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Abstract
Background  The use of historical external control data in clinical trials has grown in interest and needs when 
considering the design of future trials. Hybrid control designs can be more efficient to achieve the same power with 
fewer patients and limited resources. The literature is sparse on appropriate statistical methods which can account for 
the differences between historical external controls and the control patients in a study. In this article, we illustrate the 
analysis framework of a clinical trial if a hybrid control design was used after determining an RCT may not be feasible.

Methods  We utilize two previously completed RCTs in nonsquamous NSCLC and a nationwide electronic health 
record derived de-identified database as examples and compare 5 analysis methods on each trial, as well as a set of 
simulations to determine operating characteristics of such designs.

Results  In single trial estimation, the Case Weighted Adaptive Power Prior provided estimated treatment hazard 
ratios consistent with the original trial’s conclusions with narrower confidence intervals. The simulation studies 
showed that the Case Weighted Adaptive Power Prior achieved the highest power (and well controlled type-1 error) 
across all 5 methods with consistent study sample size.

Conclusions  By following the proposed hybrid control framework, one can design a hybrid control trial transparently 
and accounting for differences between control groups while controlling type-1 error and still achieving efficiency 
gains from the additional contribution from external controls.

Keywords  Hybrid clinical trials, Historical controls, Real world data, Clinical trials
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Introduction
In February 2023, the US Food and Drug Administration 
(FDA) released a draft guidance document [1] that covers 
recommendations to consider when designing externally 
controlled trials. Its release is timely as the demand for 
the incorporation of external controls into studies at the 
design stage grows. Even though randomized controlled 
trials (RCT) have been the gold standard for evaluating 
the efficacy and safety of medical products and for regu-
latory decision-making, there are many situations where 
a RCT may not be feasible, such as in rare disease or can-
cer therapy development, or excessively large and expen-
sive, such as noninferiority trials, which are increasingly 
important in this era of precision medicine. This makes 
the smaller, more nimble trial designs incorporating 
external controls more appealing.

An attractive recently developed clinical trial design 
that utilizes external controls to augment the internal 
controls in a randomized trial is the “hybrid control” 
design, which includes both patient-level external con-
trol data as well as randomized internal controls [2]. 
Hybrid control designs can be more efficient, as a study 
can achieve the desired power with fewer patients as 
well as potentially enrolling more patients to the treated 
group. However, the incorporation of external controls 
can also lead to biased results and inflation of type I error 
due to dissimilarity between the trial population and the 
external control population if not used appropriately [3]. 
Moreover, the methods and tools for these novel designs 
are also context dependent. But the promise of this kind 
of trial design approach means that oncologists, statisti-
cians, and trialists need to understand the framework for 
hybrid designs in time-to-event settings which is particu-
larly important in cancer research.

The key element that must be considered when design-
ing and analyzing hybrid control trials is heterogeneity 
between internal and external controls. Multiple Bayesian 
methods have been developed to adjust for heterogeneity 
when dynamically borrowing information from exter-
nal controls (EC). For example, a power prior method 
[4] was proposed for downweighting the contribution 
of EC by assigning a pre-fixed weight between 0 and 
1 in the model for the historical data. Later, a modified 
power prior [5, 6] was developed to estimate the weight 
from the data choosing a prior distribution for the weight 
parameter. Further, to directly parametrize the commen-
surability of the external and internal control, Hobbs et 
al. [7, 8] developed the commensurate prior method to 
characterize the similarity between these two sources of 
controls via the estimation of the precision (inverse of 
the variance) of the parameter of interest, hence adap-
tively determining the borrowing strength. When mul-
tiple real world data (RWD) cohorts are available, the 

meta-analytic predictive (MAP) prior [9] and its variant, 
the robust MAP prior [10] can be leveraged.

Recently, Kwiatkowski et al. [11] developed a case 
weighted adaptive power prior method for hybrid analy-
ses that assigns individual discounting weights for each 
external control where the degree of borrowing is deter-
mined based on similarity between the RCT and external 
control patients to account for systematic differences. For 
RWD, it is very likely that certain individuals are different 
from the RCT population. The case weighted adaptive 
power prior method will be able to handle such data and 
only downweight individuals found to be different from 
the RCT population.

The proposed Bayesian design for hybrid control stud-
ies requires a more complicated modeling set up than 
the traditional design for a RCT in order to account for 
potential differences between the internal and external 
controls. In this paper, we emulate situations where one 
may design hybrid control studies instead of the tradi-
tional RCT designs and provide a framework for such 
designs and analyses. We include the steps to pre-spec-
ify the parameters of the case weighted power prior, and 
evaluate hybrid trial designs assuming fewer patients are 
assigned to the control arm. Finally, we discuss the oper-
ating characteristics in comparison with propensity score 
matching.

Methods
Our analyses and simulations consider trials with time-
to-event outcomes, specifically overall survival (OS), 
with an analysis goal of testing efficacy of treatment 
compounds with one-sided null hypotheses for the haz-
ard ratio (HR) of treatment benefit compared to control. 
We use OS as the primary endpoint since it is a cleaner, 
better-established measure in external data compared 
to progression free survival. The case weighted adaptive 
power prior method can easily be adapted to other end-
points and alternative statistical hypotheses.

We used two previously published randomized con-
trolled trials in non-squamous non-small cell lung can-
cer (NSCLC) to compare conventional trial designs with 
potential hybrid control trial methodologies. We utilize 
all patient-level data available from each trial and reana-
lyze each trial with the addition of external control data. 
We conduct a comparative analysis of 5 methods: Cox 
Proportional Hazards, Pooled Cox Proportional Hazards, 
Propensity Score Matching, Fixed-Weight Power Prior, 
and Case Weighted Adaptive Power Prior. Thus, we con-
sider three frequentist methods and two Bayesian meth-
ods, respectively. Adjusted treatment hazard ratios and 
their corresponding 95% confidence or credible intervals 
are given for decision-making.
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Clinical Data
We use two RCTs (Impower 132 and Impower150) to 
build two hypothetical hybrid control trials (Trial 1 and 
Trial 2) to evaluate analysis methods. Both RCTs were 
Phase III randomized trials that investigate anti-PD-L1 
antibody (atezolizumab) in combination withchemother-
apy (with or without bevacizumab) in stage IV non-squa-
mous NSCLC patients (NCT02657434, NCT02366143) 
[12, 13]. Trial 1 was constructed based on Impower132, 
which failed to reject the null hypothesis on OS. The 
addition of atezolizumab among IMpower132 patients 
(N = 578) produced an OS HR estimate of 0.86 (95% CI: 
0.71–1.06). Trial 2 was derived based on Impower150 
using two of the three arms comparing atezolizumab plus 
chemotherapy (ACP or ABCP) to chemotherapy BCP 
(N = 1202). IMpower150 found statistically significant 
improvement in OS with the addition of atezolizumab 
(ABCP) versus BCP with an OS HR of 0.80 (95% CI: 
0.67–0.95). We consider both trials to show consistency 
in conclusions of the trials when similar effective sample 
size are considered in the analysis.

Unique external control cohorts were constructed 
separately from the internal control arms of the Phase 
III trials using the nationwide Flatiron Health EHR-
derived de-identified database [see supplementary] by 
following the steps provided by Carrigan and colleagues 
[14], to match the inclusion criteria of each trial. Appli-
cable covariates of interest were identified, which were 
consistent with baseline covariates of interest from the 
RCT. Analysis datasets were determined by complete 
cases, that is, cases with no missing values within out-
come or baseline covariate data. In general, vast amounts 
of data is available from external data EHR sources. As 
a result, we cannot control the number of external con-
trol patients available for a given study, especially when 
considering the time-period of data collection and all 
inclusion/exclusion criteria of the original trial. It is well 
known that censoring rates will differ between RCT 
and external control data. We assume here that censor-
ing, while at different rates, is independent from OS in 
all analyses. It is important to note here that we are not 
generating censoring rates at any point in the main analy-
sis, we utilize the true observed data including censoring 
time for the purpose of this paper.

Cox Proportional hazards Method
A standard Cox proportional hazards method [15] was 
applied to the RCT data from Trial 1 and Trial 2 to repro-
duce results found in the original trial and serve as a 
comparison for operating characteristics of each analysis 
method. No external control data was included in this 
first analysis. Baseline covariates of interest were deter-
mined via scientific knowledge, including consistency 
with the original trials as well as availability of external 

control data utilized in further analyses. The baseline 
covariates were consistent across all analysis methods in 
the estimation of the treatment hazard ratio.

Pooled Cox Proportional hazards Method
The most naive form of incorporating external controls is 
to treat the internal (RCT) controls and external controls 
as if they are from the same population. In this analysis, 
both the internal and external controls were pooled into 
one control group and a Cox proportional hazards model 
was applied as done previously. The control set increases 
in size but will likely increase the bias in the estimated 
hazard ratio since we are not accounting for differences 
between the control groups.

Propensity score (PS) Method
It is common for hybrid control trials to use propensity 
score methods to weight and match external controls 
based on their estimated propensity of being included in 
the trial. Thus, we considered a Covariate Balancing Pro-
pensity Score (CBPS) to match external control patients 
to the total set of RCT patients for both Trial 1 and Trial 
2. The PS was estimated using CBPS [16] and matched by 
nearest neighbors to identify the external controls most 
likely to be included in the trial based on their propensity 
scores [17]. When there are fewer external controls than 
RCT patients, as in Trial 2, k-nearest neighbors matching 
is used with larger k to allow an external control patient 
to match to at most k RCT patients. This occurs with 
Trial 2, and we use k = 2. The weights were not used in the 
final parameter estimation and were only used to iden-
tify which external controls most closely matched the 
patients in the RCTs. Finally, the baseline covariates used 
to estimate the PS were consistent with those used to 
estimate the subject-specific case weight in all methods.

Fixed Weight Power Prior Method
A power prior application to a hybrid control trial allows 
for the incorporation of external controls by weight-
ing each external control subject by a single value. In 
this comparison, we weight each patient by 0.5, as this 
is the average weight expected from the subject-specific 
method described below. The weights are applied to a 
proportional hazards model with piecewise constant 
baseline hazards and baseline covariates consistent with 
the other analysis methods, which can be written as a 
case-weighted Poisson regression model [18]. The case-
weighted Poisson regression model was then used to esti-
mate the treatment hazard ratio.

Case Weighted Adaptive Power Prior Method
The Case Weighted Adaptive Power Prior (CWAPP) 
method begins by breaking up the time to event axis into 
disjoint intervals, in which we have an equal number of 
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events (i.e., deaths) in each interval. Increasing the num-
ber of intervals will give a higher sensitivity to changes in 
the hazard rate, but will increase computation time and 
complexity. The intervals should be based on the RCT 
data and contain an equal number of events, as is stan-
dard with piecewise baseline hazards models [18].

The weight of interest for each patient is a measure of 
the compatibility of the time at risk in a given interval 
relative to the predictive distribution of the RCT data. 
To fully estimate the weights, three models must be fit 
separately: (1) a model for the random censoring of the 
external data, (2) a model for the events in the external 
data, and (3) a model for the events in the RCT. All three 
of these models are proportional hazards models with 
piecewise constant baseline hazards (using the intervals 
determined above), which are fit using a Poisson regres-
sion [19, 20]. The baseline covariates across these mod-
els should be consistent, regardless of data source. The 
subject-interval specific weights and the probability of 
observing data as or more extreme than the observed 
external control data are estimated via Box’s p-value [21]. 
The weights are transformed to control type-1 error as 
discussed in the supplemental material.

The estimated weights are applied to a generalization of 
the power prior applied to a proportional hazards model 
using the case-weighted Poisson regression model used 
to estimate the treatment hazard ratio. A visualization 
of the flow of a CWAPP based analysis can be found in 
Fig. 1.

Simulation Study
As a further illustration of the CWAPP method, we 
present a simulation study which may mimic the set-up 
of a trial where hybrid controls are useful for whichthe 
internal control set is smaller than the treatment set. 
Consider the following general set-up: A trial with 2:1 

randomization to treatment and control, with an external 
dataset at least as large as the randomized control arm. 
In this case, we aim for the external dataset (with aver-
age case-weight approximately 0.5) to add to the effective 
sample size of the control data to a 1:1 comparison with 
the treatment arm to provide maximum statistical power.

Simulation Study - Sample size considerations
To emulate an accurate comparison with the two trials 
considered, we will keep the RCT treatment arm con-
sistent with the original study. Our goal is to examine 
the augmentation of the control arm with external con-
trols, and thus reduce the number of internal controls. 
We achieve this by reducing the internal control arm by 
half. To augment the control arm, we consider utilizing 
an external sample equivalent in size to the RCT con-
trol arm in the original trial or the maximum number of 
external controls available, whichever is larger. A flow-
chart for sample size considerations can be found in the 
Supplemental Materials, Fig. 2.

Considering Trial 1, we will sample 292 RCT treatment 
patients, 142 RCT control patients, and 284 external 
control patients, for a final sample size of N = 718. Each 
dataset is analyzed with the same five analysis methods 
performed on the full data analysis outlined above. We 
consider 3000 simulated samples. A similar structure 
is given to the simulation study for Trial 2, with details 
outlined in the supplementary material. In this simula-
tion set-up, ties are created in the dataset if a participant 
is selected more than once when sampled with replace-
ment. All methods being compared utilize an Efron 
approximation to account for any ties in a given sample 
data set. Treatment assignments are kept consistent in 
the resampling scheme throughout the simulations for 
both Trial 1 and Trial 2. A simulation with resampling in 

Fig. 1  Flowchart for trial analysis and design considerations when using a Case Weighted Adaptive Power Prior. The RCT treatment arms are given 
standard weight in the analysis, but are also used in calculating the subject specific weight which will contribute to the power prior in the final analysis
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which the original treatment arm assignment is blinded 
is discussed in the Supplemental Material.

Results
Trial 1 – non-statistically significant OS
Trial 1 consists of 576 patients from the RCT and a pos-
sible 869 external control patients for a complete case 
analysis. Baseline patient characteristics including age, 
ECOG status, race, and smoking status were similar 
across both groups. The external control group contained 
a higher percentage of females than the RCT, 51% vs. 33% 
respectively, as well as a higher rate of carboplatin che-
motherapy, with the external control group containing 

89% of the patients on carboplatin vs. 61% in the RCT. 
Prespecification simulation studies identified the appro-
priate weight transformations to control the type-1 error 
under both compatible external data and external data 
with shift confounding (p = 3, q = 0). Further details on 
prespecification of p and q can be found in the Ssupple-
mental Materials. Table  1A summarizes results across 
all five methods and the resulting estimate for the treat-
ment hazard ratio for overall survival. Conclusions from 
hypothesis tests across all 5 methods are consistent with 
the originally published trial data [12]. We see all meth-
ods incorporating external control data produce a hazard 

Table 1  Single trial analysis results for trial 1 and trial 2
A. Trial 1, NRCT = 576 B. Trial 2, NRCT = 686

Analysis Type N NEC Treat-
ment 
Hazard 
Ratio

95% CI* CI 
Width

N NEC Treat-
ment 
Hazard 
Ratio

95% CI* CI 
Width

Cox - no external controls 576 0 0.888 (0.738, 1.088) 0.350 686 0 0.762 (0.610, 0.954) 0.344
Cox - pooled controls 1445 869 0.928 (0.788, 1.092) 0.304 934 248 0.748 (0.598, 0.935) 0.337
Propensity Score Matching 1152 576 0.938 (0.795, 1.108) 0.313 930 244 0.75 (0.599, 0.938) 0.339
Fixed Weight Power Prior 1445 8,691,445 0.928 (0.782, 1.101) 0.319 934 248 0.764 (0.621, 0.939) 0.318
Case Weighted Adaptive Power 
Prior

1445 869 0.922 (0.778, 1.093) 0.315 934 248 0.753 (0.614, 0.924) 0.310

Single Trial analysis results for Trial 1 and Trial 2, with estimated treatment hazard ratios, Confidence Intervals (CI), and Confidence Interval width. Note the changing 
sample size in the analyses, as each utilizes differing amounts of the available external control data, noted in the column NEC. The number of RCT patients used 
remains consistent for each analysis method within a trial, as noted by NRCT

Fig. 2  Histograms of estimated average subject specific weights from Trials 1 (A&B) and 2 (C&D). Figure 2a and c depict the subject specific weights 
before transformation, and Fig. 2b and d depict the subject specific weights after transformation, where the tail weights are allowed to stay close to the 
extremes, but most weights are pushed towards 0.5. These transformations help control the inflation of the type 1 error
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ratio estimate closer to 1 (the null hypothesis) and have 
confidence intervals with smaller width.

CWAPP subject-specific weights were estimated and 
have an average of 0.53 after the pre-specified weight 
transformation was applied. The total contribution from 
the external control data can be determined from the 
sum of weights across all confidence intervals and sub-
jects. In the complete-case analysis, the contribution 
from the external controls is 457.9 subjects from the data 
set of 869 patients.

Trial 1: bootstrap analysis - trial emulation
The following simulation study was designed to emulate 
a trial where hybrid control designs would be beneficial, 
starting with a trial with 2:1 randomization of treatment: 
control. As seen in the complete case analysis, we expect 
the contribution of the external controls to be approxi-
mately half the number of subjects included in the analy-
sis. Thus, to augment the control arm, we should include 
twice the number of subjects we would like to account 
for in the effective sample size. In trial 1, this leads us to 
analyze 292 RCT treatment patients, 142 RCT control 
patients, and 284 external control patients. Three thou-
sand datasets of size N = 718 are constructed by random 
sampling from the combined RCT and external data 
with replacement using stratified random sampling while 
keeping the treatment arm assignment and censoring 
rate consistent with what was observed in the original 
data set.

Averaging over three thousand samples, the average 
treatment hazard ratios, confidence intervals, and boot-
strap-estimated type-1 error estimates are summarized 
in Table 2A. All 5 methods considered provide treatment 
hazard ratios consistent with findings of the original 
RCT with confidence intervals noticeably smaller for the 
Bayesian methods, with the CWAPP providing the most 
precise estimates, i.e. smaller average confidence inter-
val widths. All methods control the bootstrap-estimated 
type-1 error at the nominal level, with CWAPP having a 
type-1 error rate of 0.03.

Trial 2 - statistically significant OS
Trial 2 consists of 686 patients from the RCT and a possi-
ble 248 external control patients for a complete case anal-
ysis. Baseline patient characteristics including age, ECOG 
status, and smoking status were similar across both 
groups. The external control group contained a higher 
percentage of females than the RCT, 46% vs. 37% respec-
tively, as well as a lower percentage of non-white patients 
in the external control sample compared to the RCT, 61% 
vs. 86% respectively. Table 1B summarizes results across 
all five methods and the resulting estimates for the treat-
ment hazard ratio based on overall survival. Conclusions 
from hypothesis tests across all 5 methods are consistent 
with the originally published trial data [13]. We see that 
three methods which incorporate external control data 
(pooled Cox, PS Matching, and CWAPP) produce an 
estimate further from the null hypothesis and all meth-
ods estimate the confidence intervals with smaller width 
than the analysis without external control data.

CWAPP subject-specific weights were estimated and 
have an average of 0.52 after transformation. The CWAPP 
subject-specific weights can be seen both before and after 
transformation in Fig. 2. The total contribution from the 
external control data can be determined from the sum of 
the weights across all intervals and subjects. In the com-
plete-case analysis, the contribution from external con-
trols is 129.7 from the data set of 248 patients.

Trial 2: bootstrap analysis - trial emulation
We conduct a similar simulation study as before, but 
the external control dataset is not large enough for us to 
augment the entire external control set as was done for 
Trial 1. Instead of oversampling external control patients 
to yield a sample size that we would consider ideal, we 
sample an external dataset equal in size to the total exter-
nal data available. In trial 2, this leads us to analyze 353 
RCT treatment patients, 166 RCT control patients, and 
248 external control patients (ideally we would be able to 
sample 332). Three thousand datasets of size N = 767 are 
sampled from the combined RCT and external data with 

Table 2  Simulation study results (trial 1 & trial 2)
A. Trial 1 B. Trial 2

Analysis Type Average Treat-
ment Hazard Ratio

Average CI 
Width

Bootstrap-
Estimated Type 1 
Error

Average Treat-
ment Hazard Ratio

Average CI 
Width

Boot-
strap-Es-
timated 
Power

Cox - no external controls 0.885 0.443 0.025 0.765 0.424 0.471
Cox - pooled controls 0.907 0.454 0.002 0.741 0.411 0.695
Propensity Score Matching 0.915 0.458 0.042 0.708 0.393 0.800
Fixed Weight Power Prior 0.903 0.372 0.019 0.764 0.349 0.803
Case Weighted Adaptive Power Prior 0.894 0.365 0.033 0.749 0.338 0.892
Simulation Study results for Trial 1 and Trial 2, with estimated average treatment hazard ratios, average Confidence Interval (CI) width, and boostrap-estimated Type 
1 error or power. Note Trial 1 estimates the type 1 error with the assumed truth of no treatment effect in the clinical data, whereas Trial 2 estimates power as the 
assumed truth is that there is a positive treatment effect in the clinical data
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replacement using stratified random sampling, keeping 
the censoring rate consistent with what was observed in 
the original data .

Averaging over the the three thousand samples, treat-
ment hazard ratios, confidence intervals, and power 
estimates are summarized in Table  2B. All 5 methods 
considered provide treatment hazard ratios consistent 
with findings of the original RCT with confidence inter-
vals noticeably smaller for the Bayesian methods, with 
the CWAPP providing the most precise estimates in 
terms of confidence interval widths. This can most clearly 
be seen in Fig.  3 where the estimated treatment hazard 
ratios and confidence interval widths are plotted for each 
run of the simulation studies. The methods utilizing 
external controls have more power than the traditional 
Cox model (recall that this has half the number of con-
trol patients). Both Bayesian methods have higher power 

compared to the frequentist methods, with CWAPP hav-
ing the highest power (0.89 vs. 0.80 of the fixed power 
prior method).

Discussion
Hybrid design clinical trials are being considered for situ-
ations where standard RCTs are not feasible, especially 
with the increased availability and quality of electronic 
health records. While acknowledging the utilization of 
external controls can lead to statistically biased effect 
estimates, when handled with the proper methods, one 
can achieve controlled type 1 error inflation and gains in 
efficiency and power when appropriate external controls 
are available.

We have illustrated the application of the CWAPP 
method to a hypothetical hybrid control trial with exter-
nal controls from RWD sources. In the single-study 

Fig. 3  Summary box plots from simulation studies run for both Trial 1 (A & B) and Trial 2 (C & D). Figure 3a and c depict the estimated treatment hazard 
ratios for all five methods. We see consistent for estimates across the methods in both trials. Figure 3b and d depict the confidence interval widths across 
all five methods, where we see the Bayesian methods with smallest CI widths, with CWAPP performing best in both trial simulations
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application, both Trial 1 and Trial 2 provide CWAPP 
treatment hazard ratio estimates consistent with the 
original trial results without using external controls. We 
see a reduction in confidence interval (CI) widths from 
the original Cox analysis method, but also see a gain in 
precision of the CWAPP method compared to the fixed 
weight power prior (Trial 1 CI Widths: 0.315 vs. 0.319, 
Trial 2 CI Widths: 0.318 vs. 0.310).

Through the bootstrapped trial emulations, we have 
compared the analysis methods on 3000 datasets which 
mirror a trial for which external controls may be most 
useful. Through these simulations, we see consistent 
trial hazard ratio estimates when compared to the stan-
dard Cox model. In Trial 1, the CWAPP method has a 
20% decrease in average CI width compared to the naive 
pooled control method. Similarly, an the CWAPP method 
has an 18% decrease in average CI width compared to 
the naïve pooled control method in Trial 2. We also see 
when the appropriate weight transformations prespeci-
fied, the boostrap estimated type 1 error rate is well con-
trolled at the 0.05 level. With both the fixed power prior 
and CWAPP methods we see a gain in power at the given 
sample size from the frequentist Cox methods to either 
power prior method, with the CWAPP method providing 
the best bootstrap estimated power in simulations (89%). 
It is important to note the study from which Trial 2 was 
derived was designed to reach 87% power to detect an OS 
treatment HR of 0.75. With the CWAPP method, a simi-
lar power was achieved while reducing the internal con-
trol arm by one half, utilizing 25% less RCT patients than 
the original study.

We believe the CWAPP method provides a unique 
application when subject level data is available from 
external sources and we no longer have to weight the 
external data assuming a homogeneous block of patients 
separate from the RCT and instead can differentiate 
external control patients we believe to be similar to those 
in the RCT. The CWAPP method naturally down-weights 
patients substantially different from patients in the RCT 
analysis set. Along with the flexibility in weight applied 
to external controls, the weight provides an estimated 
effective sample size for the study by summing the aver-
age weight per patient. This helps quantify the propor-
tion of the final analysis that is contributed by the prior 
assumptions, in this case the external control data. The 
case weight provides transparency on how much external 
data contributes to the analysis. This framework can be 
extended to other clinical studies applications with rea-
sonable external controls.

It is important to note that while the weights contribute 
to this analysis, they do not change the estimates we use 
for decision making in the trial. In the analysis of each 
of these trials, we still report familiar treatment hazard 
ratios and can apply standard hypothesis tests. One must 

be careful to look at the estimated weights, which can 
provide an estimate for the contribution of the external 
patient set to the sample size of the analysis, but they do 
not change how we interpret the results from the trial.

While we have considered trials depending on time-to-
event analysis in these examples, as they are most appro-
priate in many oncology trials, the case weighted adaptive 
power prior can easily be extended to other therapeutic 
areas and other (non-time-to-event) primary outcomes.

Limitations of these analyses and hybrid con-
trol approaches as a whole include the large quanti-
ties of missing covariate data in external datasets, 
especially when these data are sourced from real world 
data. Because of this, our current analysis uses only 
external controls with complete data, and large quantities 
of data were excluded from the final analysis. We believe 
existing missing data methods [22] which are applied to 
the standard power prior can be extended to apply in this 
method and this is a topic of future research.

Conclusion
Through two separate trial analyses and emulations, we 
have seen that hybrid control studies, and specifically the 
Case Weighted Adaptive Power Prior method, can pro-
vide consistent results with previously completed RCTs. 
When appropriate statistical methods are applied, the 
bias due to heterogeneity between the RCT and exter-
nal control arm can be minimized, and consistent study 
conclusions can be achieved. Moreover, statistical power 
remains at levels used in the original study sample size 
calculations while reducing the RCT sample size by 25%.
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