug-22 Sep Wave 7 (19 Dec 2022-18

2020) 2020) 2022) 2022) Jan 2023)

AUC MAPE AUC MAPE AUC MAPE AUC MAPE AUC MAPE
Wave 3 0.94 (.86-1.00) 0.25 0.92 (.84-1.00) 0.28 0.80 (.70-.90) 3.45 0.91 (.83-1.00) 0.25 0.92 (.85-1.00) 0.27
Wave 4 0.68 (.60-.75) 0.29 0.69 (.61-.76) 0.30 0.67 (.59-.75) 16.40 0.70 (.62-.77) 0.32 0.71 (.64-.79) 0.37
Wave 5 0.98 (.96-1.00) 0.52 0.98 (.96-1.00) 0.47 0.96 (.92-1.00) 0.67 0.99 (.97-1.00) 0.56 0.98 (.96-1.00) 0.58
Wave 6 0.62 (.563-.70) 0.24 0.62 (.563-.70) 0.22 0.53 (.49-.57) 0.56 0.66 (.568-.74) 0.23 0.66 (.57-.75) 0.23
Wave 7 0.80 (.73-.88) 0.15 0.81 (.73-.88) 0.16 0.49 (.46-.53) 0.54 0.53 (.50-.56) 0.18 0.67 (.569-.75) 0.15
Overall® 0.78 (.74-.82) 0.29 0.83 (.79-.86) 0.27 0.53 (.49-57) 6.00 0.69 (.65-.73) 0.33 0.80 (.76-.84) 0.37

Incidence-based Rt was natural log transformed.

Abbreviations: AUC, area under the receiver operating characteristic curve; Ct, cycle threshold; MAPE, mean absolute percentage error; R, effective reproductive number.

#Main model used to estimate Ct-based R,.

®Qverall: combined 4 test sets (excluded the wave where 31-day peak period was located) into 1 to calculate corresponding AUC and MAPE.

12]. During the Omicron waves, the surge in cases over-
whelmed testing capacity and hospital resources, leading to a
significant change in the availability of Ct values among con-
firmed cases. During this period, the incidence-based R, was es-
timated by RT-qPCR-confirmed cases. Therefore, wave 5 was
not recommended as a training set, which is why lower trans-
missibility was observed when the interval between symptom
onset and sampling increased.

The accuracy of Ct-based R, estimates for wave 6 was not op-
timal, irrespective of whether the model was trained with the
data from the same wave or other waves. A possible reason could
be the low and relatively consistent community transmission, as
evidenced by the incidence-based R; stably fluctuating around
1 and its Gini coefficient of 0.140 (95% CI, .125-.156;
Supplementary Table 6). Simultaneously, fewer samples avail-
able to obtain Ct values led to increased uncertainties surround-
ing the R, estimates [4]. In an effort to mitigate the effects of the
limited sample size, we opted to fit the model using rolling Ct
values instead of daily values on days with fewer than 30 or 60
records. Although the AUC and MAPE improved for wave 4
when trained on data from wave 3, suboptimal performance
may arise in wave 6 because the moving average of Ct values
could disrupt the alignment between the temporal distribution
of Ctvalues and R, (Supplementary Table 7). The results also in-
dicated that the impact of the sample size on the Ct-based
framework can be mitigated as long as the sample is representa-
tive [4]. Yet, increased AUCs for testing sets in waves 4 and 6
were observed when we excluded days with fewer than 30 or
60 records (Supplementary Table 8). Furthermore, the training
period included for wave 6 coincided with the presence of mul-
tiple Omicron variants, including BA.2 and BA.4/BA.5. These
variants were indicated to exhibit distinct viral kinetics and in-
fectiousness [31, 32]; however, limited genotyping data pose
challenges in evaluating the impact of the transition period
when competing Omicron variants coexisted. Future study on

the model incorporating strain-specific parameters, such as
peak viral load and duration of RT-qPCR positivity, could min-
imize fluctuations related to the time since symptom onset. This
approach would minimize the impact of the viral kinetics of cir-
culating strains, providing a clearer reflection of the relationship
between viral loads and epidemic transmission, thereby im-
proving the numerical accuracy of the Ct-based framework.

Our work has several limitations. First, we were unable to fur-
ther examine the effect of vaccines and variants due to the limited
individual data. Second, the reduction in case ascertainment as
nonpharmaceutical interventions were relaxed [9] and the poten-
tial bias toward reporting severe cases in the later epidemic waves
may have affected the accuracy of R; estimation based on case
counts. Further research is needed to address this issue and refine
the model accordingly. Additionally, it is worth noting that our
model, requiring less computation efforts and crude metric
AUQG, enables robust binomial estimation of R, values >1 or
<1. Yet it may not afford absolute quantitative estimates, as dem-
onstrated in the nowcast for wave 5 (Table 2, Supplementary
Table 4, Supplementary Figure 1b).

Our study provides valuable insights into the potential of
population-level Ct distribution as a predictive tool for timely
assessment of transmission dynamics during waves character-
ized by variants dominating and population immunity shifting.
These findings suggest the potential generalizability of this sim-
plified framework across various settings and situations.
However, it is important to exercise caution when applying
our model to situations with limited Ct records, transitioning
epidemic phases, or fluctuating sampling delay, as the model
may perform suboptimally in these scenarios. Further research
is required to investigate the reasons for the suboptimal scenar-
ios and to assess the impact of different surveillance practices
and viral characteristics on the association between population
viral shedding and transmission, which would better inform
the applicability of the Ct-based estimation framework.
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Supplementary materials are available at The Journal of

Infectious Diseases online (http://jid.oxfordjournals.org/).
Supplementary materials consist of data provided by the author
that are published to benefit the reader. The posted materials
are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages

regarding errors should be addressed to the author.
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