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Abstract

Background The use of historical external control data in clinical trials has grown in interest and needs when
considering the design of future trials. Hybrid control designs can be more efficient to achieve the same power with
fewer patients and limited resources. The literature is sparse on appropriate statistical methods which can account for
the differences between historical external controls and the control patients in a study. In this article, we illustrate the
analysis framework of a clinical trial if a hybrid control design was used after determining an RCT may not be feasible.

Methods We utilize two previously completed RCTs in nonsquamous NSCLC and a nationwide electronic health
record derived de-identified database as examples and compare 5 analysis methods on each trial, as well as a set of
simulations to determine operating characteristics of such designs.

Results In single trial estimation, the Case Weighted Adaptive Power Prior provided estimated treatment hazard
ratios consistent with the original trial's conclusions with narrower confidence intervals. The simulation studies
showed that the Case Weighted Adaptive Power Prior achieved the highest power (and well controlled type-1 error)
across all 5 methods with consistent study sample size.

Conclusions By following the proposed hybrid control framework, one can design a hybrid control trial transparently
and accounting for differences between control groups while controlling type-1 error and still achieving efficiency
gains from the additional contribution from external controls.
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Introduction

In February 2023, the US Food and Drug Administration
(FDA) released a draft guidance document [1] that covers
recommendations to consider when designing externally
controlled trials. Its release is timely as the demand for
the incorporation of external controls into studies at the
design stage grows. Even though randomized controlled
trials (RCT) have been the gold standard for evaluating
the efficacy and safety of medical products and for regu-
latory decision-making, there are many situations where
a RCT may not be feasible, such as in rare disease or can-
cer therapy development, or excessively large and expen-
sive, such as noninferiority trials, which are increasingly
important in this era of precision medicine. This makes
the smaller, more nimble trial designs incorporating
external controls more appealing.

An attractive recently developed clinical trial design
that utilizes external controls to augment the internal
controls in a randomized trial is the “hybrid control”
design, which includes both patient-level external con-
trol data as well as randomized internal controls [2].
Hybrid control designs can be more efficient, as a study
can achieve the desired power with fewer patients as
well as potentially enrolling more patients to the treated
group. However, the incorporation of external controls
can also lead to biased results and inflation of type I error
due to dissimilarity between the trial population and the
external control population if not used appropriately [3].
Moreover, the methods and tools for these novel designs
are also context dependent. But the promise of this kind
of trial design approach means that oncologists, statisti-
cians, and trialists need to understand the framework for
hybrid designs in time-to-event settings which is particu-
larly important in cancer research.

The key element that must be considered when design-
ing and analyzing hybrid control trials is heterogeneity
between internal and external controls. Multiple Bayesian
methods have been developed to adjust for heterogeneity
when dynamically borrowing information from exter-
nal controls (EC). For example, a power prior method
[4] was proposed for downweighting the contribution
of EC by assigning a pre-fixed weight between 0 and
1 in the model for the historical data. Later, a modified
power prior [5, 6] was developed to estimate the weight
from the data choosing a prior distribution for the weight
parameter. Further, to directly parametrize the commen-
surability of the external and internal control, Hobbs et
al. [7, 8] developed the commensurate prior method to
characterize the similarity between these two sources of
controls via the estimation of the precision (inverse of
the variance) of the parameter of interest, hence adap-
tively determining the borrowing strength. When mul-
tiple real world data (RWD) cohorts are available, the
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meta-analytic predictive (MAP) prior [9] and its variant,
the robust MAP prior [10] can be leveraged.

Recently, Kwiatkowski et al. [11] developed a case
weighted adaptive power prior method for hybrid analy-
ses that assigns individual discounting weights for each
external control where the degree of borrowing is deter-
mined based on similarity between the RCT and external
control patients to account for systematic differences. For
RWD, it is very likely that certain individuals are different
from the RCT population. The case weighted adaptive
power prior method will be able to handle such data and
only downweight individuals found to be different from
the RCT population.

The proposed Bayesian design for hybrid control stud-
ies requires a more complicated modeling set up than
the traditional design for a RCT in order to account for
potential differences between the internal and external
controls. In this paper, we emulate situations where one
may design hybrid control studies instead of the tradi-
tional RCT designs and provide a framework for such
designs and analyses. We include the steps to pre-spec-
ify the parameters of the case weighted power prior, and
evaluate hybrid trial designs assuming fewer patients are
assigned to the control arm. Finally, we discuss the oper-
ating characteristics in comparison with propensity score
matching.

Methods

Our analyses and simulations consider trials with time-
to-event outcomes, specifically overall survival (OS),
with an analysis goal of testing efficacy of treatment
compounds with one-sided null hypotheses for the haz-
ard ratio (HR) of treatment benefit compared to control.
We use OS as the primary endpoint since it is a cleaner,
better-established measure in external data compared
to progression free survival. The case weighted adaptive
power prior method can easily be adapted to other end-
points and alternative statistical hypotheses.

We used two previously published randomized con-
trolled trials in non-squamous non-small cell lung can-
cer (NSCLC) to compare conventional trial designs with
potential hybrid control trial methodologies. We utilize
all patient-level data available from each trial and reana-
lyze each trial with the addition of external control data.
We conduct a comparative analysis of 5 methods: Cox
Proportional Hazards, Pooled Cox Proportional Hazards,
Propensity Score Matching, Fixed-Weight Power Prior,
and Case Weighted Adaptive Power Prior. Thus, we con-
sider three frequentist methods and two Bayesian meth-
ods, respectively. Adjusted treatment hazard ratios and
their corresponding 95% confidence or credible intervals
are given for decision-making.
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Clinical Data

We use two RCTs (Impower 132 and Impowerl50) to
build two hypothetical hybrid control trials (Trial 1 and
Trial 2) to evaluate analysis methods. Both RCTs were
Phase III randomized trials that investigate anti-PD-L1
antibody (atezolizumab) in combination withchemother-
apy (with or without bevacizumab) in stage IV non-squa-
mous NSCLC patients (NCT02657434, NCT02366143)
[12, 13]. Trial 1 was constructed based on Impower132,
which failed to reject the null hypothesis on OS. The
addition of atezolizumab among IMpowerl32 patients
(N=578) produced an OS HR estimate of 0.86 (95% CI:
0.71-1.06). Trial 2 was derived based on Impowerl50
using two of the three arms comparing atezolizumab plus
chemotherapy (ACP or ABCP) to chemotherapy BCP
(N=1202). IMpowerl50 found statistically significant
improvement in OS with the addition of atezolizumab
(ABCP) versus BCP with an OS HR of 0.80 (95% CI:
0.67-0.95). We consider both trials to show consistency
in conclusions of the trials when similar effective sample
size are considered in the analysis.

Unique external control cohorts were constructed
separately from the internal control arms of the Phase
II trials using the nationwide Flatiron Health EHR-
derived de-identified database [see supplementary] by
following the steps provided by Carrigan and colleagues
[14], to match the inclusion criteria of each trial. Appli-
cable covariates of interest were identified, which were
consistent with baseline covariates of interest from the
RCT. Analysis datasets were determined by complete
cases, that is, cases with no missing values within out-
come or baseline covariate data. In general, vast amounts
of data is available from external data EHR sources. As
a result, we cannot control the number of external con-
trol patients available for a given study, especially when
considering the time-period of data collection and all
inclusion/exclusion criteria of the original trial. It is well
known that censoring rates will differ between RCT
and external control data. We assume here that censor-
ing, while at different rates, is independent from OS in
all analyses. It is important to note here that we are not
generating censoring rates at any point in the main analy-
sis, we utilize the true observed data including censoring
time for the purpose of this paper.

Cox Proportional hazards Method

A standard Cox proportional hazards method [15] was
applied to the RCT data from Trial 1 and Trial 2 to repro-
duce results found in the original trial and serve as a
comparison for operating characteristics of each analysis
method. No external control data was included in this
first analysis. Baseline covariates of interest were deter-
mined via scientific knowledge, including consistency
with the original trials as well as availability of external
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control data utilized in further analyses. The baseline
covariates were consistent across all analysis methods in
the estimation of the treatment hazard ratio.

Pooled Cox Proportional hazards Method

The most naive form of incorporating external controls is
to treat the internal (RCT) controls and external controls
as if they are from the same population. In this analysis,
both the internal and external controls were pooled into
one control group and a Cox proportional hazards model
was applied as done previously. The control set increases
in size but will likely increase the bias in the estimated
hazard ratio since we are not accounting for differences
between the control groups.

Propensity score (PS) Method

It is common for hybrid control trials to use propensity
score methods to weight and match external controls
based on their estimated propensity of being included in
the trial. Thus, we considered a Covariate Balancing Pro-
pensity Score (CBPS) to match external control patients
to the total set of RCT patients for both Trial 1 and Trial
2. The PS was estimated using CBPS [16] and matched by
nearest neighbors to identify the external controls most
likely to be included in the trial based on their propensity
scores [17]. When there are fewer external controls than
RCT patients, as in Trial 2, k-nearest neighbors matching
is used with larger k to allow an external control patient
to match to at most k RCT patients. This occurs with
Trial 2, and we use k=2. The weights were not used in the
final parameter estimation and were only used to iden-
tify which external controls most closely matched the
patients in the RCTs. Finally, the baseline covariates used
to estimate the PS were consistent with those used to
estimate the subject-specific case weight in all methods.

Fixed Weight Power Prior Method

A power prior application to a hybrid control trial allows
for the incorporation of external controls by weight-
ing each external control subject by a single value. In
this comparison, we weight each patient by 0.5, as this
is the average weight expected from the subject-specific
method described below. The weights are applied to a
proportional hazards model with piecewise constant
baseline hazards and baseline covariates consistent with
the other analysis methods, which can be written as a
case-weighted Poisson regression model [18]. The case-
weighted Poisson regression model was then used to esti-
mate the treatment hazard ratio.

Case Weighted Adaptive Power Prior Method

The Case Weighted Adaptive Power Prior (CWAPP)
method begins by breaking up the time to event axis into
disjoint intervals, in which we have an equal number of
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events (i.e., deaths) in each interval. Increasing the num-
ber of intervals will give a higher sensitivity to changes in
the hazard rate, but will increase computation time and
complexity. The intervals should be based on the RCT
data and contain an equal number of events, as is stan-
dard with piecewise baseline hazards models [18].

The weight of interest for each patient is a measure of
the compatibility of the time at risk in a given interval
relative to the predictive distribution of the RCT data.
To fully estimate the weights, three models must be fit
separately: (1) a model for the random censoring of the
external data, (2) a model for the events in the external
data, and (3) a model for the events in the RCT. All three
of these models are proportional hazards models with
piecewise constant baseline hazards (using the intervals
determined above), which are fit using a Poisson regres-
sion [19, 20]. The baseline covariates across these mod-
els should be consistent, regardless of data source. The
subject-interval specific weights and the probability of
observing data as or more extreme than the observed
external control data are estimated via Box’s p-value [21].
The weights are transformed to control type-1 error as
discussed in the supplemental material.

The estimated weights are applied to a generalization of
the power prior applied to a proportional hazards model
using the case-weighted Poisson regression model used
to estimate the treatment hazard ratio. A visualization
of the flow of a CWAPP based analysis can be found in
Fig. 1.

Simulation Study

As a further illustration of the CWAPP method, we
present a simulation study which may mimic the set-up
of a trial where hybrid controls are useful for whichthe
internal control set is smaller than the treatment set.
Consider the following general set-up: A trial with 2:1

Treatment Arm
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randomization to treatment and control, with an external
dataset at least as large as the randomized control arm.
In this case, we aim for the external dataset (with aver-
age case-weight approximately 0.5) to add to the effective
sample size of the control data to a 1:1 comparison with
the treatment arm to provide maximum statistical power.

Simulation Study - Sample size considerations

To emulate an accurate comparison with the two trials
considered, we will keep the RCT treatment arm con-
sistent with the original study. Our goal is to examine
the augmentation of the control arm with external con-
trols, and thus reduce the number of internal controls.
We achieve this by reducing the internal control arm by
half. To augment the control arm, we consider utilizing
an external sample equivalent in size to the RCT con-
trol arm in the original trial or the maximum number of
external controls available, whichever is larger. A flow-
chart for sample size considerations can be found in the
Supplemental Materials, Fig. 2.

Considering Trial 1, we will sample 292 RCT treatment
patients, 142 RCT control patients, and 284 external
control patients, for a final sample size of N=718. Each
dataset is analyzed with the same five analysis methods
performed on the full data analysis outlined above. We
consider 3000 simulated samples. A similar structure
is given to the simulation study for Trial 2, with details
outlined in the supplementary material. In this simula-
tion set-up, ties are created in the dataset if a participant
is selected more than once when sampled with replace-
ment. All methods being compared utilize an Efron
approximation to account for any ties in a given sample
data set. Treatment assignments are kept consistent in
the resampling scheme throughout the simulations for
both Trial 1 and Trial 2. A simulation with resampling in
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Fig. 1 Flowchart for trial analysis and design considerations when using a Case Weighted Adaptive Power Prior. The RCT treatment arms are given
standard weight in the analysis, but are also used in calculating the subject specific weight which will contribute to the power prior in the final analysis
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Fig. 2 Histograms of estimated average subject specific weights from Trials 1 (A&B) and 2 (C&D). Figure 2a and ¢ depict the subject specific weights
before transformation, and Fig. 2b and d depict the subject specific weights after transformation, where the tail weights are allowed to stay close to the
extremes, but most weights are pushed towards 0.5. These transformations help control the inflation of the type 1 error

Table 1 Single trial analysis results for trial T and trial 2

A.Trial 1, Ngcr =576

B.Trial 2, Npcr = 686

Analysis Type N Ngc Treat- 95% CI* Cl N Ngc  Treat- 95% CI* Cl
ment Width ment Width
Hazard Hazard
Ratio Ratio
Cox - no external controls 576 0 0.888 (0.738, 1.088) 0.350 686 0 0.762 (0.610,0.954) 0.344
Cox - pooled controls 1445 869 0.928 (0.788, 1.092) 0.304 934 248 0748 (0.598, 0.935) 0.337
Propensity Score Matching 1152 576 0.938 (0.795, 1.108) 0313 930 244 075 (0.599, 0.938) 0.339
Fixed Weight Power Prior 1445 8,691,445 0928 (0.782,1.101) 0319 934 248 0764 (0.621,0.939) 0318
Case Weighted Adaptive Power 1445 869 0.922 (0.778,1.093) 0315 934 248  0.753 (0.614,0.924) 0310

Prior

Single Trial analysis results for Trial 1 and Trial 2, with estimated treatment hazard ratios, Confidence Intervals (Cl), and Confidence Interval width. Note the changing
sample size in the analyses, as each utilizes differing amounts of the available external control data, noted in the column Ng.. The number of RCT patients used

remains consistent for each analysis method within a trial, as noted by Nyt

which the original treatment arm assignment is blinded
is discussed in the Supplemental Material.

Results

Trial 1 - non-statistically significant OS

Trial 1 consists of 576 patients from the RCT and a pos-
sible 869 external control patients for a complete case
analysis. Baseline patient characteristics including age,
ECOG status, race, and smoking status were similar
across both groups. The external control group contained
a higher percentage of females than the RCT, 51% vs. 33%
respectively, as well as a higher rate of carboplatin che-
motherapy, with the external control group containing

89% of the patients on carboplatin vs. 61% in the RCT.
Prespecification simulation studies identified the appro-
priate weight transformations to control the type-1 error
under both compatible external data and external data
with shift confounding (p=3, g=0). Further details on
prespecification of p and g can be found in the Ssupple-
mental Materials. Table 1A summarizes results across
all five methods and the resulting estimate for the treat-
ment hazard ratio for overall survival. Conclusions from
hypothesis tests across all 5 methods are consistent with
the originally published trial data [12]. We see all meth-
ods incorporating external control data produce a hazard
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ratio estimate closer to 1 (the null hypothesis) and have
confidence intervals with smaller width.

CWAPP subject-specific weights were estimated and
have an average of 0.53 after the pre-specified weight
transformation was applied. The total contribution from
the external control data can be determined from the
sum of weights across all confidence intervals and sub-
jects. In the complete-case analysis, the contribution
from the external controls is 457.9 subjects from the data
set of 869 patients.

Trial 1: bootstrap analysis - trial emulation

The following simulation study was designed to emulate
a trial where hybrid control designs would be beneficial,
starting with a trial with 2:1 randomization of treatment:
control. As seen in the complete case analysis, we expect
the contribution of the external controls to be approxi-
mately half the number of subjects included in the analy-
sis. Thus, to augment the control arm, we should include
twice the number of subjects we would like to account
for in the effective sample size. In trial 1, this leads us to
analyze 292 RCT treatment patients, 142 RCT control
patients, and 284 external control patients. Three thou-
sand datasets of size N=718 are constructed by random
sampling from the combined RCT and external data
with replacement using stratified random sampling while
keeping the treatment arm assignment and censoring
rate consistent with what was observed in the original
data set.

Averaging over three thousand samples, the average
treatment hazard ratios, confidence intervals, and boot-
strap-estimated type-1 error estimates are summarized
in Table 2A. All 5 methods considered provide treatment
hazard ratios consistent with findings of the original
RCT with confidence intervals noticeably smaller for the
Bayesian methods, with the CWAPP providing the most
precise estimates, i.e. smaller average confidence inter-
val widths. All methods control the bootstrap-estimated
type-1 error at the nominal level, with CWAPP having a
type-1 error rate of 0.03.

Table 2 Simulation study results (trial 1 &trial 2)
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Trial 2 - statistically significant OS

Trial 2 consists of 686 patients from the RCT and a possi-
ble 248 external control patients for a complete case anal-
ysis. Baseline patient characteristics including age, ECOG
status, and smoking status were similar across both
groups. The external control group contained a higher
percentage of females than the RCT, 46% vs. 37% respec-
tively, as well as a lower percentage of non-white patients
in the external control sample compared to the RCT, 61%
vs. 86% respectively. Table 1B summarizes results across
all five methods and the resulting estimates for the treat-
ment hazard ratio based on overall survival. Conclusions
from hypothesis tests across all 5 methods are consistent
with the originally published trial data [13]. We see that
three methods which incorporate external control data
(pooled Cox, PS Matching, and CWAPP) produce an
estimate further from the null hypothesis and all meth-
ods estimate the confidence intervals with smaller width
than the analysis without external control data.

CWAPP subject-specific weights were estimated and
have an average of 0.52 after transformation. The CWAPP
subject-specific weights can be seen both before and after
transformation in Fig. 2. The total contribution from the
external control data can be determined from the sum of
the weights across all intervals and subjects. In the com-
plete-case analysis, the contribution from external con-
trols is 129.7 from the data set of 248 patients.

Trial 2: bootstrap analysis - trial emulation

We conduct a similar simulation study as before, but
the external control dataset is not large enough for us to
augment the entire external control set as was done for
Trial 1. Instead of oversampling external control patients
to yield a sample size that we would consider ideal, we
sample an external dataset equal in size to the total exter-
nal data available. In trial 2, this leads us to analyze 353
RCT treatment patients, 166 RCT control patients, and
248 external control patients (ideally we would be able to
sample 332). Three thousand datasets of size N=767 are
sampled from the combined RCT and external data with

A.Trial 1 B.Trial 2
Analysis Type Average Treat- Average Cl Bootstrap- Average Treat- Average Cl Boot-

ment Hazard Ratio Width Estimated Type1 ment Hazard Ratio Width strap-Es-

Error timated
Power

Cox - no external controls 0.885 0443 0.025 0.765 0424 0471
Cox - pooled controls 0.907 0454 0.002 0.741 0411 0.695
Propensity Score Matching 0915 0458 0.042 0.708 0.393 0.800
Fixed Weight Power Prior 0.903 0.372 0.019 0.764 0.349 0.803
Case Weighted Adaptive Power Prior ~ 0.894 0.365 0.033 0.749 0.338 0.892

Simulation Study results for Trial 1 and Trial 2, with estimated average treatment hazard ratios, average Confidence Interval (Cl) width, and boostrap-estimated Type
1 error or power. Note Trial 1 estimates the type 1 error with the assumed truth of no treatment effect in the clinical data, whereas Trial 2 estimates power as the

assumed truth is that there is a positive treatment effect in the clinical data
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replacement using stratified random sampling, keeping
the censoring rate consistent with what was observed in
the original data .

Averaging over the the three thousand samples, treat-
ment hazard ratios, confidence intervals, and power
estimates are summarized in Table 2B. All 5 methods
considered provide treatment hazard ratios consistent
with findings of the original RCT with confidence inter-
vals noticeably smaller for the Bayesian methods, with
the CWAPP providing the most precise estimates in
terms of confidence interval widths. This can most clearly
be seen in Fig. 3 where the estimated treatment hazard
ratios and confidence interval widths are plotted for each
run of the simulation studies. The methods utilizing
external controls have more power than the traditional
Cox model (recall that this has half the number of con-
trol patients). Both Bayesian methods have higher power

Trial 1
A.

Treatment Hazard Ratio Estimate by Analysis
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compared to the frequentist methods, with CWAPP hav-
ing the highest power (0.89 vs. 0.80 of the fixed power
prior method).

Discussion
Hybrid design clinical trials are being considered for situ-
ations where standard RCTs are not feasible, especially
with the increased availability and quality of electronic
health records. While acknowledging the utilization of
external controls can lead to statistically biased effect
estimates, when handled with the proper methods, one
can achieve controlled type 1 error inflation and gains in
efficiency and power when appropriate external controls
are available.

We have illustrated the application of the CWAPP
method to a hypothetical hybrid control trial with exter-
nal controls from RWD sources. In the single-study

C| Width for Treatment HR by Analysis

I
2
=
. E3 B3 i
: ] —
’ Anali/sm ;dethod e
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=
G E
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Fig. 3 Summary box plots from simulation studies run for both Trial 1 (A & B) and Trial 2 (C & D). Figure 3a and c depict the estimated treatment hazard
ratios for all five methods. We see consistent for estimates across the methods in both trials. Figure 3b and d depict the confidence interval widths across
all five methods, where we see the Bayesian methods with smallest Cl widths, with CWAPP performing best in both trial simulations
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application, both Trial 1 and Trial 2 provide CWAPP
treatment hazard ratio estimates consistent with the
original trial results without using external controls. We
see a reduction in confidence interval (CI) widths from
the original Cox analysis method, but also see a gain in
precision of the CWAPP method compared to the fixed
weight power prior (Trial 1 CI Widths: 0.315 vs. 0.319,
Trial 2 CI Widths: 0.318 vs. 0.310).

Through the bootstrapped trial emulations, we have
compared the analysis methods on 3000 datasets which
mirror a trial for which external controls may be most
useful. Through these simulations, we see consistent
trial hazard ratio estimates when compared to the stan-
dard Cox model. In Trial 1, the CWAPP method has a
20% decrease in average CI width compared to the naive
pooled control method. Similarly, an the CWAPP method
has an 18% decrease in average CI width compared to
the naive pooled control method in Trial 2. We also see
when the appropriate weight transformations prespeci-
fied, the boostrap estimated type 1 error rate is well con-
trolled at the 0.05 level. With both the fixed power prior
and CWAPP methods we see a gain in power at the given
sample size from the frequentist Cox methods to either
power prior method, with the CWAPP method providing
the best bootstrap estimated power in simulations (89%).
It is important to note the study from which Trial 2 was
derived was designed to reach 87% power to detect an OS
treatment HR of 0.75. With the CWAPP method, a simi-
lar power was achieved while reducing the internal con-
trol arm by one half, utilizing 25% less RCT patients than
the original study.

We believe the CWAPP method provides a unique
application when subject level data is available from
external sources and we no longer have to weight the
external data assuming a homogeneous block of patients
separate from the RCT and instead can differentiate
external control patients we believe to be similar to those
in the RCT. The CWAPP method naturally down-weights
patients substantially different from patients in the RCT
analysis set. Along with the flexibility in weight applied
to external controls, the weight provides an estimated
effective sample size for the study by summing the aver-
age weight per patient. This helps quantify the propor-
tion of the final analysis that is contributed by the prior
assumptions, in this case the external control data. The
case weight provides transparency on how much external
data contributes to the analysis. This framework can be
extended to other clinical studies applications with rea-
sonable external controls.

It is important to note that while the weights contribute
to this analysis, they do not change the estimates we use
for decision making in the trial. In the analysis of each
of these trials, we still report familiar treatment hazard
ratios and can apply standard hypothesis tests. One must
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be careful to look at the estimated weights, which can
provide an estimate for the contribution of the external
patient set to the sample size of the analysis, but they do
not change how we interpret the results from the trial.

While we have considered trials depending on time-to-
event analysis in these examples, as they are most appro-
priate in many oncology trials, the case weighted adaptive
power prior can easily be extended to other therapeutic
areas and other (non-time-to-event) primary outcomes.

Limitations of these analyses and hybrid con-
trol approaches as a whole include the large quanti-
ties of missing covariate data in external datasets,
especially when these data are sourced from real world
data. Because of this, our current analysis uses only
external controls with complete data, and large quantities
of data were excluded from the final analysis. We believe
existing missing data methods [22] which are applied to
the standard power prior can be extended to apply in this
method and this is a topic of future research.

Conclusion

Through two separate trial analyses and emulations, we
have seen that hybrid control studies, and specifically the
Case Weighted Adaptive Power Prior method, can pro-
vide consistent results with previously completed RCTs.
When appropriate statistical methods are applied, the
bias due to heterogeneity between the RCT and exter-
nal control arm can be minimized, and consistent study
conclusions can be achieved. Moreover, statistical power
remains at levels used in the original study sample size
calculations while reducing the RCT sample size by 25%.
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