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Background. Population-level cycle threshold (Ct) distribution allows for Rt estimation for SARS-CoV-2 ancestral strain, 
however, its generalizability under different circulating variants and preexisting immunity remains unclear.

Methods. We obtained the first Ct record of local COVID-19 cases from July 2020 to January 2023 in Hong Kong. The log- 
linear regression model, fitting on daily Ct mean and skewness to Rt estimated by case count, was trained with data from 
ancestral-dominated wave (minimal population immunity), and we predicted the Rt for Omicron waves (>70% vaccine 
coverage). Cross-validation was performed by training on other waves. Stratification analysis was conducted to retrospectively 
evaluate the impact of the changing severity profiles.

Results. Model trained with the ancestral-dominated wave accurately estimated whether Rt was >1, with areas under the 
receiver operating characteristic curve of 0.98 (95% CI, 0.96–1.00), 0.62 (95% CI, 0.53–0.70), and 0.80 (95% CI, 0.73–0.88) for 
Omicron-dominated waves, respectively. Models trained on other waves also had discriminative performance. Stratification 
analysis suggested the potential impact of case severity on model estimation, which coincided with sampling delay.

Conclusions. Incorporating population viral shedding can provide timely and accurate transmission estimation with evolving 
variants and population immunity, though model application should consider sampling delay.
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Tracking community transmission in real time is critical but 
suffers delays due to the unavoidable right censoring (ie, incu
bation period and delay in case identification) in the conven
tional methods [1, 2]. Previous work established a novel 
temporal association between epidemic dynamics and average 
population cycle threshold (Ct) values measured from reverse 
transcription quantitative polymerase chain reaction 
(RT-qPCR) among positive specimens of SARS-CoV-2 [3]. 
At the individual level, viral loads peak around symptom onset 
and decrease over time, resulting in higher Ct values as the in
tervals between infection and testing become longer [4, 5]. 
Consequently, a growing epidemic dominated by recent infec
tions will have higher viral loads and lower Ct values, while a 

declining epidemic dominated by older infections will have 
lower viral loads and higher Ct values [3]. Using this rationale, 
we have since applied a simplified method to incorporate the 
temporal population Ct distribution into real-time transmis
sion estimation, measured by the effective reproductive num
ber Rt [4].

While these studies have significantly advanced our under
standing of the association between population viral shedding 
and transmission, they were performed during early waves of 
the COVID-19 pandemic [6]. The generalizability of the iden
tified association to epidemics remained underinvestigated, es
pecially in the context of the emerging SARS-CoV-2 variants 
(eg, Omicron) and increasing preexisting immunity, which 
were found to be associated with shorter duration in viral shed
ding clearance at the individual level [7]. Additionally, large ep
idemics with an exponential increase in cases could soon 
exceed testing and surveillance capacity and may further pro
long the delays between infection and diagnosis due to the con
strained resources, making it more challenging to derive timely 
and reliable Rt estimates with conventional incidence-based ap
proaches [1, 8].

Here, we examined the impact of the evolving SARS-CoV-2 
variants and population immunity on the application of popula
tion viral load distribution to estimate transmission, using data 
of laboratory-confirmed COVID-19 cases from July 2020 to 
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January 2023 in Hong Kong. During this period, dominant strains 
transitioned from the ancestral strain to Omicron subvariants, 
and the population shifted from predominantly native to possess
ing high preexisting hybrid immunity due to natural infection and 
vaccinations [9]. Additionally, we conducted secondary analyses 
using Ct data from specific severity groups to predict transmission 
across the entire population, thereby exploring the impact of 
changing severity profiles on the model generalizability. Thus, 
we can examine whether overall association between population- 
level viral loads and transmission dynamics remained consistent 
and validate the Ct-based Rt estimation method.

METHODS

Data Source

Viral loads of COVID-19 cases were proxied by Ct [5] values 
(derived from SARS-CoV-2 RT-qPCR assays targeting the E 
gene) from upper respiratory tract samples, given that they 
are inversely correlated (ie, lower Ct values imply higher viral 
loads) [10, 11]. We collected the clinical, epidemiologic, and 
demographic data of each local case from the Hospital 
Authority and the Department of Health of the Government 
of Hong Kong during the observation period, including the first 
recorded Ct value, date of sampling, clinical outcomes, and date 
of symptom onset. The confirmed cases were classified as mild 
to moderate, serious, critical, and fatal according to their clin
ical outcomes, including the assessment of oxygen desatura
tion, medication/procedure use, and health care utilization 
data [9, 12]. This facilitated a secondary analysis to further ex
plain the generalizability of a Ct-based framework.

Statistical Analysis

Rt Estimation Based on Case Counts: Incidence-Based Rt

We applied a robust incidence deconvolution estimator [13] 
with delay from infection to reporting to reconstruct the epi
demic curve by infection time. Then we estimated the incidence- 
based Rt according to daily local case numbers using the method 
of Cori et al [8]. In this framework, the incidence-based Rt was 
the ratio of the number of new cases to the total infectiousness of 
individuals who were infective, which was the convolution of the 
incubation period and the infectiousness relative to onset [14]. 
We conducted inference by a Markov chain Monte Carlo algo
rithm to estimate Rt [15, 16]. More details about incidence- 
based Rt estimation are described elsewhere [1, 4].

Incorporating Ct Distribution Into Rt Estimates: Ct-Based Rt

Hong Kong experienced multiple epidemic waves between 1 
January 2020 and 29 January 2023 [9]. We analyzed the first re
cords for confirmed local COVID-19 cases (ie, no travel outside 
Hong Kong during incubation) with available Ct values. The whole 
observed period was split into 3 uninterrupted subperiods—1 July 
to 31 August 2020 (wave 3), 1 November 2020 to 31 March 2021 

(wave 4), and 1 January 2022 to 29 January 2023 (wave 5–7)—to 
fit a generalized additive model to characterize the population 
distribution of viral load separately (supplementary appendix).

Of note, wave 6 (23 May–30 September 2022) and wave 7 
(1 October 2022–29 January 2023) were separated to reflect 
the government’s relaxation of entry restrictions and the intro
duction of new strains, such as XBD, BF.7, and BQ.1.1 [9, 17]. 
To assess the relationship between population-level distribu
tion of viral loads and incidence-based Rt, we first calculated 
the Spearman’s rank correlation coefficient (ρ) between daily 
Ct distribution (ie, mean and skewness) and the natural log- 
transformed incidence-based Rt for each of 5 waves (Table 1). 
This study aims to validate the generalizability of association 
between population Ct distribution and transmission epidem
ics and the simplified Ct-based model [4] in the context of 
SARS-CoV-2 variants and preexisting immunity. In our previ
ous work using training data from wave 3 [4], the linear regres
sion model of daily Ct mean and skewness on log-transformed 
incidence-based Rt performed the best [4]. We then applied the 
fitted model to predict Rt in waves 4 to 7. We included a 31-day 
period in the training set (eg, 19 July–18 August 2020 for wave 
3), consisting of 10 days before and 20 days after the day when 
local cases peaked in that wave, as suggested by previous study 
[4]. We determined the case peak by computing the 5-day roll
ing average of confirmed local cases to minimize the impact of 
sudden reporting changes.

We evaluated model prediction using the area under the re
ceiver operating characteristic curve (AUC) as the primary 
metric [18, 19], fitted to the binary outcome of whether the 
Ct-based Rt (predicted) or incidence-based Rt (observed) was 
>1. This threshold was chosen because an Rt >1 indicates a 
growing epidemic trend, while values <1 indicate a decreasing 
trend, which plays a crucial role in providing early warnings for 
public health [20]. An AUC <0.50 is considered nondiscrimi
native; between 0.50 and 0.69, discriminative; between 0.70 
and 0.79, acceptable; between 0.80 and 0.89, excellent; and 
≥0.90, outstanding [21]. We also computed mean absolute per
centage error (MAPE) to reflect the numerical accuracy.

Cross-validation Between Epidemic Waves
We trained the model on data from waves 4 to 7, separately, to 
further evaluate the generalizability of our method. As de
scribed previously, we included a 31-day training period of 
wave 4 (24 November–24 December 2020), wave 5 (21 
February–23 March 2022), wave 6 (23 August–22 September 
2022) and wave 7 (19 December 2022–18 January 2023). 
With each training set, all 5 complete waves are automatically 
set as the test sets, including the wave where the training set 
is located. We evaluated the model predictions using AUC 
and MAPE. We excluded from wave 5 the forecasts made be
tween 1 January and 6 February 2022 due to the huge fluctua
tion of incidence-based Rt.
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Stratified Analysis of 2 Symptom Severity Groups
To further validate the Ct-based framework and assess the po
tential for prediction via targeted training on a subset of cases, 
we conducted an exploratory analysis to investigate the impact 
of the changing severity profiles on model performance. This 
involved characterizing the temporal changes of first Ct distri
bution and delay of onset to sampling stratified by the retro
spectively classified clinical severity. We constrained analyses 
to 2 groups—namely, mild to moderate and severe—combin
ing serious, critical, and fatal cases into a single group for the 
latter (supplementary appendix). In particular, the retrospec
tive subsettings of severity were determined by their clinical 
outcomes that have already occurred, which may have been un
known during the collection of the initial Ct values. Thus, we 
also characterized the distribution of the delays between the 
initial records and clinical outcomes. Subsequently, we fitted 
the established model from Ct data from either the mild to  
moderate or severe group only in waves 3 to 7 and then used 
model and date from the corresponding severity group to esti
mate the scenarios in waves 5 to 7.

All statistical analyses were conducted in R version 4.3.1 
(R Foundation for Statistical Computing).

RESULTS

COVID-19 Waves in Hong Kong

COVID-19 cases were detected from people with respiratory 
symptoms or high risk of exposures (eg, close contacts and oc
cupational exposure) and confirmed with RT-qPCR between 
January 2020 and 6 February 2022 [4], covering waves 3 and 
4 and the early wave 5. Contact tracing was suspended after 7 
February 2022 (waves 5–7), and self-reported positive rapid an
tigen test (RAT) results were recorded as cases after 26 
February 2022 [22]. A decline in the incidence-based Rt was ob
served throughout April and May 2022 before case numbers in
creased again in June, partially due to the emergence of 
Omicron BA.4/BA.5, which grew steadily and eventually re
placed BA.2 as the dominant variants, with BA.5 having an ab
solute advantage since later August 2022 [23]. By later January 
2023, sublineages BA.2 and BA.5 became the dominating line
ages in Hong Kong [24]. Two COVID-19 vaccines (CoronaVac 
[Sinovac]; BNT162b2 [BioNTech/Fosun Pharma/Pfizer]) were 

provided in Hong Kong since February 2021, during and after 
wave 4 [25]. As of 2 January 2022 (wave 5), approximately 66% 
of the population had received at least 1 vaccine dose [26].

We included local cases from July 2020 to January 2023, cov
ering wave 3 (1 July–31 August 2020) and wave 4 (1 November 
2020–31 March 2021) caused by the ancestral strain, while 
wave 5 (1 January–22 May 2022) and waves 6 and 7 (23 May 
2022–29 January 2023) were caused by Omicron BA.2 and 
BA.4/BA.5, respectively (Figure 1) [9, 12].

In total 2 790 814 local RT-qPCR–confirmed COVID-19 cases 
and self-reported RAT-positive results were recorded through 
waves 3 and 7 (Supplementary Table 2). Among these local con
firmed cases, 100% (n = 3217), 100% (n = 5426), 62% (n = 746  
829), 32% (n = 170 413), and 21% (n = 219 095) were confirmed 
by RT-qPCR in waves 3 to 7, respectively. However, Ct values 
were available for 114 714 cases included, with 95% (n = 3043), 
96% (n = 5225), 7% (n = 51 372), 13% (n = 21 835), and 15% 
(n = 33 239) for RT-qPCR-positive cases in waves 3 to 7.

Correlations Between Population-Level Ct Distribution and 
Incidence-Based Rt

We observed consistent temporal associations between popula
tion Ct distribution and incidence-based Rt in the Omicron 
variants–dominated waves 5 and 7, as seen for the ancestral 
strain–dominated waves 3 and 4 (Figures 1 and 2). Overall, 
waves 3 and 4 were marked by low community virus circula
tion, with initially elevated incidence-based Rt that subse
quently plateaued. In contrast, wave 5 exhibited the highest 
incidence early on, but transmission rapidly declined after 
February 2022. Waves 6 and 7 suggested a more stable and 
consistent transmission pattern throughout the observation pe
riod. Higher incidence-based Rt was observed with lower aver
age Ct values (Spearman’s rank correlation coefficient, ρ =  
−0.69 [P < .001] for wave 5; ρ = −0.58 [P < .001] for wave 7) 
and as Ct skewed toward lower values (ρ = 0.62 [P < .001] for 
wave 5; ρ = 0.55 [P < 0.001] for wave 7), although such rela
tionships were not significant for wave 6 (Table 1).

Estimating Ct-Based Rt for Waves With Changing Dominant Variant and 
Population Immunity

The model was trained on 31-day data around the peak of the 
ancestral strain–dominated wave 3, as suggested previously [4]. 
It was accurate to predict whether Rt is >1 in the subsequent 

Table 1. Spearman Correlation Coefficients (ρ) Between Ct and the Natural Log-Transformed Incidence-Based Rt

Wave 3: Jul–Aug 
2020

Wave 4: Nov  
2020–Mar 2021

Wave 5: Jan  
2022–May 2022

Wave 6: May  
2022–Sep 2022

Wave 7: Oct  
2022–Jan 2023

Ct ρ P Value ρ P Value ρ P Value ρ P Value ρ P Value

Mean −0.79 <.001 −0.51 <.001 −0.69 <.001 −0.14 .105 −0.58 <.001

Skewness 0.80 <.001 0.27 .001 0.62 <.001 0.11 .221 0.55 <.001

Two-sided P values were rounded to 3 decimal places.

Abbreviations: Ct, cycle threshold; Rt, effective reproductive number.
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epidemic waves, except waves 4 and 6 (Table 2), with AUCs of 
0.68 (95% CI, .60–.75; test set, wave 4), 0.98 (95% CI, .96–1.00; 
test set, wave 5), 0.62 (95% CI, .53–.70; test set, wave 6), and 
0.80 (95% CI, .73–.88; test set, wave 7).

We validated our methods by training the model using 
31-day peaks data from waves 4 to 7. The model demonstrated 
generally discriminative predictions, particularly in forecast
ing transmission in waves 3 and 5 (Table 2). The AUC of 
the predicted Rt for the Omicron variants–dominated wave 
5 remained outstanding regardless of the training set used. 
Similarly, retrospective Rt estimates for the ancestral strain– 
dominated wave 3 indicated excellent, even outstanding, esti
mates with AUC values ranging from 0.80 to 0.92 for different 
training sets. However, the results occasionally showed sub
optimal performance, especially when predicting Rt of pla
teaued waves 6 and 7. Furthermore, discriminative to 
nondiscriminative performances were observed when wave 
5 was the training set, with AUCs of the predicted Rt being 
0.53 (95% CI, .49–.57) for wave 6 and 0.49 (95% CI, .46–.53) 
for wave 7.

Impact of Severity on the Association Between Population-Level Ct 
Distribution and Incidence-Based Rt

There were more severe cases recorded during Omicron waves 
as compared with ancestral strain waves. Specifically, 40% of 
cases were retrospectively classified as severe in waves 5 and 
7, as compared with <25% in waves 3 and 4 (Supplementary 
Table 3). As suggested, we retrospectively assessed Ct-based 
Rt estimates based on subsets of Ct values from cases with 2 dis
tinct degrees of severity. Slightly distinct temporal distributions 
emerged in Ct values between mild to moderate and severe 
groups during waves 5 and 6 (Supplementary Figure 3a). For 
instance, Ct means diverged in February, April, and August 
2022, coinciding with differing delays between symptom onset 
and sample collection for the 2 severity groups (Supplementary 
Figure 10c and 10d).

Results for the model trained in wave 3 suggested that using 
Ct values from mild to moderate or severe yielded only nondis
criminative AUCs (eg, 0.52 [95% CI, .48–.56] for wave 5, with 
severe cases only) as compared with using data from all cases 
(eg, 0.98 [95% CI, .96–1.00] for wave 5), and the model trained 

Figure 1. Temporal distribution of incidence-based Rt (estimated by case counts) and population-level Ct values (measured by daily mean and skewness). A, Locally con
firmed COVID-19 cases with available Ct values by date of reporting and incidence-based Rt estimated by case counts. Black bars indicate daily case counts. Lines and shaded 
areas indicate the mean and 95% credible intervals for incidence-based Rt over the entire observed period. B, Temporal distribution of population-level Ct values and main 
dominant strains. Black bars indicate the number of daily collected samples. Brown lines and shaded areas indicate the mean and 95% confidence intervals of Ct values 
estimated by a generalized additive model (GAM) during the third and fourth waves, which were dominated by the ancestral strain. Orange lines and shaded areas correspond 
to the fifth, sixth, and seventh waves, which were dominated by Omicron variants. C, Temporal distribution of Ct skewness. Dots and vertical lines represent the mean and 
95% confidence intervals of daily Ct skewness. Ct, cycle threshold; Rt, effective reproductive number.
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in wave 4 show similar trend (Supplementary Table 5). In con
trast, for the training periods with an increasing proportion of 
severe cases, using Ct from 1 severity group could yield higher 
AUCs as compared with using Ct from all cases. For instance, 
the AUC of the Ct-based Rt for wave 6 was 0.63 (95% CI, 
.55–.71; trained with mild to moderate cases from wave 5) as 
compared with 0.53 (95% CI, .49–.57; trained with all cases 
from wave 5). Finally, we retrospectively described the distribu
tion of the interval between the first Ct sampling and the onset 
of severe cases, as depicted in Supplementary Figure 11, show
ing shorter intervals in the subsequent Omicron waves.

DISCUSSION

In this study, we demonstrated that the association between 
population viral load distribution and epidemics, as derived 
from the ancestral strain with minimal population immunity, 
remained highly informative during the Omicron subvar
iants–dominated waves in populations with significant preex
isting immunity. In the previous study, reduced viral 
shedding durations were observed for vaccinated individuals 
and those infected with the Omicron variants; however, dispar
ities in viral loads were minimal during the early stage of infec
tion [7]. Therefore, our approach employing the initial Ct may 
be minimally affected by variants and vaccinations, consistent 
with previous studies using various measurements of transmis
sion (eg, growth rate) [6, 27–30]. Our findings also suggested 
several circumstances in which the model exhibited suboptimal 
performance, such as amid sample representativeness or during 
plateaued local epidemics, thereby providing insights into 
broader model applicability.

For surveillance based primarily on symptoms and contact 
tracing [4], Ct samples could be delayed in case identification or 
sample collection, resulting in an inaccurate reflection of the over
all viral load in the population. We observed lower population Ct 

values for severe cases in early wave 5 but higher values in late 
wave 5 and early wave 6 as compared with mild to moderate cases 
(Supplementary Figure 3), which coincided with observed dispar
ities in delays from symptom onset to sample collection 
(Supplementary Figure 10). Our stratified analyses of sample se
verity profile also revealed a complex impact of severity on the 
Ct-based estimation of Rt, highlighting the importance of sample 
representativeness. During waves 3 and 4 in Hong Kong, when in
tensive surveillance and contact tracing were adopted amid low vi
rus circulation in the community, models trained on all cases 
outperformed those trained only on mild to moderate cases, as 
they better represented the full spectrum of case exposure time 
distribution (Supplementary Figures 5–9). Conversely, when 
training the model with data from waves that have overall increas
es in the proportion of severe samples with delayed reporting, the 
model may inaccurately associate these changes in severity profile 
and reporting to changes in transmission, leading to reduced 
model performance (Supplementary Table 5). This observation 
is consistent with the shorter delays observed between initial Ct 
reports and clinical outcomes during Omicron waves as com
pared with the delays observed during waves 3 and 4 
(Supplementary Figure 11). Note that our symptom-stratified 
analysis used retrospective data, where severe outcomes were as
certained months after the initial case confirmation. These out
comes would not be available in real time during the initial 
confirmation of cases.

Contact tracing was suspended, and RAT was implemented 
in February 2022 due to the huge impact on the medical sys
tem [9]. It was not until June 7 that cases with positive RAT re
sults were required to undergo RT-qPCR again [12]. These 
policy changes were reflected in the differences in the percent
ages of RT-qPCR-confirmed cases and the percentages of RT- 
qPCR-positive cases with Ct values (Supplementary Table 2). 
Ct values were collected from RT-qPCR-confirmed cases ad
mitted or quarantined in public hospital in Hong Kong [4, 

Figure 2. Distribution of incidence-based Rt under various intervals of Ct (panel A) mean or (panel B) skewness among Omicron waves. Plots indicate the median (line), IQR 
(box), 95% CI (error bars), and outliers (dots). Ct, cycle threshold; Rt, effective reproductive number.
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12]. During the Omicron waves, the surge in cases over
whelmed testing capacity and hospital resources, leading to a 
significant change in the availability of Ct values among con
firmed cases. During this period, the incidence-based Rt was es
timated by RT-qPCR–confirmed cases. Therefore, wave 5 was 
not recommended as a training set, which is why lower trans
missibility was observed when the interval between symptom 
onset and sampling increased.

The accuracy of Ct-based Rt estimates for wave 6 was not op
timal, irrespective of whether the model was trained with the 
data from the same wave or other waves. A possible reason could 
be the low and relatively consistent community transmission, as 
evidenced by the incidence-based Rt stably fluctuating around 
1 and its Gini coefficient of 0.140 (95% CI, .125–.156; 
Supplementary Table 6). Simultaneously, fewer samples avail
able to obtain Ct values led to increased uncertainties surround
ing the Rt estimates [4]. In an effort to mitigate the effects of the 
limited sample size, we opted to fit the model using rolling Ct 
values instead of daily values on days with fewer than 30 or 60 
records. Although the AUC and MAPE improved for wave 4 
when trained on data from wave 3, suboptimal performance 
may arise in wave 6 because the moving average of Ct values 
could disrupt the alignment between the temporal distribution 
of Ct values and Rt (Supplementary Table 7). The results also in
dicated that the impact of the sample size on the Ct-based 
framework can be mitigated as long as the sample is representa
tive [4]. Yet, increased AUCs for testing sets in waves 4 and 6 
were observed when we excluded days with fewer than 30 or 
60 records (Supplementary Table 8). Furthermore, the training 
period included for wave 6 coincided with the presence of mul
tiple Omicron variants, including BA.2 and BA.4/BA.5. These 
variants were indicated to exhibit distinct viral kinetics and in
fectiousness [31, 32]; however, limited genotyping data pose 
challenges in evaluating the impact of the transition period 
when competing Omicron variants coexisted. Future study on 

the model incorporating strain-specific parameters, such as 
peak viral load and duration of RT-qPCR positivity, could min
imize fluctuations related to the time since symptom onset. This 
approach would minimize the impact of the viral kinetics of cir
culating strains, providing a clearer reflection of the relationship 
between viral loads and epidemic transmission, thereby im
proving the numerical accuracy of the Ct-based framework.

Our work has several limitations. First, we were unable to fur
ther examine the effect of vaccines and variants due to the limited 
individual data. Second, the reduction in case ascertainment as 
nonpharmaceutical interventions were relaxed [9] and the poten
tial bias toward reporting severe cases in the later epidemic waves 
may have affected the accuracy of Rt estimation based on case 
counts. Further research is needed to address this issue and refine 
the model accordingly. Additionally, it is worth noting that our 
model, requiring less computation efforts and crude metric 
AUC, enables robust binomial estimation of Rt values >1 or 
<1. Yet it may not afford absolute quantitative estimates, as dem
onstrated in the nowcast for wave 5 (Table 2, Supplementary 
Table 4, Supplementary Figure 1b).

Our study provides valuable insights into the potential of 
population-level Ct distribution as a predictive tool for timely 
assessment of transmission dynamics during waves character
ized by variants dominating and population immunity shifting. 
These findings suggest the potential generalizability of this sim
plified framework across various settings and situations. 
However, it is important to exercise caution when applying 
our model to situations with limited Ct records, transitioning 
epidemic phases, or fluctuating sampling delay, as the model 
may perform suboptimally in these scenarios. Further research 
is required to investigate the reasons for the suboptimal scenar
ios and to assess the impact of different surveillance practices 
and viral characteristics on the association between population 
viral shedding and transmission, which would better inform 
the applicability of the Ct-based estimation framework.

Table 2. Model Performance Based on Different Training Periods to Estimate Ct-Based Rt in the Other 4 Waves

Training Period

Wave 3a (19 Jul–18 Aug 
2020)

Wave 4 (24 Nov–24 Dec 
2020)

Wave 5 (21 Feb–23 Mar 
2022)

Wave 6 (23 Aug–22 Sep 
2022)

Wave 7 (19 Dec 2022–18 
Jan 2023)

AUC MAPE AUC MAPE AUC MAPE AUC MAPE AUC MAPE

Wave 3 0.94 (.86–1.00) 0.25 0.92 (.84–1.00) 0.28 0.80 (.70–.90) 3.45 0.91 (.83–1.00) 0.25 0.92 (.85–1.00) 0.27

Wave 4 0.68 (.60–.75) 0.29 0.69 (.61–.76) 0.30 0.67 (.59–.75) 16.40 0.70 (.62–.77) 0.32 0.71 (.64–.79) 0.37

Wave 5 0.98 (.96–1.00) 0.52 0.98 (.96–1.00) 0.47 0.96 (.92–1.00) 0.67 0.99 (.97–1.00) 0.56 0.98 (.96–1.00) 0.58

Wave 6 0.62 (.53–.70) 0.24 0.62 (.53–.70) 0.22 0.53 (.49–.57) 0.56 0.66 (.58–.74) 0.23 0.66 (.57–.75) 0.23

Wave 7 0.80 (.73–.88) 0.15 0.81 (.73–.88) 0.16 0.49 (.46–.53) 0.54 0.53 (.50–.56) 0.18 0.67 (.59–.75) 0.15

Overallb 0.78 (.74–.82) 0.29 0.83 (.79–.86) 0.27 0.53 (.49–.57) 6.00 0.69 (.65–.73) 0.33 0.80 (.76–.84) 0.37

Incidence-based Rt was natural log transformed.

Abbreviations: AUC, area under the receiver operating characteristic curve; Ct, cycle threshold; MAPE, mean absolute percentage error; Rt, effective reproductive number.
aMain model used to estimate Ct-based Rt.
bOverall: combined 4 test sets (excluded the wave where 31-day peak period was located) into 1 to calculate corresponding AUC and MAPE.
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Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online (http://jid.oxfordjournals.org/). 
Supplementary materials consist of data provided by the author 
that are published to benefit the reader. The posted materials 
are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages 
regarding errors should be addressed to the author.

Notes

Acknowledgments. We thank the Department of Health and 
Hospital Authority of the Food and Health Bureau of the 
Government of Hong Kong for providing the data for the anal
ysis. We also thank Justin K. Cheung and Chloe S. Chui for 
their help in managing and collecting the data.

Author contributions. All authors meet the ICMJE criteria 
for authorship. B. Y. and B. J. C. conceived the study. Y. M., 
Y. L., W. X., E. H. Y. L., F. H., J. Y. W., P. W., and T. K. T. pre
pared the data. B. Y., Y. M., and Y. L. developed the 
model. Y. M. conducted the data analyses. Y. M., B. Y., 
T. K. T., and B. J. C. interpreted the results. Y. M. wrote the first 
draft of the article. All authors provided critical review and re
vision of the text and approved the final version.

Financial support. This work was supported by the Health 
and Medical Research Fund, Food and Health Bureau, 
Government of the Hong Kong Special Administrative 
Region (grant 22210552 to B. Y.); the Theme-Based Research 
Scheme (project T11-705/21-N to B. J. C.) and the 
General Research Fund  (project 17100822 to T. K. T.) of the 
Research Grants Council of the Hong Kong SAR Government.

Potential conflicts of interest. B. J. C. consults for 
AstraZeneca, Fosun Pharma, GSK, Haleon, Moderna, Roche, 
Sanofi Pasteur, and Pfizer. All other authors report no potential 
conflicts.

All authors have submitted the ICMJE Form for Disclosure 
of Potential Conflicts of Interest. Conflicts that the editors con
sider relevant to the content of the manuscript have been 
disclosed.

References

1. Tsang TK, Wu P, Lau EHY, Cowling BJ. Accounting for 
imported cases in estimating the time-varying reproduc
tive number of coronavirus disease 2019 in Hong Kong. J 
Infect Dis 2021; 224:783–7.

2. Ho F, Parag KV, Adam DC, et al. Accounting for the po
tential of overdispersion in estimation of the time-varying 
reproduction number. Epidemiology 2023; 34:201–5.

3. Hay JA, Kennedy-Shaffer Lee, Kanjilal S, et al. Estimating 
epidemiologic dynamics from cross-sectional viral load 
distributions. Science 2021; 373:eabh0635.

4. Lin Y, Yang B, Cobey S, et al. Incorporating temporal distribu
tion of population-level viral load enables real-time estimation 
of COVID-19 transmission. Nat Commun 2022; 13:1155.

5. Jones TC, Biele G, Mühlemann B, et al. Estimating infec
tiousness throughout SARS-CoV-2 infection course. 
Science 2021; 373:eabi5273.

6. Sala E, Shah IS, Manissero D, et al. Systematic review on the 
correlation between SARS-CoV-2 real-time PCR cycle 
threshold values and epidemiological trends. Infect Dis 
Ther 2023; 12:749–75.

7. Lin Y, Wu P, Tsang TK, et al. Viral kinetics of SARS-CoV-2 
following onset of COVID-19 in symptomatic patients in
fected with the ancestral strain and omicron BA.2 in Hong 
Kong: a retrospective observational study. Lancet Microbe 
2023; 4:e722–31.

8. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new frame
work and software to estimate time-varying reproduction 
numbers during epidemics. Am J Epidemiol 2013; 178: 
1505–12.

9. Yang B, Lin Y, Xiong W, et al. Comparison of control and 
transmission of COVID-19 across epidemic waves in Hong 
Kong: an observational study. Lancet Reg Health West Pac 
2024; 43:100969.

10. Tsui ELH, Lui CSM, Woo PPS, et al. Development of a 
data-driven COVID-19 prognostication tool to inform tri
age and step-down care for hospitalised patients in Hong 
Kong: a population-based cohort study. BMC Med 
Inform Decis Mak 2020; 20:323.

11. Wong CKH, Lau KTK, Au ICH, et al. Viral burden re
bound in hospitalised patients with COVID-19 receiving 
oral antivirals in Hong Kong: a population-wide retrospec
tive cohort study. Lancet Infect Dis 2023; 23:683–95.

12. Wong JY, Cheung JK, Lin Y, et al. Intrinsic and effective 
severity of COVID-19 cases infected with the ancestral 
strain and Omicron BA.2 variant in Hong Kong. J Infect 
Dis 2023; 228:1231–9.

13. Becker NG, Watson LF, Carlin JB. A method of non- 
parametric back-projection and its application to AIDS 
data. Stat Med 1991; 10:1527–42.

14. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral 
shedding and transmissibility of COVID-19. Nat Med 
2020; 26:672–5.

15. Thompson RN, Stockwin JE, van Gaalen RD, et al. 
Improved inference of time-varying reproduction num
bers during infectious disease outbreaks. Epidemics 2019; 
29:100356.

16. Salje H, Cummings DAT, Rodriguez-Barraquer I, et al. 
Reconstruction of antibody dynamics and infection histo
ries to evaluate dengue risk. Nature 2018; 557:719–23.

17. Government of the Hong Kong Special Administrative 
Region. COVID-19 and flu express: local situation of 
COVID-19 activity (as of October 21, 2022). 2022. 

690 • JID 2025:231 (15 March) • Meng et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/231/3/684/7909262 by U

niversity of H
ong Kong user on 20 O

ctober 2025

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiae592#supplementary-data
http://jid.oxfordjournals.org/
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiae592#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiae592#supplementary-data


Available at: https://www.chp.gov.hk/files/pdf/local_situa 
tion_covid19_en_20221021.pdf. Accessed 27 March 2023.

18. Janssens A, Martens FK. Reflection on modern methods: 
revisiting the area under the ROC curve. Int J Epidemiol 
2020; 49:1397–403.

19. Dong J, Feng T, Thapa-Chhetry B, et al. Machine learning 
model for early prediction of acute kidney injury (AKI) in 
pediatric critical care. Crit Care 2021; 25:288.

20. Cowling BJ, Ali ST, Ng TWY, et al. Impact assessment of 
non-pharmaceutical interventions against coronavirus dis
ease 2019 and influenza in Hong Kong: an observational 
study. Lancet Public Health 2020; 5:e279–88.

21. Mandrekar JN. Receiver operating characteristic curve in 
diagnostic test assessment. J Thorac Oncol 2010; 5:1315–6.

22. School of Public Health, The University of Hong Kong. 
Real-time dashboard. 2023. Available at: https://covid19. 
sph.hku.hk. Accessed 27 March 2023.

23. Government of the Hong Kong Special Administrative 
Region. Latest situation of COVID-19 (as of August 31, 
2022). 2022. Available at: https://www.chp.gov.hk/files/ 
pdf/local_situation_covid19_en.pdf. Accessed 28 July 2023.

24. Government of the Hong Kong Special Administrative 
Region. COVID-19 and flu express: local situation of 
COVID-19 activity (as of February 8, 2023). 2023. 
Available at: https://www.chp.gov.hk/en/resources/29/ 
100148.html. Accessed 28 July 2023.

25. McMenamin ME, Nealon J, Lin Y, et al. Vaccine effec
tiveness of one, two, and three doses of BNT162b2 
and CoronaVac against COVID-19 in Hong Kong: a 

population-based observational study. Lancet Infect Dis 
2022; 22:1435–43.

26. Government of the Hong Kong Special Administrative 
Region. Hong Kong vaccination dashboard. 2022. 
Available at: https://www.covidvaccine.gov.hk/en/. Accessed 
2 January 2022.

27. Tso CF, Garikipati A, Green-Saxena A, Mao Q, Das R. 
Correlation of population SARS-CoV-2 cycle threshold 
values to local disease dynamics: exploratory observational 
study. JMIR Public Health Surveill 2021; 7:e28265.

28. Stevens R, Pratama R, Naing Z, Condylios A. Analysis of 
SARS-CoV-2 real-time PCR test CT values across a popu
lation may afford useful information to assist public health 
efforts and add refinement to epidemiological models. 
Pathology 2022; 54:800–2.

29. Mishra B, Ranjan J, Purushotham P, et al. High proportion 
of low cycle threshold value as an early indicator of 
COVID-19 surge. J Med Virol 2022; 94:240–5.

30. Walker AS, Pritchard E, House T, et al. Ct threshold values, 
a proxy for viral load in community SARS-CoV-2 cases, 
demonstrate wide variation across populations and over 
time. Elife 2021; 10:e64683.

31. Wang Q, Guo Y, Iketani S, et al. Antibody evasion by 
SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4 and 
BA.5. Nature 2022; 608:603–8.

32. Hay JA, Kennedy-Shaffer L, Mina MJ. Viral loads observed 
under competing strain dynamics. medRxiv. Preprint post
ed online 30 July 2021. https://doi.org/10.1101/2021.07.27. 
21261224.

Viral Loads and SARS-CoV-2 Transmission • JID 2025:231 (15 March) • 691

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/231/3/684/7909262 by U

niversity of H
ong Kong user on 20 O

ctober 2025

https://www.chp.gov.hk/files/pdf/local_situation_covid19_en_20221021.pdf
https://www.chp.gov.hk/files/pdf/local_situation_covid19_en_20221021.pdf
https://covid19.sph.hku.hk
https://covid19.sph.hku.hk
https://www.chp.gov.hk/files/pdf/local_situation_covid19_en.pdf
https://www.chp.gov.hk/files/pdf/local_situation_covid19_en.pdf
https://www.chp.gov.hk/en/resources/29/100148.html
https://www.chp.gov.hk/en/resources/29/100148.html
https://www.covidvaccine.gov.hk/en/
https://doi.org/10.1101/2021.07.27.21261224
https://doi.org/10.1101/2021.07.27.21261224

	Effective Real-time Transmission Estimations Incorporating Population Viral Load Distributions Amid SARS-CoV-2 Variants and Preexisting Immunity
	METHODS
	Data Source
	Statistical Analysis
	Rt Estimation Based on Case Counts: Incidence-Based Rt
	Incorporating Ct Distribution Into Rt Estimates: Ct-Based Rt
	Cross-validation Between Epidemic Waves
	Stratified Analysis of 2 Symptom Severity Groups


	RESULTS
	COVID-19 Waves in Hong Kong
	Correlations Between Population-Level Ct Distribution and Incidence-Based Rt
	Estimating Ct-Based Rt for Waves With Changing Dominant Variant and Population Immunity
	Impact of Severity on the Association Between Population-Level Ct Distribution and Incidence-Based Rt

	DISCUSSION
	Supplementary Data
	Notes
	References




