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Abstract
Background: Immortal time is a period of follow-up during which death or the study outcome cannot occur by design. Bias from immortal time 
has been increasingly recognized in epidemiological studies. However, the fundamental causes and structures of bias from immortal time have 
not been explained systematically.
Methods: We use an example ‘Does winning a Nobel Prize prolong lifespan?’ for illustration. We illustrate how immortal time arises and pre
sent structures of bias from immortal time using directed acyclic graphs that specify time-varying variables. We further explore the structures of 
bias with the exclusion of immortal time and with the presence of competing risks. We discuss how these structures are shared by different 
study designs in pharmacoepidemiology and provide solutions, where possible, to address the bias.
Results: The fundamental cause of immortal time is misalignment of exposure allocation and eligibility. Specifically, immortal time arises from 
using post-eligibility information to define exposure or using post-exposure information to define eligibility. The structures of bias from immortal 
time are confounding by survival until exposure allocation or selection bias from selecting on survival until eligibility. Excluding immortal time 
from follow-up does not fully address this confounding or selection bias, and the presence of competing risks can worsen the bias. Bias from 
immortal time may be avoided by aligning baseline, exposure allocation and eligibility, and by excluding individuals with prior exposure.
Conclusions: Understanding bias from immortal time in terms of confounding or selection bias helps researchers identify and thereby avoid or 
ameliorate this bias.
Keywords: Bias, directed acyclic graphs, epidemiology, immortal time. 

Introduction
Immortal time refers to a period of follow-up during which 
death or the study outcome cannot occur by design.1 Bias 
from immortal time was first identified in the 1970s,2,3 and 
has been described as a bias resulting from counting follow- 
up times incorrectly in terms of exposure status.4,5 This bias 
has been named ‘immortal time bias’,4,6,7 ‘survivor treatment 
selection bias’,8 ‘survivor bias’,9 or generally ‘time-dependent 
bias’ or ‘time-related bias’.10–12 Although bias from immortal 
time has been warned against for decades, it is still increas
ingly evident in epidemiological studies.6,7,10–14 This is possi
bly because the fundamental causes and structures of bias 

from immortal time have not been explained systematically 
using a structural approach.

Directed acyclic graphs (DAGs) are useful in illustrating 
causal structures and thereby preventing the key sources of 
bias in epidemiological studies, i.e. confounding (the exis
tence of common causes of exposure and outcome) and selec
tion bias (conditioning on common consequences of 
exposure and outcome).15–17 Previous DAGs have suggested 
that the structure of bias from immortal time is misclassifica
tion,18,19 selection bias18,19 or collider stratification bias.20

Building on these previous works, we illustrate that the fun
damental cause of immortal time is misalignment of exposure 

Key Messages 
� This study explains the fundamental causes of bias from immortal time, uses directed acyclic graphs to illustrate the structures of this 

bias and further explores the structures of bias with the exclusion of immortal time and with the presence of competing risks. 
� Immortal time arises from misalignment of exposure allocation and eligibility; the structures of bias from immortal time are confounding 

by survival until exposure allocation or selection bias from selecting on survival until eligibility. 
� Excluding immortal time from follow-up does not fully address bias from immortal time, and the presence of competing risks can 

worsen the bias. 
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allocation and eligibility. Specifically, immortal time can arise 
through two mechanisms, that is using post-eligibility informa
tion to define exposure and using post-exposure information to 
define eligibility. We present the structures of bias from the first 
type of immortal time as confounding (classical immortal time 
bias) and bias from the second type of immortal time as selec
tion bias using DAGs that specify time-varying variables.21,22

We further explore the structures of bias with the exclusion of 
immortal time and with the presence of competing risks. We 
discuss how these structures are shared by different study 
designs in pharmacoepidemiology4,6 and provide solutions, 
where possible, to address the bias.

Methods
Does winning a Nobel Prize prolong lifespan?
We use an example ‘Does winning a Nobel Prize prolong life
span?’ for illustration, because of the time lag between publi
cation of a scientific discovery and conferment of a Nobel 
Prize.23 Consider a study to investigate the survival benefit of 
winning a Nobel Prize. All scientists who won at least one 
Nobel Prize were identified as Nobel Prize winners. For each 
winner, a control was selected as a scientist who was the 
same sex, was born in the same era, worked in the same insti
tution and published a similar work when the winner’s dis
covery was published. For simplicity, we suppose there are 
no other confounders nor delayed effects of winning a Nobel 
Prize and other causes of death on lifespan.

To specify time-varying variables, we use DAGs including 
separate nodes for a variable at different times.21,22 The full 
DAG from publication of the discovery (time 0) to the end of 
follow-up (time kþ) is provided in Supplementary Figure S1, 
available as Supplementary data at IJE online. For illustration, 
we suppose k¼2 and use two time points (1 and 2). E1 and E2 

denote exposure status at time 1 and 2, respectively. D1þ and 
D2þ denote outcome status between time 1 and 2 and after time 
2, respectively. U1 and U2 denote status of another unmeasured 
cause of the outcome at time 1 and 2, respectively. E2 is the ex
posure of interest (winning at least one Nobel Prize at or before 
time 2), D2þ is the outcome of interest (death at time 2þ) and 
the arrow from E2 to D2þ is the causal effect of interest. In a 
time-to-event analysis, the exposure variable is E2 and the out
come variable is (D2þ, T), where T is the time variable. T starts 
from baseline and ends until time 2þ or until occurrence of the 
outcome, whichever occurs earlier.

Results
Immortal time arises from using post-eligibility 
information to define exposure
Suppose baseline was set as the day when the discovery was 
published. Nobel Prize winners have to survive until they have 
won their first award to be classified as winners; however, there 
is no such requirement for controls. Immortal time refers to the 
time between publication of the discovery and conferment of 
the Nobel Prize for winners (Figure 1a), which arises from using 
post-eligibility information to define exposure.

The bias generated is depicted in Figure 1b. The arrow from 
E1 to E2 means scientists who won Nobel Prizes at time 1 were 
also Nobel Prize winners at time 2. The arrow from D1þ to 
D2þ means scientists who died between time 1 and 2 were also 
dead after time 2. The arrow from D1þ to E2 means the scien
tists who were not Nobel Prize winners at time 1 have to be 

alive from time 1 to 2 to be classified as Nobel Prize winners at 
time 2. The structure of this bias is confounding, that is the pres
ence of a common cause (D1þ) of the exposure (E2) and the out
come (D2þ). It creates an open path between E2 and D2þ, 
which can bias the association towards favouring the winners. 
Specifically, winners having to remain alive until the Nobel 
Prize is awarded means survival confounds the effect of winning 
the Nobel Prize on lifespan.

Classical immortal time bias arises from using post-eligibility 
information to define exposure. Suissa has reviewed cohort 
studies in pharmacoepidemiology leading to this bias.4 This bias 
also occurs in case-control studies, named ‘time-window 
bias’.24,25 Specifically, these studies define exposure using the 
mean, minimum or maximum number of treatments after re
cruitment (e.g. at least one treatment during follow-up).4,24

Individuals have to be healthy enough to remain alive until they 
receive the treatment, which confounds the effect of treatment 
on health outcomes. As such, the fundamental issue is differen
ces between the individuals who do and do not survive until the 
treatment (exposure allocation) rather than counting time 
incorrectly.

Immortal time arises from using post-exposure 
information to define eligibility
Suppose baseline was set as the day when the discovery was 
published. All scientists who died before age 75 years were 
excluded. Immortal time refers to the time between publica
tion of the discovery and age 75 years for both winners and 
controls (Figure 1c), which arises from using post-exposure 
information to define eligibility.

The bias generated is depicted in Figure 1d. The box around 
D1þ means the analysis was restricted to scientists who 
remained alive until time 1þ. The structure of this bias is selec
tion bias, i.e. conditioning on a common consequence (D1þ) of 
the exposure (E1) and another unmeasured cause of the out
come (U1). Although conditioning on D1þ closes the open back
door path between E2 and D2þ, it creates another open path 
between E1 and U1. If winning a Nobel Prize truly provides sur
vival benefit, Nobel Prize winners who survive until 75 years are 
more likely to have another cause of death than controls who 
survive until 75 years without winning a Nobel Prize. 
Therefore, the association is biased towards the opposite direc
tion of the true effect. The exception is when the exposure, win
ning a Nobel Prize, has no causal effect on the outcome, death; 
then D1þ is not a collider (Supplementary Figure S2, available 
as Supplementary data at IJE online). Specifically, selecting on 
survival to 75 years when previous Nobel Prize status and other 
factors affect survival creates the classic M-bias, here specifically 
butterfly bias26 given survival to 75 years affects current Nobel 
Prize status and subsequent survival (Figure 1d). The magnitude 
of M-bias is generally smaller than confounding bias.26 This M- 
bias can be ameliorated by adjusting for prior exposure E1 or a 
well measured U1.

In a pharmacoepidemiological study using post-exposure 
information to define eligibility (e.g. survival to one year after 
recruitment), selecting on survival to one year after recruit
ment when prior treatment and other factors affect survival 
also creates selection bias. Again, the fundamental issue is dif
ferences between the individuals who survive until eligibility 
with and without the treatment (exposure) rather than count
ing time incorrectly.
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Excluding immortal time from follow-up does not 
fully address the bias
Immortal time can be excluded from follow-up by redefining 
baseline to a later timepoint, for some or all individuals in the 
study. We further illustrate the structures of bias in study 
designs excluding immortal time from follow-up.

When immortal time arises from using  
post-eligibility information to define exposure
Suppose baseline was set as the day when Nobel Prize win
ners won their first award for winners, but as the day when 
the discovery was published for controls. Immortal time be
tween publication of the discovery and the first award for 
winners is thereby excluded from follow-up (Figure 2a).

The DAG is depicted in Figure 2b. The arrow from D1þ to 
E2 persists because the scientists who were not Nobel Prize 
winners at time 1 still have to be alive from time 1 to 2 to be 
classified as Nobel Prize winners at time 2. Excluding immor
tal time from follow-up partially eliminates the guaranteed 
survival advantage of winners, but it does not close the open 
backdoor path between E2 and D2þ. As such, the structure of 
this bias is confounding, which is the same as Figure 1b given 
DAGs do not capture quantitative information.21,22

‘Exposure-based’ cohorts in pharmacoepidemiology use 
post-eligibility information to define exposure (e.g. at least 
one treatment during follow-up).4 Baseline is set as the time 
of the first treatment for the exposed group, but as the time 
of diagnosis for the unexposed group.4 Immortal time be
tween diagnosis and the first treatment for the exposed group 
is thereby excluded from follow-up. However, classical im
mortal time bias persists, because the fundamental issue is 
differences between the individuals who do and do not 

survive until the treatment (exposure allocation) rather than 
counting time incorrectly.

When immortal time arises from using  
post-exposure information to define eligibility
Suppose baseline was set as age 75 years. All scientists who 
died before age 75 years were excluded. Immortal time be
tween publication of the discovery and age 75 years for both 
winners and controls is excluded from follow-up (Figure 2c).

The DAG is depicted in Figure 2d. The box around D1þ

means the analysis was restricted to scientists who remained 
alive until time 1þ. Conditioning on D1þ creates an open 
path between E1 and U1. The exception is when the expo
sure, winning a Nobel Prize, has no causal effect on the out
come, death; then D1þ is not a collider (Supplementary 
Figure S2, available as Supplementary data at IJE online). 
Excluding immortal time from follow-up does not change the 
structure of bias. As such, the structure of this bias is selec
tion bias, as in Figure 1d.

The landmark approach has been suggested to address 
classical immortal time bias in pharmacoepidemiology.9,27

This approach sets a landmark time and classifies individuals 
as exposed and unexposed based on the treatment received 
before the landmark. The landmark is set as baseline and all 
individuals who die before the landmark are excluded. This 
approach has a similar structure as Figure 2d, except that it 
assesses the causal effect of E1 on D2þ (Supplementary Figure 
S3, available as Supplementary data at IJE online). Again, us
ing post-exposure information to define eligibility reduces 
confounding (classical immortal time bias) at the expense of 
introducing selection bias, but it may provide unbiased 
results when the treatment has no effect on survival.27

Figure 1 Illustrations and directed acyclic graphs of study designs with immortal time. E1 and E2 are exposure status at time 1 and 2, respectively. D1þ

and D2þ are outcome status between time 1 and 2 and after time 2, respectively. U1 and U2 are status of another unmeasured cause of the outcome at 
time 1 and 2, respectively. (a) Baseline was set as the day when the discovery was published. Immortal time is the time between publication of the 
discovery and conferment of the Nobel Prize for winners. (b) Immortal time arises from using post-eligibility information to define exposure. The causal 
effect of interest is the effect of E2 on D2þ. The arrows from D1þ to E2 and from D1þ to D2þ are key arrows that create an open path and result in bias. (c) 
Baseline was set as the day when the discovery was published and all scientists who died before age 75 years were excluded. Immortal time is the time 
between publication of the discovery and age 75 years for both winners and controls. (d) Immortal time arises from using post-exposure information to 
define eligibility. The causal effect of interest is the effect of E2 on D2þ. The arrows from E1 to D1þ and from U1 to D1þ are key arrows that create an open 
path and result in bias
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Competing risks can worsen bias from 
immortal time
A competing risk is an event which precludes occurrence of 
the outcome or alters the probability of occurrence of the 
outcome.28 Competing risks should be considered for out
comes other than all-cause mortality. Consider another 
study to investigate the effect of winning a Nobel Prize on 
the risk of dementia, where cardiovascular death is a com
peting risk. Nobel Prize winners and controls were identified 
as above.

In DAGs specifying time-varying variables, E1 and E2 are 
exposure status at time 1 and 2, respectively. D1þ and D2þ

are outcome status between time 1 and 2 and after time 2, re
spectively. CR1þ and CR2þ are status of a competing risk be
tween time 1 and 2 and after time 2, respectively. U1 and U2 

are status of an unmeasured common cause of the outcome 
and the competing risk at time 1 and 2, respectively.

When immortal time arises from using post-eligibility infor
mation to define exposure
Suppose baseline was set as the day when the discovery was 
published (Figure 3a). Figure 3b shows the bias with the pres
ence of a competing risk. The arrow from D1þ to E2 means 
the scientists who were not Nobel Prize winners at time 1 
have to remain free of dementia from time 1 to 2 to be classi
fied as Nobel Prize winners at time 2. If they have dementia 
between time 1 and 2, their follow-up ends when dementia 
occurs, so E2 ¼ E1 ¼ 0. The arrow from CR1þ to E2 means 
the scientists who were not Nobel Prize winners at time 1 
have to be alive from time 1 to 2 to be classified as Nobel 

Prize winners at time 2. These arrows create open paths be
tween E2 and D2þ and between E2 and CR2þ. As CR2þ pre
cludes the occurrence of D2þ, an additional open path 
between E2 and D2þ is generated.

When immortal time arises from using post-exposure infor
mation to define eligibility
Suppose baseline was set as the day when the discovery was 
published. All scientists who had a diagnosis of dementia or 
died before age 75 years were excluded (Figure 3c). Figure 3d 
shows the bias with the presence of a competing risk. The boxes 
around D1þ and CR1þ mean the analysis was restricted to sci
entists who remained alive without the occurrence of dementia 
until time 1þ. Although these boxes close the open backdoor 
paths between E2 and D2þ and between E2 and CR2þ, they cre
ate two open paths between E1 and U1. The exception is when 
the exposure, winning a Nobel Prize, has no causal effect on ei
ther the outcome, dementia or the competing risk, cardiovascu
lar death; then neither D1þ nor CR1þ is a collider 
(Supplementary Figure S4, available as Supplementary data at 
IJE online).

Competing risks should be particularly considered in stud
ies investigating late-onset diseases among patients or older 
people. For example, a study investigating the effect of statin 
use on the risk of prostate cancer among patients with heart 
disease has cardiovascular death as a competing risk that can
not be ignored. Competing risks should be considered more 
in studies involving older people, because disease rates usu
ally increase with age.

Figure 2 Illustrations and directed acyclic graphs of study designs excluding immortal time from the follow-up. E1 and E2 are exposure status at time 1 
and 2, respectively. D1þ and D2þ are outcome status between time 1 and 2 and after time 2, respectively. U1 and U2 are status of another unmeasured 
cause of the outcome at time 1 and 2, respectively. (a) Baseline was set as the day when Nobel Prize winners won their first award for winners, but as 
the day when the discovery was published for controls. Immortal time between publication of the discovery and conferment of their first award for 
winners is excluded from the follow-up. (b) Immortal time arising from using post-eligibility information to define exposure is excluded. The causal effect 
of interest is the effect of E2 on D2þ. The arrows from D1þ to E2 and from D1þ to D2þ are key arrows that create an open path and result in bias.(c) 
Baseline was set as age 75 years and all scientists who died before age 75 years were excluded. Immortal time between publication of the discovery and 
age 75 years for both winners and controls is excluded from the follow-up. (d) Immortal time arising from using post-exposure information to define 
eligibility is excluded. The causal effect of interest is the effect of E2 on D2þ. The arrows from E1 to D1þ and from U1 to D1þ are key arrows that create an 
open path and result in bias

4                                                                                                                                             International Journal of Epidemiology, 2025, Vol. 54, No. 1 
D

ow
nloaded from

 https://academ
ic.oup.com

/ije/article/54/1/dyae176/7945196 by U
niversity of H

ong Kong user on 28 O
ctober 2025

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data


Discussion
Solutions to address bias from immortal time
Table 1 summarizes the structures and sources of bias from 
immortal time. To avoid bias from immortal time, baseline 
should be the time when exposure allocation and eligibility 
for study inclusion are synchronized.29 Individuals with prior 
exposure should be excluded,30 because prior exposure may 

affect survival to recruitment and generate selection bias. All 
confounders and selection bias need to be adequately 
addressed to ensure exchangeability between groups at base
line, although this is not always feasible.31

A target trial framework helps align baseline, exposure al
location and eligibility.29 An analogue of the intention-to- 
treat analysis sets baseline as the day when the discovery was 

Figure 3 Illustrations and directed acyclic graphs of study designs with immortal time and the presence of a competing risk. E1 and E2 are exposure 
status at time 1 and 2, respectively. D1þ and D2þ are outcome status between time 1 and 2 and after time 2, respectively. CR1þ and CR2þ are status of a 
competing risk between time 1 and 2 and after time 2, respectively. U1 and U2 are status of an unmeasured common cause of the outcome and the 
competing risk at time 1 and 2, respectively. (a) Baseline was set as the day when the discovery was published. Immortal time is the time between 
publication of the discovery and conferment of the Nobel Prize for winners. (b) Immortal time arises from using post-eligibility information to define 
exposure. The causal effect of interest is the effect of E2 on D2þ. The arrows from D1þ to E2, from D1þ to D2þ, from CR1þ to E2, and from CR1þ to CR2þ

are key arrows that create open paths and result in bias. (c) Baseline was set as the day when the discovery was published and all scientists who had a 
diagnosis of dementia or died before age 75 years were excluded. Immortal time is the time between publication of the discovery and age 75 years for 
both winners and controls. (d) Immortal time arises from using post-exposure information to define eligibility. The causal effect of interest is the effect of 
E2 on D2þ. The arrows from E1 to D1þ, from U1 to D1þ, from E1 to CR1þ, and from U1 to CR1þ are key arrows that create open paths and result in bias

Table 1 A summary of the structures and sources of bias from immortal time

Cause of immortal time Exclusion of  
immortal time

Presence of  
competing risksa

Structure and source of bias from  
immortal time

Directed acyclic  
graphs

Define exposure by post-eligibility 
information

No No Confounding by survival until exposure 
allocation (classical immortal 
time bias)

Figure 1b

Define eligibility by post-exposure 
information

No No Selection bias from selecting on survival 
until eligibility

Figure 1d

Define exposure by post-eligibility 
information

Yes No Confounding by survival until 
exposure allocation

Figure 2b

Define eligibility by post-exposure 
information

Yes No Selection bias from selecting on survival 
until eligibility

Figure 2d

Define exposure by post-eligibility 
information

No Yes Confounding by survival without 
occurrence of the outcome until 
exposure allocation

Figure 3b

Define eligibility by post-exposure 
information

No Yes Selection bias by selecting on survival 
without occurrence of the outcome 
until eligibility

Figure 3d

a There is no competing risk when the outcome is all-cause mortality; however, competing risks should be considered for all other outcomes.
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published and defines Nobel Prize winners based on exposure 
status at baseline. This approach estimates the causal effect 
of E1 on D2þ, which should not be confounded by D1þ that 
occurs after time 1 (Supplementary Figure S5, available as 
Supplementary data at IJE online). However, this approach is 
not practical here, because no scientist won a Nobel Prize 
when their discovery was published. Similarly, in a pharma
coepidemiological study where few individuals start treat
ment at eligibility, the analogue of the intention-to-treat 
effect estimates could be uninformative. In this case, the new- 
user design is more feasible.32 The new-user design identifies 
new users of the study drug and a comparator drug, matches 
the two groups based on when they start the drugs and sets 
baseline as the same time.32 This approach conditions on 
D1þ ¼ 0 because both groups have to remain alive until they 
start the drugs to be eligible; however, it does not introduce 
selection bias because selecting on E1 ¼ 0 (no one uses any 
drug before time 1þ) closes the backdoor path between E1 

and U1 generated by conditioning on D1þ (Supplementary 
Figure S6, available as Supplementary data at IJE online).

Alternatively, statistical approaches which focus on han
dling follow-up times correctly can be considered as an ana
logue of the per-protocol analysis that sets baseline at 
different eligibility times and considers each individual at 
each eligible time as different individuals. For example, the 
person-time approach accounts for person-time before win
ning the first Nobel Prize as unexposed and after that as ex
posed.6 Time-dependent analysis codes the exposure status as 
a time-varying variable that changes from 0 to 1 when scien
tists win their first Nobel Prize.9 The sequential approach 
emulates a sequence of mini trials with increasing baseline 
when eligible scientists who have not won a Nobel Prize be
fore are classified into either group based on their exposure 
status within each mini trial; scientists in the unexposed 
group are artificially censored when they win their first 
Nobel Prize.33 The analogue of the per-protocol effect esti
mates are the combination of trial-specific estimates from 
each mini trial,33 i.e. the combination of the arrows from E0 

to D0þ, from E1 to D1þ, … and from Ek to Dkþ

(Supplementary Figure S7, available as Supplementary data 
at IJE online). These approaches do not remove the arrows 
from D0þ to E1, from D1þ to E2, … and from Dk−1þ to Ek, 
because the scientists who were not Nobel Prize winners at 
time 0 still have to remain alive from time 0 to 1 to be classi
fied as Nobel Prize winners at time 1, etc. Hence, differences 
persist between those who did and did not survive until the 
award, which requires addressing not only confounders and 
selection bias at baseline but also time-varying confounders 
that affect change in exposure status/artificial censoring and 
the outcome.34

Conclusion
The fundamental cause of immortal time is misalignment of 
exposure allocation and eligibility. Specifically, immortal 
time arises from using post-eligibility information to define 
exposure or using post-exposure information to define eligi
bility. The structures of bias from immortal time are con
founding by survival until exposure allocation or selection 
bias from selecting on survival until eligibility. Excluding im
mortal time from follow-up does not fully address the bias, 
and the presence of competing risks can worsen the bias. 

Epidemiological studies should be designed and analysed us
ing rigorous approaches to avoid or mitigate bias from im
mortal time.
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