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Abstract

Background: Lung cancer is the leading cause of cancer-related mortality, and while low-dose computed tomography screening may
reduce mortality, emerging prognostic models show superior discriminative efficacy compared to age- and smoking history-based
screening. However, further research is needed to assess their reliability in predicting lung cancer risk in high-risk patients.

Methods: This study evaluated the predictive performance and quality of existing lung cancer prognostic models through a systematic
review and meta-analysis. A comprehensive search was conducted in PubMed, Cochrane, Web of Science, CNKI, and Wanfang for ar-
ticles published between January 1, 2000, and February 13, 2025, identifying population-basedmodels incorporating all available model-
ing data.

Results: Among 72 analyzed studies, models were developed from Asian (28 studies, including 23 Chinese cohorts) and European/
American (48 studies) populations, with only 6 focusing on nonsmokers. Twenty-one models included genetic markers, 15 used clinical
factors, and 40 integrated epidemiological predictors. Although 37 models underwent external validation, only 4 demonstrated minimal
bias and clinical applicability. A meta-analysis of 11 repeatedly validated models revealed calibration and discrimination, though some
lacked calibration data.

Conclusions: Few lung cancer prognostic models exist for nonsmokers. Most models exhibit poor predictive performance in external
validations, with significant bias and limited application scope. Widespread external validation, standardized model development, and
reporting techniques are needed to accurately identify high-risk individuals and ensure applicability across diverse populations.
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1. Introduction
In 2022, approximately 20million new cancer cases were diagnosed
worldwide, with lung cancer accounting for 12.4% of all cases. Ap-
proximately 9.7million cancer deaths have been reportedworldwide,
with lung cancer accounting for 18.7%. Notably, lung cancer has
emerged as the most prevalent form of cancer among male popula-
tions, both in terms of incidence and mortality rates.[1] The mortality
rate due to lung cancer is 54.57 per 100,000 in the Chinese popula-
tion, 75.05 per 100,000 inmales and 33.19 per 100,000 in females.[2]

The 5-year survival rate for stage I patients after surgery is 77% to
92%, whereas it is only 10% to 36% for stages III and IV patients,
indicating that early diagnosis can significantly improve the prognosis
and survival of lung cancer patients. Low-dose computed tomogra-
phy (LDCT) screening significantly reduces lung cancer mortality
rates by 20% to 26% in high-risk individuals according to large lung
cancer screening trials such as the United States–basedNational Lung
Cancer Trial andDutch-Belgian LungCancer Screening Study (Dutch
acronym: NELSON).[3,4] Current LDCT screening trials predomi-
nantly focus on age and smoking history as primary criteria for
high-risk population selection. However, evidence suggests that these
parameters demonstrate lower discriminatory power than compre-
hensive lung cancer risk prediction models. This limitation persists be-
cause established risk factors extend beyond these variables, including
male sex, White race, emphysema, occupational asbestos exposure,
chronic obstructive pulmonary disease diagnosis, and family history
of lung cancer.[5] Risk prognostic models, which can estimate the
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personalized probability of developing lung cancer, have the potential
to assist physicians in efficient and cost-effective screening of high-risk
individuals with lung cancer. However, the substantial diversity in
predictor types, development and validation of population character-
istics, modeling techniques, and other inherent model traits may
greatly influence their discriminative capacity and practical utility.
In this study, we appraised existing lung cancer prognostic models
for their study design, risk of bias, and predictive performance through
a systematic literature review and meta-analysis, aiming to provide in-
sights into the strengths and weaknesses of current prognostic models,
provide a reliable basis for future clinical lung cancer screening, alleviate
the burden on clinicians, and facilitate lung cancer–related care.
2. Methods
2.1. Literature review

Five electronic databases (PubMed, Cochrane, Web of Science,
CNKI [China National Knowledge Infrastructure], and Wan Fang
data) were searched for relevant reviews and articles published be-
tween January 1, 2000, and February 13, 2025, using the following
terms in the title and abstract: “lung cancer,” “pulmonary neo-
plasms,” “lung neoplasms,” and “pulmonary cancer,” combined
with the terms “screen,” “model,” “prediction,” and “prognostic”
according to the Preferred Reporting Items for Systematic Reviews
and Meta-analyses guidelines. The specific retrieval formula for each
database is given in Supplementary Appendix, Table 1, http://links.
lww.com/OTM/A16, literature retrieval type.We prioritized a review
search and read and collated all the prognosticmodels for lung cancer
risk included in the reviews and found that the latest lung cancer
prognostic model studies quoted in the reviews were published on
February 1, 2020.[5] The second step of the original literature search
was as follows. Lung cancer prognostic model articles published be-
tween February 1, 2020, and February 13, 2025, were searched using
the same terms in 5 databases. All articles on lung cancer prognostic
models were quoted in these relevant reviews, and additional relevant
articles were included in our systematic review.

Two reviewers (XP and YC) independently conducted literature
review, data collection, and data extraction. In cases of disagreement,
a consensus was reached through the input of a third reviewer (BF).
Subsequently, one reviewer (XP) synthesized the principal findings
of the study, and another reviewer (YC) conducted critical scrutiny
and revisions. The inclusion criteria for the systematic review and risk
of bias assessment were studies that developed and validated a lung
cancer prognostic model. Duplicate studies, studies focusing on other
human cancers or nonhuman lung cancers, and models not validated
in prospective cohorts were excluded. Furthermore, externally vali-
dated models were included in the meta-analysis.

Paper screening followed the following exclusion criteria: (1) du-
plicate papers, (2) incorrect types of papers (such as case reports),
(3) nonhuman subjects (such as animal or cell studies), (4) incomplete
papers (with serious missing or unclear data), (5) no lung cancer risk
prediction model reported, and (6) the model does not have differen-
tiation or calibration information for internal or external verification.

2.2. Data extraction and analysis

Data were independently extracted by 2 authors (XP and YC). Sys-
tematic data were collected for eachmodel. The extracted key infor-
mation includedmodel name, publication date, country, target pop-
ulation, model construction and validation methods, and model
performance metrics. The extracted data were verified by a third re-
searcher (BF). Any discrepancies were discussed individually to
reach a consensus. The articles were screened using the Prediction
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Model Risk of Bias Assessment Tool (PROBAST) to evaluate their
risk of bias and applicability.[6] In addition, a meta-analysis was
conducted to evaluate the discrimination and calibration of the
models in diverse external validation cohorts.
2.3. Model quality assessment

The PROBAST was used to assess the risk of bias and applicability
of the included models. The tool has 4 domains: participants,
predictors, outcomes, and analysis—with 20 signaling questions.
Every question is classified as “low,” “high,” or “unclear,” with
the first 3 domains alone evaluating how applicable it is. Two re-
viewers (XP and YC) independently evaluated each study for risk
of bias and applicability, and we evaluated only the model develop-
ment outcomes based on the study content. Owing to the lack of
partial information in the model, the evaluators made a subjective
judgment; when the results disagreed, a third evaluator participated
in the evaluation of the final results.

In a given field, the assessment results of specific literature are
typically “high,” particularly when missing data processing, data
complexity, and other difficulties are present. This leads to an over-
all evaluation result of high risk. We made the following request in
response to this situation: we contacted the authors and tried to ob-
tain information first. Even if certain models developed earlier lack
sufficient information and still present 1 or 2 high-risk issues, we still
consider incorporating them into the study when additional critical
information becomes available.
2.4. Meta-analysis investigating model performance

We identified external validation studies for some of the models by
reviewing the cited articles of the included studies and conducted a
meta-analysis to evaluate the results of applying each developed
model to several external validation datasets. Here, n represents
the total sample size of the external validation study; “all.events” re-
fers to the actual number of lung cancer occurrences during the en-
tire follow-up period of the cohort; “n.events” refers to the actual
number of lung cancer occurrences during the follow-up period;
“e.events” refers to the number of lung cancer occurrences predicted
by the model during the follow-up period; area under the curve
(AUC) is the point estimate of themodel’s discrimination in external
validation; and AUC.95CIl and AUC.95CIu represent the lower
and upper bounds of the 95% confidence interval (95% CI) for
the model’s discrimination in external validation, respectively.
When data were missing, the original study authors were contacted
via email to obtain complete information. After 1 to 2 rounds of unsuc-
cessful contact, we selected studies with available data for the analysis.
The data were analyzed, and a forest plot demonstrating discrimination
and calibration abilities was generated. The statistical software used for
analysis was R (version 4.3.3) with the “metamisc” and “metafor”
packages.Heterogeneitywas assessedbetween studies using the I2 statis-
tic. Heterogeneity was considered lowwhen 0% < I2 ≤ 50%, moderate
when 50% < I2 < 75%, and high when I2 ≥ 75%. In this study, hetero-
geneity was primarily addressed through the selection of effect models,
subgroup analysis, and sensitivity analysis. Subgroup analyses stratified
by geographical region and smoking status were performed when an
adequate number of studies were available. Sensitivity analysis was
implemented through iterative removal of individual studies to inves-
tigate potential sources of heterogeneity and evaluate the robustness
of the pooled results. This methodological approach ensured compre-
hensive exploration of heterogeneity while maintaining analytical
rigor. Before data extraction and analysis, the study was registered
on PROSPERO (ID: CRD420251010749).
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3. Results
3.1. Search and study characteristics

We identified 483 reviews and 6241 original articles after removing
duplicates for title and abstract screening; 7 reviews and 81 articles
underwent full-text screening for eligibility. We identified 4 reviews
and 26 original articles that fulfilled the predefined inclusion
criteria. After 2 authors compiled and read the full texts, 46 model
articles were found in the 4 reviews. When combined with 26 orig-
inal articles, this resulted in a total of 72 articles containing 76 lung
cancer prognosticmodels included in this study (Supplementary Ap-
pendix, Figure 1, http://links.lww.com/OTM/A16).

Each model exhibited notable distinctions from the other models
in terms of study design, objectives, sample size, and various other
parameters. Among the 76 lung cancer risk prognostic models iden-
tified, 28 were based on data sourced from Asian populations, 23
were predicted from datasets derived from Chinese demographic
data, and the remaining 48 were constructed based on European
and American populations. Among them, 7 models, the EAGLE
(Environment andGenetics in Lung cancer Etiology),[7] basic predictive
model,[8] Cancer Screening Program in Urban China nonsmoker
(CanSPUC-nonsmoker),[9] CanSPUC-nonsmoker women,[10] meta-
bolic indicator model,[8] Taiwanese NSF Lung Cancer RiskModels
using genetic information and simplified questionnaire (TNSF-
SQ),[11] and Guo,[12] were constructed for nonsmoking populations
only. Fortymodels exclusively incorporated epidemiological predic-
tors, 15 supplemented them with clinical test variables, and 21 fur-
ther developed their predictive capacity by incorporating genetic
markers. In addition, 37 models (49%) were externally validated.
The study characteristics are described in the Supplementary Ap-
pendix, Tables 2, 3, and 4, http://links.lww.com/OTM/A16.

3.2. Risk of bias and applicability assessment of the
included studies
3.2.1. Models encompassing only epidemiological
predictors
Among these 40 models, Bach et al.,[13] Lung Cancer Risk Assessment
Tool (LCRAT),[14] QResearch Lung (QLung),[15] and Optimized early
Warning model for Lung cancer risk (OWL)[16] had clear statements
for 20 questions in 4 domains, and the overall judgment for bias risk
was rated as low. Thirteen of these models were rated as high risk in
the first question of domain 1 because they were modeled using retro-
spective data. Four models that did not report the follow-up years of
the studywere rated as unclear in question 6 of domain3 andhadmiss-
ing information reported in domain 4; therefore, they were ultimately
rated as high risk. In domain 4, the remaining 19 models had 1 to 2
problems, such as improper treatment of continuous variables, selec-
tion of predictors based on single-factor analysis, and incomplete
model performance evaluation, and we rated them as high risk (Sup-
plementary Appendix, Table 5, http://links.lww.com/OTM/A16).

3.2.2.Models encompassing epidemiological predictors and
clinical test variables
Among these 15 models, the development groups of The Health Im-
provement Network (THIN),[17] Liao,[18] Kaeum,[19] Li (LDCT
model),[20] and machine learning 2 (ML2)[21] models were derived
from retrospective data, and problems such as ignoring competition
risks and unknown complex data processing occurred in the modeling
process; therefore, theywere rated as high risk in domains 1 and 4. The
Beane[22]modelwas rated as unclear in question 6 of domain 3 because
of unreported follow-up years and as high risk in question 1 of domain
4 because of its small sample size (only 76 participants). In addition, it
has problems similar to those of other models, such as not explicitly
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mentioning the processing of missing data and ignoring competition
risk. The final evaluation results of all 15 models revealed high risk
(Supplementary Appendix, Table 6, http://links.lww.com/OTM/A16).

3.2.3. The model encompasses epidemiological predictors,
clinical test variables, and genetic markers
Among the 21 models, the Wang[23] and deep Q network[24] models
were rated as high risk in domain 1 because of the use of retrospective
data. The DNA Damage Binding Protein 2 (DDB2) gene model in
the Chinese population,[25] Beane (Biomarker + Clinical),[22] Chinese
multigenetic,[26] and Genome-Wide Association Study (GWAS) of the
Chinese population models[27] were rated as unclear in domain 3
because of unreported follow-up years. Moreover, except for the
deep Q network model, all other models have 1-2 problems in do-
main 4, the most common being that the method of handling miss-
ing data was not explicitly mentioned and that the complicated data
were not explained. Therefore, the final evaluation results of these
21models indicated a higher risk of bias (Supplementary Appendix,
Table 7, http://links.lww.com/OTM/A16).

3.3. Meta-analysis of the lung cancer prognostic models

To compare the discrimination and calibration of various prognos-
tic models, we collected external validation studies for all existing
models and extracted data related to discrimination and calibration
(Supplementary Appendix, Table 8, http://links.lww.com/OTM/
A16). The AUCs of the models in external validation were generally
suboptimal (Supplementary Appendix, Figure 2, http://links.lww.
com/OTM/A16). For the 1-year risk models, the AUC ranged from
0.68 (95% CI, 0.63–0.73; Spitz et al.[28]) to 0.73 (95% CI,
0.45–0.90; Hoggart et al.[29]); for the 5-year risk models, the AUCs
were 0.71 (95% CI, 0.69–0.73; Liverpool Lung Project version 3
[LLPv3]), 0.72 (95% CI, 0.69–0.75; Liverpool Lung Project
[LLP]), and 0.75 (95% CI, 0.73–0.76; LCRAT); for the 6-year risk
models, the AUC ranged from 0.71 (95% CI, 0.69–0.73; Pitts-
burgh) to 0.74 (95%CI, 0.72–0.75, PLCOm2012,Nord-Trøndelag
Health Study [HUNT]); and for the 8/8.7/10-year risk models, the
AUCs were 0.75 (95% CI, 0.73–0.76; OWL), 0.75 (95% CI,
0.60–0.85, Liverpool Lung Project Risk Prediction Model for Lung
Cancer Incidence [LLPi]), and 0.73 (95% CI, 0.72–0.75, Bach).
Among these, the LCRAT, OWL, and LLPi models showed better
discrimination than the others. Inmost development or external val-
idation studies, calibration-related information was scarce (e.g., the
actual incidence of lung cancer vs. model-predicted incidence);
therefore, calibration data were available for only 6 models. As
shown in Supplementary Appendix, Figure 3, http://links.lww.
com/OTM/A16, the calibration of the Bach, Prostate, Lung, Colo-
rectal and Ovarian Cancer Screening Trial 2012 model
(PLCOm2012), LLPv3, OWL, and HUNT models was 0.92 (95%
CI, 0.82–1.02), 0.93 (95% CI, 0.84–1.03), 0.98 (95% CI,
0.82–1.17), 1.05 (95% CI, 0.95–1.15), and 1.16 (95% CI,
1.04–1.29), respectively, indicating that these models had relatively
accurate predictive capabilities. However, the LCRAT model
seemed to overestimate the 5-year lung cancer risk for individuals,
with a total O:E ratio of 0.65 (95% CI, 0.58–0.72).

3.4. Heterogeneity analysis results

We performed an overall heterogeneity analysis (Supplementary
Appendix, Table 9, http://links.lww.com/OTM/A16) of 11 models
in the meta-analysis; the Hoggart et al.[29] model was not analyzed
because no subgroup external validation results were reported.
The analysis of the remaining 10 models (PLCOm2012,[30] Bach
et al.,[13] HUNT,[31] LCRAT,[14] LLP,[32] LLPi,[33] LLPv 3,[34]



Pan et al. � Volume 11 � Issue 3 � 2025 Oncology and Translational Medicine
OWL,[16] Pittsburgh,[35] and Spitz et al.[28]) showed high interstudy
heterogeneity, suggesting that the difference inAUC between studies
mainly resulted from real effect differences rather than sampling er-
rors. To explore the source of heterogeneity, we performed subgroup
heterogeneity analysis in different regions and smoking status sub-
groups based on the available outcomes from the literature (Supple-
mentary Appendix, Table 10, http://links.lww.com/OTM/A16). The
results indicated that both variables were sources of heterogeneity.
The results showed that both variables were sources of heterogeneity.
There was no significant difference in the results of the metaregression,
which we believe was caused by data imbalance. In addition, the het-
erogeneity results did not change significantly after sensitivity analysis,
indicating that there may be other sources of heterogeneity that were
not explained but were limited by the original study data (Supplemen-
tary Appendix, Tables 11 and 12, http://links.lww.com/OTM/A16).

4. Discussion
4.1. Main findings

This study is the first to systematically review and combine original
literature to identify 76 lung cancer risk prognostic models. We ap-
plied the PROBAST tool for a comprehensive evaluation of the
biases and characteristics of these models, including the population
used for model development, modeling methods, types of predictive
factors, and model performance. Our findings showed that the ear-
liest models were developed in 2003[13] and originated in regions
such as Asia and Europe. Among these, only 23 models were devel-
oped using data from Chinese populations, and only 7 were specif-
ically designed for nonsmoking populations. The majority of the
models are used to predict lung cancer risk over 1, 3, or 5 years.

Among all the models, age and smoking were the most funda-
mental predictive factors, followed by sex, race, education level,
and family history of lung cancer. In some countries, the incidence
of lung cancer among nonsmoking populations was relatively high,
and considering only the risks associated with smoking may lead to
an increased rate of missed diagnoses and misdiagnoses during
screening. Additionally, 40 models were developed based solely on
epidemiological factors, whereas 15 models incorporated clinical
test variables as predictive factors. With the development of genetic
sequencing technologies, 21 models simultaneously considered the
influence of genetic factors. Notably, the predictive performance
of these models did not vary significantly, with the AUC ranges
for both internal and external validation fluctuating between 0.6
and 0.8. Compared with models that include only epidemiological
factors, adding variables such as diagnostic tests or genetic factors
does not always improve model performance. For example, in the
established PLCOm2012 and Prostate, Lung, Colorectal and Ovar-
ian Cancer Screening Trial (PLCO) Expandmodels,[30,36] lung func-
tion was added as a predictive factor in the latter; however, the AUC
values decreased from 0.857 to 0.77. Additionally, the LLP[32] and
Spitz et al.[28] models showed that the addition of genetic factors
did not significantly enhance model performance. Therefore, al-
though these models incorporate various predictive factors, they
may not fully account for the interactions between these factors,
or some factors may be redundant, leading to model overfitting. Fu-
ture research should involve a deeper analysis of the existing predic-
tive factors. For example, factor interaction effect analysis can be
used to explore potential nonlinear relationships and interactions
to improvemodel performance. Some factorsmay have different im-
portance and predictive power in different populations; therefore,
personalized weighting based on these factors and the selection of
different predictive factors for populations with distinct characteris-
tics could further enhance model accuracy. Meanwhile, to avoid
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overly complex and redundant predictive factors in the model, tech-
niques such as least absolute shrinkage and selection operator
(LASSO) regression and principal component analysis[37] can be consid-
ered to help select more predictive factors and reduce interference from
irrelevant factors, thereby improving the stability of the model. Further
improvementsmay be achieved by adding predictors such as clinical var-
iables or biomarkers. In addition, themost commonly used predictors in
existing models are traditional epidemiological factors. Future studies
should combine the above methods to strengthen the development of
this field for the construction of lung cancer risk prognostic models.

In this study, the constructionmethod of the includedmodelmainly
relied on traditional statistical approaches, such as logistic regression,
with a fewmodels usingmachine learning algorithms, such as eXtreme
Gradient Boosting (XGBoost)[16,38] and random forest (RF).[39] Re-
cent studies (e.g., the Cox proportional hazards [CoxPH] model[40])
have adopted a stacked ensemble approach. Optimizing ensemble
strategies is the key to improving model performance, particularly
through the use of weighted stacking, which assigns different weights
to base learners based on their predictive power, thereby improving
the overall prediction accuracy of the model. Moreover, considering
regional differences in data and sample size limitations, cross-domain
transfer learning[41] can help adjust the model to address sample size
deficiencies and enhance its adaptability to new environments. As
follow-up data from patients continue to accumulate, dynamic predic-
tions have become increasingly important. Online and incremental
learning[42] can help models continuously adapt to new environments
and changing data, thereby improving their accuracy and applicability
and providing sustained and reliable predictive support for clinical
practice, particularly in the context of long-term lung cancer screening,
where the models will have greater practical value.

This is the first study to evaluate all lung cancer risk prediction
models using the PROBAST (Supplementary Appendix, Table 13,
http://links.lww.com/OTM/A16). The overall results indicated that
most previous models carry a high risk of bias; only 4 studies were
rated as low risk, with themain issue being the lack of a detailed expla-
nation regarding data processing in the reportedmodels.When apply-
ing models in clinical practice, it is essential to ensure the integrity and
transparency of data. Therefore, in future research, stricter standard-
ized processes should be adopted when collecting data to ensure the
quality and consistency of all input data. Additionally, the data pro-
cessing methods and results should be clearly outlined in the study to
reduce model bias. Although some bias issues were considered, to bet-
ter control bias in the future, model development should enhance the
use of randomization or stratified sampling to ensure fair inclusion
of various patient groups, thusmaking themodelmorewidely applica-
ble. Furthermore, sensitivity analysis is recommended to further assess
the impact of different biases on model performance.

Model predictive performance is evaluated through discrimina-
tion and calibration. Only models that demonstrate good discrimi-
nation and calibration through extensive external validation across
different populations should be considered to improve clinical use.
This study revealed that most studies evaluated discrimination
based on the area under the receiver operating characteristic curve,
represented by the AUC value. The discriminatory ability of all
models varied, with somemodels reporting predictive performances
ranging from poor to good in internal and external validations
(AUC values between 0.63 and 0.75). However, good predictive
performance does not necessarily imply that the model has good ap-
plicability in actual clinical settings. Among the 76 models, only 11
reported the AUC in different external validation cohorts, and the
models showed varying results. The heterogeneity test analysis
showed that there was high heterogeneity among the studies, and
the subgroup analysis showed significant differences in the AUC
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values between different regions and smoking status, which may be
the source of heterogeneity. However, the metaregression results
were different from those of the subgroup analysis; therefore, the
interstudy heterogeneity of each model was still too large after the
leave-one method, suggesting that other sources of heterogeneity
may exist. Regarding calibration, most models were assessed using
calibration plots or the Hosmer-Lemeshow goodness-of-fit test,
but these methods may not be suitable for all types of models. In fu-
ture studies, methods such as Platt scaling or isotonic regression
could be considered to calibrate the model’s probability outputs,
as these methods generally improve calibration performance in external
validation datasets. We summarized the results of 7 models that re-
ported the predicted and actual incidence numbers in external valida-
tion. The calibration assessments for the LCRAT, Bach, PLCOm2012,
LLPv3, OWL, and HUNT models ranged from 0.65 to 1.16, demon-
strating overall good performance. Calibration assessments for the re-
maining models were not reported (not reported in the external valida-
tion), which was a common issue in previous model development and a
key reason for the high risk of bias in the evaluation process, resulting in
subsequent studies failing to fully evaluate the model and increasing its
difficulty in practical applications. In addition, existing external valida-
tions that focus primarily on specific regions or ethnic populations
may not be applicable to other regions or populations. To explore and
enhance the generalizability of these models, future validation studies
should be conducted inmore regions anddiverse ethnic groups. Further-
more, stratified validation based on factors such as smoking status, age
group, and sex should be performed to assessmodel performance across
different subgroups. Sensitivity analysis should also be conducted to
evaluate the stability of themodel under different parameters or assump-
tions. Therefore, the best prognostic models should follow a rigorously
standardized internal and external validation process with complete in-
formation on discrimination and calibration to reduce the risk of bias.

In clinical practice, lung cancer prognostic modeling can help
doctors and nurses more easily and accurately screen high-risk indi-
viduals for lung cancer, effectively make clinical diagnoses and deci-
sions, and assist in prevention and treatment. Especially in women,
misdiagnosis and underdiagnosis can be avoided when nonsmoking
factors such as secondhand smoke, environmental exposure, and
fumes are considered. However, existing prognostic models for lung
cancer risk vary in terms of modeling population, modeling ap-
proach, and selection of predictors, resulting in differences in model
effects, and no model has been adopted in clinical practice. The predic-
tive performance of somemodels is relatively good, but the required pre-
dictor variables, such as detection test indicators or DNA indicators,
may not be applicable to the general population, thus making them dif-
ficult to obtain in practical applications, which reduces the utilization of
that type ofmodel. Therefore, future research should consider economic
issues, such as the cost of application, while considering the predictive
performance of the model to maximize the use of the developed model.
4.2. Strengths and limitations

Our study pooled multiple lung cancer risk prognostic models and
systematically evaluated them using a biased risk assessment tool
and meta-analysis. Specifically, regarding the predictive factors,
model structures, and validation methods for lung cancer prognos-
tic models, our study not only provided traditional epidemiological
factors but also considered clinical tests and genetic data, offering a
broader perspective. Moreover, compared with other studies,[5,43]

we not only assessed the predictive ability of the models but also
conducted an in-depth analysis of the model quality and bias and
provided a reference for the subsequent improvement of the models
included in the study. Optimization suggestions for existing models
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are provided, particularly in the areas of predictive factor selection,
model construction methods, and validation strategies. However,
one limitation was that, although this study collected 11 datasets of
models from different externally validated studies when conducting
the meta-analysis, sample heterogeneity in different regions (e.g., sex,
age, and genomic differences) may affect the generalizability
and applicability of these models. Future research could further
strengthen stratified analyses across different regions, ethnicities,
or subgroups to ensure the effectiveness of the models across all
populations. Another limitation is that, despite our evaluation of
existing models, as new data emerge and clinical practices continue
to advance, current models may require periodic updates. More-
over, the number of nonsmoking population models included in
the studywas too small to be further evaluated and discussed, which
needs to be improved and perfected in the study of lung cancer risk
prognostic models. In the future, more lung cancer risk prognostic
models in different regions should be established for nonsmoking
populations, especially for female nonsmoking populations.

Our study systematically evaluated 76 lung cancer risk prediction
models, revealing critical limitations in their methods and providing sug-
gestions for improvement. The models showed a high risk of bias. Only
14.5%of themodelsunderwent external validationwith2 to15cohorts,
and calibration assessmentswere neglected.Moreover, the validation co-
horts predominantly focused on single or homogeneous ethnic popula-
tions, substantially limiting their clinical generalizability. Future research
should prioritize refined predictor selection using advanced techniques
(e.g., interaction effect analysis) to mitigate redundant variable inter-
ference. Standardizedmodeling and validation protocols should be es-
tablished by integrating dynamic prediction models to enhance the ef-
fectiveness of long-term screening programs. Adaptive analyses across
diverse geographical regions and heterogeneous populations should be
conducted to improve model robustness and clinical applicability.
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