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Abstract

Background: Immortal time is a period of follow-up during which death or the study outcome cannot occur by design. Bias from immortal time
has been increasingly recognized in epidemiological studies. However, the fundamental causes and structures of bias from immortal time have
not been explained systematically.

Methods: We use an example ‘Does winning a Nobel Prize prolong lifespan?’ for illustration. We illustrate how immortal time arises and pre-
sent structures of bias from immortal time using directed acyclic graphs that specify time-varying variables. We further explore the structures of
bias with the exclusion of immortal time and with the presence of competing risks. We discuss how these structures are shared by different
study designs in pharmacoepidemiology and provide solutions, where possible, to address the bias.

Results: The fundamental cause of immortal time is misalignment of exposure allocation and eligibility. Specifically, immortal time arises from
using post-eligibility information to define exposure or using post-exposure information to define eligibility. The structures of bias from immortal
time are confounding by survival until exposure allocation or selection bias from selecting on survival until eligibility. Excluding immortal time
from follow-up does not fully address this confounding or selection bias, and the presence of competing risks can worsen the bias. Bias from
immortal time may be avoided by aligning baseline, exposure allocation and eligibility, and by excluding individuals with prior exposure.

Conclusions: Understanding bias from immortal time in terms of confounding or selection bias helps researchers identify and thereby avoid or
ameliorate this bias.
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Key Messages

* This study explains the fundamental causes of bias from immortal time, uses directed acyclic graphs to illustrate the structures of this
bias and further explores the structures of bias with the exclusion of immortal time and with the presence of competing risks.

* Immortal time arises from misalignment of exposure allocation and eligibility; the structures of bias from immortal time are confounding
by survival until exposure allocation or selection bias from selecting on survival until eligibility.

* Excluding immortal time from follow-up does not fully address bias from immortal time, and the presence of competing risks can
worsen the bias.

Introduction from immortal time have not been explained systematically

Immortal time refers to a period of follow-up during which
death or the study outcome cannot occur by design.' Bias
from immortal time was first identified in the 1970s,>> and
has been described as a bias resulting from counting follow-
up times incorrectly in terms of exposure status.*® This bias
has been named ‘immortal tlme bias’,*®” ‘survivor treatment
selection bias’,® ‘survivor bias’,” or generally ‘time-dependent
bias’ or ‘time- related bias’. 10-13 Although bias from immortal
time has been warned against for decades, it is still increas-
ingly evident in epidemiological studies.®”*'°~'* This is possi-
bly because the fundamental causes and structures of bias

using a structural approach.

Directed acyclic graphs (DAGs) are useful in illustrating
causal structures and thereby preventing the key sources of
bias in epidemiological studies, i.e. confounding (the exis-
tence of common causes of exposure and outcome) and selec-
tion bias (conditioning on common consequences of
exposure and outcome).'>~'” Previous DAGs have suggested
that the structure of bias from immortal time is misclassifica-
tion,'®1? selection bias!®'? or collider stratification bias.?°
Building on these previous works, we illustrate that the fun-
damental cause of immortal time is misalignment of exposure
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allocation and eligibility. Specifically, immortal time can arise
through two mechanisms, that is using post-eligibility informa-
tion to define exposure and using post-exposure information to
define eligibility. We present the structures of bias from the first
type of immortal time as confounding (classical immortal time
bias) and bias from the second type of immortal time as selec-
tion bias using DAGs that specify time-varying variables.?>>*
We further explore the structures of bias with the exclusion of
immortal time and with the presence of competing risks. We
discuss how these structures are shared by different study
designs in pharmacoepidemiology®® and provide solutions,
where possible, to address the bias.

Methods
Does winning a Nobel Prize prolong lifespan?

We use an example ‘Does winning a Nobel Prize prolong life-
span?’ for illustration, because of the time lag between publi-
cation of a scientific discovery and conferment of a Nobel
Prize.?® Consider a study to investigate the survival benefit of
winning a Nobel Prize. All scientists who won at least one
Nobel Prize were identified as Nobel Prize winners. For each
winner, a control was selected as a scientist who was the
same sex, was born in the same era, worked in the same insti-
tution and published a similar work when the winner’s dis-
covery was published. For simplicity, we suppose there are
no other confounders nor delayed effects of winning a Nobel
Prize and other causes of death on lifespan.

To specify time-varying variables, we use DAGs including
separate nodes for a variable at different times.”"** The full
DAG from publication of the discovery (time 0) to the end of
follow-up (time k+) is provided in Supplementary Figure S1,
available as Supplementary data at IJE online. For illustration,
we suppose k =2 and use two time points (1 and 2). E; and E,
denote exposure status at time 1 and 2, respectively. D, and
D, denote outcome status between time 1 and 2 and after time
2, respectively. Uy and U, denote status of another unmeasured
cause of the outcome at time 1 and 2, respectively. E, is the ex-
posure of interest (winning at least one Nobel Prize at or before
time 2), D, is the outcome of interest (death at time 2+) and
the arrow from E, to D, is the causal effect of interest. In a
time-to-event analysis, the exposure variable is E, and the out-
come variable is (D5, T), where T is the time variable. T starts
from baseline and ends until time 2+ or until occurrence of the
outcome, whichever occurs earlier.

Results
Immortal time arises from using post-eligibility
information to define exposure

Suppose baseline was set as the day when the discovery was
published. Nobel Prize winners have to survive until they have
won their first award to be classified as winners; however, there
is no such requirement for controls. Immortal time refers to the
time between publication of the discovery and conferment of
the Nobel Prize for winners (Figure 1a), which arises from using
post-eligibility information to define exposure.

The bias generated is depicted in Figure 1b. The arrow from
E; to E, means scientists who won Nobel Prizes at time 1 were
also Nobel Prize winners at time 2. The arrow from Dy, to
D, means scientists who died between time 1 and 2 were also
dead after time 2. The arrow from D, to E, means the scien-
tists who were not Nobel Prize winners at time 1 have to be
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alive from time 1 to 2 to be classified as Nobel Prize winners at
time 2. The structure of this bias is confounding, that is the pres-
ence of a common cause (D1, ) of the exposure (E,) and the out-
come (D,,). It creates an open path between E, and D,
which can bias the association towards favouring the winners.
Specifically, winners having to remain alive until the Nobel
Prize is awarded means survival confounds the effect of winning
the Nobel Prize on lifespan.

Classical immortal time bias arises from using post-eligibility
information to define exposure. Suissa has reviewed cohort
studies in pharmacoepidemiology leading to this bias.* This bias
also occurs in case-control studies, named ‘time-window
bias’.*** Specifically, these studies define exposure using the
mean, minimum or maximum number of treatments after re-
cruitment (e.g. at least one treatment during follow-up).***
Individuals have to be healthy enough to remain alive until they
receive the treatment, which confounds the effect of treatment
on health outcomes. As such, the fundamental issue is differen-
ces between the individuals who do and do not survive until the
treatment (exposure allocation) rather than counting time
incorrectly.

Immortal time arises from using post-exposure
information to define eligibility

Suppose baseline was set as the day when the discovery was
published. All scientists who died before age 75 years were
excluded. Immortal time refers to the time between publica-
tion of the discovery and age 75 years for both winners and
controls (Figure 1c), which arises from using post-exposure
information to define eligibility.

The bias generated is depicted in Figure 1d. The box around
Dq, means the analysis was restricted to scientists who
remained alive until time 1+. The structure of this bias is selec-
tion bias, i.e. conditioning on a common consequence (D1 ) of
the exposure (E;) and another unmeasured cause of the out-
come (Uj). Although conditioning on D1 closes the open back-
door path between E, and D,_, it creates another open path
between E; and Uj. If winning a Nobel Prize truly provides sur-
vival benefit, Nobel Prize winners who survive until 75 years are
more likely to have another cause of death than controls who
survive until 75years without winning a Nobel Prize.
Therefore, the association is biased towards the opposite direc-
tion of the true effect. The exception is when the exposure, win-
ning a Nobel Prize, has no causal effect on the outcome, death;
then D, is not a collider (Supplementary Figure S2, available
as Supplementary data at IJE online). Specifically, selecting on
survival to 75 years when previous Nobel Prize status and other
factors affect survival creates the classic M-bias, here specifically
butterfly bias®® given survival to 75 years affects current Nobel
Prize status and subsequent survival (Figure 1d). The magnitude
of M-bias is generally smaller than confounding bias.”® This M-
bias can be ameliorated by adjusting for prior exposure E; or a
well measured U;.

In a pharmacoepidemiological study using post-exposure
information to define eligibility (e.g. survival to one year after
recruitment), selecting on survival to one year after recruit-
ment when prior treatment and other factors affect survival
also creates selection bias. Again, the fundamental issue is dif-
ferences between the individuals who survive until eligibility
with and without the treatment (exposure) rather than count-
ing time incorrectly.
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Figure 1 lllustrations and directed acyclic graphs of study designs with immortal time. £, and E, are exposure status at time 1 and 2, respectively. Dy .
and D, are outcome status between time 1 and 2 and after time 2, respectively. U; and U, are status of another unmeasured cause of the outcome at
time 1 and 2, respectively. (a) Baseline was set as the day when the discovery was published. Immortal time is the time between publication of the
discovery and conferment of the Nobel Prize for winners. (b) Immortal time arises from using post-eligibility information to define exposure. The causal
effect of interest is the effect of E; on D, . The arrows from D, to E; and from Dy, to D, are key arrows that create an open path and result in bias. (c)
Baseline was set as the day when the discovery was published and all scientists who died before age 75 years were excluded. Immortal time is the time
between publication of the discovery and age 75 years for both winners and controls. (d) Immortal time arises from using post-exposure information to
define eligibility. The causal effect of interest is the effect of £, on D, . The arrows from E; to Dy and from U; to Dy, are key arrows that create an open

path and result in bias

Excluding immortal time from follow-up does not
fully address the bias

Immortal time can be excluded from follow-up by redefining
baseline to a later timepoint, for some or all individuals in the
study. We further illustrate the structures of bias in study
designs excluding immortal time from follow-up.

When immortal time arises from using

post-eligibility information to define exposure

Suppose baseline was set as the day when Nobel Prize win-
ners won their first award for winners, but as the day when
the discovery was published for controls. Immortal time be-
tween publication of the discovery and the first award for
winners is thereby excluded from follow-up (Figure 2a).

The DAG is depicted in Figure 2b. The arrow from D1 to
E, persists because the scientists who were not Nobel Prize
winners at time 1 still have to be alive from time 1 to 2 to be
classified as Nobel Prize winners at time 2. Excluding immor-
tal time from follow-up partially eliminates the guaranteed
survival advantage of winners, but it does not close the open
backdoor path between E, and D, . As such, the structure of
this bias is confounding, which is the same as Figure 1b given
DAGs do not capture quantitative information.>">*

‘Exposure-based’ cohorts in pharmacoepidemiology use
post-eligibility information to define exposure (e.g. at least
one treatment during follow-up).* Baseline is set as the time
of the first treatment for the exposed group, but as the time
of diagnosis for the unexposed group.* Immortal time be-
tween diagnosis and the first treatment for the exposed group
is thereby excluded from follow-up. However, classical im-
mortal time bias persists, because the fundamental issue is
differences between the individuals who do and do not

survive until the treatment (exposure allocation) rather than
counting time incorrectly.

When immortal time arises from using

post-exposure information to define eligibility

Suppose baseline was set as age 75 years. All scientists who
died before age 75 years were excluded. Immortal time be-
tween publication of the discovery and age 75 years for both
winners and controls is excluded from follow-up (Figure 2c).

The DAG is depicted in Figure 2d. The box around Dy,
means the analysis was restricted to scientists who remained
alive until time 1+. Conditioning on D{, creates an open
path between E; and Uj. The exception is when the expo-
sure, winning a Nobel Prize, has no causal effect on the out-
come, death; then D;, is not a collider (Supplementary
Figure S2, available as Supplementary data at IJE online).
Excluding immortal time from follow-up does not change the
structure of bias. As such, the structure of this bias is selec-
tion bias, as in Figure 1d.

The landmark approach has been suggested to address
classical immortal time bias in pharmacoepidemiology.”*”
This approach sets a landmark time and classifies individuals
as exposed and unexposed based on the treatment received
before the landmark. The landmark is set as baseline and all
individuals who die before the landmark are excluded. This
approach has a similar structure as Figure 2d, except that it
assesses the causal effect of E; on D, (Supplementary Figure
S3, available as Supplementary data at IJE online). Again, us-
ing post-exposure information to define eligibility reduces
confounding (classical immortal time bias) at the expense of
introducing selection bias, but it may provide unbiased
results when the treatment has no effect on survival.?”
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Figure 2 lllustrations and directed acyclic graphs of study designs excluding immortal time from the follow-up. £; and E, are exposure status at time 1
and 2, respectively. Dy, and D, are outcome status between time 1 and 2 and after time 2, respectively. U; and U, are status of another unmeasured
cause of the outcome at time 1 and 2, respectively. (a) Baseline was set as the day when Nobel Prize winners won their first award for winners, but as
the day when the discovery was published for controls. Immortal time between publication of the discovery and conferment of their first award for
winners is excluded from the follow-up. (b) Immortal time arising from using post-eligibility information to define exposure is excluded. The causal effect
of interest is the effect of £, on D, .. The arrows from D, to £, and from D, to D, are key arrows that create an open path and result in bias.(c)
Baseline was set as age 75 years and all scientists who died before age 75 years were excluded. Immortal time between publication of the discovery and
age 75 years for both winners and controls is excluded from the follow-up. (d) Immortal time arising from using post-exposure information to define
eligibility is excluded. The causal effect of interest is the effect of £, on D5, The arrows from E; to Dy, and from U, to D, are key arrows that create an

open path and result in bias

Competing risks can worsen bias from
immortal time

A competing risk is an event which precludes occurrence of
the outcome or alters the probability of occurrence of the
outcome.>® Competing risks should be considered for out-
comes other than all-cause mortality. Consider another
study to investigate the effect of winning a Nobel Prize on
the risk of dementia, where cardiovascular death is a com-
peting risk. Nobel Prize winners and controls were identified
as above.

In DAGs specifying time-varying variables, E; and E, are
exposure status at time 1 and 2, respectively. Dy, and D,
are outcome status between time 1 and 2 and after time 2, re-
spectively. CR;, and CR,_ are status of a competing risk be-
tween time 1 and 2 and after time 2, respectively. U, and U,
are status of an unmeasured common cause of the outcome
and the competing risk at time 1 and 2, respectively.

When immortal time arises from using post-eligibility infor-
mation to define exposure

Suppose baseline was set as the day when the discovery was
published (Figure 3a). Figure 3b shows the bias with the pres-
ence of a competing risk. The arrow from Dy, to E, means
the scientists who were not Nobel Prize winners at time 1
have to remain free of dementia from time 1 to 2 to be classi-
fied as Nobel Prize winners at time 2. If they have dementia
between time 1 and 2, their follow-up ends when dementia
occurs, so E; = E; = 0. The arrow from CRy, to E, means
the scientists who were not Nobel Prize winners at time 1
have to be alive from time 1 to 2 to be classified as Nobel

Prize winners at time 2. These arrows create open paths be-
tween E, and D, and between E, and CR,,. As CR;, pre-
cludes the occurrence of D,,, an additional open path
between E, and D, is generated.

When immortal time arises from using post-exposure infor-
mation to define eligibility

Suppose baseline was set as the day when the discovery was
published. All scientists who had a diagnosis of dementia or
died before age 75 years were excluded (Figure 3c¢). Figure 3d
shows the bias with the presence of a competing risk. The boxes
around D, and CRy, mean the analysis was restricted to sci-
entists who remained alive without the occurrence of dementia
until time 1+. Although these boxes close the open backdoor
paths between E, and D, and between E, and CR,_, they cre-
ate two open paths between E; and U;. The exception is when
the exposure, winning a Nobel Prize, has no causal effect on ei-
ther the outcome, dementia or the competing risk, cardiovascu-
lar death; then neither D{, nor CR;, is a collider
(Supplementary Figure S4, available as Supplementary data at
IJE online).

Competing risks should be particularly considered in stud-
ies investigating late-onset diseases among patients or older
people. For example, a study investigating the effect of statin
use on the risk of prostate cancer among patients with heart
disease has cardiovascular death as a competing risk that can-
not be ignored. Competing risks should be considered more
in studies involving older people, because disease rates usu-
ally increase with age.
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Figure 3 lllustrations and directed acyclic graphs of study designs with immortal time and the presence of a competing risk. £; and E, are exposure
status at time 1 and 2, respectively. D;, and D, are outcome status between time 1 and 2 and after time 2, respectively. CR,, and CR,, are status of a
competing risk between time 1 and 2 and after time 2, respectively. U; and U, are status of an unmeasured common cause of the outcome and the
competing risk at time 1 and 2, respectively. (a) Baseline was set as the day when the discovery was published. Immortal time is the time between
publication of the discovery and conferment of the Nobel Prize for winners. (b) Immortal time arises from using post-eligibility information to define

exposure. The causal effect of interest is the effect of £, on D,.. The arrows from Dy to E,, from Dy, to D,,, from CR;, to E, and from CR;, to CR,,
are key arrows that create open paths and result in bias. (c) Baseline was set as the day when the discovery was published and all scientists who had a
diagnosis of dementia or died before age 75 years were excluded. Immortal time is the time between publication of the discovery and age 75 years for
both winners and controls. (d) Immortal time arises from using post-exposure information to define eligibility. The causal effect of interest is the effect of
E; on D,,. The arrows from E; to Dy, from U, to Dy, from E; to CR;, and from U, to CR;, are key arrows that create open paths and result in bias

Table 1 A summary of the structures and sources of bias from immortal time

Cause of immortal time Exclusion of Presence of Structure and source of bias from Directed acyclic

immortal time  competing risks®  immortal time graphs
Define exposure by post-eligibility No No Confounding by survival until exposure Figure 1b
information allocation (classical immortal
time bias)
Define eligibility by post-exposure No No Selection bias from selecting on survival Figure 1d
information until eligibility
Define exposure by post-eligibility Yes No Confounding by survival until Figure 2b
information exposure allocation
Define eligibility by post-exposure Yes No Selection bias from selecting on survival Figure 2d
information until eligibility
Define exposure by post-eligibility No Yes Confounding by survival without Figure 3b
information occurrence of the outcome until
exposure allocation
Define eligibility by post-exposure No Yes Selection bias by selecting on survival Figure 3d
information without occurrence of the outcome

until eligibility

# There is no competing risk when the outcome is all-cause mortality; however, competing risks should be considered for all other outcomes.

Discussion
Solutions to address bias from immortal time

Table 1 summarizes the structures and sources of bias from
immortal time. To avoid bias from immortal time, baseline
should be the time when exposure allocation and eligibility
for study inclusion are synchronized.*” Individuals with prior
exposure should be excluded,? because prior exposure may

affect survival to recruitment and generate selection bias. All
confounders and selection bias need to be adequately
addressed to ensure exchangeability between groups at base-
line, although this is not always feasible.*"

A target trial framework helps align baseline, exposure al-
location and eligibility.>” An analogue of the intention-to-
treat analysis sets baseline as the day when the discovery was
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published and defines Nobel Prize winners based on exposure
status at baseline. This approach estimates the causal effect
of E; on D,_, which should not be confounded by D that
occurs after time 1 (Supplementary Figure S5, available as
Supplementary data at IJE online). However, this approach is
not practical here, because no scientist won a Nobel Prize
when their discovery was published. Similarly, in a pharma-
coepidemiological study where few individuals start treat-
ment at eligibility, the analogue of the intention-to-treat
effect estimates could be uninformative. In this case, the new-
user design is more feasible.>* The new-user design identifies
new users of the study drug and a comparator drug, matches
the two groups based on when they start the drugs and sets
baseline as the same time.>* This approach conditions on
D1, = 0 because both groups have to remain alive until they
start the drugs to be eligible; however, it does not introduce
selection bias because selecting on E; = 0 (no one uses any
drug before time 1+) closes the backdoor path between E;
and U, generated by conditioning on Dy, (Supplementary
Figure S6, available as Supplementary data at IJE online).

Alternatively, statistical approaches which focus on han-
dling follow-up times correctly can be considered as an ana-
logue of the per-protocol analysis that sets baseline at
different eligibility times and considers each individual at
each eligible time as different individuals. For example, the
person-time approach accounts for person-time before win-
ning the first Nobel Prize as unexposed and after that as ex-
posed.® Time-dependent analysis codes the exposure status as
a time-varying variable that changes from 0 to 1 when scien-
tists win their first Nobel Prize.” The sequential approach
emulates a sequence of mini trials with increasing baseline
when eligible scientists who have not won a Nobel Prize be-
fore are classified into either group based on their exposure
status within each mini trial; scientists in the unexposed
group are artificially censored when they win their first
Nobel Prize.>* The analogue of the per-protocol effect esti-
mates are the combination of trial-specific estimates from
each mini trial,®> i.e. the combination of the arrows from E
to Dg,, from E; to Di,, and from E; to Dy,
(Supplementary Figure S7, available as Supplementary data
at IJE online). These approaches do not remove the arrows
from Dy, to Eq, from Dy, to E,, ... and from Dj_, to Ey,
because the scientists who were not Nobel Prize winners at
time O still have to remain alive from time 0 to 1 to be classi-
fied as Nobel Prize winners at time 1, etc. Hence, differences
persist between those who did and did not survive until the
award, which requires addressing not only confounders and
selection bias at baseline but also time-varying confounders
that affect change in exposure status/artificial censoring and
the outcome.>*

Conclusion

The fundamental cause of immortal time is misalignment of
exposure allocation and eligibility. Specifically, immortal
time arises from using post-eligibility information to define
exposure or using post-exposure information to define eligi-
bility. The structures of bias from immortal time are con-
founding by survival until exposure allocation or selection
bias from selecting on survival until eligibility. Excluding im-
mortal time from follow-up does not fully address the bias,
and the presence of competing risks can worsen the bias.

International Journal of Epidemiology, 2025, Vol. 54, No. 1

Epidemiological studies should be designed and analysed us-
ing rigorous approaches to avoid or mitigate bias from im-
mortal time.

Ethics approval

This study does not require ethical approval.

Data availability

No new data were generated or analysed in support of
this study.

Supplementary data

Supplementary data are available at IJE online.

Author contributions

GY and CMS contributed to the study conception. GY
drafted the manuscript with critical feedback and revisions
from SB and CMS. All authors read and approved the final
version of the manuscript.

Funding

SB was supported by the Wellcome Trust (225790/2/22/7)
and the United Kingdom Research and Innovation Medical
Research Council (MC_UU_00002/7). The funders had no
role in this study.

Acknowledgements

The authors would like to thank the three anonymous
reviewers for their helpful comments and suggestions.

Conflict of interest

None declared.

Use of artificial intelligence (Al) tools

Al tools were not used in this study.

References

1. Lash TL, VanderWeele TJ, Rothman KJ, Haneuse S. Modern
Epidemiology. Philadelphia, Pennsylvania, USA: Wolters
Kluwer, 2021.

2. Messmer BJ, Nora JJ, Leachman RD, Cooley DA. Survival-times
after cardiac allografts. Lancer 1969;1:954-6.

3. Gail MH. Does cardiac transplantation prolong life? A reassess-
ment. Ann Intern Med 1972;76:815-7.

4. Suissa S. Immortal time bias in pharmaco-epidemiology. Am |
Epidemiol 2008;167:492-9.

5. Hanley JA, Foster BJ. Avoiding blunders involving 'immortal
time'. Int | Epidemiol 2014;43:949-61.

6. Suissa S. Immortal time bias in observational studies of drug
effects. Pharmacoepidemiol Drug Saf 2007;16:241-9.

7. Lévesque LE, Hanley JA, Kezouh A, Suissa S. Problem of immortal
time bias in cohort studies: example using statins for preventing
progression of diabetes. BM] 2010;340:b5087.

G20z 19903100 8z uo Jasn Buoyj BuoH jo Ausieniun Aq 961G16//9/ L oeAp/L/yG/a101e/all/woo dno-olwapeoe//:sdyy wolj papeojumoq


https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyae176#supplementary-data

International Journal of Epidemiology, 2025, Vol. 54, No. 1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Glesby MJ, Hoover DR. Survivor treatment selection bias in obser-

vational studies: examples from the AIDS literature. Ann Intern
Med 1996;124:999-1005.

Zhou Z, Rahme E, Abrahamowicz M, Pilote L. Survival bias associ-
ated with time-to-treatment initiation in drug effectiveness evalua-
tion: a comparison of methods. Am | Epidemiol 2005;162:1016-23.
van Walraven C, Davis D, Forster AJ, Wells GA. Time-dependent
bias was common in survival analyses published in leading clinical
journals. | Clin Epidemiol 2004;57:672-82.

Tudici M, Porcher R, Riveros C, Ravaud P. Time-dependent biases
in observational studies of comparative effectiveness research in
rheumatology. A methodological review. Ann Rbheum Dis 2019;
78:562-9.

Suissa S, Azoulay L. Metformin and the risk of cancer: time-related
biases in observational studies. Diabetes Care 2012;35:2665-73.

Sule NO, Suissa S. Statins and mortality in COPD: a methodologi-
cal review of observational studies. COPD 2023;20:284-91.
Martinuka O, von Cube M, Wolkewitz M. Methodological evalu-
ation of bias in observational coronavirus disease 2019 studies on
drug effectiveness. Clin Microbiol Infect 2021;27:949-57.

Pearl J. Causal diagrams for empirical research. Biometrika 1995;
82:669-88.

Greenland S, Pearl J, Robins JM. Causal diagrams for epidemio-
logic research. Epidemiology 1999;10:37-48.

Herndn MA, Herndndez-Diaz S, Robins JM. A structural ap-
proach to selection bias. Epidemiology 2004;15:615-25.
Mansournia MA, Nazemipour M, Etminan M. Causal diagrams
for immortal time bias. Int | Epidemiol 2021;50:1405-9.
Mansournia MA, Nazemipour M, Etminan M. Time-fixed vs
time-varying causal diagrams for immortal time bias. Int |
Epidemiol 2022;51:1030-1.

Shrier I, Suissa S. The quintessence of causal DAGs for immortal
time bias: time-dependent models. Int | Epidemiol 2022;51:1028-9.
Hernan MA, Robins JM. Causal Inference: What If. Boca Raton,
Florida, USA: CRC Press, 2020.

Suzuki E, Shinozaki T, Yamamoto E. Causal diagrams: pitfalls and
tips. | Epidemiol 2020;30:153-62.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Mitsis P. The Nobel Prize time gap. Humanit Soc Sci Commun
2022;9:407.

Suissa S, Dell'aniello S, Vahey S, Renoux C. Time-window bias in
case-control studies: statins and lung cancer. Epidemiology 2011;
22:228-31.

Herndndez-Diaz S. Name of the bias and sex of the angels.
Epidemiology 2011;22:232-3.

Ding P, Miratrix LW. To adjust or not to adjust? Sensitivity analy-
sis of M-bias and butterfly-bias. | Causal Inference 2015;3:41-57.
Mi X, Hammill BG, Curtis LH, Lai EC, Setoguchi S. Use of the
landmark method to address immortal person-time bias in com-
parative effectiveness research: a simulation study. Stat Med 2016;
35:4824-36.

Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of fail-
ure probabilities in the presence of competing risks: new represen-
tations of old estimators. Statist Med 1999;18:695-706.

Herndn MA, Sauer BC, Herndndez-Diaz S, Platt R, Shrier 1.
Specifying a target trial prevents immortal time bias and other self-
inflicted injuries in observational analyses. | Clin Epidemiol 2016;
79:70-5.

Danaei G, Tavakkoli M, Herndn MA. Bias in observational studies
of prevalent users: lessons for comparative effectiveness research
from a meta-analysis of statins. Am | Epidemiol 2012;175:250-62.
Herndn MA. Methods of public health research—strengthening
causal inference from observational data. N Engl | Med 2021;
385:1345-8.

Suissa S, Moodie EE, Dell'Aniello S. Prevalent new-user cohort
designs for comparative drug effect studies by time-conditional
propensity scores. Pharmacoepidemiol Drug Saf 2017;26:459-68.
Karim ME, Gustafson P, Petkau ], Tremlett H, Long-Term
Benefits and Adverse Effects of Beta-Interferon for Multiple
Sclerosis (BeAMS) Study Group. Comparison of statistical
approaches for dealing with immortal time bias in drug effective-
ness studies. Am | Epidemiol 2016;184:325-35.

Daniel RM, Cousens SN, De Stavola BL, Kenward MG, Sterne JA.
Methods for dealing with time-dependent confounding. Stat Med
2013;32:1584-618.

© The Author(s) 2025; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
International Journal of Epidemiology, 2025, 54, 1-7
https://doi.org/10.1093/ije/dyael76

Original article

G20z 19903100 8z uo Jasn Buoyj BuoH jo Ausieniun Aq 961G16//9/ L oeAp/L/yG/a101e/all/woo dno-olwapeoe//:sdyy wolj papeojumoq



	Active Content List
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Ethics approval
	Data availability
	Supplementary data
	Author contributions
	Funding
	Acknowledgements
	Conflict of interest
	Use of artificial intelligence (AI) tools
	References


